大气中氮氧化物的测定

合集下载

大气中氮氧化物的测定 王茂

大气中氮氧化物的测定 王茂

七、三注、意实事验项原理(盐酸萘乙二胺比色法)
•发吸 作光氮法收,氧。液若化的不物的倒足测出5定m:主l,要全有用部两吸倒种收:入盐液比酸来色萘补乙管二充中胺。,比色注法意和操化学
•应如 标用盐广采 准酸泛样 曲萘,时线乙是二环范污胺境围染分空,物光气光中则浓度氮进度法氧分行较化析物高稀快(,释速一超 使简氧便化之出,氮了在稳和所所定二准氧绘绘确化制制,氮的的价)廉的, 国标家标准准曲测线定方范法围。内,最后计算时再乘以所稀释
• 分NO光—光—度高铁计血、红蛋比白症色,杯中枢的神使经系用统损,害少。 量样品润洗 比SO色2—杯—,水在溶性54的0刺n激m性波,长上呼下吸测道量和支吸气光管度粘膜。的富水
性粘液所吸收。
NOx参与形成光化学烟雾、酸雨、破坏臭氧层,危害人 类健康。
七• 吸二、收、注液实意的倒验事出目项:的全部倒入比色管中,注意操
E-mail: wangmao@
七、注意事项
• 吸收液的倒出:全部倒入比色管中,注意操 作,若不足5ml,用吸收液来补充。
• 如采样时污染物浓度较高,超出了所绘制的 标准曲线范围,则进行稀释使之在所绘制的 标准曲线范围内,最后计算时再乘以所稀释 的倍数。
• 分光光度计、比色杯的使用,少量样品润洗 比色杯,在540nm波长下测量吸光度。
的倍数。
空气中的氮氧化合物与吸收液中的有效成分主要经重氮和
•偶分氮反光应光,度最终计生、成比玫瑰色红杯色的偶氮使化用合,物,少其量颜样色深品浅润与洗氮氧 化比物的色浓杯度,成线在性5关4系0n,m比波色定长量下(最测大量吸吸收波光长度λ 。=540nm)。
七、主注要意化事学反项应式
• 吸收液的倒出:全部倒入比色管中,注意操 作,若不足5ml,用吸收液来补充。

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告一、实验目的。

本实验旨在通过实验方法测定大气中氮氧化物的含量,进一步了解大气污染情况,为环境保护和治理提供科学依据。

二、实验原理。

大气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2),这两种氮氧化物是大气污染的主要来源之一。

本实验采用化学吸收法,通过将大气中的氮氧化物溶解在吸收液中,再通过化学反应得到的产物进行测定,从而得到氮氧化物的含量。

三、实验步骤。

1. 准备实验设备和试剂,包括吸收瓶、吸收液、分析仪器等;2. 在大气污染较为严重的地区选择实验点,设置吸收瓶,将大气中的氮氧化物吸收到吸收液中;3. 将吸收液中的氮氧化物与试剂进行反应,生成化学物质;4. 采用分析仪器对生成的化学物质进行测定,得出氮氧化物的含量;5. 对实验结果进行统计分析,得出大气中氮氧化物的含量数据。

四、实验结果。

经过实验测定,我们得到了大气中氮氧化物的含量数据。

根据统计分析,我们发现在工业区和交通密集区,氮氧化物的含量明显高于其他地区。

尤其是在高峰时段,氮氧化物的含量更是达到了较高水平,这表明工业排放和交通尾气是大气中氮氧化物的主要来源。

五、实验分析。

大气中的氮氧化物是一种有害的气体污染物,其对人体健康和环境造成了严重的影响。

高浓度的氮氧化物不仅会导致雾霾天气的形成,还会对人体的呼吸系统造成危害,引发呼吸道疾病。

因此,我们需要采取有效的措施来减少氮氧化物的排放,保护大气环境和人民健康。

六、实验总结。

通过本次实验,我们成功测定了大气中氮氧化物的含量,并对其来源和危害进行了分析。

我们应当加强对工业和交通尾气排放的治理,推广清洁能源,减少氮氧化物的排放。

同时,也需要加强大气环境监测,及时掌握大气污染情况,采取有效措施保护环境和人民健康。

七、参考文献。

1. 环境保护部. 大气环境质量标准[S]. GB 3095-2012.2. 郭美玲, 张晓英. 大气污染物的化学测定[M]. 北京: 化学工业出版社, 2008.以上就是本次实验的全部内容,希望对大家有所帮助。

空气中氮氧化物的测定

空气中氮氧化物的测定

空气中氮氧化物(NOx)的测定(盐酸萘乙二胺分光光度法)摘要:本文采用盐酸萘乙二胺分光光度法测定室内空气中氮氧化物(NOx),根据配置标准溶液用分光光度计测定其吸光度,绘制标准曲线,分析空气中氮氧化物的含量结果。

关键词:氮氧化物分光光度法含量综述大气中氮氧化物主要包括一氧化氮和二氧化氮,其中绝大部分来自于化石燃料的燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自与生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气中。

动物实验证明,氮氧化物对呼吸道和呼吸器官有刺激作用,是导致目前支气管哮喘等呼吸道疾病不断增加的原因之一,二氧化氮与二氧化硫和浮游颗粒物共存时,其对人体的影响不仅比单独二氧化氮对人体的影响严重的多,而且也大于各自污染物之和。

对人体的实际影响是各污染物之间的协同作用。

因此大气氮氧化物的监测分析是环境保护部门日常工作的重要项目之一。

采用化学发光法测定空气中氮氧化物较以往的盐酸禁乙二胺分光光度法具有灵敏度高、反应速度快、选择性好等特点 ,现已被很多国家和世界卫生组织全球监测系统作为监测氮氧化物的标准方法 ,也已引起我国环保部门的注意和重视 ,相信不久将来 ,此方法也会成为我国环境空气监测氮氧化物的首推方法。

1、实验目的(1)熟悉、掌握小流量大气采样器的工作原理和使用方法;(2)熟悉、掌握分光光度计的工作原理及使用方法。

(3)掌握大气监测工作中监测布点、采样、分析等环节的工作内容及方法。

2、实验原理,测定氮大气中的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2))氧化管将一氧化氮成二氧化氮。

二氧化氧化物浓度时,先用三氧化铬(CrO3),与对氨基苯磺酸起重氧化反应,再与盐氮被吸收在溶液中形成亚硝酸(HNO2酸萘乙二胺偶合,生成玫瑰红色偶氮染料。

于波长540~545之间测定显色溶液的吸光度,根据吸光度的数值换算出氮氧化物的浓度,测定结果以二氧化氮表示。

本法检出限为0.05μg/5mL,当采样体积为6L时,最低检出浓度为0.01μg /m3。

空气中氮氧化物测定

空气中氮氧化物测定

第2页
NOX人为起源主要是矿物燃料燃烧、汽车尾 气和固定排放源等。
燃烧过程中氧和氮在高温下化合主要链反应 机制为:
空气中氮氧化物测定
O2 O O O N2 NO N N O2 NO O 2 NO O2 2 NO2


第3页
当阳光照到含NO、NO2空气上时,发生基础光 化学反应为:
空气中氮氧化物测定
第21页
本法可测5~500g/m³氮氧化物
空气中氮氧化物测定
第9页
仪器 多孔玻板吸收管, 10ml。 空气采样器, 流量范围0~1L/min。 双球玻璃管。 分光光度计。
空气中氮氧化物测定
第10页
多孔筛板吸收瓶
(Perforated screen absorption method)
可装5~10mL吸收液,采样流量为0.1~ 1.0L/min。吸收瓶有小型(装10~30ml吸收液, 采样流量为0.5~2.0L/min)和大型(装50~100mL 吸收液。
原理: 是在内管出气口熔接一块多孔性砂芯 玻板,当气体经过多孔玻板时,首先被分散成 很小气泡,增大了与吸收液接触面积;另首先 被弯曲孔道所阻留,然后被吸收液吸收。
适合于: 采集气态和蒸气态物质,气溶胶态 物质。
多孔筛板采样
空气中氮氧化物测定
第11页
溶液吸收法(Solution absorption method)
临用前, 吸收贮备液5.00ml于100ml容量瓶中, 用水 稀释至标线。此溶液每毫升含5.00µg亚硝酸根(NO2-)。
空气中氮氧化物测定
第15页
采样
用一支内装5.00ml吸收液多孔玻板吸收管, 进 气口接氧化管, 并使管口略微向下倾斜, 以免 当湿空气将氧化剂(CrO3)弄湿时, 污染后 面吸收液。以0.4L/min流量, 避光采样至吸收 液呈微红色为止, 记下采样时间, 密封好采样 管, 带回试验室, 当日测定。采样时, 若吸收液 不变色, 采气量应不少于12L。

空气中氮氧化物(NOx)的测定

空气中氮氧化物(NOx)的测定

空气中氮氧化物(NOx)的测定(盐酸萘乙二胺分光光度法)1、实验目的(一)熟悉、掌握小流量大气采样器的工作原理和使用方法;(二)熟悉、掌握分光光度分析方法和分析仪器的使用;(三)掌握大气监测工作中监测布点、采样、分析等环节的工作内容及方法。

2、实验原理大气中的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2),测定氮氧化物浓度时,先用三氧化铬(CrO3)氧化管将一氧化氮成二氧化氮。

二氧化氮被吸收在溶液中形成亚硝酸(HNO2),与对氨基苯磺酸起重氧化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。

于波长540~545之间测定显色溶液的吸光度,根据吸光度的数值换算出氮氧化物的浓度,测定结果以二氧化氮表示。

本法检出限为0.05μg/5mL,当采样体积为6L时,最低检出浓度为0.01μg /m3。

3、实验仪器和试剂(一)实验用仪器除一般通用化学分析仪器外,还应具备:多孔玻板吸收管、空气采样器(KC—6型)、双球玻璃氧化管(内装涂有三氧化铬催化剂的石英砂)、分光光度计(7220型)、KC—6D型大气采样器(二)实验用试剂所有试剂均用不含硝酸盐的重蒸蒸馏水配制。

检验方法是要求用该蒸馏水配制的吸收液的吸光度不超过0.005(540~545nm,10mm比色皿,水为参比)。

1. 显色液:称取5.0克对氨基苯磺酸,置于200毫升烧杯中,将50毫升冰醋酸与900毫升水的混合液分数次加入烧杯中,搅拌使其溶解,并迅速转入1000毫升棕色容量瓶中,待对氨基苯磺酸溶解后,加入0.03克盐酸萘乙二胺,用水稀释至标线,摇匀,贮于棕色瓶中。

此为显色液,25℃以下暗处可保存一月。

采样时,按四份显色液与一份水的比例混合成采样用的吸收液。

2. 三氯化铬—砂子氧化管:将河砂洗净,晒干,筛取20~40目的部分,用(1+2)的盐酸浸泡一夜后用水洗至中性后烘干。

将三氧化铬及砂子按(1+20)的重量混合,加少量水调匀,放在红处灯下或烘箱里于105℃烘干,烘干过程中应搅拌数次。

大气中氮氧化物的测定

大气中氮氧化物的测定

大气中氮氧化物的测定(盐酸萘乙二胺分光光度法)一、原理大气中的氮氧化物主要是一氧化氮和二氧化氮。

在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。

二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。

因为NO2(气)转变为NO2—(液)的转换系数为0.76,故在计算结果时应除以0.76。

二、仪器1.多孔玻板吸收管。

2.双球玻璃管(内装三氧化铬-砂子)。

3.空气采样器:流量范围0-1L/min。

4.分光光度计。

三、试剂所有试剂均用不含亚硝酸根的重蒸馏水配制。

其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。

1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0.05g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4分吸收原液与1份水的比例混合配成采样用的吸收液。

2.三氧化铬-砂子氧化管:筛取20-40目海砂(或河沙),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。

将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。

制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。

称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。

采样时将氧化管与吸收管用一小段乳胶管相接。

3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。

此溶液每毫升含100.0μgNO2—,贮存于棕色瓶内,冰箱中保存,可稳定三个月。

大气中氮氧化物的测定

大气中氮氧化物的测定

大气中氮氧化物的测定一些环评报告中需要的检测方案,几乎所有的大气污染物都需要检测氮氧化物了,由于十二五计划将氮氧化物纳入总量控制指标,这里今天给大家解释一下大气中氮氧化物的测定方法,盐酸萘乙二胺分光光度法。

大气中的氮氧化物注意是二氧化氮和一氧化氮,在测定氮氧化物浓度时,应先用二氧化铬将一氧化氮升成二氧化氮,在进行检测,不然直接检测的话只能检测出二氧化氮的数值,漏掉了一氧化氮。

检测原理:二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。

因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。

检测仪器:1.多孔玻板吸收管。

2.双球玻璃管(内装三氧化铬-砂子)。

3.空气采样器:流量范围0—1L/ min。

4. 分光光度计。

检测试剂:所有试剂均用不含亚硝酸根的重蒸馏水配制。

其检验方法是:所配制的吸收液对540nm 光的吸光度不超过0.005。

1.吸收液:称取5.0g 对氨基苯磺酸,置于1000mL 容量瓶中,加入50mL 冰乙酸和900mL 水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g 盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4 份吸收原液与1 份水的比例混合配成采样用吸收液。

2.三氧化铬-砂子氧化管:筛取20—40 目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。

将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。

制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。

称取约8g 三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。

环境监测实验三 空气中氮氧化物(NOx)的测定

环境监测实验三 空气中氮氧化物(NOx)的测定

实验五空气中氮氧化物(NOx)的测定一、实验目的及要求掌握盐酸萘乙二胺分光光度法测定大气中NOX的原理。

掌握大气NOx采样器的使用方法及注意事项。

二、实验原理用冰醋酸、对氨基苯磺酸和盐酸萘乙二胺配制成吸收-显色液,吸收氮氧化物,在三氧化铬作用下,一氧化氮被氧化成二氧化氮,二氧化氮与吸收液作用生成亚硝酸,在冰醋酸存在下,亚硝酸与对氨基苯磺酸重氮化后再与盐酸萘乙二胺偶合,显玫瑰红色,于波长540nm处,测定吸光度,同时以试剂空白作参比,得到大气中NOx的浓度。

三、实验仪器分光光度计空气采样器多孔玻板吸收管三氧化铬-石英砂氧化管四、实验试剂1、N-(1-萘基)乙二胺盐酸盐储备液:称取0.50g N-(1-萘基)乙二胺盐酸盐[C10H7NH(CH2)2NH2·2HCl]于500 mL容量瓶中,用水稀释至刻度。

此溶液贮于密闭棕色瓶中冷藏,可稳定三个月。

2、显色液:称取5.0g对氨基苯磺酸[NH2C6H4SO3H]溶解于200 mL热水中,冷至室温后转移至1000 mL容量瓶中,加入50.0 mL N-(1-萘基)乙二胺盐酸盐储备液和50 mL冰乙酸,用水稀释至标线。

此溶液贮于密闭的棕色瓶中,25℃以下暗处存放可稳定三个月。

若呈现淡红色,应弃之重配。

3、吸收液:使用时将显色液和水按4+1(V/V)比例混合而成。

4、亚硝酸钠标准储备液:称取0.3750 g优级纯亚硝酸钠(NaNO2,预先在干燥器放置24h)溶于水,移入1000 mL容量瓶中,用水稀释至标线。

此标液为每毫升含250μgNO2-,贮于棕色瓶中于暗处存放,可稳定三个月。

5、亚硝酸钠标准使用溶液:吸取亚硝酸钠标准储备液 1.00 mL于100 mL容量瓶中,用水稀释至标线。

此溶液每毫升含2.5μg NO2-,在临用前配制。

五、实验步骤1、标准曲线的绘制:取6支10mL 具塞比色管,按下表配制NO 2-标准溶液色列。

NO 2-标准溶液色列将各管溶液混匀,于暗处放置20 min(室温低于20℃时放置40 min 以上),用1 cm 比色皿于波长540 nm 处以水为参比测量吸光度,扣除试剂空白溶液吸光度后,用最小二乘法计算标准曲线的回归方程。

大气氮氧化物的测定实验报告

大气氮氧化物的测定实验报告

大气氮氧化物的测定实验报告嘿,大家好,今天咱们聊聊一个看似枯燥却非常重要的话题——大气中的氮氧化物。

你可能会问,氮氧化物是什么东西?简单说,就是氮和氧在高温条件下结合生成的气体,听上去是不是有点像化学课上那些让人打瞌睡的知识?但实际上,这玩意儿和我们的生活息息相关,关系到空气质量、健康,还有气候变化,真的是个不得不关注的话题。

咱们现在就来深入了解一下,看看实验是怎么测定这些家伙的。

我们得准备实验所需的材料。

这可不是随便找点东西就能搞定的哦,仪器的选择可是相当讲究。

比如,我们用的气体分析仪,功能强大得很,可以精确测量氮氧化物的浓度。

说到这里,有没有小伙伴觉得这仪器像个高科技的玩具?是的,科技真是日新月异,咱们也得跟上步伐。

要把设备调试好,确保一切正常运作。

这个过程有点像在调音响,稍微不注意就可能出问题,噪音大了可就尴尬了。

实验开始时,我们需要选择一个合适的采样点。

这可得好好思量,不是随便找个地方就行。

比如,选择交通繁忙的街道,或者工业区附近,这些地方的氮氧化物浓度通常较高,能让我们的实验结果更具参考价值。

不过,选择完之后,可得小心点,别被车流淹没了,搞不好就成了“道路观察员”了!一边记录,一边还得小心避开那些飞驰而过的车辆,真是刺激。

然后,咱们就把采样管插入空气中,开始收集数据。

在这段时间,静静等待的感觉就像在钓鱼,心里那份期待和紧张交织着。

每过一段时间,就要查看一次仪器的数据,哇,真是像看世界杯比分一样,让人心跳加速。

数据出来后,咱们得赶紧记录下来,这里可不能掉以轻心。

每一秒钟都得精确,数据才不会跑偏。

这个时候,如果数据不太如意,心里难免会有些小失落,毕竟我们可是为了清新空气在努力呀。

实验结束后,咱们得分析数据。

哦,听起来有点高大上了,但其实就是把数字整理一下,看看氮氧化物的浓度到底咋样。

结果往往是让人又惊又喜,有时候觉得“哇,原来我们呼吸的空气竟然这么不安全!”这样的发现让人不得不深思。

我们每个人都在为这片蓝天努力,但有些事情却在悄然发生。

内科大大气污染控制工程实验指导04大气中氮氧化物的测定

内科大大气污染控制工程实验指导04大气中氮氧化物的测定

实验四大气中氮氧化物的测定一、实验目的活性炭吸附广泛应用于防止大气污染|、水质污染或有毒气体进化领域。

用吸附法进化NOX尾气是一种简便、有效的方法。

通过吸附剂的物理吸附性能和大的比表面将尾气中的污染气体分子吸附在吸附剂上;经过一段时间,吸附达到饱和。

然后使吸附质解吸下来,达到进化的目的,吸附剂解吸后重复使用。

二、实验原理活性炭是基于其较大的比表面(可高达1000m2/g)和较高的物理吸附性能吸附气体中的NOx。

活性炭吸附NOx是可逆过程,在一定的温度和压力下达到吸附平衡,而在高温、减压下被吸附的NOX又被解吸出来,活性炭得到再生。

通过实验明确吸附净化NOX的影响因素较多,操作条件是否合适直接关系到方法的技术经济性。

三、实验装置和试剂(一)实验装置夹套式U型吸附器(二)实验试剂1、吸附器硬质玻璃,直径d=15mm,高H=150mm,套管外径D=25mm,1个。

2、活性炭粒径200目。

3、稳定阀1个。

4、蒸气瓶5L,1个。

5、冷凝器1只。

6、加热套500W,1个。

7、吸气瓶1个8、储气罐不锈钢,400L,最高耐压P=15kg/cm3, 1个9、空气压缩机排气量Q=0.1m3/min,压力P=20kg/cm210、真空泵抽气量Q=0.5L/min,转数N=140r/min, 1台11、医用注射器5ml, 2ml, 各1只12、分光光度计1台13、调压器500W,1台14、对氨基苯磺酸分析纯1瓶15、盐酸萘乙二胺分析纯1瓶16、冰醋酸分析纯1瓶17、氢氧化钠分析纯1瓶18、硫酸亚铁工业纯1瓶19、亚硝酸钠工业纯1瓶。

四、实验方法和步骤1、准备NO2吸收。

2、检查管路系统,使阀门e、f和a关闭,处于吸收系统状态。

3、开启阀门a、b和c,同时记录开始吸附的时间。

4、运行10min后取样分析,此后每30 min取样一次,每次取三个。

5、当吸附进化效率低于80%时,停止吸附操作,关闭阀门a、b和c。

6、开启阀门e、f和d。

大气中氮氧化物的测定 王茂

大气中氮氧化物的测定 王茂
性粘液所吸收。 性粘液所吸收。
NOx参与形成光化学烟雾、酸雨、破坏臭氧层,危害人 参与形成光化学烟雾、酸雨、破坏臭氧层, 参与形成光化学烟雾 类健康。 类健康。
七、注意事项 二、实验目的 • 吸收液的倒出:全部倒入比色管中,注意操 吸收液的倒出:全部倒入比色管中,
•作,若不足 掌握大气中氮氧化物测定的方法和基本原 掌握大气中氮氧化物测定的方法和基本原 若不足5ml,用吸收液来补充。 ,用吸收液来补充。 理 • 如采样时污染物浓度较高,超出了所绘制的 如采样时污染物浓度较高 污染物浓度较高, •标准曲线范围,则进行稀释使之在所绘制的 熟悉大气中氮氧化物的来源和卫生学意义 标准曲线范围,则进行稀释 稀释使之在所绘制的 •标准曲线范围内,最后计算时再乘以所稀释 学会空气质量评价的方法和卫生学意义 标准曲线范围内, 的倍数。 的倍数。 • 分光光度计、比色杯的使用,少量样品润洗 分光光度计、比ห้องสมุดไป่ตู้杯的使用,少量样品润洗 比色杯,在540nm波长下测量吸光度。 比色杯, 波长下测量吸光度。 波长下测量吸光度
氮氧化物( 氮氧化物(NOx)是评价空气质量的控制标准之一。 )是评价空气质量的控制标准之一。
(一) 污染来源 一 七、注意事项
自然来源: 微生物分解含氮有机物;雷电;火山爆发; 自然来源: 微生物分解含氮有机物;雷电;火山爆发;森 •• 吸收液的倒出:全部倒入比色管中,注意操 吸收液的倒出:全部倒入比色管中, 林火灾等。 林火灾等。 若不足5ml,用吸收液来补充。 作,若不足 ,用吸收液来补充。 • 如采样时污染物浓度较高,超出了所绘制的 如采样时污染物浓度较高 污染物浓度较高, 标准曲线范围,则进行稀释 稀释使之在所绘制的 标准曲线范围,则进行稀释使之在所绘制的 标准曲线范围内, 标准曲线范围内,最后计算时再乘以所稀释 的倍数。 • 的倍数。: 煤、石油、天然气等燃料燃烧 机动车尾气; 人为污染源: 石油、天然气等燃料燃烧 机动车尾气; 燃料燃烧; 人为污染源 化学化工等。 •化学化工等。 、比色杯的使用,少量样品润洗 分光光度计、 分光光度计 比色杯的使用,少量样品润洗 比色杯,在540nm波长下测量吸光度。 比色杯, 波长下测量吸光度。 波长下测量吸光度

化工综合实训-大气氮氧化物的测定

化工综合实训-大气氮氧化物的测定

化工实训实验大气中氮氧化物的测定一、实验目的:(1)了解小流量大气采样器的工作原理和使用方法;(2)熟悉用气体吸收比色法测定大气中气态污染物的过程;(3)了解氮氧化物的来源;(4)熟悉大气中氮氧化物的测定。

二、实验原理:大气中的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2),测定氮氧化物浓度时,先用三氧化铬(CrO3)氧化管将一氧化氮成二氧化氮。

二氧化氮被吸收在溶液中形成亚硝酸(HNO2),与对氨基苯磺酸起重氧化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。

颜色深浅,比色定量,测定结果表示。

本法检出限为0.05微克/毫升,当采样体积为6升时,最低检出浓以NO2度为0.01毫克/立方米。

三、实验试剂、仪器(一)实验用仪器除一般通用化学分析仪器外,还应具备:多孔玻板吸收管、空气采样器、双球玻璃氧化管(内装涂有三氧化铬催化剂的石英砂)、分光光度计(二)实验用试剂所有试剂均用不含硝酸盐的重蒸蒸馏水配制。

检验方法是要求用该蒸馏水配制的吸收液的吸光度不超过0.005(540~545nm,10mm比色皿,水为参比)。

检验方法是要求该蒸馏水配置的吸收液不呈淡红色。

1. 吸收原液:称取5.0克对氨基苯磺酸,通过玻璃小漏斗直接加入1000毫升棕色容量瓶中,加入50毫升冰醋酸和900毫升水的混合溶液,盖塞振摇使其溶解,待对氨基苯磺酸完全溶解后,加入加入0.05克盐酸萘乙二胺溶解后,用水稀释至标线,摇匀。

此为吸收原液,储于棕色瓶中,在冰箱中可保存两个月。

采样时,按四份吸收原液与一份蒸馏水的比例混合成采样用的吸收液。

2. 三氯化铬—砂子氧化管:将河砂洗净,晒干,筛取20~40目的部分,用(1+2)的盐酸浸泡一夜后用水洗至中性后烘干。

将三氧化铬及砂子按(1+20)的重量混合,加少量水调匀,放在红处灯下或烘箱里于105℃烘干,烘干过程中应搅拌数次。

做好的三氧化铬—砂子应是松散的,若粘在一起,说明三氧化铬比例太少,可适当加一些砂子,重新制备。

环境监测实验三空气中氮氧化物(NOx)的测定

环境监测实验三空气中氮氧化物(NOx)的测定

实验五空气中氮氧化‎物(NOx)的测定一、实验目的及要‎求掌握盐酸萘乙‎二胺分光光度‎法测定大气中‎N O X的原理‎。

掌握大气NO‎x采样器的使‎用方法及注意‎事项。

二、实验原理用冰醋酸、对氨基苯磺酸‎和盐酸萘乙二‎胺配制成吸收‎-显色液,吸收氮氧化物‎,在三氧化铬作‎用下,一氧化氮被氧‎化成二氧化氮‎,二氧化氮与吸‎收液作用生成‎亚硝酸,在冰醋酸存在‎下,亚硝酸与对氨‎基苯磺酸重氮‎化后再与盐酸‎萘乙二胺偶合‎,显玫瑰红色,于波长540‎n m处,测定吸光度,同时以试剂空‎白作参比,得到大气中N‎O x的浓度。

三、实验仪器分光光度计空气采样器多孔玻板吸收‎管三氧化铬-石英砂氧化管‎四、实验试剂1、N-(1-萘基)乙二胺盐酸盐‎储备液:称取0.50g N-(1-萘基)乙二胺盐酸盐‎[C10H7N‎H(CH2)2NH2·2HCl]于500 mL容量瓶中‎,用水稀释至刻‎度。

此溶液贮于密‎闭棕色瓶中冷‎藏,可稳定三个月‎。

2、显色液:称取5.0g对氨基苯‎磺酸[NH2C6H‎4SO3H]溶解于200‎mL热水中,冷至室温后转‎移至1000‎mL容量瓶中‎,加入50.0 mL N-(1-萘基)乙二胺盐酸盐‎储备液和50‎mL冰乙酸,用水稀释至标‎线。

此溶液贮于密‎闭的棕色瓶中‎,25℃以下暗处存放‎可稳定三个月‎。

若呈现淡红色‎,应弃之重配。

3、吸收液:使用时将显色‎液和水按4+1(V/V)比例混合而成‎。

4、亚硝酸钠标准‎储备液:称取0.3750 g优级纯亚硝‎酸钠(NaNO2,预先在干燥器‎放置24h)溶于水,移入1000‎mL容量瓶中‎,用水稀释至标‎线。

此标液为每毫‎升含250μ‎g N O2-,贮于棕色瓶中‎于暗处存放,可稳定三个月‎。

5、亚硝酸钠标准‎使用溶液:吸取亚硝酸钠‎标准储备液1‎.00 mL于100‎mL容量瓶中‎,用水稀释至标‎线。

此溶液每毫升‎含2.5μg NO2-,在临用前配制‎。

大气中氮氧化物的测定(盐酸萘乙二胺比色法)全部实验过程

大气中氮氧化物的测定(盐酸萘乙二胺比色法)全部实验过程

大气中氮氧化物的测定(盐酸萘乙二胺比色法)(一)原理氮氧化物在三氧化铬作用下氧化成二氧化氮,在吸收液中遇水生成亚硝酸,后者与对氨基苯磺酸起重氮化反应,反应产物与盐酸萘乙二胺生成玫瑰红色偶氮化合物,其颜色深浅与氮氧化物的浓度呈线性关系,因此可以进行比色定量,最大吸收波长为540nm。

(二)仪器1. 棕色U型多孔玻板吸收管。

2.小流量气体采样器流量范围0~1L/min。

3.三氧化铬氧化管。

4. 10ml具塞比色管。

5. 分光光度计及1cm比色杯。

(三)测定方法1.采样将一支内装5.00mL吸收液的棕色U型多孔玻板吸收管进气口接三氧化铬氧化管,并使管口略微向下倾斜,以免当湿空气将三氧化铬弄湿时污染后面的吸收液。

将吸收管的出气口与空气采样器相连接。

以0.5L/min的流量避光采样至吸收液呈微红色为止,记下采样时间,密封好采样管,带回实验室,当日测定。

若吸收液不变色,应延长采样时间,采样量应不少于5L。

在采样的同时,应测定采样现场的温度和大气压力,并做好记录。

2.分析步骤(1)绘制标准曲线:按下表制备标准色列管。

1㎝比色皿,以水为参比,测定吸光度。

以吸光度为纵坐标,相应的标准溶液中NO2—含量(ug)为横坐标,绘制标准曲线。

(2)样品测定:采样结束后,将吸收液全部移入比色管中,按绘制标准曲线的方法和条件测定试剂空白溶液和样品溶液的吸光度。

若样品溶液的吸光度超过标准曲线的测定上限,可用吸收液稀释后再测定吸光度。

计算结果应乘以稀释倍数。

查标准曲线,得NO2—质量(μg)。

(3)计算根据NO2—质量和采气体积,按下式计算NO2含量:C=a/(V0·0.76)式中:C——氮氧化物(以NO2计)浓度,mg/m3; a——NO2—质量,μg;V0——换算成标准状态下的采样体积,L;0.76——NO2(气)转换成NO2—(液)的系数。

tT0——绝对温度,273Kt——采样温度,℃P0——标准大气压,101.325kPaP——采样大气压,kPa注意事项1.采样时,平行管的进气口必须尽量靠近、采样的开始时间和结束时间一致。

大气氮氧化物、二氧化氮的测定

大气氮氧化物、二氧化氮的测定

实验十六大气氮氧化物、二氧化氮的测定一、氮氧化物的测定——三氧化铬—石英砂氧化法11 目的1.1 `掌握盐酸萘乙二胺分光光度法测定大气中氮氧化物含量的监测方法原理1.2 掌握大气采样器及吸收液采集大气样品的操作技术。

1.3 学会用比色法测定NOx的方法。

1.4 应用测定结果与环境质量标准比较,评价大气质量。

2 方法原理大气中的氮氧化物主要是指一氧化氮和二氧化氮等含氮氧化物。

在测定前,必须先用强氧化剂(CrO3)将一氧化氮氧化成二氧化氮。

3NO+6CrO3→ 3NO2+3Cr2O3二氧化氮被吸收液吸收后,生成亚硝酸和硝酸。

亚硝酸与对氨基苯磺酸起重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色的深浅,在540nm处进行分光光度测定。

反应方程式如下:3 仪器3.1 多孔玻璃吸收管10ml。

3.2 双球玻璃管。

3.3 大气采样器,流量范围0-1L/min.。

3.4 分光光度计。

3.5 10ml比色管。

1等效于GB/T15436-1995中第二篇“氧化铬——石英砂氧化法”4 试剂4.1 吸收液:4.1.1 吸收原液称取5.0g对氨基苯磺酸于200ml烧杯中,将50ml冰醋酸与900ml水的混合液分数次加入烧杯中,搅拌使其溶解,并迅速移入1000ml棕色容量瓶中,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,摇匀,贮于棕色瓶中,此为吸收原液。

存于冰箱中可保存两个月,保存时,用塑料薄膜将瓶口扎紧,防止空气中氮氧化物沾污吸收液。

4.1.2 吸收液:按4份吸收原液(4.1.1)和1份水的比例混合。

4.2 三氧化铬-石英砂氧化管:将石英砂筛取20-40目部分,用1+2盐酸浸泡一夜,用水洗至近中性。

将石英砂烘干。

把三氧化铬及石英砂按重量比1:20混合,加入少量水调匀。

在红外灯下或烘箱里105℃加热烘干。

加热过程中应搅拌几次。

做好的三氧化铬-石英砂应是松散的,若是粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。

氮氧化物的测定

氮氧化物的测定

氮氧化物的测定
氮氧化物是指氮和氧元素组成的化合物,它们是大气中最主要的污染物之一,
也是空气污染的主要来源。

氮氧化物的测定是检测大气污染物的重要方法,它可以帮助我们了解大气污染的程度,从而采取有效的措施来减少污染。

氮氧化物的测定主要是通过气相色谱法(GC)和气体测定仪(GMD)来实现的。

气相色谱法是一种分析技术,它可以检测气体中的氮氧化物,并将其分离出来,以便进行测定。

气体测定仪是一种用于测量气体浓度的仪器,它可以测量氮氧化物的浓度,以及其他气体的浓度。

此外,还可以使用其他技术来测定氮氧化物,如离子色谱法(IC)、原子吸收
光谱法(AAS)和紫外-可见分光光度计(UV-Vis)等。

这些技术可以检测氮氧化物的浓度,并可以准确地测量氮氧化物的含量。

氮氧化物的测定是一项重要的任务,它可以帮助我们了解大气污染的程度,从
而采取有效的措施来减少污染。

因此,我们应该加强对氮氧化物的测定,以便更好地保护我们的环境。

实验12 大气中氮氧化物的测定

实验12 大气中氮氧化物的测定

实验十二大气中氮氧化物—盐酸萘乙二胺分光光度法一、实验目的1.了解大气污染物分析的特点和意义。

2.掌握二氧化氮测定的基本原理和测定方法。

二、实验原理在测定氮氧化物时,先把空气中的一氧化氮等用三氧化铬氧化管氧化成二氧化氮。

二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与盐酸萘乙二胺作用,生成粉红色的偶氮染料,在540nm波长处,测定吸光度。

三、仪器大气采样器、分光光度计、多孔玻板吸收管(10mL)、双球玻璃管、比色管(10毫升)四、试剂1.吸收原液称取5.0克对氨基苯磺酸,通过玻璃小漏斗直接加入1000ml容量瓶中,加入50ml冰乙酸和900ml水的混合溶液,盖塞振摇使其溶解,待完全溶解后,加入0.050g盐酸萘乙二胺溶解后,用水稀释至标线。

此为吸收原液,贮于棕色瓶中,并用聚四氟乙烯胶带封口,以防止空气与吸收液接触,在冰箱中可保存2个月。

2.采样用吸收液按4份吸收原液和1份水的比例混合配制。

3.三氧化铬—海砂氧化管(课前已制备好)筛取20~40目海砂,用(1:2)盐酸浸泡一夜,用水洗至中性并烘干。

把三氧化铬及海沙按重量比(1:20)混合,加少量水调匀,放在烘箱中于105℃烘干,烘干过程中应搅拌几次,制备好的三氧化铬—海沙应是松散的。

将此海沙装入双球玻璃管中,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,放在干燥器中保存,使用时氧化管与吸收管之间用一小段乳胶管连接。

4.亚硝酸钠标准贮备液(预先在干燥器内放置24h以上),溶于水后移称取0.1500g亚硝酸钠NaNO2-,贮于棕色瓶入1000ml容量瓶中,用水稀释至标线。

此溶液每毫升含0.1mgNO2保存在冰箱中,可稳定3个月。

5.亚硝酸钠标准溶液临用前,吸取上述贮备液5.00ml于100ml容量瓶中,用水稀释至标线,此溶液每毫升含5.0μgNO2-。

五、实验步骤1、采样用一支内装5.00ml采样用吸收液的多孔玻板吸收管,进气口接氧化管,并使管口略微向下倾斜,以免湿空气将氧化剂弄湿时而污染后面的吸收液。

空气中无机污染物的测定—氮氧化物的测定(理化检验技术)

空气中无机污染物的测定—氮氧化物的测定(理化检验技术)

一、氮氧化物的测定
(二)测定意义 3.光化学烟雾
氮氧化物与共存的二氧化硫、一氧化碳、臭氧及烃类化合物等发生复杂 的光化学反应,生成危害性更大的二次污染物——光化学烟雾。
4.酸雨 空气中的二氧化氮吸收水分可形成亚硝酸和硝酸,使降水pH值降低。
一、氮氧化物的测定
(三)测定方法 盐酸萘乙二胺分光光度法 1.原理
一、氮氧化物的测定
(二)测定意义 各种形式的氮氧化物都有毒性,对人体建康影响很大 其中又以NO和N02的毒性最强 N02的毒性又是NO的4~5倍。
一、氮氧化物的测定
(二)测定意义 1.NO
吸入人体后直接到达肺的深部被血液吸收。主要作用于深呼吸道、细支 气管及肺泡,造成呼吸困难或窒息,甚至损害中枢神经。
自然因素:火山爆发、森林火灾,微生物对含氮有机物的分解,雷电等;
人为因素:燃料的燃烧,含氮化合物的生产,含氮物质的使用,气割、电焊、 氩弧焊及电弧发光,交通运输排放的废气。
一、氮氧化物的测定
(一)概述 3.卫生标准
N02卫生标准
环境空气 (日平均值)
室内空气 工作场所
一级标准:0.08mg/m3 二级标准0.08mg/m3 三级标准0. 12mg/m3 1小时均值0.24mg/m3 短时间接触容许浓度l0mg/m3
一、氮氧化物的测定
(一)概述 1.理化性质 氮氧化物又称氧化氮,是氮的氧化物的总称,常以NOx表示。
不同价态的氮氧化物的稳定性不同,N0、N02的化学性质相对稳定,是 常见的氮氧化物。
卫生检验工作中,氮的氧化物一般是指NO和N02。
一、氮氧化物的测定
(一)概述 2.污染源
空气中的氮氧化物主要来自于自然因素和人为因素。
一、氮氧化物的测定

实验五空气中氮氧化物的测定

实验五空气中氮氧化物的测定
本法可测5~500g/m³的氮氧化物
仪器
多孔玻板吸收管,10ml。 空气采样器,流量范围0~1L/min。 双球玻璃管。 分光光度计。
多孔筛板吸收瓶
(Perforated screen absorption method)
可装5~10mL吸收液,采样流量为0.1~ 1.0L/min。吸收瓶有小型(装10~30ml吸收液, 采样流量为0.5~2.0L/min)和大型(装50~ 100mL吸收液。
亚硝酸钠标准溶液
临用前,吸取贮备液5.00ml于100ml容量瓶中,用水稀释至 标线。此溶液每毫升含5.00µg亚硝酸根(NO2-)。
采样
用一支内装5.00ml吸收液的多孔玻板吸收管,进 气口接氧化管,并使管口略微向下倾斜,以免当 湿空气将氧化剂(CrO3)弄湿时,污染后面的吸 收液。以0.4L/min流量,避光采样至吸收液呈微 红色为止,记下采样时间,密封好采样管,带回 实验室,当日测定。采样时,若吸收液不变色, 采气量应不少于12L。
273
P
Vn
Vt
273 t
1013.25
(1) (2)
式中:A-样品溶液吸光度; A0-试剂空白吸光度; b-回归方程式的斜率; a-回归方程式的截距; Vn-标准状态下的采样体积(L); Vt-样品溶液总体积;
0.76-NO2(气)转换成NO2-(液)的系数。
实验报告撰写要求
样品采集 • 样品采集地点介绍; • 样品性状描述; • 样品现场测试所得理化参数。
NO2的转化 NO2活泼,是大气主要污染物之一,也是大气
中O3的人为来源。 NO2在阳光下与OH•、 O3等反应
OH • NO2 M HNO3
这是污染大气中气态HNO3的主要来源,同 时也对酸雨和酸雾的形成起重要作用。气态

大气中二氧化硫、氮氧化物、TSP的测定

大气中二氧化硫、氮氧化物、TSP的测定

实验一大气中二氧化硫的测定——四氯汞钾吸收—盐酸副玫瑰苯胺分光光度法二氧化硫是典型的大气污染物。

它来源于煤和石油等燃料的燃烧、含硫矿石的冶炼、硫酸等化工产品生产废气的排放等。

SO2能通过呼吸进入气管,对局部组织产生刺激和腐蚀作用,是诱发支气管炎等疾病的原因之一。

特别是当它与烟尘等气溶胶共存时,可加重对呼吸道黏膜的损害。

大气中SO2的测定方法有分光光度法、紫外荧光法、电导法、库仑滴定法、火焰光度法等。

其中,四氯汞钾吸收-盐酸副玫瑰苯胺分光光度法(GB8970-80)和甲醛吸收-盐酸副玫瑰苯胺分光光度法(GB/T 15262-92)是国标法。

四氯汞钾吸收-盐酸副玫瑰苯胺分光光度法的检出限为0.15μg/5mL,测定的浓度围为0.015~0.500mg/m3。

甲醛吸收-盐酸副玫瑰苯胺分光光度法(GB/T 15262-92),当用10mL吸收液采样30L时,最低检出限为0.007mg/m3,当用50mL吸收液连续采样24h,采样300L,最低检出限为0.003mg/m3。

本实验采用四氯汞钾吸收-盐酸副玫瑰苯胺分光光度法测定大气中二氧化硫。

1 实验目的(1)了解大气中二氧化硫的测定方法;(2)掌握盐酸副玫瑰苯胺分光光度法测定二氧化硫的原理和操作步骤;(3)了解便携式大气采样器的构造和工作原理,掌握其操作技术。

2 实验原理四氯汞钾吸收—副玫瑰苯胺分光光度法测定二氧化硫的原理是:空气中的二氧化硫被四氯汞钾溶液吸收后,生成稳定的二氯亚硫酸盐络合物,此络合物再与甲醛与盐酸副玫瑰苯胺发生反应,生成紫红色的络合物,据其颜色深浅,用分光光度法测定。

按照所用的盐酸副玫瑰苯胺使用液含磷酸多少,分为两种操作方法。

方法一:含磷酸量少,最后溶液的pH值为1.6 ± 0.1,呈红紫色,最大吸收峰在548nm处,方法灵敏度高,但试剂空白值高。

方法二:含磷酸量多,最后溶液的pH值为1.2 ± 0.1,呈蓝紫色,最大吸收峰在575nm处,方法灵敏度较前者低,但试剂空白值低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十四大气中氮氧化物的测
实验目的:通过本实验,掌握测定大气中氮氧化物的方法及其原理
一、原理
大气中的氮氧化物主要是一氧化氮和二氧化氮。

在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。

二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,
(气)转生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。

因为NO
2—(液)的转换系数为0.76,故在计算结果时应除以0.76。

变为NO
2
二、仪器
1.多孔玻板吸收管;
2.双球玻璃管;
3.大气采样器:流量范围0-1L/min;
4.分光光度计;
5.10ml比色管;
6.气压计。

三、试剂
所有试剂均用不含亚硝酸根的重蒸馏水配制。

其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005 。

1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0. 50g盐酸萘乙二
胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4分吸收原液与1份水的比例混合配成采样用的吸收液。

2.三氧化铬-砂子氧化管:筛取20-40目海砂(或河沙),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。

将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。

制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。

,预先在干燥器内3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO
2
放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。

此溶液
—,贮存于棕色瓶内,冰箱中保存,可稳定三个月。

每毫升含100.0μgNO
2
4.亚硝酸钠标准溶液:吸取贮备液5mL于100mL容量瓶中,用水稀释至标线。

—。

此溶液每毫升含5.0μgNO
2
四、测定步骤
1.标准曲线的绘制:取7支10mL具塞比色管,按下表所列数据配制标准色列。

以上溶液摇匀,避开阳光直射放置15min,在540nm波长处,用1㎝比色皿,以
—含量(ug)水为参比,测定吸光度。

以吸光度为纵坐标,相应的标准溶液中NO
2
为横坐标,绘制标准曲线。

2.采样:将一支内装5.00mL吸收液的多孔玻板吸收管进气口接三氧化铬-砂子氧化管,并使管口略微向下倾斜,以免当湿空气将三氧化铬弄湿时污染后面的吸收液。

将吸收管的出气口与空气采样器相连接。

以0.3L/min的流量避光采样至吸收液呈微红色为止,记下采样时间,密封好采样管,带回实验室,当日测定。

若吸收液不变色,应延长采样时间,采样量应不少于6L。

在采样的同时,应测定采样现场的温度和大气压力,并做好记录。

3.样品的测定:采样后,放置15min,将样品溶液移入1㎝比色皿中,按绘制标准曲线的方法和条件测定试剂空白溶液和样品溶液的吸光度。

若样品溶液的吸光度超过标准曲线的测定上限,可用吸收液稀释后再测定吸光度。

计算结果应乘以稀释倍数。

五、实验数据及其处理
测得采样时间25min,因仪器问题,采气流量为0.8L|min.故采样气体体积为20L。

氮氧化物(NO2,mg/m3)=((A-A0)/b)/0.76V n =(0.104-0.025)
/0.1671/(0.76x20)=0.031mg/m3式中: A—样品溶液的吸光度;
A
—试剂空白溶液的吸光度;
1/b—标准曲线斜率的倒数,即单位吸光度对应的NO
2
毫克数;
V
n
—标准状态下的采样体积(L);
0.76—NO
2(气)转换为NO
2
—(液)的系数。

注意事项
1.吸收液应避光,且不能长时间暴露在空气中,以防止光照时吸收液显色或吸收空气中的氮氧化物而使试管空白值增高。

2.氧化管适于在相对湿度为30—70%时使用。

当空气相对湿度大于70%时,应勤换氧化管;小于30%时,则在使用前,用经过水面的潮湿空气通过氧化管,平衡1h 。

在使用过程中,应经常注意氧化管是否吸湿引起板结,或者变为绿色。

若板结会使采样系统阻力增大,影响流量;若变成绿色,表示氧化管已失效。

3.亚硝酸钠(固体)应密封保存,防止空气及湿气侵入。

部分氧化成硝酸钠或呈粉末状的试剂都不能用直接法配制标准溶液。

若无颗粒状亚硝酸钠试剂,可用高锰酸钾容量法标定出亚硝酸钠贮备液的准确浓度后,再稀释为含5.0μg/mL 亚硝酸根的标准溶液。

4.溶液若呈黄棕色,表明吸收液已受三氧化铬污染,该样品应报废。

相关文档
最新文档