2018年北京各区初三数学中考一模汇编——几何综合

合集下载

2018北京市各区初三数学一模试题分类——四边形

2018北京市各区初三数学一模试题分类——四边形

目录类型1:多边形内角、外角 (2)类型2:平四与特殊平四的性质与判定(解答题) (3)类型3:几何综合 (9)类型1:多边形内角、外角1.(18平谷一模6)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.122.(18西城一模6)如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于().A.45︒B.60︒C.72︒D.90︒3.(18大兴一模3)已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是()A. 3B. 4 C.5 D. 64.(18海淀一模3).若正多边形的一个外角是120°,则该正多边形的边数是A.6B. 5C. 4D.35.(18怀柔一模10)若正多边形的内角和为720°,则它的边数为______.6.(18延庆一模10)右图是一个正五边形,则∠1的度数是.7.(18石景山一模10)若正多边形的一个外角是45°,则该正多边形的边1数是_______.8. (18东城一模11)若多边形的内角和为其外角和的3倍,则该多边形的边数为_______.9. (18房山一模13)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3 的度数为_________.类型2:平四与特殊平四的性质与判定(解答题)1.(18石景山一模19)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,5AB=,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使4AE=,连接OA,OE;(2)在BC边上取点F,使BF=,连接OF;(3)在CD边上取点G,使CG=,连接OG;(4)在DA边上取点H,使DH=,连接OH.由于AE=+=+=+=.可证S△AOE==EOFB FOGC GOHDS S S==四边形四边形四边形S△HOA.2.(18平谷一模22)如图,在□ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的长.3.(18延庆一模21)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.F EDCB A OHG F ED C BAFA B 3. (18石景山一模21)如图,在四边形ABCD 中,90A BCD ∠=∠=°,BC CD ==,CE AD⊥于点E .(1)求证:AE CE =;(2)若tan 3D =,求AB 的长.4.(18房山一模21)如图,在ABC ∆中,90ACB ∠=,点,D E 分别是,BC AB 上的中点,连接DE 并延长至点F ,使EF =2DE ,连接,CE AF .(1)证明:AF CE =;(2)若30B ∠=,AC =2,连接BF ,求BF 的长5.(18西城一模21)如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA6.(18朝阳毕业23)如图,在菱形ABCD 中,AC 和BD 相交于点O ,过点O 的线段EF 与一组对边AB , CD 分别相交于点E ,F . (1)求证:AE =CF ;(2)若AB=2,点E 是AB 中点,求EF 的长.7.(18怀柔一模21)直角三角形ABC 中,∠BAC=90°,D 是斜边BC 上一点,且AB=AD ,过点C 作CE ⊥AD ,交AD 的延长线于点E ,交AB 延长线于点F. (1)求证:∠ACB=∠DCE ;(2)若∠BAD=45°,B 作BG ⊥FC 于点G ,连接DG .依题意补全图形,并求四边形ABGD 的面积8.(18海淀一模21)如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD .(1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是_______________时,四边形AOBE 的面积取得最大值是_________________.2+2AF C B EO AD D EB C9.(18朝阳一模21)如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形;(2)若∠FDB =30°,∠ABC =45°,BC =4√2,求DF 的长.10.(18东城一模21)如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B ,求线段CE 的长.11.(18丰台一模21)已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA . (1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.A B CE D F12.(18门头沟一模21)在矩形ABCD 中,连接AC ,AC 的垂直平分线交AC 于点O ,分别交AD 、BC 于点E 、F ,连接CE 和AF . (1)求证:四边形AECF 为菱形;(2)若AB =4,BC =8,求菱形AECF 的周长.13.(18大兴一模21)如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE=O C ,CE=O D .(1)求证:四边形OCED 是菱形; (2)若∠BAC =30°,AC =4,求菱形OCED 的面积.14.(18顺义一模21)如图,四边形ABCD 中,AD ∥BC ,∠A =90°,BD =BC ,点E 为CD 的中点,射线BE 交AD 的延长线于点F ,连接CF . (1)求证:四边形BCFD 是菱形; (2)若AD =1,BC =2,求BF 的长.A BF E A B C D15.(18通州一模22)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.16.(18燕山一模23)如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若∠BCF=120°,CE=4,求菱形BCFE的面积.AD E FB C类型3:几何综合1.(28延庆一模27)如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B作BF ⊥DE 于点F ,连接FC . (1)求证:∠FBC =∠CDF .(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .①依据题意补全图形;②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.图1 备用图FDEC BAFDEC BA3.(18西城一模27)正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α︒<<︒时,①依题意补全图1.②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.4.(18平谷一模27)在△ABC 中,AB=AC ,CD ⊥BC 于点C ,交∠ABC 的平分线于点D ,AE平分∠BAC 交BD 于点E ,过点E 作EF ∥BC 交AC 于点F ,连接DF .(1)补全图1; (2)如图1,当∠BAC =90°时,①求证:BE=DE ;②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当∠BAC=α时,直接写出α,DF ,AE 的关系.CDBA图1备用图C DBAMB图2图1B5.(18房山一模27)如图,已知Rt △ABC 中,∠C =90°,∠BAC =30°,点D 为边BC 上的点,连接AD ,∠BAD =α,点D 关于AB 的对称点为E ,点E 关于AC 的对称点为G ,线段EG 交AB 于点F ,连接AE ,DE ,DG ,AG .(1)依题意补全图形;(2)求∠AGE 的度数(用含α的式子表示);(3)用等式表示线段EG 与EF ,AF 之间的数量关系,并说明理由.6.(18怀柔一模27)如图,在△ABC 中,∠A=90°,AB=AC ,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC.(1)依题意补全图形;(2)求∠ECD 的度数;(3)若∠CAE=7.5°,AD=1,将射线DA 绕点D 顺时针旋转60°交EC 的延长线于点F ,请写出求AF 长的思路.αD C B A7.(18海淀一模27)如图,已知60AOB ∠=︒,点P交OB 于点E ,点D 在AOB ∠内,且满足∠(1)当DP PE =时,求DE 的长;(2)在点P 你的判断.8.(18朝阳一模27)如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示);(3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明.9.(18东城一模27)已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC =︒∠①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.10.(18丰台一模27)如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N .(1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.A B C E11.(18门头沟一模27)如图,在△ABC 中,AB =AC ,2A α∠=,点D 是BC 的中点,DE AB E ⊥于点,DF AC F ⊥于点.(1)EDB ∠=_________°;(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N .①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM CN 、与BC 之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.12.(18大兴一模27)如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF ,过点B 作BG ⊥C F 于点G ,连接AG .(1)求证:∠ABG =∠ACF ;(2)用等式表示线段CG ,AG ,BG 之间的等量关系,并证明.B13.(18顺义一模27)如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF .(1)依题意补全图形;(2)求证:∠F AC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.14.(18通州一模27)如图,直线l 是线段MN 的垂直平分线,交线段MN 于点O ,在MN 下方的直线l 上取点P ,连接PN .以线段PN 为边,在PN 上方作正方形NPAB .射线MA 交直线l 于点C ,连接BC .(1)设=ONP ∠,求AMN ∠的度数;(2)写出线段AM ,BC 之间的等量关系,并证明.E D C B A15.(18燕山一模28)在Rt△ABC中, ∠ACB=90°,CD是AB边的中线,DE⊥BC于E, 连结CD,点P在射线CB上(与B,C不重合).(1)如果∠A=30°①如图1,∠DCB= °②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP, 将线段DP绕点逆时针旋转α2得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明).。

【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案

【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案

北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。

2018-2019北京四中初三数学一模几何综合,代数综合汇编

2018-2019北京四中初三数学一模几何综合,代数综合汇编

1(2019+++延庆+++一模)(1)对称轴:x =2,B (5,2)(2)12a 或2a 2(2019+++房山+++一模)(1)∵抛物线2y x mx n 过点A (-1,a ),B (3,a )∴抛物线的对称轴x =1 ∵抛物线最低点的纵坐标为-4 ∴抛物线的顶点是(1,-4) ∴抛物线的表达式是2(1)4y x 即223y x x m =-2,n =-3………… 2分把A (-1,a ) 代入抛物线表达式223y x x 求得a =0……………………… 3分(2)如图当y =kx +2经过点B (3,0)时, 0=3k +2,k =-23……………………… 4分当y =kx +2经过点A (-1,0)时,0=-k +2,k =2……………………… 5分综上所述,当k ≤-23或k ≥2时,直线y =kx +2与G 有公共点…………… 6分3(2019+++通州+++一模)(1)∵二次函数2y x ax b 在0x 和4x 时的函数值相等∴对称轴为直线2x ………………1分(2)①不妨设点M 在点N 的左侧∵对称轴为直线2x ,2MN ∴点M 的坐标为(1,1),点N 的坐标为(3,1)………………2分∴22ax ,11a b ∴4a ,4b ………………4分②15b ≤………………6分xy123–1–2–3–4–512345–1–2–3o4(2019+++平谷+++一模)(1)m(2)∵3222m mx x y 23x m ∴抛物线顶点坐标为(m ,-3)∵抛物线经过点A ,B 时,且AB ∥x 轴∴抛物线对称轴为x=m =2 ∴抛物线的表达式为241y x x (3)01m 5(2019+++门头沟+++一模)(1)∵直线4yx 与x 轴交于点 A ∴点A 坐标为(-4,0)∵直线4y x 与与过点(0,5)且平行于x 轴的直线l 交于点B ∴点B 坐标为(1,5)………… 1分∵点A 关于直线l 的对称点为点C ∴点C 坐标为(-4,10)…………… 2分(2)①∵抛物线的表达式为222y x mx m m=-+-∴顶点坐标为(m ,-m )…………… 3分∵抛物线顶点在直线4y x 上∴4mm ∴m = - 2…………… 4分②6 4.m ≤≤…………… 6分6(2019++石景山+++一模)(1)∵1(0)ykx k 经过点A 23(,)∴1k ∵直线1y x 与抛物线2yax bx a 的对称轴交于点C m,2∴1m (2)∵抛物线2yax bx a 的对称轴为1x ∴12b a ,即2b a .∴22y ax ax a 2(1)a x ∴抛物线的顶点坐标为1,0。

北京市各区2018届九年级中考一模数学试卷精选汇编:尺规作图(含答案)

北京市各区2018届九年级中考一模数学试卷精选汇编:尺规作图(含答案)

尺规作图东城区16.已知正方形ABCD .求作:正方形ABCD 的外接圆.作法:如图, (1)分别连接AC ,BD ,交于点O ;(2) 以点O 为圆心,OA 长为半径作.O A 即为所求作的圆.O A 请回答:该作图的依据是_____________________________________.16. 正方形的对角线相等且互相平分,圆的定义西城区16.阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.已知:直线和直线外的一点.P 求作:过点且与直线垂直的直线,垂足为点P PQ Q P 某同学的作图步骤如下: 步骤作法 推断 第一步 以点为圆心,适当长度为半径作P 弧,交直线于,两点.A BPA PB =第二步 连接,,作的平分线,PA PB APB ∠交直线于点.Q __________APQ ∠=∠直线即为所求作.PQ PQ l ⊥请你根据该同学的作图方法完成以下推理:∵,__________,PA PB =APQ ∠=∠∴.(依据:__________).PQ l ⊥【答案】,等腰三角形三线合一BPQ 【解析】,等腰三角形三线合一. BPQ海淀区16.下面是“过圆上一点作圆的切线”的尺规作图过程.请回答尺规作图的依据是.16.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.丰台区16.下面是“作一个角等于已知角”的尺规作图过程.16.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应的其余各组量都分别相等.或:同圆半径相等,三条边对应相等的两个三角形全等,全等三角形的对应角相等.石景山区16.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在的两边,上分别取;AOB ∠OA OB OM ON =(2)利用两个三角板,分别过点,画,的垂线,交点为;M N OM ON P (3)画射线.OP 则射线为的平分线.OP AOB ∠请写出小林的画法的依据 .16.(1)斜边和一条直角边分别相等的两个直角三角形全等;(2)全等三角形的对应角相等. 朝阳区16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线a 和直线外一点P . 求作:直线a 的垂线,使它经过P .作法:如图,(1)在直线a 上取一点A , 连接PA ;(2)分别以点A 和点P 为圆心,大于AP 的长为半径作弧,两弧相交于B ,C两点,连接BC 交PA 于点D ;(3)以点D 为圆心,DP 为半径作圆,交直线a 于点E ,作直线PE .所以直线PE 就是所求作的垂线.请回答:该尺规作图的依据是.16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角 燕山区16. 在数学课上,老师提出如下问题:。

2018年北京市石景山中考一模几何综合题解析

2018年北京市石景山中考一模几何综合题解析

2018年北京市石景山中考一模几何综合压轴题解析初中数学,玩的就是几何。

【读题】读题过程中不仅要获取题干有效信息,更重要的是在自己在记忆中筛选出对应的几何模型和解题方法。

这就要求考生在平时进行系统的总结归纳,以便在考场上快速有效地进行分析。

本题是正方形背景下的等腰直角三角形的旋转问题,也可以认为是共直角顶点的双等腰直角三角新的旋转模型。

如果考生已经对此进行了系统的总结,在分析时就更有可能快速获得解题思路。

本题第(1)问作图,属于送分题;(2)①需要证明三条线段的数量关系,这样的问题设置大大降低了分析的难度;(2)②要求直接写出答案,在作图正确的前提下,凭借几何直观可以准确获得答案。

因此,这个小问题的难度就在于做出正确的几何图形,但是,要想正确地作出图形,又要求考生有一定的逻辑推理能力。

【分析】(1),依题意补全图形,送分题。

如下图2所示。

首先作出示意图如图3所示,作图不要求完全准确,不要在做图上耽误太多时间。

观察结论可知需要构造直角三角形,又根据等式右边式子特征可知需要借助正方形的对角线,因此连接BD,可获得解题思路。

显然,△APQ为直角三角形,则∠Q=∠APQ=45°,下面采取不同的方法进行证明。

方法三:如图5所示,因为∠ABD=∠APD=45°,可知点P在正方形ABCD的外接圆圆O上,且BD为圆O的直径,显然∠BPD=90°,下面从略。

(2)②,重新看一下题目要求:若点P,Q,C恰好在同一直线上,判断线段BP与AB的数量关系并直接写出答案。

首先是作出大致的草图,如图6所示。

通过“几何直观”可知BP和AB相等,下面需要综合应用正方形和等腰直角三角形的性质进行证明。

下面采用三种不同的思路(涉及到多种方法)对这个问题进行较为详细的探究和分析。

思路一:全等三角形和直角三角形斜边中线方法一:如图6所示,延长CD至F,使得DF=DC,连接AF,QF,可知△APQ和△ACF均为等腰直角三角形,又可证△AQD≌△APB(SAS),得QD=PB,又AF=AC,∠FAQ=∠CAP,AQ=AP,所以△AQF≌△APC(SAS),所以∠AQF=∠APC=45°,于是∠CQF=∠AQC+∠AQF=90°,于是在Rt△FCQ中,因为D为FC的中点,所以DQ=DC=AB.方法二:如图7所示,延长CB至E,使得BE=CB,连接AE,PE,可知△AQF和△ACE均为等腰直角三角形,又可证△AQD≌△APB(SAS),得DQ=BP,因为AQ=AP,∠QAC=∠PAE,AC=AE,所以△AQC≌△APE(SAS),得∠APE=∠AQC=45°,所以∠CPE=90°,在Rt△CPE中,BP=BC=AB.上述两种运用全等的方法,是等腰三角形的构造在几何综合题中的典型的应用,通过两次证明全等,实现结论的证明。

2018-2019北京四中 初三数学一模 几何综合汇编

2018-2019北京四中 初三数学一模 几何综合汇编

1(2019+++延庆+++一模)(1)∵∠ADC =60°,DA=DC ∴△ADC是等边三角形∴∠DAC =60°,AD=AC.∵∠ABC=120°,BD平分∠ABC ∴∠ABD=∠DBC=60°∴∠DAC =∠DBC =60°∵∠AOD =∠BOC ∠ADB=180°-∠DAC-∠AOD∠ACB=180°-∠DBC-∠BOC ∴∠ADB=∠ACB(2)结论:DH=BH+BC在HD上截取HE=HB∵AH⊥BD ∴∠AHB=∠AHE=90°∵AH =AH ∴△ABH≌△AEH ∴AB=AE,∠AEH=∠ABH=60°∴∠AED=180°-∠AEH=120°∴∠ABC=∠AED=120°∵AD=AC, ∠ADB=∠ACB ∴△ABC≌△AED ∴DE=BC ∵DH=HE+ED ∴DH=BH+BC2(2019+++房山+++一模)(1)解: 依题意,∠CAB=45°∵∠BAD=α∴∠CAD=45α︒-∵∠ACB=90°,BE⊥AD,∠ADC=∠BDE ∴∠DBE=∠CAD=45α︒-……………………………… 2分(2)解:①补全图形如图……………………… 4分②猜想:当D在BC边的延长线上时,EB-EA EC……………… 5分证明:过点C作CF⊥CE,交AD的延长线于点F.∵∠ACB=90°∴∠ACF=∠BCE∵CA=CB,∠CAF =∠CBE ∴△ACF≌△BCE………… 6分∴AF=BE,CF=CE ∵∠ECF=90°∴EF EC即AF -EA EC ∴EB -EA…………………… 7分3(2019+++通州+++一模)(1)连接AE∵点B关于射线AD的对称点为E∴AE=AB,BAF EAFα∠=∠=∵ABC △是等边三角形 ∴AB AC =,60BAC ACB ∠=∠=︒ ∴602EAC α∠=︒-,AE AC =………1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦ ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=……………2分另解:借助圆 (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF ……………3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠ ∴60ABC AFC ∠=∠=︒ ∴△FCG 是等边三角形 ∴GF =FC ……………… 4分 ∵ABC △是等边三角形 ∴BC AC =,60ACB ∠=︒∴ACG BCF α∠=∠= 在△ACG 和△BCF 中CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF∴AG BF =……………5分 ∵点B 关于射线AD 的对称点为E ∴BF EF =……………6分 ∴AF AG GF -= ∴AF EF CF -=………………7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF4(2019+++平谷+++一模) (1)∠BCD =120°-α (2)解:方法一:延长BA 使AE=BC ,连接DE 由(1)知△ADC 是等边三角形 ∴AD=CD ∵∠DAB +∠DCB =∠DAB +∠DAE =180°∴∠DAB =∠DAE ∴△ADE ≌△CDB ∴BD=BE ∴BD=AB+BC 方法二:延长AB 使AF=BC ,连接CF∠BDC =∠ADE ∵∠ABC =120° ∴∠CBF =60°∴△BCF 是等边三角形 ∴BC=CF ∵∠DCA =∠BCF =60°∴∠DCA +∠ACB =∠BCF +∠ACB 即∠DCB =∠ACF ∵CA=CD ∴△ACF ≌△DCB ∴BD=AF ∴BD=AB+BC (3)AC ,BD 的数量关系是:2AC BD 位置关系是:AC ⊥BD 于点P5(2019+++门头沟+++一模)(1)补全图形(如图1)…………… 1分 证明:略………… 3分(2)线段OE ,OP 和OF 之间的数量关系是OF +OE OP …… 4分 证明:如图2,作PQ ⊥PO 交OB 于Q∴∠2+∠3=90°,∠1+∠2=90° ∴∠1=∠3 又∵OC 平分∠AOB ,∠AOB =90° ∴∠4=∠5=45°又∵∠5+∠6=90° ∴∠6=45° ∴∠4=∠6 ∴PO =PQ ∴△EPO ≌ △FPQ …………… 5分 ∴PE =PF ,OE =FQ 又∵OQ =OF +FQ =OF +OE又∵OQ ∴OF+OE …………… 6分(3)线段OE ,OP 和OF 之间的数量关系是OF- OE …………… 7分6(2019++石景山+++一模) (1)补全的图形如图1所示 (2)△ABC 是等边三角形∴AB BC CA ==,60ABC BCA CAB ∠=∠=∠=︒由平移可知ED ∥BC ,ED =BC ……… 2分60ADE ACB ∴∠=∠=︒ 90GMD ∠=︒ 2DG DM DE ∴==…… 3分DE BC AC == DG AC ∴= AG CD ∴=……… 4分(3)线段AH 与CG 的数量关系:AH = CG ……… 5分 如图2,连接BE ,EF,ED BC =ED ∥BC BEDC ∴四边形是平行四边形 BE CD CBE ADE ABC ∴=∠=∠=∠, GM ED 垂直平分EF DF ∴= DEF EDF ∴∠=∠ ED ∥BCBFE DEF BFH EDF ∴∠=∠∠=∠, BFE BFH ∴∠=∠BF BF = BEF BHF ∴△≌△………… 6分BE BH CD AG ∴===AB AC = AH CG ∴=……… 7分7(2019+++西城+++一模)D8(2019+++燕山+++一模)(1)①补全的图形如图的所示………1分 ②证明:∵∠ADE =∠B =90°∴∠EDC +∠ADB =∠BAD +∠ADB =90° ∴∠EDC =∠BAD ……………3分 (2)①CE BD ……………4分 ②想法1:如图,过点E 作EF ⊥BC ,交BC 延长线于点F ∴∠F =90° 在△ADB 和△DEF 中,∠B =∠F =90°,∠EDC =∠BAD ,AD =DE ∴△ADB ≌△DEF ∴AB =DF ,BD =EF ∵AB =BC ∴DF =BC 即DC +CF =BD +DC ∴CF =BD =EF ∴△CEF 是等腰直角三角形∴CECF BD ……………7分 想法2:证明:在线段AB 上取一点F ,使得BF =BD ,连接DF∵∠B =90°,AB =BC ∴DF BD ∵AB =BC ,BF =BD ∴AB -BF =BC -BD 即AF =DC 在△ADF 和△DEC 中AF =DC ,∠BAD =∠EDC ,AD =DE ∴△ADF ≌△DEC∴CE=DF BD ……………7分 想法3:证明:延长AB 到F ,使得BF =BD ,连接DF ,CF∵∠B =90°∴DF 在Rt △ABD 和Rt △CBF 中 ∠ABD =∠CBF =90°,AB =BC ,BD =BF ∴△ABD ≌△CBFFABECD∴AD=CF,∠BAD=∠BCF ∵AD=DE ∴DE=CF∵∠EDC=∠BAD ∴∠EDC=∠BCF ∴DE∥CF∴四边形DFCE为平行四边形∴CE=DF BD……………7分9(2019+++丰台+++一模)10(2019+++密云+++零模)(1)补全图形AD与BE的数量关系为AD=BE(2)∵∠ACB=∠DCE= 60°∴∠ACD=∠BCE 又∵AC=BC,CD=CE ∴△ACD≌△BCE ∴AD=BE, ∠CBE=∠CAD=60°∴∠ABF=180°-∠ABC-∠CBE=60°在Rt AFB∆中,AFAB=∴ABDB AH O DBA1已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD 相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H (1)求证:ADB ACB ∠=∠(2)判断线段BH ,DH ,BC 之间的数量关系;并证明 2已知:Rt △ABC 中,∠ACB =90°,AC =BC(1) 如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示)(2) 如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2 ②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明AA3如图,在等边ABC △中,点D 是线段BC 上一点.作射 线AD ,点B 关于射线AD 的对称点为E .连接CE 并 延长,交射线AD 于点F(1)设BAF α∠=,用α表示BCF ∠的度数(2)用等式表示线段AF 、CF 、EF 之间的数量关系, 并证明 4在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P (1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示) (2)求AB ,BC ,BD 之间的数量关系 (3)当α=30°时,直接写出AC ,BD 的关系5如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转 中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F (1)根据题意补全图1,并证明PE = PF(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明 (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系6如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G (1)依题意补全图形 (2)求证:AG = CD(3)连接DF 并延长交AB 于点H ,用等 式表示线段AH 与CG 的数量关系,并证明PPEECCBBOOAADB A7如图,在△ABC 中,∠ABC =90°,BA=BC .将线段AB 绕点A 逆时针旋转90°得到线段AD ,E 是边BC 上的一动点,连接DE 交AC 于点F ,连接BF(1) 求证:FB=FD(2) 点H 在边BC 上,且BH=CE ,连接AH 交BF 于点N①判断AH 与BF 的位置关系,并证明你的结论②连接CN .若AB =2,请直接写出线段CN 长度的最小值8如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点 D 顺时针旋转90°得到线段DE ,连接EC(1) ① 依题意补全图1② 求证:∠EDC =∠BAD (2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为 ② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF .想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC .想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形.……请你参考上面的想法,帮助小方证明①中的猜想(一种方法即可)备用图AB C D 图1 D C B A9在ABC ∆中,090=∠ACB ,AC=BC ,D 为AB 的中点,点E 为AC 延长线上一点,连接DE ,过点D 作DF ⊥DE交CB 的延长线于点F(1)求证:BF=CE(2)若CE=AC ,用等式表示线段DF 与AB 的数量关系,并证明10已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE(1)依题意补全图1并判断AD 与BE 的数量关系(2)过点A 作AF EB ⊥交EB 延长线于点F ,用等式表示线段EB 、DB 与AF 之间的数量关系并证明图2D C BA 图1ABC D。

完整word版,北京市各区2018届九年级中考一模数学试卷精选汇编:压轴题专题(含答案),推荐文档

完整word版,北京市各区2018届九年级中考一模数学试卷精选汇编:压轴题专题(含答案),推荐文档

北京市各区2018届九年级中考一模数学试卷精选汇编压轴题专题东城区28.给出如下定义:对于O O 的弦 MN 和O O 外一点P (M , O , N 三点不共线,且 P , O在直线MN 的异侧),当/ MPN + Z MON= 180°时,则称点 P 是线段MN 关于点O的关联点•图1是点P 为线段MN 关于点O 的关联点的示意图•① / MDN 的大小为加 厂h(\ 丿1.(1)如图•在 A (1 , 0), B (1, 1) , C 「2,0 三占中 是线段MN 关于点O 的关联点的是(2)如图 (0, 1), ND 是线段MN 关于点O 的关联点. ② 在第一象限内有一点E 丿3m,mE 是线段MN 关于点O 的关联点,判断△ MNE 的形状,并直接写出点 E 的坐标;xOy 中,O O 的半径为③点F在直线y 2 2上,当/ MFN汶MDN时,求点F的横坐标X F的取值3范围.------------- 2分28•解:(1) C;(2 [① 60°②△ MNE是等边三角形,点E的坐标为.3,1 ;-------------- 5分③直线y ' x 2交y轴于点K3••• OK 2 , OT 2 .3 •••• OKT 60 •作OG_ KT于点G连接MG•/ M 0, 1 ,•OM1.•M为OK中点••MG=MKOM1.•••/ MGO=Z MO=30°, OG 3.•G迺32 2•/ MON 120 ,GON 90 •又OG 3, ON 1,•OGN 30 ••MGN 60 ••G是线段MN关于点O的关联点•经验证,点E 31在直线y结合图象可知,当点F在线段GE上时,符合题意•T X3 W X F W X E ,• ——w X F W , 3 •------------ 8 分2西城区28.对于平面内的O C和O C外一点Q,给出如下定义:若过点Q的直线与O C存在公共点,记为点A , B,设k AQ BQ,则称点A (或点B )是0 C的k相关依附点”,CQ2AQ 2BQ特别地,当点A和点B重合时,规定AQ BQ , k (或 ).CQ CQ已知在平面直角坐标系xOy中,Q( 1,0) , C(1,0) , O C的半径为r .(1)如图,当r 2时,①若A(0,1)是O C的k相关依附点”,则k的值为______________ .②A2(1 A/2,0)是否为O C的2相关依附点”.答:______________ (填是”或否”).(2)若0 C上存在k相关依附点”点M ,①当r 1,直线QM与O C相切时,求k的值.②当k 3时,求r的取值范围.(3)若存在r的值使得直线y , 3x b与O C有公共点,且公共点时O C的3相关依备用图附点”,直接写出b的取值范围.【解析】(1 [①•②是.(2)①如图,当r 1时,不妨设直线QM与O C相切的切点M在x轴上方(切点M在x轴下方时同理),连接CM,则QM CM ,••• Q( 1,0) , C(1,0) , r 1 ,••• CQ 2 , CM 1 ,• MQ 3 ,此时k 2MQ 3 CQ ,②如图,若直线QM与O C不相切,设直线QM与O C的另一个交点为N (不妨设QN QM,点N , M在x轴下方时同理),作CD QM于点D,则MD ND ,••• MQ NQ (MN NQ) NQ 2ND 2NQ 2DQ ,•/ CQ 2 ,.MQ NQ 2DQ “ k DQ ,CQ CQ•当k、3 时,DQ 3 ,此时CD CQ2 DQ2 1 ,假设O C经过点Q,此时r 2 ,•••点Q早O C外,• r的取值范围是1< r 2 .(3) 3 b 3.3 -海淀区28•在平面直角坐标系xOy中,对于点P和e C,给出如下定义:若e C上存在一点T不与O重合,使点P关于直线OT的对称点P'在eC上,则称P为eC的反射点.下图为eC 的反射点P的示意图.(1)已知点A的坐标为(1,0),e A的半径为2,①在点0(0,0),M(1,2),N(0, 3)中,e A的反射点是 ________ ;②点P在直线y x上,若P为e A的反射点,求点P的横坐标的取值范围;(2)eC的圆心在x轴上,半径为2,y轴上存在点P是eC的反射点,直接写出圆心 C 的横坐标x的取值范围.28 •解(1)①e A的反射点是M , N . ................. 1分②设直线y x与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为 D , E , F , G,过点D作DH丄x轴于点H,如图.A*可求得点D的横坐标为.匕2 .2同理可求得点E , F , G的横坐标分别为,3—.2 2 2点P是e A的反射点,贝U e A上存在一点T,使点P关于直线0T的对称点P'在e A上, 则OP 0P'.•/ K 0P V3 ,••• K 0P W3 •反之,若K 0P W3 , e A上存在点Q,使得OP 0Q,故线段PQ的垂直平分线经过原点,且与e A 相交.因此点P是e A的反射点..•.点P的横坐标x的取值范围是3-2< x< 2,或—2 < x< ^2• ............................... 4分2 2 2 2(2)圆心C的横坐标x的取值范围是4W x W4 • ................. 7分丰台区28.对于平面直角坐标系x0y中的点M和图形W ,她给出如下定义:点P为图形W上一点,点Q 为图形W2上一点,当点M是线段PQ的中点时,称点M是图形W, W2的中立点”如果点P(x i, y i),Q(X2, y2),那么中立点”M的坐标为亠昱,一y2.2 2已知,点A(-3, 0), B(0, 4), C(4, 0).1 1(1)连接BC,在点D(—, 0), E(0, 1), F(0,-)中,可以成为点A和线段BC的中立点”2 2的是_____________ ;(2)已知点G(3, 0), O G的半径为2.如果直线y = - x + 1上存在点K可以成为点A和O G 的中立点”求点K的坐标;(3)以点C 为圆心,半径为2作圆.点N为直线y = 2x + 4上的一点,如果存在点N,使2A ,得y 轴上的一点可以成为点 N 与O C 的中立点”,直接写出点N 的横坐标的取值范围.I I I I ■ I __________________________________ I I ■ I I7 一6 一5 一4 一3 一2 -1 O —1 ―2 3 4 5 6?-1 - -2- -5 6 7 828 .解:(1 )点A 和线段BC 的中立点”的是点D ,点F ;..... 2分(2)点A 和O G 的中立点”在以点0为圆心、半径为1的圆上运动• 因为点K 在直线y=- x+1上, 设点K 的坐标为(x , - x+1 ),则 X 2+ ( - x+1 ) 2=12,解得 X 1=0, X 2=1.所以点K 的坐标为(0,1)或(1, 0) ..... 5分(3) (说明:点N 与O C 的中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动•圆P 与y 轴相切时,符合题意.) 5 43 2 所以点N 的横坐标的取值范围为-6$N =2.......... 8分vAi28.对于平面上两点 A , B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点 B 的“确定圆” •如图为点A , B 的“确定圆”的示意图..(1)已知点A 的坐标为(1,0),点B 的坐标为(3,3),则点A , B 的“确定圆”的面积为 ___________ ;(2)已知点A 的坐标为(0,0),若直线y x b 上只存在一个点 B ,使得点A , B 的“确定 圆”的面积为9 ,求点B 的坐标;(3)已知点A 在以P(m,0)为圆心,以1为半径的圆上,点B 在直线y要使所有点A ,B 的“确定圆”的面积都不小于 9 ,直接写出m 的取值范围.28•解:(1)25 ; .................... 2分A*T x 3上,若(2) •••直线y x b上只存在一个点B,使得点A,B的确定圆”的面积为9 ,•••O A的半AB 3且直线y x b与O A相切于点B,如图,径• AB CD , DCA 45° .①当b 0时,则点B在第二象限.过点B作BE x轴于点E ,••• BE AE 3. 2•••在Rt BEA 中,BAE 45° AB 3,23 2 3,2厂 )2 2②当b 0时,则点B'在第四象限. 同理可得3.2 ^2^3.23,2、 , --- )或(, ).2 2 2 2朝阳区28.对于平面直角坐标系 xOy 中的点P 和线段AB ,其中A(t , 0)、B(t+2 , 0)两点,给出 如下定义:若在线段 AB 上存在一点 Q ,使得P , Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1) 当 t= 3 时,① 在点P l (1 , 1), P 2 ( 0, 0), P 3 (-2, -1 )中,线段AB 的伴随点是 _____________ ;② 在直线y=2x+b 上存在线段 AB 的伴随点M 、N ,且MN ,求b 的取值范 围; (2) 线段AB 的中点关于点(2, 0)的对称点是 C ,将射线CO 以点C 为中心,顺时 针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28.解:(1)①线段AB 的伴随点是:P 2 ,P 3.............................................2分②如图1,当直线y=2x+b 经过点(3,1)时,b=5,此时b 取得最大值........................................................ 4分如图2,当直线y=2x+b 经过点(1, 1)时,b=3,此时b 取得最小值•••• B(综上所述,点B 的坐标为(b的取值范围是3切< 5.图1 图21(2) t的取值范围是—t 2. ..................................................... 8分2燕山区28 .在Rt△ ABC中,/ ACB=90 ° , CD是AB边的中线,DE丄BC于E,连结CD,点P在射线CB上(与B,C不重合).(1)如果/ A=30 °①如图1,/ DCB= __________ °②如图2,点P在线段CB上,连结DP ,将线段DP绕点D逆时针旋转60 °,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2 )如图3,若点P在线段CB的延长线上,且/ A= (0 ° < <90 ° ),连结DP,将线段DP绕点逆时针旋转2 得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明).28.解:⑴①/ DCB=60 ° .................................................. 1'②补全图形CP=BF ............................................. 3'△ DCP ◎△ DBF ...................................................... 6'(2) BF-BP=2DE tan (8)门头沟区28.在平面直角坐标系xOy中,点M的坐标为(洛,%),点N的坐标为(x2, y2),且为冷, y i y2,我们规定:如果存在点P,使MNP是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.(1)已知点A的坐标为(1,3),①若点B的坐标为(3,3),在直线AB的上方,存在点A,B的“和谐点” C,直接写出点C的坐标;②点C在直线x=5上,且点C为点A, B的“和谐点”,求直线AC的表达式.(2 )0 O 的半径为r ,点D(1,4)为点E(1,2)、F (m, n)的“和谐点”,若使得厶DEF 与OO 有交点,画出示意图 直接写出半径r 的取值范围28.(本小题满分8分) 解:(1)0(1,5)或 C 2(3,5).由图可知,B (5,3) •/ A(1,3) ••• AB=4ABC 为等腰直角三角形• BC=4当 C 1 (5,7)时,5k b 7当 C 2(5, 1)时,5k b 1y_l1 II 1 l>II 1 1 1 i HII 1 111 l> 1 H 1 1 1 [| I I 1 1 11 1 -- 1 -- 1 -- :O --- 1 1 --- —1 1 1v r r I V —T ・「■广 n i i i T 1 u I... C i (5,7)或C 2(5, 1)设直线AC 的表达式为 y kx b(k0)TJ---- 「—i J------ J "T---- 「—i J------ J "T备用图26•••综上所述,直线AC的表达式是(2)当点F在点E左侧时:大兴区28.在平面直角坐标系 xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接 D P ,过点P 作DP 的垂线交y 轴于点E ( E 在线段OA 上,O 重合), DPE P , E 的直角”.图P , E 的直角”的图1 图2如图2,在平面直角坐标系 xOy 中,已知二次函数图象与 y 轴交于点F (0,m ),与x 轴分别 交于点B ( 3,0),C ( 12,0).若过点F 作平行于x 轴的直线交抛物线于点 N .(1) 点N 的横坐标为 ____________ ;(2)已知一直角为点 N,M ,K 的“平横纵直角”,若在线段OC 上存在不同的两点 M t 、M 2 使相应的点K i 、K 2都与点F 重合,试求m 的取值范围;E 不与点 平横纵(3)设抛物线的顶点为点Q ,连接BQ与FN交于点H ,当45 Z QHN 60时,求m 的取值范围.28. (1) 9 ....................................................................................................... 1 分(2)方法一:MK 丄MN ,要使线段0C上存在不同的两点M i、就是使以FN为直径的圆与0C有两个交点,即9 r2m 2.又m 0,c 9 .....................................................0 m .2方法m 0,点K在x轴的上方.过N作NW丄OC于点W,设OM x , OK y , 则CW=OC —OW=3, WM= 9 x.由厶MOKNWM ,得,--y x9x m1 29…y xmx . m当ym时,129m—x x ,m m化为2x9x2m 0当△ =0,即924m20 ,9解得m 时,2M2,使相应的点r m.K i、K2都与点F重合,也24 5线段0C 上有且只有一点 M ,使相应的点 K 与点F 重合.线段0C 上存在不同的两点 M i 、M 2,使相应的点K i 、K 2都与点F 重合时,m 的 取值 c9 .0m_2分(3)设抛物线的表达式为:y a(x 3)( x 12) (a 丰0),又抛物线过点F (0, m ),平谷区过点Q 36a .1m(x 363)(x 1 m . 3612)1 m(x 362)25 m . 16做QG 丄x 轴与FN 交于点RFN // x 轴/ QRH =90°BG25tan BQG-,QG 一QG16(dii Z BQG —24 伽又 45 QHN60 ,30BQ45BGBQG 30 BQG 45m 的取值范围为 时,可求出 时,可求出m15 224、3 ,524 5243 . 51|||III II。

2018年北京各区初三数学中考一模汇编——几何综合(2021年整理精品文档)

2018年北京各区初三数学中考一模汇编——几何综合(2021年整理精品文档)

(完整版)2018年北京各区初三数学中考一模汇编——几何综合编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年北京各区初三数学中考一模汇编——几何综合)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年北京各区初三数学中考一模汇编——几何综合的全部内容。

1、(2018东城一模)已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H . (1)如图1,若60BAC ∠=︒①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.2、(2018西城一模) 正方形ABCD 的边长为2。

将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE ⊥AM 于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当0°〈α<45°时,①依题意补全图1;②用等式表示∠NCE 与∠BAM 之间的数量关系: ; (2)当45°<α<90°时,探究∠NCE 与∠BAM 之间的数量关系并加以证明; (3)当0°〈α<90°时,若边AD 的中点为F ,直接写出线段EF 的最大值。

图用图3、(2018海淀一模)如图,已知60AOB ∠=︒,点P 为射线OA 上的一个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满足DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M ,使得DMME的值不变?并证明你的判断。

2018-2019北京四中 初三数学一模 几何综合 ,代数综合汇编

2018-2019北京四中 初三数学一模 几何综合 ,代数综合汇编

1(2019+++延庆+++一模)(1)对称轴:x =2,B (5,2) (2)12a ≥或2a ≤-2(2019+++房山+++一模)(1)∵抛物线2y x mx n =++过点A (−1,a ),B (3,a ) ∴抛物线的对称轴x =1 ∵抛物线最低点的纵坐标为−4 ∴抛物线的顶点是(1,−4) ∴抛物线的表达式是2(1)4y x =--即223y x x =-- m =−2,n =−3………… 2分 把 A (−1,a ) 代入抛物线表达式 223y x x =-- 求得a =0……………………… 3分 (2)如图当y =kx +2经过点B (3,0)时, 0=3k +2,k =−23……………………… 4分 当y =kx +2经过点A (−1,0)时,0=−k +2,k =2……………………… 5分 综上所述,当k ≤−23或k ≥2时,直线y =kx +2与G 有公共点…………… 6分3(2019+++通州+++一模)(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等 ∴对称轴为直线2x =………………1分(2)① 不妨设点M 在点N 的左侧 ∵对称轴为直线2x =,2MN = ∴点M 的坐标为(1,1),点N 的坐标为(3,1)………………2分 ∴22ax -=-=,11a b =-+ ∴4a =,4b =………………4分 ② 15b <≤………………6分4(2019+++平谷+++一模) (1)m(2)∵3222-+-=m mx x y ()23x m =--∴抛物线顶点坐标为(m ,-3) ∵抛物线经过点A ,B 时,且AB ∥x 轴 ∴抛物线对称轴为x=m =2 ∴抛物线的表达式为241y x x =-+ (3)01m <≤5(2019+++门头沟+++一模)(1)∵直线4y x =+与x 轴交于点A ∴点A 坐标为(-4,0) ∵直线4y x =+与与过点(0,5)且平行于x 轴的直线l 交于点B ∴点B 坐标为(1,5)………… 1分∵点A 关于直线l 的对称点为点C ∴点C 坐标为(-4,10)…………… 2分 (2)① ∵抛物线的表达式为222y x mx m m =-+-∴顶点坐标为(m ,-m )…………… 3分 ∵抛物线顶点在直线4y x =+上 ∴4m m -=+ ∴m = - 2…………… 4分 ② 6 4.m ≤≤-…………… 6分6(2019++石景山+++一模)(1)∵1(0)y kx k =+≠经过点A 23(,) ∴1k =∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2∴1m = (2)∵抛物线2y ax bx a =++的对称轴为1x = ∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =- ∴抛物线的顶点坐标为()1,0(3)当0a >时,如图 若抛物线过点B 01(,),则1a = 结合函数图象可得01a << 当0a <时,不符合题意综上所述,a 的取值范围是01a <<7(2019+++西城+++一模)(1)∵223y ax ax a =--=2(23)a x x --=(1)(3)a x x +- 令0=y ,得1-=x ,或3=x∴A (-1,0),B (3,0)………………2分当1a =时,抛物线化为223y x x =--=2(1)4x --∴D (1,-4)……………3分 (2) 如图,当0a >时当1a =时,抛物线在点A ,B 之间的部分与线段AB 所围成的区域 内恰有7个整点 当34a =时,抛物线在点A ,B 之间的部分与线段AB 所围成的区域 内有6个整点 结合函数图象可得,314a <≤ 当0a <时,同理可得314a<-≤- ∴a 的取值范围是314a<-≤-,或314a <≤…………6分9(2019+++丰台+++一模)(1) ()42--=m x y ()4-∴,m P 即顶点P 的纵坐标为-4 (2)①AB 长为定值 令y=0,则22240x mx m -+-= 则2()4x m -=解得22x m x m =+=-或 AB 长为2(2)4m m +--= ②当MA=5时,可求A 点坐标为(-3,0)或(3,0)∵AB=4 ∴MA=5时,m=-1或m=1 ∵214x x m m -+=+结合图象可知,21x x m -+的取值范围为212115x x m x x m -+≤--+≥或 1在平面直角坐标系xOy 中,抛物线2432y ax ax a =-+-(0a ≠)的对称轴与x 轴交于点A ,将点A 向右平移3个单位长度,向上平移2个单位长度,得到点B (1)求抛物线的对称轴及点B 的坐标(2)若抛物线与线段AB 有公共点,结合函数图象, 求a 的取值范围 2在平面直角坐标系xOy 中,二次函数2y x mx n =++的图象经过点A (−1,a )B (3,a ),且顶点的纵坐标为-4(1)求m ,n 和a 的值(2)记二次函数图象在点A ,B 间的部分为G (含点A 和点B ),若直线2y kx =+与图象G 有公共点,结合函数图象,求k 的取值范围 3已知二次函数2y x ax b =-+在0x =和4x =时的函数值相等 (1)求二次函数2y x ax b =-+的对称轴(2)过P (0,1)作x 轴的平行线与二次函数2y x ax b =-+ 的图象交于不同的两点M 、N ①当2MN =时,求b 的值②当=4PM PN +时,请结合函数图象,直接写出b 的取值范围4平面直角坐标系xOy 中,抛物线3222-+-=m mx x y 与y 轴交于点A ,过A 作AB ∥x 轴与直线x =4交于B 点 (1)抛物线的对称轴为x = (用含m 的代数式表示) (2)当抛物线经过点A ,B 时,求此时抛物线的表达式(3)记抛物线在线段AB 下方的部分图象为G (包含A ,B 两点),点P (m ,0)是x 轴上一动点,过P 作PD ⊥x 轴于P ,交图象G 于点D ,交AB 于点C ,若CD ≤1,求m 的取值范围5在平面直角坐标系xOy 中,一次函数4y x =+的图象与x 轴交于点A ,与过点(0,5)平行于x 轴的直线l 交于点B ,点A 关于直线l 的对称点为点C(1)求点B 和点C 坐标(2)已知某抛物线的表达式为222y x mx m m =-+- ① 如果该抛物线顶点在直线4y x =+上,求m 的值 ② 如果该抛物线与线段BC 有公共点,结合函数图象, 直接写出m 的取值范围6在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m (1)求m 的值(2)求抛物线的顶点坐标(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直 于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合 函数的图象,求a 的取值范围 7在平面直角坐标系xOy 中,已知抛物线2y x mx n =-+(1)当2m =时,①求抛物线的对称轴,并用含n 的式子表示顶点的纵坐标 ②若点1(2,)A y -,22(,)B x y 都在抛物线上,且21y y >,则2x 的取值范围是_______(1)已知点(1,2)P -,将点P 向右平移4个单位长度,得到点Q . 当3n =时,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求m 的取值范围 8在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠的顶点为D ,与x 轴交于A ,B 两点(A 在B 的左侧)(1) 当1a =时,求点A ,B ,D 的坐标(2) 横,纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(不含边界)恰有7个整点,结合函数图象,求a 的取值范围 9在平面直角坐标系xoy 中,抛物线c bx ax y ++=2过原点和点A (-2,0)(1)求抛物线的对称轴(2)横纵坐标都是整数的点叫做整点,已知点⎪⎭⎫ ⎝⎛230,B ,记抛物线与直线AB 围成的封闭区域(不含边界)为 W ①当a=1时,求出区域W 内的整点个数②若区域W 内恰有3个整点,结合函数图像,直接写 出a 的取值范围 10已知抛物线2224y x mx m =-+-,抛物线的顶点为P(1)求点P 的纵坐标(2)设抛物线x 轴交于A 、B 两点,1122(,),(,)A x y B x y ,21x x >①判断AB 长是否为定值,并证明②已知点M (0,-4),且MA ≥5,求21-x x m +的取值范围 1(2019+++延庆+++一模)(1)∵∠ADC =60°,DA=DC ∴△ADC 是等边三角形 ∴∠DAC =60°,AD=AC .∵∠ABC=120°,BD 平分∠ABC ∴∠ABD=∠DBC =60° ∴∠DAC =∠DBC =60° ∵∠AOD =∠BOC∠ADB=180°-∠DAC-∠AOD ∠ACB=180°-∠DBC-∠BOC ∴∠ADB=∠ACB(2)结论:DH=BH+BC 在HD 上截取HE=HB∵AH ⊥BD ∴∠AHB=∠AHE =90° ∵AH =AH ∴△ABH ≌△AEH ∴AB=AE, ∠AEH=∠ABH =60° ∴∠AED=180°-∠AEH=120° ∴∠ABC=∠AED=120° ∵AD=AC, ∠ADB=∠ACB ∴△ABC ≌△AED ∴DE=BC ∵DH=HE+ED ∴DH=BH+BC2(2019+++房山+++一模)(1)解: 依题意,∠CAB =45° ∵∠BAD =α ∴∠CAD =45α︒-∵∠ACB =90°,BE ⊥AD ,∠ADC =∠BDE ∴∠DBE =∠CAD =45α︒-……………………………… 2分 (2)解:①补全图形如图……………………… 4分 ②猜想:当D 在BC 边的延长线上时,EB -EAEC ……………… 5分 证明:过点C 作CF ⊥CE ,交AD 的延长线于点F . ∵∠ACB =90° ∴∠ACF =∠BCE∵CA =CB ,∠CAF =∠CBE ∴△ACF ≌△BCE ………… 6分∴AF =BE ,CF =CE ∵∠ECF =90° ∴EFEC即AF -EA EC ∴EB -EA …………………… 7分3(2019+++通州+++一模)(1)连接AE∵点B 关于射线AD 的对称点为E ∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形 ∴AB AC =,60BAC ACB ∠=∠=︒∴602EAC α∠=︒-,AE AC =………1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦ ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=……………2分另解:借助圆 (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF ……………3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠ ∴60ABC AFC ∠=∠=︒ ∴△FCG 是等边三角形 ∴GF =FC ……………… 4分 ∵ABC △是等边三角形 ∴BC AC =,60ACB ∠=︒∴ACG BCF α∠=∠= 在△ACG 和△BCF 中CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF∴AG BF =……………5分 ∵点B 关于射线AD 的对称点为E ∴BF EF =……………6分 ∴AF AG GF -= ∴AF EF CF -=………………7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF4(2019+++平谷+++一模) (1)∠BCD =120°-α (2)解:方法一:延长BA 使AE=BC ,连接DE 由(1)知△ADC 是等边三角形 ∴AD=CD∵∠DAB+∠DCB=∠DAB+∠DAE=180°∴∠DAB=∠DAE ∴△ADE≌△CDB ∴BD=BE ∴BD=AB+BC 方法二:延长AB使AF=BC,连接CF∠BDC=∠ADE ∵∠ABC=120°∴∠CBF=60°∴△BCF是等边三角形∴BC=CF ∵∠DCA=∠BCF=60°∴∠DCA+∠ACB=∠BCF+∠ACB 即∠DCB=∠ACF ∵CA=CD∴△ACF≌△DCB ∴BD=AF ∴BD=AB+BC(3)AC,BD的数量关系是:AC BD位置关系是:AC⊥BD于点P5(2019+++门头沟+++一模)(1)补全图形(如图1)…………… 1分证明:略………… 3分(2)线段OE,OP和OF之间的数量关系是OF+OEOP …… 4分证明:如图2,作PQ⊥PO交OB于Q∴∠2+∠3=90°,∠1+∠2=90°∴∠1=∠3又∵OC平分∠AOB,∠AOB=90°∴∠4=∠5=45°又∵∠5+∠6=90°∴∠6=45°∴∠4=∠6 ∴PO=PQ ∴△EPO≌△FPQ…………… 5分∴PE=PF,OE=FQ又∵OQ=OF+FQ =OF+OE 又∵OQ∴OF+OE…………… 6分(3)线段OE,OP和OF之间的数量关系是OF - OE…………… 7分6(2019++石景山+++一模) (1)补全的图形如图1所示 (2)△ABC 是等边三角形∴AB BC CA ==,60ABC BCA CAB ∠=∠=∠=︒由平移可知ED ∥BC ,ED =BC ……… 2分60ADE ACB ∴∠=∠=︒ 90GMD ∠=︒ 2DG DM DE ∴==…… 3分DE BC AC == DG AC ∴= AG CD ∴=……… 4分(3)线段AH 与CG 的数量关系:AH = CG ……… 5分 如图2,连接BE ,EF,ED BC =ED ∥BC BEDC ∴四边形是平行四边形 BE CD CBE ADE ABC ∴=∠=∠=∠, GM ED 垂直平分EF DF ∴= DEF EDF ∴∠=∠ED ∥BCBFE DEF BFH EDF ∴∠=∠∠=∠, BFE BFH ∴∠=∠BF BF = BEF BHF ∴△≌△………… 6分BE BH CD AG ∴===AB AC = AH CG ∴=……… 7分7(2019+++西城+++一模)D8(2019+++燕山+++一模)(1)①补全的图形如图的所示………1分 ②证明:∵∠ADE =∠B =90°∴∠EDC +∠ADB =∠BAD +∠ADB =90° ∴∠EDC =∠BAD ……………3分 (2) ①CEBD ……………4分 ②想法1:如图,过点E 作EF ⊥BC ,交BC 延长线于点F ∴∠F =90° 在△ADB 和△DEF 中,∠B =∠F =90°,∠EDC =∠BAD ,AD =DE ∴△ADB ≌△DEF ∴AB =DF ,BD =EF ∵AB =BC ∴DF =BC 即DC +CF =BD +DC ∴CF =BD =EF ∴△CEF 是等腰直角三角形 ∴CECFBD ……………7分 想法2:证明:在线段AB 上取一点F ,使得BF =BD ,连接DF∵∠B =90°,AB =BC ∴DFBD ∵AB =BC ,BF =BD ∴AB -BF =BC -BD 即AF =DC 在△ADF 和△DEC 中AF =DC ,∠BAD =∠EDC ,AD =DE ∴△ADF ≌△DECFABECD∴CE=DF BD……………7分想法3:证明:延长AB到F,使得BF=BD,连接DF,CF∵∠B=90°∴DF在Rt△ABD和Rt△CBF中∠ABD=∠CBF=90°,AB=BC,BD=BF ∴△ABD≌△CBF∴AD=CF,∠BAD=∠BCF ∵AD=DE ∴DE=CF∵∠EDC=∠BAD ∴∠EDC=∠BCF ∴DE∥CF∴四边形DFCE为平行四边形∴CE=DF BD……………7分9(2019+++丰台+++一模)10(2019+++密云+++零模) (1)补全图形AD 与BE 的数量关系为AD=BE(2)∵∠ACB=∠DCE= 60° ∴∠ACD=∠BCE 又∵AC=BC,CD=CE ∴△ACD ≌△BCE ∴AD=BE, ∠CBE=∠CAD=60°∴∠ABF=180°-∠ABC-∠CBE=60° 在Rt AFB ∆中,AF AB=∴ABDBAH O DBA1已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD 相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H (1)求证:ADB ACB ∠=∠(2)判断线段BH ,DH ,BC 之间的数量关系;并证明 2已知:Rt △ABC 中,∠ACB =90°,AC =BC(1) 如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示)(2) 如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE . ①依题意补全图2 ②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明AA3如图,在等边ABC △中,点D 是线段BC 上一点.作射 线AD ,点B 关于射线AD 的对称点为E .连接CE 并 延长,交射线AD 于点F(1)设BAF α∠=,用α表示BCF ∠的度数(2)用等式表示线段AF 、CF 、EF 之间的数量关系, 并证明 4在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P (1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示) (2)求AB ,BC ,BD 之间的数量关系 (3)当α=30°时,直接写出AC ,BD 的关系5如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转 中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F (1)根据题意补全图1,并证明PE = PF(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明 (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系6如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G (1)依题意补全图形 (2)求证:AG = CD(3)连接DF 并延长交AB 于点H ,用等 式表示线段AH 与CG 的数量关系,并证明PPEECCBBOOAADB A7如图,在△ABC 中,∠ABC =90°,BA=BC .将线段AB 绕点A 逆时针旋转90°得到线段AD ,E 是边BC 上的一动点,连接DE 交AC 于点F ,连接BF (1) 求证:FB=FD(2) 点H 在边BC 上,且BH=CE ,连接AH 交BF 于点N ①判断AH 与BF 的位置关系,并证明你的结论 ②连接CN .若AB =2,请直接写出线段CN 长度的最小值8如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC(1) ① 依题意补全图1 ② 求证:∠EDC =∠BAD(2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明①中的猜想(一种方法即可)备用图AB CD 图1 DCBA9在ABC ∆中,090=∠ACB ,AC=BC ,D 为AB 的中点,点E 为AC 延长线上一点,连接DE ,过点D 作DF ⊥DE交CB 的延长线于点F(1)求证:BF=CE(2)若CE=AC ,用等式表示线段DF 与AB 的数量关系,并证明10已知ABC ∆为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60︒得到线段CE.连结DE 、BE(1)依题意补全图1并判断AD 与BE 的数量关系(2)过点A 作AF EB ⊥交EB 延长线于点F ,用等式表示线段EB 、DB 与AF 之间的数量关系并证明图2D C B A 图1A B CD。

北京市中考数学一模分类题几何综合

北京市中考数学一模分类题几何综合

2018年北京市中考数学一模分类27题几何综合题东27.已知△ ABC中,AD是BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H .(1)如图1,若BAC 60①直接写出B和ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.西27.正方形ABCD的边长为2.将射线AB绕点A顺时针旋转a所得射线与线段BD交于点M,作CE丄AM于点E,点N与点M关于直线CE对称,连接CN.(1)如图1,当0°<<45°时,①依题意补全图1 ;②用等式表示/ NCE与/ BAM之间的数量关系:__________________ ;(2)当45°<<90°时,探究/ NCE与/ BAM之间的数量关系并加以证明;(3)当0°*90°时,若边AD的中点为F,直接写出线段EF的最大值.定点M ,使得DE 的值不变?并证明你的判断 备用图海27.如图,已知 AOB 60,点P 为射线OA 上的一个动点,过点 P 作PE交OB 于点E ,点D 在 AOB 内,且满足 DPA OPE , DP PE 6 .(1 )当DP PE 时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个OB ,朝27.如图,在菱形ABCD 中,/ DAB=60°,点E 为AB 边上一动点(与点A , B 不重合), 连接CE ,将/ ACE 的两边所在射线 CE , CA 以点C 为中心,顺时针旋转120 °,分别 交射线AD 于点F , G.ACE= a ,求/ AFC 的大小(用含a 的式子表示);若/ 式表示线段 AE 、AF 与CG 之间的数量关系,并证明. 用等丰27.如图,Rt A ABC 中,/ ACB = 90 ° , CA = CB ,过点C 在厶ABC 外作射线 CE , 且/BCE = ,点B 关于CE 的对称点为点 D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线(1) 依题意补全图形;(2)(3)CE于点M,N.(1)依题意补全图形;(2) 当=30°时,直接写出/ CMA的度数;(3) 当0。

北京市各区2018届中考数学一模试卷精选汇编几何证明专题

北京市各区2018届中考数学一模试卷精选汇编几何证明专题

几何证明东城区19. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D . BF 平分∠ABC 交AD 于点E ,交AC 于点F . 求证:AE =AF .19.证明: ∵∠BAC =90°,∴∠FBA +∠AFB =90°. -------------------1分 ∵AD ⊥BC ,∴∠DBE +∠DEB =90°.---------------- 2分 ∵BE 平分∠ABC ,∴∠DBE =∠FBA . -------------------3分 ∴∠AFB =∠DEB . -------------------4分 ∵∠DEB =∠FEA , ∴∠AFB =∠FEA .∴AE =AF . -------------------5分 西城区19.如图,AD 平分BAC ∠,BD AD ⊥于点D ,AB 的中点为E ,AE AC <. (1)求证:DE AC ∥.(2)点F 在线段AC 上运动,当AF AE =时,图中与ADF △全等的三角形是__________.EDCBA【解析】(1)证明:∵AD 平分BAC ∠, ∴12∠=∠, ∵BD AD ⊥于点D , ∴90ADB ∠=︒, ∴ABD △为直角三角形. ∵AB 的中点为E , ∴2AB AE =,2ABDE =, ∴DE AE =, ∴13∠=∠, ∴23∠=∠, ∴DE AC ∥. (2)ADE △.321EDCBA海淀区19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC 平分ABF ∠.FE DCB A19. 证明:∵90ACB ∠=︒,D 为AB 的中点, ∴12CD AB BD ==. ∴ABC DCB ∠=∠. …………… ∵DC EF ∥,∴CBF DCB ∠=∠.∴CBF ABC ∠=∠. ∴BC 平分ABF ∠. 丰台区19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE = DF .F E CBA19.证明:连接AD .∵AB =BC ,D 是BC 边上的中点,∴∠BAD =∠CAD . ………………………3分 ∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF . ………………………5分 (其他证法相应给分)石景山区19.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,5AB =,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.O H FE DCB A(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .19.解:3,2,1; ………………2分EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分ABCEF朝阳区19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.求证:∠DAB =∠ACE.19. 证明:∵AC =BC ,CE 为△ACB 的中线,∴∠CAB =∠B ,CE ⊥AB . ……………………………………………2分 ∴∠CAB +∠ACE =90°. ………………………………………………3分 ∵AD 为△ACB 的高线, ∴∠D =90°.∴∠DAB +∠B =90°. ……………………………………………………4分 ∴∠DAB =∠ACE . ………………………………………………………5分燕山区19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题。

2018北京初三一模数学16区分类汇编--28题几何综合

2018北京初三一模数学16区分类汇编--28题几何综合

BAC(2018燕山一模)△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,将△AHC 绕点H 逆时针旋转90°后,点C 的对应点为点D ,直线BD 与直线AC 交于点E ,连接EH .(1)如图1,当∠BAC 为锐角时,①求证:BE ⊥AC ; ②求∠BEH 的度数; (2)当∠BAC 为钝角时,请依题意用实线补全图2,并用等式表示出线段EC ,ED ,EH 之间的数量关系.(2018东城一模)已知:Rt△A′BC′和Rt△ABC 重合,∠A′C′B =∠ACB =90°,∠BA′C ′=∠BAC =30°,现将Rt△A′BC′绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C 和线段AA′相交于点D ,连接BD . (1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A′A 之间的位置关系,不必证明;(2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.A BHCEDAB H C图1图22018房山一模)如图1,已知线段BC=2,点B关于直线AC的对称点是点D,点E为射线CA上一点,且ED=BD,连接DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;(2)若∠ACB=45°,点C关于直线BD的对称点为点F,连接FD、FB.将△CDE 绕点D顺时针旋转α度(0°<α<360°)得到△''C DE,点E的对应点为E′,点C的对应点为点C′.①如图2,当α=30°时,连接'BC.证明:EF='BC;②如图3,点M为DC中点,点P为线段''C E上的任意一点,试探究:在此旋转过程中,线段PM长度的取值范围?2018海淀一模)在菱形ABCD中,120ADC∠=︒,点E是对角线AC上一点,连接DE,50DEC∠=︒,将线段BC绕点B逆时针旋转50︒并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;备用图(2)求证:EG BC=;(3)用等式表示线段AE,EG,BG之间的数量关系:_____________________________.EDCBAEDCBA图1 图2 图3图1 图2 图32018门头沟一模)在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,DE ⊥BC 于E ,连接CD . (1)如图1,如果∠A =30°,那么DE 与CE 之间的数量关系是.(2)如图2,在(1)的条件下,P 是线段CB 上一点,连接DP ,将线段DP绕点D 逆时针旋转60°,得到线段DF ,连接BF ,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A =α(0°<α<90°),P 是射线CB 上一动点(不与B 、C 重合),连接DP ,将线段DP 绕点D 逆时针旋转2α,得到线段DF ,连接BF ,请直接写出DE 、BF 、BP 三者之间的数量关系(不需证明).图1 图2 图32018通州一模)在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连接BE 、EF .(1)如图1,当E 是线段AC 的中点时,易证BE =EF .(2)如图2,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论:.(填“成立”或“不成立”)(3)如图3,当点E 是线段AC 延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.)DBFE DAB E DAB C C CP AE2018丰台一模)在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图2,当点P 不与点A 重合时,求CFPE 的值; (2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)2018西城一模)27. △ABC 中,AB=AC .取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图1,如果90BAC ∠=︒,那么AHB ∠=︒,AFBE =; (2)如图2,如果60BAC ∠=︒,猜想AHB ∠的度数和AFBE的值,并证明你的结论;(3)如果BAC α∠=,那么AFBE=.(用含α的表达式表示)图1图2图32018平谷一模)(1)如图1,在四边形ABCD 中,AB=BC,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系;(2)如图2,在菱形ABCD 中,点M 是AD 边上任意一点,把射线BM 绕点B顺时针旋12ABC ,与CD 边交于点N ,连结MN ,请你补全图形并画出辅助线,直接写出AM ,CN ,MN 的数量关系是 ;(3)如图3,正方形ABCD 的边长是1,点M ,N 分别在AD ,CD 上,若△DMN 的周长为2,则△MBN 的面积最小值为 .2018怀柔一模)在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP 于点E .(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB<120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.图2 图3 图1A BCPABCP2018朝阳一模)在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).2018大兴一模)已知:如图,在四边形ABCD 中,AD ∥BC , ABC=90°.点E 为边AD 上一点,将△ABE 沿直线BE 折叠,使点A 落在四边形对角线BD 上的点G 处,EG 的延长线交直线BC 于点F.(1)点E 可以是AD 的中点吗?请说明理由; (2)求证△ABG ∽△BFE ;(3)设AD=a ,AB=b ,BC=c.当四边形EFCD 为平行四边形时,求a ,b ,c 应满足的关系.图1 图22018石景山一模)在△ABC 中,90BAC ∠=︒.(1)如图1,直线l 是BC 的垂直平分线,请在图1中画出点A 关于直线l 的对称点'A ,连接'A C ,B A ','A C 与AB 交于点E ;(2)将图1中的直线B A '沿着EC 方向平移,与直线EC 交于点D ,与直线BC交于点F ,过点F 作直线AB 的垂线,垂足为点H .①如图2,若点D 在线段EC 上,请猜想线段FH ,DF ,AC 之间的数量关系,并证明;②若点D 在线段EC 的延长线上,直接写出线段FH ,DF ,AC 之间的数量关系.(2018顺义一模)28.如图,△ABC 中,AB =AC ,点P 是三角形右外一点,且∠APB =∠ABC . (1)如图1,若∠BAC =60°,点P 恰巧在∠ABC 的平分线上,PA =2,求PB 的长; (2)如图2,若∠BAC =60°,探究PA ,PB ,PC 的数量关系,并证明; (3)如图3,若∠BAC =120°,请直接写出PA ,PB ,PC 的数量关系.GFE DCBAB E FQQ FE CB AP(2018延庆一模)28. 已知,点P 是△ABC 边AB 上一动点(不与A ,B 重合)分别过点A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 为边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系是 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.图3图1图2ABCPABPABC P图1图2图3。

2018年北京各区中考数学一模试卷及答案

2018年北京各区中考数学一模试卷及答案

8
(3)若关于 x 的方程 1 a(x 1) 有两个不相等的实数根,结合图象,直接写出实数 a 的取值范围: x 1
___________________________.
26.在平面直角坐标系 xOy 中,已知抛物线 y x2 2ax b 的顶点在 x 轴上, P(x1, m) ,Q(x2, m) ( x1 x2 )
17.计算: (1)1 12 3 tan 30 | 3 2 | . 3
5x 3 3 x 1,
18.解不等式组:

x
2
2

6

3x.
19.如图,△ ABC 中, ACB 90 , D 为 AB 的中点,连接 CD ,过点 B 作 CD 的平行线 EF ,求证: BC 平分 ABF .
50 x 55 55 x 60 60 x 65 65 x 70 70 x 75 75 x 80 80 x 85 85 x 90 90 x 95 95 x 100
1
1
2
2
4
5
5
2
分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,
x
,y
)满足不等式组

y

m x
,
y x m
( m >0),求 m 的取值范围.
6
23.如图, AB 是 O 的直径,弦 EF AB 于点 C ,过点 F 作 O 的切线交 AB 的延长线于点 D . (1)已知 A ,求 D 的大小(用含 的式子表示); (2)取 BE 的中点 M ,连接 MF ,请补全图形;若 A 30 , MF 7 ,求 O 的半径.

北京市各区2018届中考一模数学试卷精选汇编 8套全集合(解析版)

北京市各区2018届中考一模数学试卷精选汇编 8套全集合(解析版)

北京市各区2018届中考一模数学试卷精选汇编8套全集合(解析版)计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =22⨯17.解:原式分分西城区17114sin 3015-⎛⎫+︒ ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+-=. 海淀区17.计算:11()3tan 30|2|3-︒+. 17.解:原式=332-+ ………………4分=5- ………………5分丰台区1702cos 45(3π)|1︒+-+-.1702cos 45(3π)|1︒+-+-.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3---++°17.解:原式=2512⨯-+- ………………4分4=-- ………………5分 朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区 17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(10112sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(10112sin 603-⎛⎫-+-︒ ⎪⎝⎭π=3112-- (4)=1 (5)怀柔区17.计算:12130tan3)3(31-︒⎪⎭⎫⎝⎛-+---π.17.解:原式1132=-+…………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan301)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3……5分顺义区17.计算:()01312sin452π-+-︒+-.17.解:()01312sin452π-+-︒+-112132=-⨯+………………………………………………………4分13=……………………………………………………………………………… 5分4=解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分丰台区18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分① ②解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分 燕山区18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5 ……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 ① ②由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分平谷区18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ································································································· 1 解不等式②,得 x >-1. ······························································································ 3 ∴原不等式组的解集为12x -<≤. ········································································· 4 ∴适合原不等式组的整数解为0,1,2. ········································································ 5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分原不等式组的解集为93x -<< ………………………………………………………5分延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解.18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分顺义区18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分函数计算及运用专题东城区22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.22.解:(1)∵点()3,A n 在函数()30y xx=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A ,∴ 321a -= .解得 1a =. ----------------------2分(2)易求得()0,2B -. 如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△ ∵=2ABC AOB S S △△,∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分西城区22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为0()4,A -,与y 轴的交点为B ,线段AB 的中点M 在函数k y x=(0k ≠)的图象上 (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,MB 的对应点分别为C ,N ,D .①当点D 落在函数k y x=(0x <)的图象上时,求n 的值. ②当MD MN ≤时,结合函数的图象,直接写出n 的取值范围.【解析】(1)如图.∵直线y x m =+与x 轴的交点为0()4,A -,∴4m =.∵直线y x m =+与y 轴的交点为B ,∴点B 的坐标为(0,4)B .∵线段AB 的中点为M ,∴可得点M 的坐标为(2,2)M -.∵点M 在函数k y x =(0k ≠)的图象上, ∴4k =-.(2)①由题意得点D 的坐标为(,4)D n -,∵点D 落在函数k y x=(0k ≠)的图象上, ∴44n -=-,解得1n =.②n 的取值范围是2n ≥. 海淀区22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数m y x =.(1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分丰台区22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为P (m ,2),Q (-2,n ). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.22.(1)解: ∵反比例函数2y x=的图象经过点(,2)P m ,Q (-2,n ), ∴1m =,1n =-.∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分 ∵一次函数y kx b =+的图象经过点P (1,2),Q (-2,-1),∴2,2 1.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=⎩∴一次函数的表达式为1y x =+. .…….…….…….……3分 (2)点M 的坐标为(-2,-2,……………5分石景山区22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥,求m 的取值范围.22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(242m m -+- 解得2m =-,8m =②当S △ABC =S △BCD -S △ABD =6时,如图2. 可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍). 综上所述,当8m ≥或2m -≤时,S△ABC 6≥. ………………5分朝阳区22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky =的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1.(1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.22. 解:(1)∵AO =2,OD =1,∴AD =AO+ OD =3. ………………………………………………1分 ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6). ……………………………………………………2分 ∴该反比例函数的表达式是xy 6-=. ……………………………………3分 (2)点M 的坐标为(-3,2)或(53,-10). ……………………5分 ∴OM 27=215 OM=715∴⊙O 的半径是715…………………………………6′ 门头沟区20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点)A a . (1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y x =、反比例函数ky x=的图象相交于点M 、N , 当MN =2时,画出示意图并直接写出b 的值.20.(本小题满分5分) (1)∵直线y x =与双曲线ky x=(k ≠0)相交于点)A a .∴a =1分∴A3k =………………………2分 (2)示意图正确………………………………3分 3b =或1 ………………………………5分大兴区22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2. (1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y , 若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又 点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分平谷区22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.22.(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF. (1)∵□ABCD,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠ABF+∠BAO=∠CBF+∠BEO=90°.∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形. (2)(2)解:∵AD=BC,AF=BE,∴DF=CE.∴BE=2CE.∵AB=4,∴BE=4.∴CE=2.过点A作AG⊥BC于点G. (3)∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4. (4)∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=∴CF=怀柔区22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy =的图象交于点A(3,-2). (1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.y x–1–2–3–4–512345–1–2–3–4–512345O22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xmy =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分延庆区22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠ 与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)my m x=≠的图象在第一象限交于点P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.22.(1)3y x……1分 (2) 如图22(1):∵∴OA =2PE =2∴A (2,0) ……2分 将A (2,0),P (1,3)代入y =kx +b 可得∴……3分 图22(1)∴直线AB 的表达式为:y =-3x +6同理:如图22(2)直线AB 的表达式为:y =x +2 ……4分 综上:直线AB 的表达式为y =-3x+6或y =x +2 ……5分图22(2)顺义区22.如图,在平面直角坐标系xOy 中,直线24y x =+与双曲线ky x=(k ≠0)相交于A (-3,a ),B 两点. (1)求k 的值;(2)过点P (0,m )作直线l ,使直线l 与y 轴垂直,直线l 与直线AB 交于点M ,与双曲线ky x=交于点N ,若点P 在点M 与点N 之间,直接写出m 的取值范围.22.解:(1)∵点A (-3,a )在直线24y x =+上,∴2(3)42a =⨯-+=-.∴点A 的坐标为(-3,-2). …………………………………… 1分 ∵点A (-3,-2)在双曲线ky x=上, ∴23k-=-, ∴6k =. …………………………………… 3分 (2)m 的取值范围是 04m <<. ……………………………… 5分二次函数综合专题 东城区26.在平面直角坐标系xOy 中,抛物线()02342≠-+-=a a ax ax y 与x 轴交于A ,B 两点(点A 在点B 左侧). (1)当抛物线过原点时,求实数a 的值; (2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a 的代数式表示); (3)当AB ≤4时,求实数a 的取值范围.26.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,23a =.--------------------2分(2)①对称轴为直线2x =;②顶点的纵坐标为 2a --.--------------------4分 (3) (i )当0a >时,依题意,-20320.a a -⎧⎨-⎩<,≥解得2.3a ≥(ii )当0a <时,依题意,-20320.a a -⎧⎨-⎩>,≤解得a <-2.综上,2a -<,或23a ≥. --------------------7分西城区26.在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线:1(0)y mx m m =+-≠.(1)当1m =时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x【解析】(1)当1m =时,抛物线G 的函数表达式为22y x x =+,直线的函数表达式为y x =,直线被抛物线Gx(2)∵抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C , ∴点C 的坐标为(0,1)C m -,∵2221(1)1y mx mx m m x =++-=+-, ∴抛物线G 的顶点D 的坐标为(1,1)--, 对于直线:1(0)y mx m m =+-≠, 当0x =时,1y m =-,当1x =-时,(1)11y m m =⨯-+-=-, ∴无论m 取何值,点C ,D 都在直线上. (3)m的取值范围是m ≤m海淀区26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .26.解: 抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a = ,1b ∴=.∴抛物线的解析式为221y x x =-+.① 1m b == ,2211x x ∴-+=,解得10x =,22x =. ………………2分 ②依题意,设平移后的抛物线为2(1)y x k =-+.抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分丰台区26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.)22a -,∴对称轴为x = 2.………………………………………1分 ∵抛物线最高点的纵坐标是2,∴a = -2. ………………………………………2分 ∴抛物线的表达式为2286y x x =-+-. ……………3分(2)由图象可知,2b = 或-6≤b <0.………………6分由图象的对称性可得:x 1+x 2=2. (7)分石景山区26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠)向右平移位长度后得到抛物线2G ,点A 是抛物线2G 的顶点.xy(1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点. ①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.26.解:(1)()A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =+如图所示,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为. ∵点B 在抛物线2G 上,可得3m =-.∴抛物线2G的表达式为23y x =-+,即223y x x =+ ………………… 5分②m <<-. ………………… 7分 朝阳区26. 在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)若方程()244=00ax ax a --≠有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.26.解:(1)44)2(4422---=--=a x a ax ax y .∴A (0,-4),B (2,0).……………………………………2分 (2)当抛物线经过点(1,0)时,34-=a .…………………… 4分 当抛物线经过点(2,0)时,1-=a . …………………………6分 结合函数图象可知,a 的取值范围为134<≤-a .……………… 7分燕山区24.如图,在平面直角坐标系中,直线l : y=kx+k (k ≠0)与x 轴,y 轴分别交于A,B 两点,且点B(0,2),点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y=t . (1)求 k 的值和点A 的坐标;(2)当t=4时,直线y=t 与直线l 交于点M ,反比例函数xny =(n ≠0)的图象经过点M ,求反比例函数的解析式; (3)当t<4时,若直线y=t 与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.24.解:(1)∵直线l :y=kx+k 经过点B(0,2),∴k=2∴ y=2x+2∴A(-1,0) ……………………….2′(2)当t=4时,将y=4代入y=2x+2得,x=1∴M(1,4)代入xny =得,n=4 ∴xy 4=……………………….2′ (3)当t=2时,B(0,2) 即C(0,2),而D(2,2)如图,CD=2,当y=t 向下运动但是不超过x 轴时,符合要求∴ t 的取值范围是 0 <t ≤2 ……………………….5′门头沟区26.有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧); ②对称轴是3x =; ③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”, 平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.26. (本小题满分7分)(1)解:有上述信息可知该函数图象的顶点坐标为: (3,2)- 设二次函数表达式为:2(3)2y a x =-- ……………1分 ∵该图象过(1,0)A∴20(13)2a =--,解得12a =……………2分 ∴表达式为21(3)22y x =-- (2)图象正确………………………………………………………3分 由已知条件可知直线与图形“G ”要有三个交点① 当直线与x 轴重合时,有2个交点,由二次函数的轴对称性可求 346x x += ……………………………………4分 ∴34511x x x ++> ……………………………………5分 ②当直线过21(3)22y x =--的图象顶点时,有2个交点, 由翻折可以得到翻折后的函数图象为21(3)22y x =--+ ∴令21(3)222x --+=-时,解得3x =±3x =-6分∴3459x x x +++<综上所述345x x x ++11<<…………7分大兴区26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分 ∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分 2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是. …………………………………7分平谷区26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2. (1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.26.解:(1)∵抛物线223y x bx =-+-的对称轴为直线x =2,∴b =2. ································································· 1 (2)①∴抛物线的表达式为243y x x =-+-. ∵A (x 1,y ),B (x 2 ,y ), ∴直线AB 平行x 轴.∵213x x -=, ∴AB =3. ∵对称轴为x =2, ∴AC =12. ···························································· 2 ∴当12x =时,54y m ==-. ......................... 3 ②当y =m =-4时,0≤x ≤5时,41y -≤≤; (4)当y =m =-2时,0≤x ≤5 时,24y -≤≤; ....... 5 ∴m 的取值范围为42m -≤≤-. .. (6)怀柔区26.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A . (1)求抛物线顶点M 的坐标;(2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围.y x–1–2–3–4–512345–1–2–3–4–512345O26.(1)M(2,-1); ………………………………………………………………………………2分 (2)B(4,3); …………………………………………………………………………………3分 (3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3), ∴4n-1=3.∴n=1. ……………………………………………………………………………………4分 ∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m .∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分延庆区26.在平面直角坐标系xOy 中,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧).(1)求抛物线的对称轴及点A ,B 的坐标;(2)点C (t ,3)是抛物线243(0)y ax ax a a =-+>上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点D .①当CD AD =时,求此时抛物线的表达式; ②当CD AD >时,求t 的取值范围.26.(1)对称轴:x =2 ……1分A (1,0)或B (3,0) ……1分 (2)①如图1,∵AD =CD∴AD =3∴C 点坐标为(4,3) ……3分 将C (4,3)代入243y ax ax a =-+∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分 ②34t << ……6分 过程略顺义区26.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y 轴交于点B (0,-1),点P 为抛物线上一点. (1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.26.解:(1)依题意12-=-b,b =2, 由B (0,-1),得c=-1,∴抛物线的表达式是221=+-y x x .…………………… 2分4(2)向下平移4个单位得到225=+-y x x ,……………………… 3分 ∵OP =OQ ,∴P 、Q 两点横坐标相同,纵坐标互为相反数.∴2221250+-++-=x x x x .∴13=-x ,21=x .………………………………………………… 5分 把13=-x ,21=x 分别代入225=+-y x x .得出Q 1(-3,-2),Q 2(1,-2).………………………………… 7分统计专题东城区24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(I)收集、整理数据请将表格补充完整:(II)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用___________(填“折线图”或“扇形图”)进行描述;(III)分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是_________________________________________ .24. 解:(I):56.8%;----------------------1分(II)折线图;----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分西城区23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务.要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表分析数据、推断结论:a:抽样的40个样本数据(志愿服务项目的编号)的众数是__________.(填A E-的字母代号)b:请你任选A E-中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.【解析】B项有10人,D项有4人.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b:根据学生选择情况答案分别如下(写出任意两个即可).⨯=(人).A:50020%100⨯=(人).B:50025%125C:50030%150⨯=(人).⨯=(人).D:50010%50⨯=(人).E:50015%75海淀区24.某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:整理数据,如下表所示:分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,2017年九年级部分学生体质健康成绩直方图你能从中得到的结论是_____________,你的理由是________________________________. 体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.24.C ………………1分≤<x8085x≤<85908 10………………2分(2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) (3)分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分(3)70.………………6分丰台区24.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a =__________.【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)24.解:a=80;………………………1分(1)甲;………………………2分(2)110;………………………3分(3)答案不唯一,理由需支持推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多. ………………………5分石景山区24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:24.解:(1)0,1,4,5,0,0 ………………1分(2)14,84.5,81 ………………4分(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.………………6分(答案不唯一,理由须支撑推断结论)朝阳区24. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 73 74 81 546241 33 54 43 34 51 63 64 73 64 54 33乙27 35 46 55 48 36 47 68 82 48 57 667527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论a.估计乙大棚产量优秀的秧苗数为株;b.可以推断出大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)24. 解:整理、描述数据按如下分组整理、描述这两组样本数据分得出结论a.估计乙大棚产量优秀的秧苗数为84 株;…………………………3分b.答案不唯一,理由须支撑推断的合理性.………………………………5分燕山区22.豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)步行距离燃烧脂肪4月1日-6日妈妈步行距离与燃烧脂肪情况统计图(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为__________公里.(直接写出结果,精确到个位)22. (1)填数据 ……………………….2′(2)写出一条结论: ……………………….4′(3)预估她一天步行约为__________公里.(直接写出结果,精确到个位)门头沟区24.地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上表中的数据,将下列表格补充完整;整理、描述数据:908090608060格)分析数据:(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).24.(1)补全表格正确:初一:8 …………………………………………1分众数:89 …………………………………………2分中位数:77 …………………………………………3分(2)可以从给出的三个统计量去判断如果利用其它标准推断要有数据说明合理才能得分………………5分大兴区24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:得出结论(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).24. (1)乙组成绩更好一些 (2)分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分(说明:评价中只要说对2条即可,每条给2分,共4分)平谷区23.为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91 89 77 86 71 31 97 93 72 9181 92 85 85 95 88 88 90 44 91 乙84 93 66 69 76 87 77 82 85 8890 88 67 88 91 96 68 97 59 88 整理、描述数据分析数据两组数据的平均数、中位数、众数、方差如下表:的值是.得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .b可以推断出学校学生的数学水平较高,理由为 . (至少从两个不同的角度说明推断的合理性) (2)分析数据经统计,表格中m的值是88 . (3)得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300 . (4)b 答案不唯一,理由须支撑推断结论. (7)怀柔区24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球。

2018北京市各区初三数学一模试题分类——四边形

2018北京市各区初三数学一模试题分类——四边形

- 让每一个人同等地提高自我目录种类 1:多边形内角、外角 (2)种类 2:平四与特别平四的性质与判断(解答题) (3)种类 3:几何综合 (9)- 让每一个人同等地提高自我种类 1:多边形内角、外角1.(18平谷一模6)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A .3B.4C.6D.122.(18西城一模6)假如一个正多边形的内角和等于720,那么该正多边形的一个外角等于().A.45B.60C.72D.903.(18大兴一模3)已知一个多边形的内角和是它的外角和的 2 倍,那么这个多边形的边数是()A. 3B. 4C.5D. 64.(18 海淀一模 3).若正多边形的一个外角是120°,则该正多边形的边数是B. 5C. 45.(18 怀柔一模 10)若正多边形的内角和为 720°,则它的边数为 ______.6.(18延庆一模10)右图是一个正五边形,则∠ 1 的度数是.7.(18 石景山一模 10)若正多边形的一个外角是45°,则该正多边形的边数是 _______.1 8.( 18 东城一模 11)若多边形的内角和为其外角和的 3 倍,则该多边形的边数为 _______.9.( 18 房山一模 13)一个正方形和两个等边三角形的地点如下图,则∠1+∠2+∠ 3 的度数为 _________.- 让每一个人同等地提高自我种类 2:平四与特别平四的性质与判断(解答题)1.(18 石景山一模 19)问题 :将菱形的面积五均分.小红发现只需将菱形周长五均分,再将各分点与菱形的对角线交点连结即可解决问题.如图,点 O 是菱形 ABCD 的对角线交点, AB 5 ,下边是小红将菱形ABCD 面积五均分的操作与证明思路,请增补完好 .A E B (1)在AB边上取点E,使AE4,连结 OA, OE ;(2)在BC边上取点F,使BF,连结 OF ;H OF(3)在CD边上取点G,使CG,连结 OG;DG C(4)在DA边上取点H,使DH,连结 OH .因为 AE+++.可证 S△AOES四边形 EOFB S四边形FOGC=S四边形GOHD= △HOA.S2.(18 平谷一模 22)如图,在□ ABCD中, BF 均分∠ ABC 交 AD 于点 F,AE⊥BF 于点 O,交 BC 于点 E,连结 EF.(1)求证:四边形ABEF 是菱形;(2)连结 CF,若∠ ABC=60°, AB= 4, AF =2DF ,求 CF 的长.A F DOB E C3(.18 延庆一模 21)如图,Rt△ ABC 中,∠ABC=90°,点 D,F 分别是 AC,AB 的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC 是菱形;(2)若 AD=3, DF=1,求四边形 DBEC 面积 .CDE3- 让每一个人同等地提高自我3. (18 石景山一模21)如图,在四边形ABCD中,A BCD 90°,2 10,CE ADBC CD于点 E.(1)求证:AE CE ;(2)若tan D 3 ,求AB的长.CBA E D4.(18房山一模 21)如图,在ABC 中,ACB 90,点D , E分别是BC , AB上的中点,连结DE并延伸至点 F ,使EF=2DE,连结CE , AF.(1)证明: AF CE ;(2)若 B 30 ,AC=2,连结BF,求BF的长FAEBDC5.(18 西城一模 21)如图,在△ABD中,ABD ADB ,分别以点 B , D 为圆心, AB 长为半径在 BD 的右边作弧,两弧交于点 C ,分别连结 BC , DC , AC ,记 AC 与BD的交点为 O .(1)补全图形,求AOB 的度数并说明原因;(2)若AB 5 ,cos ABD 3,求BD的长.5BAD6.( 18 旭日毕业 23)如图,在菱形 ABCD 中,AC 和 BD 订交于点 O,过点 O 的线段 EF 与一组对边 AB, CD 分别订交于点 E,F.(1)求证: AE=CF;(2)若 AB=2,点 E 是 AB 中点,求 EF 的长.7.(18 怀柔一模 21)直角三角形ABC 中,∠ BAC=90°,D 是斜边 BC 上一点,且 AB=AD ,过点 C 作 CE⊥ AD ,交 AD 的延伸线于点 E,交 AB 延伸线于点 F.(1)求证:∠ ACB= ∠ DCE;(2)若∠ BAD=45°, AF 2+ 2 ,过点 B 作 BG⊥FC 于点 G,连结 DG.依题意补全图形,并求四边形 ABGD 的面积AB DC EF8.(18 海淀一模 21)如图,□ABCD的对角线AC , BD订交于点O,且 AE∥BD,BE∥AC,OE = CD.(1)求证:四边形ABCD 是菱形;(2)若 AD = 2,则当四边形 ABCD 的形状是 _______________时,四边形AOBE的面积获得最大值是 _________________.C BO ED A9.(18 旭日一模 21)如图,在△ ABC 中, D 是 AB 边上随意一点, E 是 BC 边中点,过点C作 AB 的平行线,交 DE 的延伸线于点 F,连结 BF,CD.(1)求证:四边形 CDBF 是平行四边形;(2)若∠ FDB=30°,∠ ABC=45°,BC=,求DF的长.10.( 18 东城一模 21)如图,已知四边形ABCD 是平行四边形,延伸BA 至点 E,使 AE= AB,连结 DE,AC.(1)求证:四边形ACDE 为平行四边形 ;(2)连结 CE 交 AD 于点 O. 若 AC=AB =3,cosB 1,求线段CE的长. 311.(18 丰台一模 21)已知:如图,菱形 ABCD,分别延伸 AB,CB 到点 F,E,使得 BF = BA,BE = BC,连结 AE,EF, FC, CA.(1)求证:四边形 AEFC 为矩形;(2)连结 DE 交 AB 于点 O,假如 DE⊥AB,AB = 4,求 DE 的长.DA CBE F- 让每一个人同等地提高自我12(.18 门头沟一模 21)在矩形 ABCD 中,连结 AC,AC 的垂直均分线交BC 于点 E、F,连结 CE 和 AF.(1)求证:四边形AECF 为菱形;(2)若 AB=4,BC=8,求菱形 AECF 的周长.A AC 于点 O,分别交 AD、E DOB F C13.( 18 大兴一模 21)如图,矩形 ABCD 的对角线 AC、BD 交于点 O,且 DE=OC,CE=OD.(1)求证:四边形 OCED 是菱形;(2)若∠ BAC= 30°,AC=4,求菱形 OCED 的面积.14.( 18 顺义一模 21)如图,四边形ABCD 中, AD∥BC,∠ A=90°,BD=BC,点 E 为 CD 的中点,射线 BE 交 AD 的延伸线于点 F,连结 CF.(1)求证:四边形BCFD 是菱形;(2)若 AD=1,BC=2,求 BF 的长.A DF EB C15.( 18 通州一模 22)如图,在平行四边形ABCD 中, DB⊥AB,点 E 是 BC 边中点,过点 E 作EF⊥ CD,垂足为 F,交 AB 的延伸线于点 G.(1)求证:四边形BDFG 是矩形;(2)若 AE 均分∠ BAD,求 tan∠BAE 的值 .16.( 18 燕山一模 23)如图,在△ ABC中,D,E分别是AB,AC的中点,BE=2DE ,延伸DE 到点 F,使得 EF=BE,连结 CF.(1)求证:四边形BCFE 是菱形;(2)若∠ BCF=120°,CE=4,求菱形BCFE的面积.AD E FB C种类 3:几何综合1.(28 延庆一模 27)如图 1,正方形 ABCD 中,点 E 是 BC 延伸线上一点,连结D E,过点 B作 BF⊥DE 于点 F,连结FC.(1)求证:∠FBC=∠CDF .(2)作点 C 对于直线 DE 的对称点 G,连结 CG,FG.①依照题意补全图形;②用等式表示线段 DF,BF,CG 之间的数目关系并加以证明.A D A DF FB C E B C E图1备用图2.( 18 石景山一模 27)在正方形 ABCD 中, M 是 BC 边上一点,点 P 在射线 AM 上,将线段AP 绕点 A 顺时针旋转90°获得线段 AQ,连结 BP, DQ.(1)依题意补全图 1;(2)①连结DP,若点 P, Q,D 恰幸亏同一条直线上,求证:DP2DQ 22AB2;②若点 P,Q,C 恰幸亏同一条直线上,则 BP 与 AB 的数目关系为:.A B A BP M MD C D C图 1备用图3.(18 西城一模 27)正方形ABCD的边长为2,将射线 AB 绕点 A 顺时针旋转,所得射线与线段 BD 交于点 M ,作CE AM 于点E,点 N 与点M对于直线 CE 对称,连结 CN .(1)如图1,当045时,①依题意补全图 1.②用等式表示NCE 与BAM之间的数目关系:__________.(2)当4590时,研究 NCE 与BAM之间的数目关系并加以证明.(3)当090时,若边 AD 的中点为 F ,直接写出线段 EF 长的最大值.A B A BMD C D C图 1备用图4.( 18 平谷一模 27)在△ ABC 中,AB=AC ,CD⊥BC 于点 C,交∠ ABC 的均分线于点 D,AE均分∠ BAC 交 BD 于点 E,过点 E 作 EF∥BC 交 AC 于点 F,连结 DF.(1)补全图 1;(2)如图 1,当∠ BAC=90°时,①求证: BE=DE ;②写出判断 DF 与 AB 的地点关系的思路(不用写出证明过程);(3)如图 2,当∠ BAC=α时,直接写出α,DF ,AE 的关系.AA DDEEB C B C图1图25.(18 房山一模 27)如图,已知 Rt△ABC 中,∠ C=90°,∠ BAC=30°,点 D 为边 BC 上的点,连结 AD,∠BAD=α,点 D 对于 AB 的对称点为 E,点 E 对于 AC 的对称点为 G,线段 EG 交 AB 于点 F,连结 AE, DE, DG,AG.(1)依题意补全图形;(2)求∠ AGE 的度数(用含α的式子表示);(3)用等式表示线段EG 与 EF,AF 之间的数目关系,并说明原因.AαB D C6.(18 怀柔一模 27)如图,在△ ABC 中,∠ A=90°,AB=AC ,点 D 是 BC 上随意一点,将线段 AD 绕点 A 逆时针方向旋转 90°,获得线段 AE ,连结 EC.(1)依题意补全图形;(2)求∠ ECD 的度数;(3)若∠ CAE=°,AD=1 ,将射线 DA 绕点 D 顺时针旋转 60°交 EC 的延伸线于点 F,请写出求 AF 长的思路.7(.18 海淀一模 27)如图,已知交OB于点E,点D在(1)当 DP PE 时,求AOB 60 ,点P为射线 OA 上的一个动点,过点P作 PE OB ,AOB 内,且知足 DPA OPE , DP PE 6.DE 的长;(2)在点P的运动过程中,请判断能否存在一个定点M ,使得DM的值不变?并证明ME你的判断 .ADPO E B8.(18 旭日一模 27)如图,在菱形 ABCD 中,∠ DAB=60°,点 E 为 AB 边上一动点(与点A,B 不重合),连结 CE,将∠ ACE 的两边所在射线 CE,CA 以点C 为中心,顺时针旋转120°,分别交射线 AD 于点 F, G.(1)依题意补全图形;(2)若∠ ACE=α,求∠ AFC 的大小(用含α的式子表示);(3)用等式表示线段 AE、 AF 与 CG 之间的数目关系,并证明.129.(18 东城一模 27)已知△ ABC 中, AD 是∠BAC 的均分线,且,过点C作AD的AD=AB垂线,交 AD 的延伸线于点 H.(1)如图 1,若∠BAC60①直接写出 B 和ACB的度数;②若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段AH 与 AB+AC 之间的数目关系,并证明.10.( 18 丰台一模 27)如图, Rt△ABC 中,∠ ACB = 90 °, CA = CB,过点 C 在△ ABC 外作射线CE,且∠BCE = ,点B 对于CE 的对称点为点D,连结AD,BD ,CD,此中AD,BD 分别交射线 CE 于点 M,N.(1)依题意补全图形;(2)当= 30 °时,直接写出∠ CMA 的度数;(3)当 0° < < 45°时,用等式表示线段AM,CN 之间的数目关系,并证明.CEA B11(.18 门头沟一模 27)如图,在△ ABC 中,AB=AC,A2,点D是BC的中点,DE AB于点 E ,DF AC于点 F .(1)EDB_________°;(用含的式子表示)(2)作射线 DM 与边 AB 交于点 M,射线 DM 绕点 D 顺时针旋转1802,与AC边交于点 N.①依据条件补全图形;②写出 DM 与 DN 的数目关系并证明;③用等式表示线段BM 、 CN 与 BC 之间的数目关系,(用含的锐角三角函数表示)并写出解题思路 .AE FB D C12.( 18 大兴一模 27)如图,在等腰直角△ ABC 中,∠ CAB=90°,F 是 AB 边上一点,作射线 CF,过点 B 作 BG⊥CF 于点 G,连结AG.(1)求证:∠ ABG=∠ACF;(2)用等式表示线段 CG,AG,BG 之间的等量关系,并证明.13.( 18 顺义一模 27)如图,在正方形ABCD 中, E 是 BC 边上一点,连结AE,延伸 CB 至点 F,使 BF=BE ,过点 F 作 FH⊥AE 于点 H,射线 FH 分别交 AB、CD 于点 M、N,交对角线 AC 于点 P,连结 AF.(1)依题意补全图形;(2)求证:∠ FAC=∠APF;(3)判断线段 FM 与 PN 的数目关系,并加以证明.A DCBE14.( 18 通州一模 27)如图,直线 l 是线段 MN 的垂直均分线,交线段MN 于点 O ,在 MN 下方的直线 l 上取点P,连结 PN .以线段 PN 为边,在 PN 上方作正方形 NPAB .射线MA交直线 l 于点 C ,连结 BC .(1)设∠ONP=,求∠ AMN的度数;(2)写出线段AM, BC 之间的等量关系,并证明.15- 让每一个人同等地提高自我15.(18 燕山一模 28)在 Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥ BC于E,连结 CD,点 P 在射线 CB 上(与 B,C 不重合).(1)假如∠ A=30°①如图 1,∠ DCB=°②如图 2,点 P 在线段 CB 上,连结 DP,将线段 DP 绕点 D 逆时针旋转 60°,获得线段 DF,连结 BF,补全图 2 猜想 CP、BF 之间的数目关系,并证明你的结论;(2)如图 3,若点 P 在线段 CB 的延伸线上,且∠ A= (0°< <90°),连结 DP, 将线段DP 绕点逆时针旋转 2 获得线段 DF,连结 BF,请直接写出 DE、 BF、BP 三者的数目关系(不需证明).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2018东城一模)已知△ABC中,AD是BAC
∠的平分线,且AD=AB,过点C作AD的垂线,交AD 的延长线于点H.
(1)如图1,若60
BAC
∠=︒
①直接写出B
∠和ACB
∠的度数;
②若AB=2,求AC和AH的长;
(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.
2、(2018西城一模)正方形ABCD的边长为2. 将射线AB绕点A顺时针旋转α,所得射线与线段BD交
于点M,作CE⊥AM于点E,点N与点M关于直线CE对称,连接CN.
(1)如图1,当0°<α<45°时,
①依题意补全图1;
②用等式表示∠NCE与∠BAM之间的数量关系:;
(2)当45°<α<90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;
(3)当0°<α<90°时,若边AD的中点为F,直接写出线段EF的最大值.

3、(2018海淀一模)如图,已知60
AOB
∠=︒,点
动点,过点P作PE OB
⊥,交OB于点E,点D
DPA OPE
∠=∠,6
DP PE
+=.
(1)当DP PE
=时,求DE的长;
(2)在点P
不变?并证明你的判断.
4、(2018朝阳一模)如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),
连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G.
(1)依题意补全图形;
(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明.
5、(2018丰台一模)如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,
且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N .
(1)依题意补全图形;
(2)当α= 30°时,直接写出∠CMA 的度数; (3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.
6、(2018石景山一模)在正方形ABCD 中,M 是BC 边上一点,点P 在射线AM 上,将线段AP 绕点A 顺时针
旋转90°得到线段AQ ,连接BP ,DQ . (1)依题意补全图1;
(2)①连接DP ,若点P ,Q ,D 恰好在同一条直线上,求证:2
2
2
2DP DQ AB +=; ②若点P ,Q ,C 恰好在同一条直线上,则BP 与AB 的数量关系为: .
8、(2018大兴一模)如图,在等腰直角△ABC 中,∠CAB=90°,
A B C E 图1 备用图
B A C
M
B A C
M
P
F 是AB 边上一点,作射线CF , 过点B 作B
G ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;
(2)用等式表示线段C G ,AG ,BG 之间 的等量关系,并证明.
9、(2018顺义一模)如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF . (1)依题意补全图形; (2)求证:∠FAC =∠APF ;
(3)判断线段FM 与PN 的数量关系,并加以证明.
10、(2018房山一模)如图,已知Rt △ABC 中,∠C =90°,∠BAC =30°,点D 为边BC 上的点,连接AD ,
∠BAD =α,点D 关于AB 的对称点为E ,点E 关于AC 的对称点为G ,线段EG 交AB 于点F ,连接AE ,DE ,DG ,AG . (1)依题意补全图形;
(2)求∠AGE 的度数(用含α的式子表示);
(3)用等式表示线段EG 与EF ,AF 之间的数量关系,并说明理由.
11、(2018怀柔一模)如图,在△ABC 中,∠A=90°,AB=AC ,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC. (1)依题意补全图形; (2)求∠ECD 的度数;
(3)若∠CAE=7.5°,AD=1,将射线DA 绕点D 顺时针旋转60°交EC 的延长线于点F ,请写出求AF 长的思路. 12、(2018门头沟一模)如图,在△ABC 中,AB =AC ,2A α∠=,点D 是BC 的中点,DE AB E ⊥于点,DF AC F ⊥于点.
α
D
C
B
A
E
D
C
B
A
(1)EDB ∠=_________°;(用含α的式子表示)
(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N . ①根据条件补全图形;
②写出DM 与DN 的数量关系并证明;
③用等式表示线段BM CN 、与BC 之间的数量关系, (用含α的锐角三角函数表示)并写出解题思路.
13、(2018平谷一模)在△ABC 中,AB=AC ,CD ⊥BC 于点C ,交∠ABC 的平分线于点D ,AE 平分∠BAC 交BD 于点E ,过点E 作EF ∥BC 交AC 于点F ,连接DF . (1)补全图1;
(2)如图1,当∠BAC =90°时,
①求证:BE=DE ;
②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当∠BAC=α时,直接写出α,DF ,AE 的关系.
14、(2018延庆一模)如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE
于点F ,连接FC .
(1)求证:∠FBC =∠CDF .
(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .
①依据题意补全图形;
②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.
B 图1
备用图
F
D
E
C B
A F
D
E
C B
A。

相关文档
最新文档