高中数学知识点清单第六章排列、组合与二项式定理

合集下载

排列、组合和二项式定理要点梳理

排列、组合和二项式定理要点梳理

排列、组合和二项式定理要点梳理北京市第八十中学 孙世林此文发表于《中学生数理化》排列、组合和二项式定理是高中数学的重要内容之一,也是高考必考的内容之一,排列、组合和二项式定理是进一步学习概率论和数理统计的基础知识,该部分内容不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖。

本文在研究近几年高考试题的基础上,将排列、组合和二项式定理知识要点梳理如下.一、复习建议1、立足课本,紧扣考纲,夯实基础,突出重点由于排列、组合和二项式定理的考题多为基础题、常见题,多属中档题范围,因此复习时应控制题目的难度,立足课本,依据考纲掌握常见题型,不要过多地加宽加深,学习的重点是基本原理和有附加条件的排列及组合的实际应用问题,同时重视本部分知识与立体几何、平面解析几何等知识的交汇点处的题目;二项式定理应重视二项式系数与项的系数的区别和联系、通项1r n r r r n T C a b -+=的正确使用。

由于排列组合应用题极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验的特点,这就要求考生加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题。

2、重视数学思想方法的复习和应用本章主要的数学思想有:化归思想,比较分类思想,极限思想和模型化思维方法。

学习时应注意发散思维和逆向思维,通过分类、分步把复杂问题分解,恰当地应用集合观点、整体思想,从全集、补集等入手,使问题简化;同时运用变式题目,进行多种解法训练,从不同角度,不同侧面对题目进行全面的分析,结合典型题的错解分析,查找思维的缺陷,提高分析解决问题的能力。

3、常见排列组合应用题的解题策略有以下几种:(1) 特殊元素优先安排的策略(2) 合理分类与准确分布的策略(3) 排列、组合混合问题先选后排的策略(4) 正难则反,等价转化的策略(5) 相邻问题捆绑处理的策略(6) 不相邻问题插空处理的策略(7) 定序问题除法处理的策略(8) 分排问题直接处理的策略(9) “小集团”排列问题中先整体后局部的策略(10) 构造模型的策略二、典例分析例1:(2006年,湖北)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的种数是 .(用数字作答)思路分析:解决这种由限制条件的排列问题,可用直接法,这时往往是对符合要求的情况进行合理的分类,分步,也可以利用间接法求解,即把问题中不符要求的情况求出来,从总数中减去即可。

排列组合二项式定理

排列组合二项式定理

排列组合与二项式定理一、排列与组合简介在概率论和组合数学中,排列和组合是两个重要的概念。

排列和组合通常被用来描述从给定的有限集合中选择若干元素的方式。

排列指的是从一组元素中选择若干不同的元素并按照一定的顺序排列的方式。

对于一个有n个元素的集合,从中选择r个元素进行排列的方式数目记作P(n, r)。

排列主要有两种情况:1.重复元素情况下的排列,即元素可重复使用。

此时,P(n, r) = n^r.2.不重复元素情况下的排列,即元素不可重复使用。

此时,P(n, r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.组合指的是从一组元素中选择若干不同的元素,而不考虑元素的顺序的方式。

对于一个有n个元素的集合,从中选择r个元素进行组合的方式数目记作C(n, r)。

组合的计算公式为:C(n, r) = n!/[(n-r)!*r!].二、二项式定理的概念与展开二项式定理是高中数学中非常重要的一个定理,也是排列组合理论的重要应用。

它用于展开一个二项式的幂。

二项式定理的公式为:(x+y)^n = C(n,0)x ny^0 + C(n,1)x(n-1)y^1 + C(n,2)x(n-2)y^2 + … + C(n,n-1)x1y^(n-1) +C(n,n)x^0y^n.其中,C(n,r)表示从n个元素中选择r个元素进行组合的方式数目。

三、二项式定理的解读与应用二项式定理可以用来求解(x+y)^n的展开式中的各项系数。

在展开式中,每一项的系数就是对应的组合数。

举例说明,当n=3时,展开式为:(x+y)^3 = C(3,0)x3y^0 + C(3,1)x2y^1 + C(3,2)x1y^2 + C(3,3)x0y^3.展开后,得到:(x+y)^3 = x^3 + 3x^2y + 3x y^2 + y^3.可以看出,展开式中的每一项系数正好是对应的组合数。

二项式定理在概率论、组合数学、代数等领域具有广泛的应用。

高中数学公式大全排列组合与二项式定理

高中数学公式大全排列组合与二项式定理

高中数学公式大全排列组合与二项式定理高中数学公式大全:排列组合与二项式定理排列组合与二项式定理是高中数学中重要的概念和公式,它们在概率论、组合数学、代数等领域都有广泛应用。

本文将为您详细介绍排列组合与二项式定理的相关内容。

一、排列组合排列和组合是排列组合问题中最基础的概念。

排列表示从一组元素中选取若干元素按照一定顺序排列的方式,而组合则表示从一组元素中选取若干元素,顺序不考虑。

下面是排列组合中常见的公式:1. 排列公式:排列公式用于求解从 n 个元素中取出 m 个元素,按照一定顺序排列的方式。

排列的数量表示为 P(n,m),计算公式如下:P(n,m) = n! / (n-m)!其中,n! 表示 n 的阶乘。

2. 组合公式:组合公式用于求解从 n 个元素中取出 m 个元素,顺序不考虑的方式。

组合的数量表示为 C(n,m),计算公式如下:C(n,m) = n! / (m! * (n-m)!)二、二项式定理二项式定理是高中数学中另一个重要的公式,它表示了任意实数a、b 和正整数 n 的 n 次幂展开后,各项的系数。

二项式定理为:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + C(n,2)*a^(n-2)*b^2+ ... + C(n,n-1)*a^1*b^(n-1) + C(n,n)*a^0*b^n其中,C(n,m) 表示组合数,表示从 n 个元素中选取 m 个元素的方式数。

三、应用举例1. 排列组合的应用:在一群人中选出特定的几个人组成小组,或者在一串数字中找出满足某种条件的特定数字。

排列组合在组合数学、概率论等领域有广泛的应用。

2. 二项式定理的应用:在数学展开、概率计算、代数运算等方面常常用到二项式定理。

它在概率论中常用于计算二项分布的概率,也可以用于计算方程式的展开。

总结:排列组合与二项式定理是高中数学中重要的概念和公式。

它们在概率论、组合数学、代数等领域都有广泛应用。

(完整版)排列组合二项式定理知识总结,推荐文档

(完整版)排列组合二项式定理知识总结,推荐文档

n n +1n nn排列组合、二项式定理总结复习1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的 方法n 个不同元素中取出 m 个元素的一个组合 组合数 从 n 个不同元素中,任取 m (m ≤n )个元素的所有组合个数 m nm=n ! nm !(n - m )!性质 C m = Cn -mCm = C m + C m -1排列组合题型总结 一. 直接法1 .特殊元素法例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个CC(1)数字 1 不排在个位和千位(2)数字 1 不在个位,数字 6 不在千位。

分析:(1)个位和千位有 5 个数字可供选择A2 ,其余 2 位有四个可供选择A2 ,由乘法原理:5 4A2 A2 =2405 42.特殊位置法(2)当 1 在千位时余下三位有A3 =60,1 不在千位时,千位有A1 种选法,个位有A1 种,余下5 4 4的有A2 ,共有A1 A1 A2 =192 所以总共有 192+60=2524 4 4 4二间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法A4 - 2 A3 +A2 =2526 5 4Eg 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数C 3 ⨯ 23 ⨯A3 个,其中 0 在5 3百位的有C 2 ⨯ 22 ⨯A2 个,这是不合题意的。

故共可组成不同的三位数4 2C 3 ⨯ 23 ⨯A3 - C 2 ⨯ 22 ⨯A2 =4325 3 4 2Eg 三个女生和五个男生排成一排(1)女生必须全排在一起有多少种排法(捆绑法)(2)女生必须全分开(插空法须排的元素必须相邻)(3)两端不能排女生(4)两端不能全排女生(5)如果三个女生占前排,五个男生站后排,有多少种不同的排法292928 113 二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

排列组合与二项式定理知识点精选全文完整版

排列组合与二项式定理知识点精选全文完整版

可编辑修改精选全文完整版排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。

排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。

全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。

专题04 排列组合与二项式定理(解析版)--高二数学专题解析

专题04 排列组合与二项式定理(解析版)--高二数学专题解析

专题04排列组合与二项式定理--高二数学专题解析知识点一:排列1:排列≤)个元素,并按照一定的顺序排成一列,叫做从n个不(1)定义:一般地,从n个不同元素中取出m(m n同元素中取出m个元素的一个排列.(2)相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.2:排列数与排列数公式1:组合(1)定义:一般地:从n个不同的元素中取出m(m n≤)个元素作为一组,叫做从n个不同元素中取出m 个元素的一个组合.(2)相同组合:只要两个组合的元素相同,无论元素的顺序如何,都是相同的组合.(3)组合与排列的异同≤)个元素”.相同点:组合与排列都是“从n个不同的元素中取出m(m n不同点:组合要求元素“不管元素的顺序合成一组”,而排列要求元素“按照一定的顺序排成一列”因此区分某一问题是组合问题还是排列问题,关键是看选出的元素是否与顺序有关,即交换某两个元素的位置对结果有没有影响,若有影响,则是排列问题,若无影响,则是组合问题.2:组合数与组合数公式(1)组合数的定义:从n个不同元素中取出m(m n≤)个元素的所有不同组合的个数,叫做从n个不同元3:组合数的性质b一、单选题1.在()5232x x ++的展开式中x 的系数是()A .160B .180C .240D .210【答案】C【分析】根据二项式的定义可知有4个因式中取2,1个因式中取3x 项,即可得解.【详解】在()5232x x ++的展开式中,要得到含x 的项,则有4个因式中取2,1个因式中取3x 项,故x 的系数为445C 32240⨯⨯=.故选:C7.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法.【答案】3600【答案】20【分析】根据题意,先对【详解】对于6盏不同的花灯进行取下,可先对因为取花灯每次只能取一盏,且只能从下往上取,又因为每串花灯先后顺序已经固定,所以除去重复的排列顺序,所以共有663333A20 A A=故答案为:20.13.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.x16.(多选题)若()32+n x(=20.(多选题)有甲、乙、丙、丁、戊五位同学,下列说法正确的是()A .若丙在甲、乙的中间(可不相邻)排队,则不同的排法有20种B .若五位同学排队甲不在最左端,乙不在最右端,则不同的排法共有78种C .若五位同学排队要求甲、乙必须相邻且甲、丙不能相邻,则不同的排法有36种D .若甲、乙、丙、丁、戊五位同学被分配到三个社区参加志愿活动,每位同学只去一个社区,每个社区至少一位同学,则不同的分配方案有150种【答案】BCD【分析】对于A :讨论甲、乙之间有几位同学,分析运算即可;对于B :讨论甲、乙所在位置,分析运算即可;对于C :先求甲、乙相邻的安排方法,再排除甲、乙相邻且甲、丙相邻的安排方法;对于D :先将学生安排出去,再排除有小区没有人去的可能.【详解】对于选项A :可知有三种可能:甲、乙之间只有一位同学,则不同的排法有2323A A 12=种;甲、乙之间有两位同学,则不同的排法有12222222C A A A 16=种;甲、乙之间有三位同学,则不同的排法有2323A A 12=种;不同的排法共有12161240++=种,故A 错误;对于选项B :可知有四种可能:甲在最右端,乙在最左端,则不同的排法有33A 6=种;甲在最右端,乙不在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙不在最左端,则不同的排法有2333A A 36=种;不同的排法共有618183678+++=种,故B 正确;对于选项C :若甲、乙相邻,则不同的排法有2424A A 48=种;若甲、乙必须相邻且甲、丙相邻,则不同的排法有2323A A 12=种;不同的排法共有481236-=种,故C 正确;对于选项D :若每位同学只去一个社区,则不同的排法有53243=种;若有小区没有人去,则有两种可能:所有人去了一个小区,则不同的排法有13C 3=种;所有人去了两个小区,则不同的排法有()25132C 2C 90-=种;不同的排法共有()243390150-+=种,故D 正确;故选:BCD.21.将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有__________.原理即可得出答案.【详解】首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有33A 6=个,前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列,共有22A 2=种结果.前三位是123,第四位是0,最后一位是4,只有1种结果,∴数字12340前面有6+2+1=9个数字,数字本身就是第十个数字.故答案为:10.27.重新排列1,2,3,4,5,6,7,8.(1)使得偶数在原来的位置上,而奇数不在原来的位置上,有多少种不同排法?(2)使得偶数在奇数的位置上,而奇数在偶数的位置上,有多少种不同的排法?(3)使得偶数在偶数位置上,但都不在原来的位置上;奇数在奇数位置上,但也都不在原来的位置上,有多少种不同的排法?(4)如果要有数在原来的位置上,有多少种不同的排法?(5)如果只有4个数在原来的位置上,有多少种不同的排法?(6)如果至少有4个数在原来的位置上,有多少种不同的排法?(7)偶数在偶数位置上;但恰有两个数不在原来位置上,奇数在奇数位置上,但恰有两个数不在原来位置上,有多少种不同排法?(8)偶数在偶数位置上,且至少有两个数不在原来位置上;奇数在奇数位置上,也至少有两个数不在原来位置上,有多少种不同排法?【答案】(1)9;(2)576;(3)81;(4)25487;(5)630;(6)771;(7)36;(8)225.【分析】(1)利用匹配问题错排公式求解;(2)利用乘法分步原理求解;(3)利用匹配问题求解;(4)用排除法.对8个数进行全排列,再减去没有数在原来的位置上的排法,即得解;(5)利用乘法分步原理求解;(6)用排除法.先对8个数进行全排列,再去掉恰有i 个数在原来位置上的排法()0123i =,,,,即得解;(7)利用匹配问题和分步乘法原理得解;。

排列、组合、二项式定理精讲

排列、组合、二项式定理精讲

排列、组合、二项式定理1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类; (2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数 (2)排列数公式:系mn A =)!(!m n n -=n·(n -1)…(n -m+1);(3)全排列列:nn A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 4.组合(1)组合的定义,排列与组合的区别; (2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ;(3)组合数的性质 ①C n m =C n n-m ;②r n r n r nC C C 11+-=+;③rC n r =n·C n-1r-1;④C n 0+C n 1+…+C n n =2n ;⑤C n 0-C n 1+…+(-1)n C n n=0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=C n 0a n+C n 1a n-1b+…+C n k a n-k b k+…+C n n b n; (2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k; 6.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性。

①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;四.典例解析题型1:计数原理例1.完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。

A.81 B.64 C.24 D.4(2)四名学生争夺三项冠军,获得冠军的可能的种数是()A.81 B.64 C.24 D.4(3)有四位学生参加三项不同的竞赛,①每位学生必须参加一项竞赛,则有不同的参赛方法有;②每项竞赛只许有一位学生参加,则有不同的参赛方法有;③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有。

高中数学排列组合二项式概率统计知识点归纳及常考题型

高中数学排列组合二项式概率统计知识点归纳及常考题型

“排列、组合、二项式、概率、统计”复习资料一、基础知识和方法梳理 (一)排列组合 1.计数两原理:分类计数原理:完成一件事情,有n 类方法,在第1类方法中又有m 1种不同的方式可以完成这件事情,在第2类方法中,又有m 2种方式,……第n 类方法中有m n 种方式可以完成,那么要完成这件事情的方法共有:n m m m N +++= 21分步计数原理:完成一件事情,需要分成n 步完成,在第1步中,有m 1种不同的方式可以完成这一步,在第2步中,有m 2种方式,……第n 步中,有m n 种方式可以完成这一步,那么要完成这件事情的方法共有:n m m m N ⨯⨯⨯= 21 2.排列:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

排列数)!(!)1()1(m n n m n n n A mn -=+--=3.组合:从n 个不同的元素中不重复选取m 个元素组成一组,与顺序无关; 组合公式:)!(!!!)1()1(m n m n m m n n n C mn -=+--=;组合数性质:m n n m n C C -=,mn m n m n C C C 11+-=+4.排列组合常用方法:分类讨论法:将0,1,2,3,4五个数字可以组成多少个无重复数字的五位偶数?间接法:100件产品含有5件次品,从中任取5件,则至少含有一件次品的取法有多少种? 捆绑、插空法:将3本语文书,3本数学书,2本英语书排成一排,数学书必须排在一起,英语书不能相邻,则有多少中排列方式?特殊元素特殊位置优先考虑法:例如,将0,1,2,3可以组成多少个无重复数字的四位数 分组法:将5个苹果分给甲、乙、丙三人,每人至少一个苹果,有多少种分配方案? 隔板法:例如,将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少盒子的编号数,这样的装法总数有多少种? 等可能性法:六个字母a 、r 、r 、r 、b 、c 排成一排,有多少种排列方式?(二)二项式定理1.二项式定理:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(,其中rn C 为第1+r 项的二项式系数,=-nb a )(2.通项公式:rr n r n r b a C T -+=1,),1,0(n r =3.二项式定理的性质: (1)对称性,二项式系数是关于2n对称 (2)增减性与最大值,当n 为偶数时,二项式系数最大项为第12+n项,最大值为2nn C当n 为奇数时,二项式系数最大项为第121+-n 项和第121++n 项,最大值为2121+-=n n n n C C (3)二项式系数之和nn n n n C C C 210=+++奇数项与偶数项的二项式系数之和相等131202-=++=++n n n n n C C C C(三)概率1.概率的定义:在大量重复进行同一试验时事件A 发生的频率nm总是接近于某个常数p ,这时就把这个常数叫做事件A 的概率,记做)(A P .2.事件的和A+B :表示事件A 和B 至少有一个发生; 事件的积A ×B :表示事件A 和B 同时发生B A B A B A B A ⋅=++=⋅,3.常见的几种类型的概率计算:(1)等可能事件:可预知的有限个结果,且每个结果出现的可能性相同 计算方法:nm A P =)( (2)互斥事件:在一次试验中,事件A 发生了,则事件B 一定不会发生,事件B 发生了,事件A 不可能发生互斥事件有一个发生的概率计算方法:)()()(B P A P B A P +=+, 特殊的,对立事件:1)()(=+A P A P(3)相互独立事件:在一次试验中,事件A 发生与否对事件B 发生的概率没有影响,同理,事件B 发生与否对事件A 发生的概率没有影响,若A 与B 是独立事件,则A 与B ,A 与B ,A 与B 都是独立事件 独立事件同时发生的概率的计算方法:)()()(B P A P B A P ⋅=⋅(4)n 次独立重复事件恰有k 次发生的概率:kn k k n n p p C k P --=)1()(4.关于两个事件常见的概率计算:(若21)(,)(p B P p A P ==)5.注意事项(1)等可能事件的概率中,基本事件数目的计算可以分化得细致一点或粗略一点,这样虽然形式上有所差别,结果往往是一样的,通常有这样一些不同考虑:“整体考虑或局部考虑” 、“元素可辨或不可辨” 、“元素放回或不放回” 、“元素有序或无序”.(2)重视几种概率类型的混合,注意概率加法、乘法的混合运算,适当注意概率类型的突破. (3)准确理解文字(生活)语言,如“至少”、“至多”、“都”、“不都”、“都不”、“恰有几个”、“有几个”,“只有第几次”、“第几次”,“直到第几次”等等,然后等价转化为数学(概率)语言,并注意表述规范.(四)统计1.离散型随机变量的定义:若随机试验的结果可以用一个变量表示,这个变量叫做随机变量。

高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理在高中数学中,排列组合是一种重要的概念与工具,它涉及到对对象的选取和排列的方式。

而在排列组合的基础上,我们还能引出二项式定理,进一步探讨多项式的展开与计算。

本文将对这些数学知识点进行归纳总结和讨论。

一、排列组合的基本概念1.1 排列排列是从给定的一组对象中,按照一定的顺序选择若干个对象进行排列。

假设有n个不同的对象,要从中选择r个对象进行排列,可以得到的排列数记为P(n,r)。

P(n,r) = n!/(n-r)!1.2 组合组合是指从给定的一组对象中,无视其顺序,选择若干个对象。

同样假设有n个不同的对象,要从中选择r个对象进行组合,可以得到的组合数记为C(n,r)。

C(n,r) = n!/(r!(n-r)!)1.3 重复排列与重复组合当给定的一组对象中存在重复的元素时,我们可以计算可能的重复排列与重复组合。

计算公式如下:重复排列:P(n1,n2,...,nk) = n!/(n1!n2!...nk!)重复组合:C(n+r-1,r) = (n+r-1)!/(r!(n-1)!)二、排列组合的应用2.1 生日问题生日问题是指在一个房间里,至少有两个人生日相同的概率有多大。

利用排列组合的思想可以很方便地解决这个问题。

在一个房间里,有n 个人,假设有365天可以选作生日。

我们可以计算至少有两个人生日相同的概率,即为1减去没有人生日相同的概率。

P(at least two people have the same birthday) = 1 - P(no two people have the same birthday)= 1 - C(365,n)/365^n2.2 二项式定理与展开二项式定理是代数中的重要定理之一,它描述了两个数之和的幂展开后的表达式。

假设有实数a和b以及正整数n,根据二项式定理可以将(a+b)^n展开为:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n2.3 二项式系数与组合恒等式二项式系数指的是二项式展开中各项的系数。

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。

分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。

区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。

二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。

2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。

(n-m+1)=n。

注意:①全排列:Ann。

②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。

第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。

第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。

组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。

高中数学高考数学学习资料:专题6 第1讲 排列、组合、二项式定理

高中数学高考数学学习资料:专题6 第1讲 排列、组合、二项式定理

意图或列出表格,使问题形象化、直观化.
[联知识 1.排列数公式: Am n =n(n-1)„(n-m+1)= 2.组合数公式:
串点成面]
n! . n-m!
m nn-1„n-m+1 n! A n m Cn = m= = . Am m! m!n-m!
3.组合数的性质:
m n-m m-1 m ①Cn =Cn ;②Cm n +Cn =Cn+1.
[做考题
查漏补缺]
(2010· 四川高考)由1、2、3、4、5、6组成没有重复 数字且1、3都不与5相邻的六位偶数的个数是 A.72 C.108 B.96 D.144 ( )
[解析] 从 2,4,6 三个偶数中选一个数放在个位,有 C1 3种方法,将 其余两个偶数全排列,有 A2 2种排法,当 1,3 不相邻且不与 5 相邻
2 2 时有 A3 种方法, 当 1,3 相邻且不与 5 相邻时有 A A3种方法, 故满 3 2· 2 2 2 足题意的偶数个数有 C1 A2 (A3 A3)=108 个. 3· 3+A2·
[答案]
C
4.(2011· 临沂模拟)将5位志愿者分成3组,其中两组各2人, 另一组1人,分赴2011年深圳世界大学生运动会的三个 不同场馆服务,不同的分配方案有________种(用数字
解析:依题意,就所剩余的一本画册进行分类计数:第一类,剩 余的是一本画册,此时满足题意的赠送方法共有 4 种;第二类,
2 剩余的是一本集邮册, 此时满足题意的赠送方法共有 C4 =6(种). 因
此,满足题意的赠送方法共有 4+6=10(种).
答案:B
[悟方法
触类旁通]
1.在应用两个原理解决问题时,一般是先分类再分步.每一 步当中又可能用到分类计数原理. 2.对于较复杂的两个原理综合使用的问题,可恰当地列出示

高中数学排列组合及二项式定理知识点及练习

高中数学排列组合及二项式定理知识点及练习

摆列组合及二项式定理【基本知识点】1. 分类计数和分步计数原理的观点2.摆列的观点:从n 个不同元素中,任取m(m n )个元素(这里的被取元素各不同样)按照一.定.的.顺.序.排成一列,叫做从n 个不同元素中拿出m 个元素的一.个.排.列.3.摆列数的定义:从n 个不同元素中,任取m (m n )个元素的全部摆列的个数叫做从n个元素中拿出m 元素的摆列数,用符号mA 表示nm4.摆列数公式:A n(n 1)(n 2)L (n m 1) (m,n N ,m n)n5.阶乘:n!表示正整数1 到n 的连乘积,叫做n 的阶乘规定0! 1.6.摆列数的另一个计算公式:mA =nn! (n m)!7.组合观点:从n 个不同元素中拿出m m n 个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合8.组合数的观点:从n 个不同元素中拿出m m n 个元素的全部组合的个数,叫做从n 个不同元素中拿出m 个元素的组.合.数..用符号mC 表示.n9.组合数公式:mA n(n 1)(n 2)L (n m 1)m nCn mA m!m或 C m nm!(n!n m)!(n, m N ,且m n)10.组合数的性质1:m n m 0C n C .规定:C 1 ;n n11.组合数的性质2:mCn 1 =m m 1C +C Cn nn n n0+C1+⋯ +C n=20+C1+⋯ +C n=2n12. 二项式睁开公式: (a+b) n=C0a n+C1a n-1 b+⋯ +C k a n-k b k+⋯ +C n bnn n n n13.二项式系数的性质:n(a b) 睁开式的二项式系数是C ,n1C ,n2C ,⋯,nnC .nrC 能够当作以r为自变量的函数nf (r ) ,定义域是{0,1,2, L ,n} ,(1)对称性.与首末两头“等距离”的两个二项式系数相等(∵m n mC C ).n nn(2)增减性与最大值:当n是偶数时,中间一项C 2 获得最大值;当n是奇数时,中间两项nn 1 n 12 C ,n2C 获得最大值.n(3)各二项式系数和:∵n 1 r r n(1 x) 1 C x L C x L x ,n n令x 1,则n 0 1 2 r n2 C C C L C L Cn n n n n【常有考点】一、可重复的摆列求幂法:重复摆列问题要划分两类元素:一类能够重复,另一类不可以重复,把不可以重复的元素看作“客”,能重复的元素看作“店”,则经过“住店法”可顺利解题,在这种问题使用住店办理的策略中,重点是在正确判断哪个底数,哪个是指数(1)有 4 名学生报名参加数学、物理、化学比赛,每人限报一科,有多少种不同的报名方法?(2)有 4 名学生参加抢夺数学、物理、化学比赛冠军,有多少种不同的结果?(3)将 3 封不同的信投入 4 个不同的邮筒,则有多少种不同投法?【分析】:(1)43 (2)34 (3)4 3二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看作一个大元素参加排列.(4)A, B,C, D, E 五人并排站成一排,假如A, B 一定相邻且B 在A的右侧,那么不同的排法种数有【分析】:把A,B视为一人,且B 固定在A的右侧,则此题相当于4 人的全摆列,4A4 24种(5)3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360B. 188C. 216D. 96【分析】:间接法 6 位同学站成一排, 3 位女生中有且只有两位女生相邻的排法有,2 2 2 2C A A A =432 种3 24 2此中男生甲站两头的有 1 2 2 2 2A C A A A =144 ,切合条件的排法故共有 2882 3 2 3 2三.相离问题插空法:元素相离(即不相邻)问题,可先把无地点要求的几个元素全摆列,再把规定的相离的几个元素插入上述几个元素的空位和两头 . (6)七人并排站成一行,假如甲乙两个一定不相邻,那么不同的排法种数是【分析】:除甲乙外,其他 5 个摆列数为 5A 种,再用甲乙去插 6 个空位有52A 种,不同的排6法种数是 5 2A5 A6 3600 种(7)书架上某层有 6 本书,新买3 本插进去,要保持原有 6 本书的次序,有种不同的插法(详细数字作答)【分析】: 1 1 1A A A =5047 8 9(8)马路上有编号为1,2,3⋯, 9 九只路灯,现要关掉此中的三盏,但不可以关掉相邻的二盏或三盏,也不可以关掉两头的两盏,求知足条件的关灯方案有多少种?【分析】:把此问题看作一个排对模型,在 6盏亮灯的 5 个缝隙中插入 3盏不亮的灯 3C 种方5 法, 所以知足条件的关灯方案有 10 种.四.元素剖析法(地点剖析法):某个或几个元素要排在指定地点,可先排这个或几个元素;再排其他的元素。

高三数学高考知识点汇编——排列、组合、二项式定理

高三数学高考知识点汇编——排列、组合、二项式定理

2010届高考数学知识点汇编(全套)排列、组合、二项式定理一、复习内容1. 掌握加法原理及乘法原理,并能运用这两个原理分析和解决一些简单的问题.2. 理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3. 掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、主要内容及典型题例(一)本来的主要内容结构(二)加法原理与乘法原理这是两个基本原理,它们不仅是推导排列数公式、组合数公式的基础,而且可以直接运用它们去解决某些问题.两个原理的区别是前者与分类有关,与元素的顺序有关;后者与分步有关,与元素的顺序无关;.例1 (1)有红、黄、白色旗子各n面(n>3),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2) 有1元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?(1) 解 因为纵列信号有上、下顺序关系,所以是一个排列问题,信号分一面、二面、三面三种情况(三类),各类之间是互斥的,所以用加法原理:①升一面旗,共有3种信号;②升二面旗,要分两步,连续完成每一步,信号方告完成,而每步又是独立的事件,故用乘法原理,因同色旗子可重复使用,故共有3×3种信号;③升三面旗,有3×3×3种信号.所以共有39种信号.(2) 解法 计算币值与顺序无关,所以是一个组合问题,有取一张、二张、三张、四张四种情况,它们彼此是互斥的,用加法原理.因此,不同币值有 =15(种)评析 (1) 排列、组合的区别在于顺序性,前者“有序”而后者“无序”;加法原理与乘法原理的区别在于联斥性,前者“斥”——互斥独立事件,后者“联”——相依事件.因而有“顺序”决“问题”,“联斥”定“原理”的说法.(2)加、乘原理是排列、组合问题的理论依据,在分析问题和指导解题中起着关键作用,运用加法原理的关键在于恰当地分类(分情况),要使所分类别既不遗漏,也不重复;运用乘法原理的关键在于分步,要正确设计分步的程序,使每步之间既互相联系,又彼此独立.(三)排列应用题例2 4位学生与2位教师并坐合影留念.(1)教师必须坐在中间;(2)教师不能坐在两端,但要坐在一起;(3)教师不能坐在两端,且不能相邻.各有多少种不同的坐法?(1)22A ;(2)22A 44A ;(3)144 评析 (1) “在与不在”、“邻与不邻”是带限制条件的排列应用题的两种重要题型,处理这类问题的基本思路,有“直接”、“间接”之分.(2) 对“在与不在”问题,优先考虑受限制的特殊元素或特殊位置的思想方法,是解题的基本策略;而处理“邻与不邻”问题,使用捆绑和插空法是十分有效的.(3) 关于“元素和问题”的认识,是排列、组合概念中的一个重要问题,解题总是从元素或位置出发,要注意即使在同一问题中,把什么看作元素(或位置)并不是一成不变的.例3 用0,1,2,3,4,5 六个数字,可以组成多少个没有重复数字的:(1)首数是奇数的五位偶数?(2) 五位奇数?(3)五位偶数?(四)排列、组合的混合问题排列、组合的混合问题,主要指既与组合有关,又与排列有关的应用问题.如分配问题. 例6 六本不同的书,按下列条件,各有多少种不同的分法?(1) 分为三堆,每堆2本;(2) 分为三堆,一堆1本,一堆2本,一堆3本;(3) 分给甲、乙、丙三人,每人2本;(4) 分给甲、乙、丙三人,一人得1本,一人拿2本,一人得3本;(5) 分给甲、乙、丙三人,每人至少得1本.评析 本例属分配问题,解这类问题的基本思路是先分组,再分配,即先组合、后排列.同时注意在分组时,若出现平均分组(即两组元素个数相同)的情况,则要除以组数(即平均分组的数目)的阶乘.例6 (1)分别从4所学校选拔6名报告员,每校至少1人,有多少种不同的选法?(2) 将6名报告员分配到4所学校去做报告,每校至少1人,有多少种不同的分配方法? 评析 两小题看以类似,但第(1)小题的选取元素为学校;第(2)小题的选取元素为报告员,解题时要注意区分分组时,组合的对象——即元素是什么.(六)二项式定理内容:1 n b a )( 的展开式、项数、b a ,的指数。

高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点

高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。

分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。

区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。

二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。

(2)排列数、组合数:排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。

第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。

第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。

二项式定理与排列组合的知识点总结

二项式定理与排列组合的知识点总结

二项式定理与排列组合的知识点总结二项式定理是高中数学中的一个重要定理,它与排列组合有着密切的联系。

本文将对二项式定理和排列组合的知识点进行总结,希望能够为读者提供清晰明了的概念和理解。

一、排列组合的基本概念排列组合是数学中研究对象的一种组织方式。

排列是指将一组元素按照一定顺序进行布置,而组合是指从一组元素中取出若干元素组成一个集合。

1. 排列排列是指从一组元素中有序地选取若干个元素进行布置。

主要分为两种类型:有放回排列和无放回排列。

有放回排列是指在选择完元素后将其放回原处,元素可以被多次选取。

而无放回排列是指在选择完元素后不放回,下次选择时不能再选取。

2. 组合组合是指从一组元素中无序地选择若干个元素进行组合。

同样地,组合也可以分为有放回组合和无放回组合两种类型。

二、二项式定理的概念和公式二项式定理是代数学中的一个重要定理,用于展开二项式的幂。

它表述了如下公式:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中,a,b是实数或者变量,n为非负整数。

C(n, k)表示从n个元素中取出k个元素的组合数,也称为二项系数。

具体计算公式如下:C(n, k) = n! / (k!(n-k)!)三、二项式定理与排列组合的关系二项式定理中的二项系数C(n, k)正是组合数的计算公式,说明了二项式展开式中各项系数的求解方法。

1. 二项式系数的性质二项系数具有一些重要的性质,包括对称性、加法原理和乘法原理等。

这些性质在解决排列组合问题时具有重要的指导作用。

2. 应用举例利用二项式定理和排列组合的知识,可以解决一些实际问题。

比如,求解一组数的幂展开式中某一项的系数、计算某些特殊排列组合的总数等等。

四、应用示例在实际应用中,二项式定理与排列组合经常被用于解决一些概率、统计和计算问题。

专题六第1讲排列、组合、二项式定理

专题六第1讲排列、组合、二项式定理
菜 单
解 题 规 范 流 程
考 点 核 心 突 破
训 练 高 效 提 能
高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
[自主解答]
(1)若甲同学分配到 B 宿舍,且单独住一
室,则有 24-2 种方案;若甲同学分配到 B 宿舍,且不单 独住一室,则有 C2 A3 4· 3种方案;故甲同学分配到 B 宿舍共 有(24-2)+C2 A3 4· 3=50 种方案,同理,甲同学分配到 C 宿 舍也有 50 种方案,则甲同学不能分配到 A 宿舍的分配方
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
(4)二项式系数的性质:
n-r r r-1 r ①Cr = C , C + C = C n n n n n+1.
n +1 2 当 n 为偶数时,中间一项即第______项的二项式系 n n+1 n+3 2 C 2 , 2 数 n 最大;当 n 为奇数时,中间两项即第____________
基础要点整合
一、构建知识网络
考 点 核 心 突 破
训 练 高 效 提 能


高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
二、梳理基础知识
1.掌握排列数与组合数两个公式 (1)排列数公式: n! n(n-1)…(n-m+1) n-m! Am n =___________________=_________. (2)组合数公式:

排列、组合、二项式定理-基本原理

排列、组合、二项式定理-基本原理

排列、组合、二项式定理-基本原理排列、组合和二项式定理是概率论和组合数学中的重要概念和技巧。

它们在计算和解决组合问题的过程中起着关键的作用。

本文将介绍这些基本原理,帮助读者更好地理解和应用它们。

一、排列排列是指从一组元素中选取若干个元素按照一定的顺序排列的方式。

在组合数学中,排列有两种常见的类型:有重复元素的排列和无重复元素的排列。

1.1 有重复元素的排列有重复元素的排列是指从一组包含重复元素的集合中选取若干个元素按照一定的顺序排列。

在有重复元素的排列中,每个元素可以重复出现多次。

例如,假设有一组元素 {A, B, C, C},我们要从中选取两个元素进行排列。

根据有重复元素的排列原理,我们可以计算出共有以下几种情况:•AA•AB•AC•BA•BB•BC•CA•CB•CC共计9种不同的排列方式。

1.2 无重复元素的排列无重复元素的排列是指从一组不包含重复元素的集合中选取若干个元素按照一定的顺序排列。

在无重复元素的排列中,每个元素只能出现一次。

例如,假设有一组元素 {A, B, C, D},我们要从中选取三个元素进行排列。

根据无重复元素的排列原理,我们可以计算出共有以下几种情况:•ABC•ABD•ACD•BCA•BCD•CAB•CAD•CBA•CBD•DAB•DAC•DBA•DBC共计12种不同的排列方式。

二、组合组合是指从一组元素中选取若干个元素不考虑顺序的方式。

在组合数学中,组合也有两种常见的类型:有重复元素的组合和无重复元素的组合。

2.1 有重复元素的组合有重复元素的组合是指从一组包含重复元素的集合中选取若干个元素不考虑顺序的方式。

在有重复元素的组合中,每个元素可以重复出现多次。

例如,假设有一组元素 {A, B, C, C},我们要从中选取两个元素进行组合。

根据有重复元素的组合原理,我们可以计算出共有以下几种情况:•AA•AB•AC•BB•BC•CC共计6种不同的组合方式。

2.2 无重复元素的组合无重复元素的组合是指从一组不包含重复元素的集合中选取若干个元素不考虑顺序的方式。

高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理高中数学知识点总结及公式大全:排列组合与二项式定理一. 排列组合排列组合是高中数学中重要的知识点之一,用于解决计数问题。

排列组合分为排列和组合两种情况。

1. 排列排列是指从一组对象中按照一定的顺序选择若干个对象进行排列。

高中数学中常用的排列公式为:An= n!/(n-r)!,其中n表示总数,r表示选取的个数。

排列的特点是考虑顺序,即不同的顺序被视为不同的排列。

2. 组合组合是指从一组对象中选择若干个对象进行组合,不考虑顺序。

高中数学中常用的组合公式为:Cn= n!/[(n-r)!*r!],其中n表示总数,r表示选取的个数。

组合的特点是不考虑顺序,即不同的顺序被视为相同的组合。

二. 二项式定理二项式定理是高中数学中的重要定理之一,用于展开一个任意次数的二项式表达式。

二项式定理的公式为:(a+b)^n = Cn0 * a^n * b^0 + Cn1 * a^(n-1) * b^1 + Cn2 * a^(n-2) * b^2 + ... + Cnr * a^(n-r) * b^r + ... + Cnn * a^0 * b^n 其中Cnr代表组合数,表示从n中选取r个的组合数。

三. 相关数学公式除了排列组合和二项式定理,高中数学还有许多重要的公式需要掌握。

1. 三角函数相关公式:- 三角恒等式:sin^2x + cos^2x = 1;tanx = sinx/cosx- 三角和差公式:sin(x ± y) = sinx*cosy ± cosx*siny;cos(x ± y) = cosx*cosy - sinx*siny- 三角倍角公式:sin2x = 2sinxcosx;cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2. 数列与数列求和公式:- 等差数列通项公式:an = a1 + (n-1)d;等差数列前n项和公式:Sn = n/2(a1 + an) = n/2(2a1 + (n-1)d)- 等比数列通项公式:an = a1 * r^(n-1);等比数列前n项和公式:Sn = (a1(1-r^n))/(1-r)3. 平面几何相关公式:- 点到直线的距离公式:d = | Ax0 + By0 + C | / √(A^2 + B^2)- 两点间距离公式:d = √[(x2 - x1)^2 + (y2 - y1)^2]- 矩形面积公式:S = a * b- 三角形面积公式:S = 1/2 * a * b * sinγ以上只是数学知识点的一部分,针对不同的题目和问题,可能还需要运用其他公式和方法进行解题。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
77
3.排列的定义
从n个不同的元素中,任取m(m≤n)个元素,按照一定的
顺序排成一列,叫做从n个不同的元素中取出m个元素的一
个排列.如果m<n,这样的排列叫做选排列;如果m=n,这样
的排列叫做全排列.
4.排列数
从n个不同的元素中,取出m(m≤n)个元素的所有排列的
个数,叫做从n个不同的元素中取出m个元素的排列数,用
A
m n
表示.
78
5.计算公式
(1)A
m n
=n(n-1)(n-2)…(n-m+1)=
(n n!m)!;
(2)A
n n
=n!,规定:0!=1.
特征:①根Байду номын сангаас位置选元素或根据元素选位置;
②特殊位置(元素)“优先法”;
③相邻问题“捆绑法”;
④不相邻问题“插空法”;
⑤前后问题“折半法”.
79
第二节 组合 1.理解组合的意义,掌握组合数的计算公式. 2.理解组合数的两个性质,能运用组合的知识解决一些简单 的应用问题.
(2)Cmn =Cnnm;
(3)Cmn+1 =Cmn +Cmn -1.
规定:C0n =1.
81
第三节 排列、组合的应用 1.能正确区分排列问题与组合问题. 2.能运用排列组合知识解决一些简单的应用问题.
82
1.排列问题大致分为两类 (1)不含限制条件的简单排列问题,可依题意利用公式求 得结果; (2)带限制条件的排列问题,一般可采取两种途径计算: 直接法、间接法. 2.两种典型的排列问题及其处理方法 (1)元素相邻问题,一般用捆绑法; (2)元素不相邻问题,一般用插空法. 3.组合问题 (1)不含限制条件的组合问题,可直接利用公式求解; (2)含有限制条件的组合问题.
89
80
1.定义
从n个不同的元素中,任取m(m≤n)个元素并成一组,叫
做从n个不同的元素中取出m个元素的一个组合.
2.组合数
从n个不同的元素中,取出m(m≤n)个元素的所有组合的
个数,叫做从n个不同的元素中取出m个元素的组合数,用
C
m n
表示.
3.有关公式(1)Cmn
=
A
m n
A
m m
=
n! ; m!(n m)!
(n,r∈N+). 2.通项公式
Tr+1= Crn an-rbr(0≤r≤n,n,r∈N+).
3.二项式系数
Crn (0≤r≤n,n,r∈N+)叫做二项式系数.
4.常用的二项定理
(1)(1+x)n= C0n + C1n x+ C2n x2+…+ Crn xr+…+ Cnn xn. (2)(1-x)n= C0n - C1n x+ C2nx2+…+ Crn(-x)r+… + Cnn (-x)n.
86
第五节 二项式系数的性质 掌握二项式系数的性质,能区分“二项式系数”与“系 数”,会解决相关的简单问题.
87
1.二项式系数的性质
(1)与首末两端“等距离”的两项的二项式系数相等,即
C
m n
=
Cn-m n

(2)Cmn+1
=
C
m n
+
Cm-1 n
,可结合杨辉三角形,除两端外,
都等于它肩上两数之和;
75
第一节 计数原理及排列 1.理解加法原理和乘法原理,能运用两个基本原理解
决一些简单的应用问题. 2.理解排列的意义,掌握排列数的计算公式,能运用
排列知识解决一些简单的应用问题.
76
1.计数的基本原理 分类计数原理(加法原理):完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有m2种不同 的方法,…,在第n类办法中有mn种不同的方法,那么完成 这件事共有N=m1+m2+…+mn种不同的方法. 分步计数原理(乘法原理):完成一件事,需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同的方 法,……,做第n步有mn种不同的方法,那么完成这件事共 有N=m1×m2×…×mn种不同的方法. 2.加法原理与乘法原理的区分 做一件事,任务没有完成用乘法,任务完成用加法.
83
4.典型的组合应用问题 (1)“含”与“不含”问题; (2)至多(至少)含某类元素中r个元素的组合问题. 5.排列与组合的区分 排列与顺序有关,组合与顺序无关.
84
第四节二项式定理 掌握二项式定理、二项式展开式的通项公式, 会解决简单问题.
85
1.二项式定理
(a+b)n= C0n anb0+ C1n an-1b1+…+ Crn an-rbr+…+Cnn a0bn
(3)奇“双”偶“单”:当n为奇数时,中间两项T n+1 ,
2
T n+3 的二项式系数最大; 2
当n为偶数时,中间一项T n+1 的二项式系数最大. 2
(4)C0n +C1n +C2n + +Cnn =2n;C0n +C2n + =C1n +C3n + =2n-1.
88
2.区分 (1)求二项展开式中所有二项式系数之和: C0n +C1n +C2n ++Cnn =2n; (2)求二项展开式中所有系数之和:用赋值法,令未知数 等于1代入原式.
相关文档
最新文档