力学在土木工程中地应用

合集下载

高中力学在土木工程中的作用

高中力学在土木工程中的作用

高中力学在土木工程中的作用土木工程是与人类生活息息相关的一种学科,它涉及到建筑、桥梁、地基、道路等方面。

力学作为自然科学的一个重要分支,研究物体的运动和变形规律,可以在土木工程中起到非常重要的作用。

在土木工程中,力学主要用于以下几个方面。

一、结构设计构件的结构设计是土木工程的重要部分之一,它的目的是设计出安全、合理、经济的结构。

力学可以通过研究材料的强度、应变、压缩、拉伸等特性来确定构件的最大承载力,从而确定结构设计的合理性。

通过力学分析,可以制定出对材料的选择和使用的具体规范和标准,从而设计出科学、合理的结构方案。

二、安全评估土木工程的建筑物在使用的过程中,随着时间的推移会出现老化、变形等现象。

为了保证建筑物的安全,需要对其进行定期的检查和评估。

在这个过程中,力学可以提供有关建筑物变形、支撑结构变形等方面的重要数据,从而为安全评估提供必要的信息。

三、地基处理土木工程的地基处理直接影响到工程的安全和持久性。

力学的研究可以为地基处理提供科学的理论基础,为土壤的承载力、压缩量等参数的确定提供依据,从而为选择适当的地基处理方法提供支持。

力学还可以根据土壤和地基的特性,确定合适的基础厚度、基础形式等参数,为工程的建设提供可靠的基础保障。

四、地震工程地震是土木工程面临的灾害之一,也是造成土木工程倒塌的主要原因之一。

因此,地震工程是土木工程中的一个重要领域。

力学可以提供地震对建筑物的作用和反应的研究基础,为抗震设计和工程承载能力提供量化的计算依据。

总之,力学在土木工程中的作用不可忽视。

它提供了关键的理论支持和技术方法,为工程的建设和维护提供了必要的基础。

因此,在土木工程中,应该不断加强力学研究,不断更新和完善技术标准,高度重视工程安全和持久性。

高中力学在土木工程中的作用

高中力学在土木工程中的作用

高中力学在土木工程中的作用土木工程是以自然资源、物质、能源为基础,利用科学技术和现代经济管理方法,为人类创造、改善和维护各种人类居住、生产和休闲等各种活动场所的一门综合性技术学科。

力学作为土木工程的基础学科,它对于土木工程的设计、施工、维护等环节都有着重要的作用。

土木工程设计是指根据特定的目的和条件,采用现代科学技术和经济管理方法,综合考虑各种因素,对一定土地内建筑和构筑物的布置、形状、结构、材料、工艺、设备及其安全、经济、美观性等方面进行科学规划和设计的过程。

力学在土木工程设计的方方面面都有着重要的作用。

1. 结构设计结构设计是土木工程设计的重要环节之一。

其主要任务是根据工程的使用目的及环境条件,选择合适的结构形式、布置方案和建构材料,设计符合工程需要及要求的结构。

结构设计要满足一系列的力学计算和验算,如受力分析、强度计算以及稳定性计算等。

同时还要考虑到结构的美观性和成本等因素。

2. 岩土力学设计岩土力学设计是土木工程设计的重要部分,可以帮助工程师计算和设计土地及建筑物的基础、地下设施和地质结构的力学特性。

岩土力学研究的主要内容包括地质工程、基础工程、支护工程、地下工程等,通过岩土力学分析,可以制定合理的岩土处理方法,消除岩土工程的隐患,从而确保工程的安全性、经济性和可持续性。

施工是土木工程的一个重要环节,它对于工程的质量和安全性具有重要的影响。

土木工程施工主要包括材料生产、运输、制备和现场加工、安装、调整、检验和保养等过程。

力学在土木工程施工中发挥着关键作用。

1. 工艺优化工程建设过程中,考虑到经济性和安全性等因素,需要设计合理的建筑施工工艺。

工艺设计需要考虑各种因素,如工地地形、材料性质、施工时间、安全要求等,在此过程中,通过数值模拟和现场实验的手段,使用力学原理对工艺进行分析和优化。

2. 安全保障施工安全是土木工程施工中不可忽视的一个环节。

有了正确的力学理论指导,可以确保建筑物在施工过程中不倒塌、不发生变形、坍塌等事故,从而保障工程施工期安全.土木工程建立后需要进行维护,力学在维护阶段发挥着至关重要的作用。

土壤力学在土木工程中的应用

土壤力学在土木工程中的应用

土壤力学在土木工程中的应用土壤力学作为一门独立的学科,主要研究土壤的物理特性、力学性质以及与工程结构相互作用的规律。

它将力学和土力学的理论与实践相结合,为土木工程师提供了重要的理论基础和工程实践指导。

本文将介绍土壤力学在土木工程中的应用,探讨其在岩土工程、地基工程和地下工程等领域的重要作用。

一、岩土工程中的应用岩土工程是土木工程的重要分支,主要处理与土壤力学有关的工程问题。

土壤的强度和变形特性是岩土工程设计中的核心问题。

在岩土工程中,土壤力学研究土体的力学性质、变形特性以及地基承载力的计算方法。

通过土壤力学的研究,工程师可以确定合理的岩土结构设计参数,保证工程的安全性和持久性。

例如,在地下隧道的设计和施工中,土壤力学提供了重要的理论支持和实用经验。

通过利用土壤力学的基本理论,地质勘探工程师可以了解隧道周围地层的物理和力学特性,以辅助隧道的设计和施工方案选择。

土壤力学还能够提供支护结构的设计方法,帮助抵御地下水压力和土壤变形对隧道造成的不利影响。

二、地基工程中的应用地基是土木工程中的基础,地基的稳定性直接影响着整个工程的安全性和可持续性。

土壤力学在地基工程中发挥着重要的作用,可以帮助工程师预测地基的变形和承载能力,并提供相应的解决方案。

通过土壤力学的研究,工程师可以进行地质勘探工作,了解地质构造和土层的特性。

这些信息可以用于地基的设计和建设过程中,帮助选择合适的地基处理方法。

例如,当地基土壤具有较差的承载能力时,可以采用加固地基的方法,如预应力桩或地基加固板。

土壤力学提供了这些加固方法的定量设计和施工要求,使得地基工程更加可靠和安全。

三、地下工程中的应用地下工程是土木工程中的一项重要任务,包括地铁、隧道和地下停车场等。

这些地下结构的设计和施工都与土壤力学密切相关。

在地下工程中,土壤力学可以提供地质构造和地层特性的分析与评估,为隧道和地下结构的设计提供科学依据。

此外,土壤力学还可以用于地下工程中的地下水管理。

工程力学的应用领域及其重要性

工程力学的应用领域及其重要性

工程力学的应用领域及其重要性工程力学是研究和应用物体受力和变形规律的学科。

它广泛应用于各个工程领域,如土木工程、机械工程、航空航天工程等。

本文将探讨工程力学的应用领域及其重要性。

一、土木工程领域在土木工程领域,工程力学被广泛应用于结构分析和设计。

通过应用工程力学原理,工程师可以对桥梁、大楼和其他土木结构的受力情况进行预测和评估。

比如,在设计一座桥梁时,工程力学可以帮助工程师计算桥梁的受力分布,确保其在正常使用情况下安全可靠。

此外,工程力学还可以指导土木工程师设计抗震结构,减轻地震对建筑物的破坏。

二、机械工程领域在机械工程领域,工程力学被广泛用于设计和优化机械结构。

工程师可以借助工程力学原理,进行机械零部件的强度分析、疲劳寿命预测等。

例如,在设计一台汽车引擎时,工程力学可以帮助工程师计算凸轮轴的受力情况,以确保其能经受住高速旋转和高温的挑战。

此外,工程力学还可以应用于机械系统的动力学分析,为机械工程师提供系统优化的依据。

三、航空航天工程领域航空航天工程是工程力学应用的重要领域之一。

在设计和制造飞机和航天器时,工程力学的原理和方法被广泛使用。

通过工程力学的应用,工程师可以对飞机和航天器在飞行过程中的受力情况进行分析和预测。

比如,在设计一架飞机的机翼时,工程师需要考虑到飞行时的气动力和结构强度,确保机翼在高速飞行和剧烈颠簸时不会发生失效。

工程力学的重要性不仅在于它为工程师提供了解决实际问题的工具和方法,还在于其对工程设计的可靠性和安全性起着重要作用。

通过应用工程力学原理,工程师可以预测和评估结构在各种外力作用下的响应和变形,从而制定出合理的设计方案。

同时,工程力学的应用还可以帮助工程师优化设计,提高结构的强度和稳定性,实现材料的合理利用。

总之,工程力学在土木工程、机械工程和航空航天工程等领域的应用十分广泛,对工程设计和实施起着重要的推动作用。

忽视工程力学的原理和方法将导致设计的不稳定和工程事故的发生,因此,工程力学的研究和应用具有重要的意义。

关于工程力学实习报告4篇

关于工程力学实习报告4篇

关于工程力学实习报告4篇工程力学实习报告篇1一、心得体会通过这五天的实习,让我学到了很多课堂上根本学不到得东西,仿佛自己一下子成熟了,不仅懂得了怎样做事而且懂得了很多做人得道理。

我也明白了肩上得重任,看清了人生和今后努力的方向,不管遇到什么事情都要认真得思考,不能太过急躁,要对自己所做的事情负责,同时也理解了很多事情,为以后工作积累了一些经验。

我知道工作是一项热情得事业,并且要有持之以恒的品质精神和吃苦耐劳的品质。

这次难得的认识实习经历,是我打开了视野,增长了见识,为我们今后进一步走向社会打下了基础。

二、成果总结1、力学在机械工程中的应用在视频力学在机械工程中的应用中,我们明白了一些力学研究中的问题,如:结构部件为什么在某种条件下失效?如何定量精确预报事故发生?等。

机械是机构与机器的合成,我们重点了解构件承载能力的分析,机械振动的计算,机构运动的设计。

承载力学是力学应用的重要方面,在对强度的计算中会运用到计算力学,机构的承载能力与刚度,稳定性,强度。

在对机械振动的计算中我们还运用了机震力,在对机构运动设计中应用了理论力学与机械原理。

2、化学工业中的流体力学在视频化学工业中的流体力学中,我们知道了板式塔中塔板的种类,有无溢流塔板,泡罩塔板,f型塔板,t型塔板等。

填料塔中填料的种类,还有萃取塔,流化床与气液两相流等概念。

3、力学在土木工程中得应用在观看力学在土木工程中的应用中我们知道了在土木建筑中会运用到结构力学、弹性力学、材料力学等力学知识。

4、力学与现代生活在视频中我们了解到一些力学问题造成的重大影响,如86年挑战者号的爆炸知识因为没有考虑到温度对一个小小橡皮圈的影响,还有塔库马悬桥的倒塌,只是因为流动的空气形成了卡门涡街。

我们运用伯努里定律设计飞机的机翼,再根据机翼上下面风速差产生压力使飞机飞起来。

航天工程,生命领域,能源领域均是以力学为基础的,我们可以运用流体力学原理解决股市问题,连亚洲金融风暴也可以用连通器原理解释。

弹性力学在土木工程中的应用

弹性力学在土木工程中的应用

弹性力学在土木工程中的应用弹性力学是工程力学中的一个重要分支,广泛应用于土木工程领域。

本文将探讨弹性力学在土木工程中的应用,并借助合适的格式将其呈现。

1. 弹性力学简介弹性力学是研究物体在受力下变形和应力分布规律的科学,它基于胡克定律,将应变和应力之间的关系建立起来。

在土木工程中,弹性力学为分析和设计承载结构提供了重要的理论基础。

2. 应力分析在土木工程中,弹性力学可应用于各种应力分析。

通过分析结构物受力情况,可以评估其承载能力,确保结构安全。

例如,对于桥梁、建筑物等工程结构,可以利用弹性力学原理计算出各个构件受力情况,从而进行合理的结构设计。

3. 变形分析在土木工程中,变形分析是一个重要的任务。

弹性力学为变形分析提供了有效的手段。

通过建立承载结构的弹性模型,可以预测结构变形情况,包括梁的挠度、柱的弯曲等。

这些分析结果对土木工程的施工、设计和维护起着重要的指导作用。

4. 应力集中与裂纹扩展弹性力学在土木工程中还可以用于分析应力集中和裂纹扩展。

当结构中存在孔洞或者缺陷时,会导致应力集中,这可能引发结构的失效。

通过弹性力学的方法,可以精确地计算出结构中的应力集中情况,并做出相应的措施以确保结构的安全性。

5. 梁的弯曲分析在土木工程中,梁的弯曲是一个常见的问题,也是弹性力学的一个重要应用领域。

通过将梁看作是一个弹性体,可以通过弹性力学理论推导出梁的弯曲方程,从而计算出梁的挠度和应力分布。

这对于结构的设计和优化具有重要意义。

6. 土壤力学分析除了结构分析,弹性力学在土木工程中还可用于土壤力学分析。

土壤力学是研究土壤变形和应力传递规律的学科,而土木工程中的土基承载力和地基沉降等问题都需要通过弹性力学方法进行分析和计算,以保证工程的稳定性。

7. 结构动力学分析结构动力学是用于分析结构在动力荷载下的响应和振动问题的学科。

弹性力学为结构动力学提供了重要的理论基础,通过弹性动力学方程可以计算结构的振动频率和振型。

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例一.桥梁的设计桥梁的设计是一个十分复杂的工程,要求在质量和安全性方面做出特别的考虑。

考虑结构安全性时,不能仅仅奉行“古板”的设计思路,而要在施工、维护等方面考虑完整性和有效性。

在建筑桥梁时,尤其要求考虑各种荷载和应力、变形等,这都与工程力学有着密切的联系。

具体来说,首先,工程师要预测桥梁受到的各种外力,并使用工程力学理论,根据该力来设计适当的支座、连接件等结构,保证支座、连接件等能够承受外力带来的拉力和压力,这是特别重要的。

其次,可以根据人行道、车辆荷载等使用情况,计算桥梁带来的惯性力以及桥梁两端受到的悬索反作用力,以此消除结构面受到的拉张作用。

最后,通过结合材料力学理论,计算出桥梁的弹性变形量,以保证桥梁的变形能够满足结构的安全性要求,并确保结构的抗震能力。

上述是桥梁设计过程中工程力学知识的应用。

除了此外,在设计建筑施工工程结构时,也要考虑到更多实际应用,才能够达到设计安全合理且符合要求的目的。

例如,地铁建设时要考虑到建筑物的抗震能力和刚度,要根据不同的结构,采用相应的设计方法,确保结构的安全性,抵御地震所带来的震动,确保客运的安全性。

另外,工程力学的理论在电力工程、水利工程等施工中也有很多应用。

电力线路的安全性和可靠性,很大程度上取决于线路结构受到外力时的计算和特性,这就要求在设计过程中要有所考虑。

而水利工程中,工程力学知识则包括水坝、水库等土建工程结构在冲水冲击、泄水量变化等情况下所产生的外力,以及应力在水冲力下所受到的影响等。

以上就是土木工程中工程力学知识的典型应用,它的应用十分广泛,得益于它的灵活性,能够在多种复杂的结构中应用,使用起来十分方便。

工程力学的应用,使得工程结构变得更加安全和可靠,是土木工程建设的根本。

土木类b0811 工程力学

土木类b0811 工程力学

土木类b0811 工程力学摘要:一、引言二、土木类b0811 工程力学简介1.专业背景2.主要课程三、工程力学在土木工程中的应用1.结构分析与设计2.工程抗震3.基础工程四、工程力学的发展前景及就业方向1.发展前景2.就业方向五、结论正文:【引言】土木类b0811 工程力学作为土木工程的一个重要分支,在我国基础设施建设中扮演着关键角色。

本文将简要介绍土木类b0811 工程力学的相关内容,包括专业背景、主要课程以及工程力学在土木工程中的应用等。

【土木类b0811 工程力学简介】【专业背景】土木类b0811 工程力学是一门以力学为基础,研究土木工程结构、材料和设备的受力、变形、破坏等现象的学科。

它涉及的理论包括理论力学、材料力学、结构力学、流体力学等,应用广泛。

【主要课程】土木类b0811 工程力学的主要课程包括:理论力学、材料力学、结构力学、流体力学、弹性力学、塑性力学、振动力学、计算力学、实验力学等。

【工程力学在土木工程中的应用】【结构分析与设计】在土木工程中,工程力学被广泛应用于各类结构的分析与设计,如房屋结构、桥梁结构、隧道结构等。

通过工程力学的计算分析,可以评估结构的强度、刚度、稳定性等性能,确保工程安全可靠。

【工程抗震】工程力学在抗震设计中起着关键作用。

通过分析地震作用下结构的受力、变形和破坏情况,可以评估结构的抗震性能,为抗震设计提供依据。

此外,工程力学还用于研究震后结构的修复和加固方法。

【基础工程】基础工程是土木工程的重要组成部分。

工程力学可以分析不同地基条件下基础的受力、变形和破坏情况,为设计提供依据。

同时,工程力学还用于研究基础工程的施工技术和施工管理。

【工程力学的发展前景及就业方向】【发展前景】随着我国基础设施建设的不断推进,工程力学在土木工程领域的应用将越来越广泛。

此外,新型建筑材料、结构体系和施工技术的研发也需要工程力学的支持。

因此,工程力学的发展前景十分广阔。

【就业方向】土木类b0811 工程力学专业的毕业生可在建筑设计、施工、科研、教育等企事业单位从事相关工作。

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例土木工程中的工程力学是一个非常重要的学科,它通过研究物体在受力作用下的运动和变形规律,从而为土木工程的设计、施工和检测提供了重要的理论基础。

本文将结合实际案例,介绍工程力学在土木工程中的应用。

一、桥梁结构设计桥梁是土木工程中的重要组成部分,其结构设计中涉及到很多工程力学的知识。

首先是受力分析,桥梁承受着巨大的交通载荷,因此需要根据不同情况进行受力分析,确定桥梁的承载能力。

其次是变形控制,桥梁在承载车辆通过时会发生一定的变形,工程力学需要通过变形分析,优化桥梁的结构设计,减小变形程度。

最后是振动问题,桥梁在交通过程中会发生振动,工程力学需要对桥梁进行振动分析,确保桥梁的稳定性和安全性。

案例:在设计一座大型跨海大桥时,工程师需要考虑到海上风荷载、海水侵蚀、船只冲击等多种载荷情况下的桥梁结构设计。

工程力学的知识对于这类复杂桥梁的设计起到了至关重要的作用。

二、地基工程设计地基工程是土木工程中的基础工程,地基工程设计的关键是要对地基的承载性能、沉降特性和地基与建筑物的相互作用进行合理的分析和设计。

在地基工程设计中,工程力学起到了非常重要的作用。

首先是承载力分析,通过工程力学的知识对地基承载力进行分析,确定地基的合理承载能力。

其次是沉降预测,工程力学的知识能够帮助工程师预测地基的沉降情况,从而合理设计建筑物的结构。

最后是地基与建筑物的相互作用,通过工程力学的知识,可以分析地基和建筑物的相互作用关系,确保建筑物在地基上的稳定性。

案例:在设计一座高层建筑时,地基工程设计尤为重要。

通过工程力学的知识,工程师可以进行地基的孔隙水压力分析,地基承载能力分析和地基沉降预测,从而确保建筑物的安全和稳定。

三、坡面和边坡工程设计在山地区域或者高地势处的土木工程中,经常需要对坡面和边坡进行合理的设计。

边坡和坡面的稳定性分析是工程力学的重要内容之一。

通过力学原理,工程师可以对边坡的坡角、地质特征、水土条件等因素进行分析,预测坡面的稳定性和变形情况。

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例摘要:本文将对土木工程之中的铁道工程作为例子,来说明土木工程之中怎样具体应用工程力学的相关知识与原理,并分析工程力学知识以及原理在土木工程施工应用进程中的紧密关联,为通过整改优化力学知识来处理工程实际问题以及工程力学教学提供些许建议与思路。

关键词:土木工程;铁道工程;举例引言土木工程,是指为人们的生活、与生产所服务的各种与水、土与文化相关联的各种工程设施的计划、建设与维护。

通常情况下包含房屋建筑、道路的交通、铁路工程、给水排水等。

铁道作为我国的经济组成大动脉、国家的关键性基础设施建设以及基础的交通运输工具,在实际的生产与生活之中具有十分重要的作用与地位,铁道工程是内在支撑力量,其中的工程力学知识以及相关原理在铁道工程建设进程中具备着十分重要的作用。

1、概述工程力学是一门具备较强的理论性质、抽象性质同时又与实际工程之间的联系十分紧密的技术性基础学科。

工程力学的定理、相关定律以及结论十分普遍应用在土木工程技术之中,其是处理土木工程之中实际问题的关键性前提。

铁道工程是铁路之中的各式各样土木工程设施的科学技术总体概况,其包含着铁道工程所应用的各种各样材料以及机械设备等等。

也包含着为人们日常生活、生产工作所服务的各种类型铁道工程的铁路线路、铁路车站、铁路桥梁以及相应的配套设备等所开展的规划、施工、安装以及维护等各项技术工作及其所完成的工程实体。

在现阶段社会经济迅猛发展以及科学技术的快速进步环境之中,信息技术发展速度十分之快,工程构造也出现了前所未见的大型化、复杂化,超高层建筑持续刷新着世界纪录,巨型的大坝、港珠澳大桥以及复杂繁乱的铁路体系等超级工程持续不断出现,满足了人们的日常生活需要。

而这一切都无法离开作为其关键性支撑的工程力学知识以及相关原理,只有这样,土木工程的发展才可以不断向着更加深刻更加长远的方向前进,从而更好地为人们的社会做出十分重要的贡献。

下文将结合具体的实际例子进行说明:2、铁道工程规划阶段的工程力学力学相关知识在铁路规划设计工作之中的意义与作用是十分显著的,铁道工程之中空间构造的受力分析,较为复杂的构造强度计算的应力以及次应力、铁路桥梁、挡水墙、支座以及基础性构造的规划设计与分析计算等等都与力学相关知识具有一定的紧密关联,力学理论知识、物理学知识、数学知识以及计算所需要应用的工具发展进步促使铁路规划设计以及铁道工程安全这一对相对来说比较矛盾的问题得到了最大程度的有效处理。

力学在土木工程中的应用

力学在土木工程中的应用

力学在土木工程中的应用土木工程作为一门综合性强、应用范围广泛的学科,涉及到很多领域的知识。

在这其中,力学作为土木工程领域中极其重要的一部分,不仅是理论的基础,更是实践的指南。

本文将从土木工程中常见的几个方面来介绍力学在土木工程中的应用。

一、结构力学结构力学是土木工程中最基础的一门学科,主要研究各种结构物在各种作用下的稳定性、刚度、变形和破坏问题。

在这方面,力学起着至关重要的作用。

例如,在设计一个桥梁或者高楼大厦时,施工前需要进行各种力学参数的计算,如梁、柱的断面尺寸,底基土层的承载力等。

力学理论为工程师提供了设计该结构的基本知识和技术。

二、材料力学材料力学主要研究材料的力学性能及其与应力应变关系的规律。

在土木工程中,材料的选择和性能对于工程的质量、耐久性和安全性都有着至关重要的作用。

例如,在设计一座桥梁时,工程师需要选择材料并计算梁的应力应变关系以保证该结构的强度和刚度。

此外,各种不同材料的膨胀系数、热膨胀系数等也需要计算和考虑。

三、建筑动力学建筑动力学研究建筑物结构与外力作用下的动力反应,例如地震、风载等。

力学在建筑动力学中的应用十分重要,建筑物结构的自振周期和阻尼比都需要通过计算和仿真来保证稳定性和安全性。

在地震、风灾等自然灾害时,力学的应用将更能发挥其重要作用。

四、桥梁工程桥梁是土木工程中最重要的一部分之一。

在桥梁设计和施工过程中,力学的应用是至关重要的。

例如,桥梁的承载能力、桥墩和桥塔的排布、桥面结构的选择和设计,都需要应用力学原理和公式计算和验证。

在大型跨海、跨江工程的施工中,海底巨型斜拉桥和悬索桥的结构设计以及施工过程中结构稳定性的保证,离不开强有力的力学支撑。

综上所述,力学在土木工程中的应用得到了广泛的肯定和认可,而在未来,随着科学技术的不断发展,力学对于土木工程的应用将会更加深入以及广泛。

弹性力学在土木工程中的应用

弹性力学在土木工程中的应用

弹性力学在土木工程中的应用弹性力学是介于力学和数学之间的一个学科,是研究材料在外部力作用下发生弹性变形时力学行为的一个分支。

在土木工程中,弹性力学被广泛应用于结构设计、构件设计和土力学分析等方面,下面将详细介绍几个典型的应用场景。

1、结构设计结构设计是土木工程中最重要的一项工作,结构的稳定性、刚度和承载力都与弹性力学有关。

通常在结构设计中,会考虑结构发生弹性变形时的应力和变形情况,从而计算出结构的刚度和承载力。

弹性力学常被应用于设计桥梁、隧道、高楼和风电塔等大型工程的结构。

构件是建筑物中构成整体的基本结构单元,如钢筋混凝土柱、横梁和地基等。

在构件设计中,弹性力学通常被用来计算材料的应力和变形情况,从而选择材料和尺寸。

此外,弹性力学还可以用来评估不同构件之间的作用,如构件之间的弯曲、剪应力等。

3、土力学分析土力学是土木工程中的一个分支,主要研究土壤力学问题。

在土力学分析中,弹性力学通常被用来计算土体的应力和变形情况,从而确定土体的稳定性和承载力。

例如,在基础设计中,可以利用弹性力学计算基础的变形和应力,从而选择合适的基础结构。

4、材料性质测试材料的弹性性质和力学特性是建筑物和构件设计的重要依据。

因此,在土木工程中,弹性力学通常被用来测试材料的弹性模量、剪切模量和杨氏模量等参数。

这些参数可以用来确定材料的刚度、强度和稳定性,从而进行工程设计和施工监测。

总之,弹性力学在土木工程中有着广泛的应用。

无论是结构设计、构件设计、土力学分析还是材料测试,弹性力学都是不可或缺的工具。

随着科技的不断进步和工程越来越复杂,弹性力学的应用范围也将不断扩大。

土木工程中工程力学知识的应用举例

土木工程中工程力学知识的应用举例
关键词土木工程$铁道工程$工程力学$力学$应用
44工程力学是一门具有较强理论性$抽象性又和实际工程联 系十分密切的技术性的基础性学科"工程力学的定理$定律以 及结论十分广泛应用于土木工程的技术中"它是解决土木工程 当中实际问题的重要基础#
铁道工程是铁路上的各种土木工程设施的科学技术的统 称# 它包括铁道工程所应用的材料和机械设备等# 也包括为 人们生活$生产所服务的各类铁道工程的铁路线路$铁路车站$ 铁路桥梁和相关配套设施等所进行的设计$施工$安装和维护 等各项技术工作及其完成的工程实体#
极其重要的贡献# 具体实际应用和结合"举例说明! 一铁道工程中设计阶段的工程力学应用 力学知识在 铁 道 工 程 设 计 工 作 中 的 作 用 是 不 言 而 喻 的#
铁道工程中空间结构的受力分析"复杂结构强度计算的应力和 次应力"铁路桥梁$挡水墙$桁架桥结构$桥墩$支座及基础结构 的设计和分析计算等都是和力学有着不可分割的密切联系"力 学理论$物理学$数学及计算工具的进步共同使铁路设计与铁 道工程安全这对矛盾问题得到最大的合理解决#
例如"为什么多数铁路桥梁的桥墩为圆端形截面2 从工程力学角度考虑"圆端形截面桥墩具有较大的截面模 量"在避免应力集中方面具有明显优势"通过试验回归分析"比 较分析剪跨比$轴压比$纵筋率与体积配箍率等 3 个因素对延 性性能的影响程度"+$, 各因素设计合理可以极大的提高桥墩的 抗震性能# 从流体力学的角度来考虑"在有效减小水流荷载$流冰压 力和风荷载等横向外力的作用"圆端形截面都有着明显的优 势# 尤其在河流当中"圆端形截面桥墩可以使水流顺畅通过桥 孔"有效减小阻水面积"大大减轻了水流对桥墩的局部冲刷和 水流压力"同时减轻了对铁路桥梁整体的损害# 具有矩形截面 和圆形截面的共同优点# 二铁道工程中施工阶段的工程力学应用 工程力学知识对于铁道工程施工工作是不可或缺的# 例如"为什么 施 工 模 板 的 安 装 和 拆 除 工 程 施 工 方 案 的 确 定"模板的安装和拆除必须严格按规范要求来进行"如拆除模 板时"拆除支撑的时间是需要准确计算的"如果混凝土强度达 不到一定的强度值"可能会因为支撑系统丧失稳定性造成塌落 事故# 所以必须确保钢筋混凝土能够达到足够的强度值来承 受上部荷载"如果钢筋混凝土结构的强度值未达到规定值时" 严禁拆除模板#

工程力学在土木工程的运用

工程力学在土木工程的运用

工程力学是土木工程中重要的基础学科,它可以帮助工程师了解结构和材料在不同力作用下的行为,从而更好地设计和构建各种土木工程项目。

以下是工程力学在土木工程中的应用:
1. 结构分析:
工程力学是结构分析的核心学科,它可以帮助工程师分析和计算结构的内力、变形和稳定性等问题。

在土木工程中,结构分析通常应用于桥梁、隧道、大型建筑物等项目的设计和施工过程中。

2. 材料强度分析:
工程力学可以帮助工程师分析和计算各种材料在不同力作用下的强度和变形等特性。

在土木工程中,材料强度分析通常应用于混凝土、钢筋等建筑材料的选择和使用。

3. 地基工程分析:
工程力学可以帮助工程师分析和计算地基的承载力、变形和稳定性等问题。

在土木工程中,地基工程分析通常应用于各类基础工程项目的设计和施工过程中。

4. 结构优化设计:
工程力学可以帮助工程师进行结构的优化设计,以满足不同的建筑需求和要求。

在土木工程中,结构优化设计通常应用于大型建筑物、
桥梁、隧道等项目的设计和施工过程中。

5. 风险评估和安全分析:
工程力学可以帮助工程师分析和评估工程项目的风险和安全问题,并提出相应的改进措施和预防措施。

在土木工程中,风险评估和安全分析通常应用于大型建筑物、桥梁、隧道等项目的设计和施工过程中。

以上是工程力学在土木工程中的应用,这些应用可以帮助工程师更好地理解和解决各种土木工程项目中的问题,从而提高工程质量和效率。

浅谈力学在土木工程中的应用与发展

浅谈力学在土木工程中的应用与发展

技术110中国建筑金属结构浅谈力学在土木工程中的应用与发展于添闰【摘要】伴随土木工程技术水平的不断提高,力学在土木工程中的支点作用越来越明显。

本文从力学的相关概念入手,对土木工程力学的应用做了较为详细的论述,并对力学在土木工程中的发展做了分析和总结,以期为我国土木工程技术的发展提供一定的参考和借鉴。

【关键词】力学;土木工程;应用;发展在人类社会发展史上,土木工程起着举足轻重的作用,而力学理论是一切建筑的构造基础,也是建筑施工必须考虑的因素。

随着土木工程技术的不断进步,力学在土木工程中的作用也越来越明显。

施工技术的应用涉及工程建设的每一个环节,以施工工程为例,无论是桩基还是深基坑支护,都需要用到力学技术的相关支持[1]。

力学理论是一切建筑物的构造基础,是建筑施工不可缺少的基本原理,在土建工程中有着很好的应用前景。

力学理论的不断发展可以检验土木工程技术实践应用的科学性,同时,在土木工程建设中遇到的疑难问题,也可以通过实践研究探索新的力学理论,从而进一步推动力学取得突破。

1.力学概述作为一门基础性的学科,力学的推演规律具有普遍性,同时也为许多工程问题提供了理论依据和技术支持。

力学也是一门技术学科,它提供了许多工程的技术原理、计算方法和测试程序。

力本身就是物体之间的相互作用,当一个物体受到力量时,表明一定有另一个物体施加该力量,前者为受力体,后者为施力体。

依据力的性质和作用效果,可分为重力、摩擦力和电磁力几大类,压强、支承力和阻力是其中的三大类[2]。

力学论的主要内容是力的合成、分解和平衡,它贯穿于力学的整个过程,是相关学习的基础。

力学本身来源于生活,所以在实践中可以用力学的方法简化生活中的一些实际问题,并依据现实情况采取有效的解决措施。

在土木工程中运用力学思想,不仅能保证施工过程中各个具体环节的质量,而且能很好地解释工程中的力学现象。

2.力学在土木工程中的应用在土建工程中合理应用力学,不仅有利于提高工程的安全性能,而且可以保证施工结构的完整性和明确性。

浅谈力学在土木工程中的应用与发展

浅谈力学在土木工程中的应用与发展

浅谈力学在土木工程中的应用与发展摘要:土木工程是国家建设的基础行业,而力学作为一种从初中便开始学习的知识,在物理学科中的内容所占比例较大,同时,力学原理和知识在土木工程中也有十分广泛的应用,甚至可以说是土木工程的基础。

基于此,文章以笔者在物理力学学习过程中获得的相关知识为基础,就物理力学在土木工程中的应用展开详细探究。

关键词:力学;土木工程;应用;发展1力学的基本内容在高中物理中的概念体系中,将力定义为物体间的相互作用。

具体而言,是指当某一物体受到力的作用时,必有其他物体施加这种作用,它们分别被称为受力物体与施力物体。

不同的力主要有两种分类方法:第一种的分类依据是力的性质,如重力、弹力、摩擦力、分子力、电磁力等等;第二种的分类依据则是力的效果,如拉力、压力、支持力、动力、阻力等等。

力学原理实际上就来源于生活,因此在实际生活中我们常常能够运用这些力的方法来简化并解决问题,土木工程的建设工作也不例外。

2力学与建筑力学的联系建筑力学是应用于土木工程中的基础理论,为工程的应用打下良好的基础。

在建筑力学基础知识里面包括了静力学基本概念平面力系平衡条件的应用、内力与内力图、轴向拉压杆的内力、单跨静定梁的内力等。

建筑力学的研究对象主要是建筑结构,其中建筑结构是由构件组成的。

建筑工程力学的主要任务是把建筑结构打造成一个可靠、适用、耐久的材料,能够具有一定的刚度和强度,还要保持平衡和稳定性。

不管是理论力学、材料力学还是结构力学,都是以力学为基础的,是力学的扩展应用。

但是,事物都有两方面的特性,力学推进了建筑学的发展,解决了许多建筑学的难题,而建筑学也同样使力学得到了发展,在一些十分难以解决的建筑学问题中,现有的力学原理也很难解决,就促使物理学家进行研究,从而发展了更多的力学定理,例如在建筑工程施工时出现的极端条件下的技术难题,现有的力学已经无法解决,物理学家就不得不根据这个问题对力学进行深层次的研究,然后提出新的力学理论。

力学知识在实际工程建设中的应用探析

力学知识在实际工程建设中的应用探析

力学知识在实际工程建设中的应用探析摘要:力学与土木工程具有相互促进和相互发展的关系,将力学理论应用在土木工程建设中,能够保证土木工程建设的科学性,提升工程施工质量。

采用力学知识分析建筑各个部件的受力情况,使建筑内部达到平衡,这是一种高效的工程建设方法,因此需要相关人员对其进行重点关注和深入研究。

关键词:力学知识;工程建设;应用分析引言在现代社会,土木工程不断地为我们创造新的物质环境,为人民的生活做出了巨大贡献。

对这个社会而言,其可以说是社会文明的一个重要组成部分,不可或缺。

在土木工程中很多方面都离不开力学,尤其是建筑工程,建筑是必须使用到力学知识的,没有涉及力学知识的建筑在多方面会出现问题。

所以,力学在土木工程中的地位是极为重要的,更好的将力学知识应用于土木工程中会推动土木工程的发展。

1土木工程中所使用力学基本理论内容研究一般而言,在实践研究中,力学是一门利用数学方法探索机械运动的学科,由于其所描述的规律和基本内容的一般性,它可以在实践工程中提供更广泛的技术理论,或提供设计原则、计算方法和经验用于土木工程等工程技术。

力学的基本分类可分为三大类:固体、流体和一般机械,视研究对象而定,其中固体力学和流体力学主要研究连续环境研究对象模型,而其馀部分的研究对象则属于一般机械研究一般而言,实体机械包括弹性零件、断裂零件、分散零件等。

流体力学包括流体动力学、空气动力学、渗透性等部分。

多机械品类相交后,它可以包括变异等项目。

在土木工程中使用不同类型的机械涉及机械知识的相互重叠,例如岩石力学知识、爆炸力学知识、物理力学知识、计算力学知识等。

可以根据土木工程中使用的不同机械知识选择不同的计算和设计方法。

以下是对土木工程所用机械的基本理论内容的研究。

2力学与建筑力学之间的关系有许多类型的力,其性质差别很大,即使它们具有相同的名称,不同名称的力也可以相同,尽管在某些情况下,具有相同名称的力或具有不同名称的力可能受允许相互转换的力条件的约束。

高中力学在土木工程中的作用

高中力学在土木工程中的作用

高中力学在土木工程中的作用土木工程是关于建筑、结构、道路、桥梁等的设计、施工和维护的学科领域。

其中不可缺少的一部分就是力学。

高中力学作为土木工程的基础学科,对于土木工程的设计、施工和维护都有着至关重要的作用。

一、力学在结构设计中的作用结构设计是土木工程中最常见的领域之一,它涉及到建筑物、桥梁、堤坝、码头等各种结构的设计。

在结构设计中,力学是必不可少的学科。

在建筑物的设计过程中,需要考虑到各种外力、内部应力的作用,这就需要用到受力分析等力学知识。

在桥梁设计中,桥梁的横向荷载、纵向荷载、自重等外力对桥梁的影响必须考虑到,而受力分析和强度计算就是基于力学的。

在堤坝、码头等结构的设计中,也需要考虑到各种荷载、应力等要素,这些要素的分析、计算和设计都需要高中力学的知识。

工程施工是一个涉及到多个学科的过程。

土木工程是一个复杂的系统工程,它的施工需要考虑到地形、气象、材料、工艺等多个方面的因素。

在土木工程中,施工过程中会产生各种荷载,这些荷载会对结构物产生直接或间接的影响。

因此,施工过程中需要对结构物进行安全分析和评估,通过分析结构物所受到的荷载、应力等要素,提前预测结构物可能出现的变形和破坏情况,从而采取相应的施工措施,避免意外的发生。

在这个过程中,需要应用高中力学中的应力、应变等知识,确保施工过程的安全可靠。

结构维护是保持结构安全、可靠的关键,同时也是延长结构使用寿命的重要步骤。

在维护过程中,需要对结构物进行检测、评估,以发现结构物中可能存在的隐患,并采取相应的措施进行维修,保证结构物的正常运行。

而高中力学中的应力、应变、材料性能等知识,对于结构物的检测、评估、维护都有很大的帮助和指导作用。

在维护过程中,需要通过应力分析、材料性能评估等方法对结构物的状态进行评估,对结构物的维护和修复做出正确的决策。

总之,高中力学在土木工程中具有重要作用。

在土木工程的不同阶段中,高中力学知识都有着关键的应用和指导作用,可以帮助我们更好地设计、施工和维护结构物,从而保证结构物的安全、可靠及延长使用寿命。

土壤力学工程案例研究

土壤力学工程案例研究

土壤力学工程案例研究在土木工程领域中,土壤力学是一个重要的分支,它研究土地的力学性质以及土壤与结构物之间的相互作用。

本文将通过几个案例研究,介绍土壤力学在工程实践中的应用。

案例一:基础设计和沉降分析某地发生地震后,一座建筑物出现了严重的沉降问题。

工程师们进行了现场勘察和土壤力学测试,发现该地区的土壤是黏性土。

根据试验结果,工程师们设计了适当的基础结构,采用了承载力较高的桩基础,并进行了沉降分析。

通过数值模拟和实测数据对比,工程师们验证了基础设计的有效性,并成功地解决了沉降问题。

案例二:边坡稳定性分析在山区公路修建过程中,一处边坡发生了滑坡事故。

工程师们使用土壤力学的方法对该边坡进行了稳定性分析。

通过采集土壤样本进行室内试验,并结合现场地质勘测数据,工程师们计算出边坡的抗剪强度和安全系数。

根据分析结果,工程师们采取了合理的加固措施,包括增加排水系统和加固土体。

这些措施成功地提高了边坡的稳定性,确保了公路的安全运行。

案例三:地基处理和沉降控制在一个大型工业项目的场地上,存在着土壤承载力不足和大量沉降的问题。

工程师们进行了土壤力学测试,并采取了相应的地基处理措施。

他们选择了加固地基和采用沉降控制技术。

通过合理地选择加固材料、优化施工工艺以及进行严密的监测,工程师们成功地解决了土壤承载力和沉降问题,确保了工业项目的可持续发展。

案例四:地震响应分析当地发生了一次大地震后,某座桥梁的结构安全性备受关注。

工程师们进行了地震响应分析,运用土壤动力学理论来研究土壤与结构物之间的相互作用。

通过数值模拟和实测振动数据对比,工程师们评估了桥梁结构的抗震性能,并提出了相应的加固建议。

这些建议帮助工程师们改善了桥梁的抗震能力,提高了公众的安全感。

结论通过以上案例研究,我们可以看到土壤力学在工程实践中的重要作用。

从基础设计到边坡稳定性分析,再到地基处理和地震响应分析,土壤力学为工程师们提供了科学的依据和方法。

它不仅保障了工程的安全性和可靠性,也使我们能够更好地理解土地与结构物之间的相互作用。

力学在土木工程中的应用

力学在土木工程中的应用

力学在土木工程中的应用1:力学基本内容:力学是用数学方法研究机械运动的学科。

“力学”一词译自英语mechanics 源于希腊语一机械,因为机械运动是由力引起的.mechanics在19 世纪5O 年代作为研究力的作用的学科名词传人中国后沿用至今。

力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。

力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展.力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支.力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等.2:土木是力学应用最早的工程领域之一.土木工程专业本科教学中涉及到的力学内容包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科.理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变),研究的是刚体,是各门力学的基础.其他力学研究的均为变形体(本科要求线性弹性体),研究力系的简化和平衡,点和刚体运动学和复合运动以及质点动力学的一般理论和方法.材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算.结构力学:在理论力学和材料力学基础上进一步研究分析计算杆件结构体系的基本原理和方法,了解各类结构受力性能.弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构)在外力作用下的应力、应变和位移.土力学:研究地基应力、变形、挡土墙和土坡等稳定计算原理和计算方法.岩石力学:研究岩石地基、边坡和地下工程等的稳定性分析方法及其基本设计方法.土木工程专业之力学可分为两大类,即“结构力学类” 和“弹性力学类” .“弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想和理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学和岩石力学.“结构力学类” (包括理论、材料学和结构力学)则具有更强烈的工程特征,其简化的模型是质点或杆件,在力学体系建立之前就给出了诸如平截面假设等众多计算假设,然后建立适宜工程计算的宏观荷载和内力概念,给出其特有的计算方法和设计理论,力学体系的建构过程与弹性力学类截然不同.弹性力学由于基本不引入计算假定,得出解答更为精确,可以用来校核某些材料力学解答;但由于其假定少,必须求助于偏微分方程组来寻求解答,能够真正得出解析解的题目少之又少,不如材料力学和结构力学的计算灵活性高和可解性强;弹性力学的理论性和科研性更强,是真正的科学体系,而结构力学类的实践性和工程性更强,更多偏重于求解的方法和技巧.3:力学基本量对基本物理量的严密定义和深刻理解是人们对学科认识成熟与否的重要标志.任何力学所求解的题目都是:给定对象的几何模型和尺寸,给定荷载(外力)作用,求解其内力、应变、位移(静力学)或运动规律(动力学).土木工程中所考察的对象大多为静力平衡体系.3.1 外力弹性力学中之外力包括:体力和面力;而理论力学研究的外力为集中力(偶);材料力学与结构力学一脉相承,研究的外力为集中力与分布力;而土力学和岩石力学中的外力主要以分布力为主.相比之下,体力和面力是最基本之外力,基于此类外力进行求解和计算无疑要从基本单元体人手;其他工程力学中之外力作用无外乎就是体力和面力的组合,正是由于这种对力的简化,使得工程力学的求解相对容易,无需借助于微分方程方法.3.2 内力弹性力学中之内力包括:正应力和剪应力;理论力学之内力是刚体质点系内部各质点的相互作用力;材料力学与结构力学之内力为轴力、剪力、弯矩和扭矩;土力学和岩石力学由于研究的是块体结构,内力也为正应力和剪应力.剖析各种内力:轴力是沿杆轴方向正应力之合力;弯矩分量是沿杆轴方向正应力合力矩对坐标轴之量;剪力分量是杆轴截面内剪应力合力对坐标轴之分量;扭矩则为杆轴截面内剪应力之合力矩.空间问题任一截面共有六个内力分量,这也正是由理论力学中空间力系的合成方法所决定的.四种内力6 个分量的确定只是为了工程设计和计算之方便.可见,弹性力学、土壤力学、岩石力学的求解结果为物体内部各点的应力;而材料力学、结构力学的求解结果则为杆件横截面上(简化后为一点)应力之合力.应力解答是进行工程设计的最重要指标.通过考察某点的相应应力状态并与材料性能指标对比,提出了多种强度设计理论,如最大拉应力理论、最大剪应力理论、最大线应变理论、形变比能强度理论、摩尔强度理论等.3.3 应变应变是微单元体的变形,有线应变和角应变两类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学在土木工程中的应用1:力学基本内容:力学是用数学方法研究机械运动的学科。

“力学”一词译自英语mechanics 源于希腊语一机械,因为机械运动是由力引起的.mechanics在19世纪5O年代作为研究力的作用的学科名词传人中国后沿用至今。

力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。

力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展.力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支.力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等.2:土木是力学应用最早的工程领域之一.2.1土木工程专业本科教学中涉及到的力学内容包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科.理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变) ,研究的是刚体,是各门力学的基础.其他力学研究的均为变形体(本科要求线性弹性体),研究力系的简化和平衡,点和刚体运动学和复合运动以及质点动力学的一般理论和方法.材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算.结构力学:在理论力学和材料力学基础上进一步研究分析计算杆件结构体系的基本原理和方法,了解各类结构受力性能.弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构)在外力作用下的应力、应变和位移.土力学:研究地基应力、变形、挡土墙和土坡等稳定计算原理和计算方法.岩石力学:研究岩石地基、边坡和地下工程等的稳定性分析方法及其基本设计方法.2.2土木工程专业之力学可分为两大类,即“结构力学类”和“弹性力学类”.“弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想和理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学和岩石力学.“结构力学类”(包括理论、材料学和结构力学)则具有更强烈的工程特征,其简化的模型是质点或杆件,在力学体系建立之前就给出了诸如平截面假设等众多计算假设,然后建立适宜工程计算的宏观荷载和内力概念,给出其特有的计算方法和设计理论,力学体系的建构过程与弹性力学类截然不同.弹性力学由于基本不引入计算假定,得出解答更为精确,可以用来校核某些材料力学解答;但由于其假定少,必须求助于偏微分方程组来寻求解答,能够真正得出解析解的题目少之又少,不如材料力学和结构力学的计算灵活性高和可解性强;弹性力学的理论性和科研性更强,是真正的科学体系,而结构力学类的实践性和工程性更强,更多偏重于求解的方法和技巧.3:力学基本量对基本物理量的严密定义和深刻理解是人们对学科认识成熟与否的重要标志.任何力学所求解的题目都是:给定对象的几何模型和尺寸,给定荷载(外力)作用,求解其内力、应变、位移(静力学)或运动规律(动力学).土木工程中所考察的对象大多为静力平衡体系.3.1外力弹性力学中之外力包括:体力和面力;而理论力学研究的外力为集中力(偶);材料力学与结构力学一脉相承,研究的外力为集中力与分布力;而土力学和岩石力学中的外力主要以分布力为主.相比之下,体力和面力是最基本之外力,基于此类外力进行求解和计算无疑要从基本单元体人手;其他工程力学中之外力作用无外乎就是体力和面力的组合,正是由于这种对力的简化,使得工程力学的求解相对容易,无需借助于微分方程方法.3.2内力弹性力学中之内力包括:正应力和剪应力;理论力学之内力是刚体质点系内部各质点的相互作用力;材料力学与结构力学之内力为轴力、剪力、弯矩和扭矩;土力学和岩石力学由于研究的是块体结构,内力也为正应力和剪应力.剖析各种内力:轴力是沿杆轴方向正应力之合力;弯矩分量是沿杆轴方向正应力合力矩对坐标轴之量;剪力分量是杆轴截面内剪应力合力对坐标轴之分量;扭矩则为杆轴截面内剪应力之合力矩.空间问题任一截面共有六个内力分量,这也正是由理论力学中空间力系的合成方法所决定的.四种内力6个分量的确定只是为了工程设计和计算之方便.可见,弹性力学、土壤力学、岩石力学的求解结果为物体内部各点的应力;而材料力学、结构力学的求解结果则为杆件横截面上(简化后为一点)应力之合力.应力解答是进行工程设计的最重要指标.通过考察某点的相应应力状态并与材料性能指标对比,提出了多种强度设计理论,如最大拉应力理论、最大剪应力理论、最大线应变理论、形变比能强度理论、摩尔强度理论等.3.3应变应变是微单元体的变形,有线应变和角应变两类。

各门力学都有所涉及但在具体应用时又很少提及的概念,弹性力学类中应变的求解往往也不是最终目的,它只是位移计算的一个过渡,而结构力学类中由于研究的是质点系或杆件系,谈应变的概念是没有意义的,它直接针对位移求解,具体的工程设计中也是以某些断面的位移(变形)指标作为标准.3.4位移位移实则为应变的宏观反映,二者之间有着密切的偏微分关系.弹性力学中的位移以其坐标分量来表征,而材料力学、结构力学中的位移是指某个截面的位移:线位移和角位移的概念本身是建构在平截面的假设基础之上的,只有截面保持为平面,才能谈到该截面的位移状态,否则某一截面变形后成为曲面,是不可能有单一的线位移和角位移的.但是,弹性力学早已指出,平截面假设只是一种工程的近似,可见,线位移和角位移的概念脱离开材料力学和结构力学毫无意义.4:解析计算方法4.1基本求解方程土木工程中建立的力学模型多为平面问题[引,空间问题基本不纳入授课大纲而只是作为了解,这一方面是空间问题计算过于繁琐,更重要的是本专业计算对象的特殊性所造成的:大多数工程结构都可以简化为平面结构进行处理,对于复杂一些的结构在设计中只不过多考虑一个安全系数而已.基本假设(连续性、均匀性、各向同性、完全弹性、小形变位移)是各门固体力学都遵循的,力学基本方程的建立即依据其而作,在工程针对性更强的材料力学、结构力学、土力学和岩石力学中则又根据各自研究对象不同引入了更多计算假设.为确定特体在外部因素作用下的影响,除必须知道反映质量守恒(衍生出流体力学连续性方程)、动量平衡(衍生出黏性流体Navier-Stoke方程和弹性固体平衡微分方程等)、动量矩平衡、能量守恒(衍生出熵焓的变化方程)等自然界普遍规律的基本方程外,还须知道描述构成特体的物质属性所特有的本构方程(由应力和应变(率)关系体现)和描述物体变形.运动属性(由变形(率).位移(率)关系体现)的几何方程,才能在数学上得到封闭的方程组,并在一定的初始条件和边界条件下把问题解决.固体力学基本求解方程考虑:平衡条件、位移变形条件和本构条件.据此可得弹性力学三大基本方程组:平衡微分方程(纳维方程)、几何方程(柯西方程)和物理方程(虎克定律),三类基本方程考察微元体,基于静止状态下动量守恒、几何线性和物理线性特征来构建.描述了微分状态下的三类条件.各种解法都是以基本方程为依据,辅之以边界条件来确定.材料力学和结构力学在提出其计算假设的同时,其实就已经描述了本构关系、平衡条件和边界条件体现在整体静力平衡方程中,连续条件则体现在位移求解方程上.4.2求解方法内力和位移是最有工程意义的物理量,因此各门力学所建立的求解方法都是以二者为基础的,这就形成了所谓“力法”和“位移法”.(1)力法力法是一种最传统的方法,按力求解入手比较符合人们惯常的思维习惯.结构力学类中之力法是以多余反力或内力(弯剪拉压扭)为基本未知量.传统“力法”所采用的策略,为“先削弱后修复”]:即先解除某些约束,将结构修改为对于各种荷载都易于分析的静定基本结构,即“静定基”;再据建立“力法”的修复方程来求解应有的约束力,恢复结构的约束性态.修复方程本质上为位移方程,依靠结构变形、位移协调的几何条件列出,而位移可以根据基本结构内力由虚力原理轻松得到.弹性力学类中之力法以应力为基本未知量.应力求解是弹性力学的最基本方法,但是其应用有限,因为要建立力法求解的“应力函数”(如Airy函数),需要常体力的设定或其他严格的假设条件.弹性力学的力法与结构力学虽都是以“力”作为首先求解的基本未知量,但其思想是不同的,由于弹性力学问题无计算假设(如杆件假设和平截面假设),不存在所谓的“静定基”,任何弹性体内部都是超静定的,必须将平衡条件、几何条件和物理条件联立求解.二者的“相同”之处只在于都是以“力”为首先求解的未知量而已.(2)位移法位移法是一种以位移为基本未知量的求解方法.应当说,长期以来,人们对于位移的关注都远远落后于内力,现有的各种建筑结构设计规范都是基于强度设计为主,探讨的是内力设计;而刚度设计的计算工作量和重视程度显然是次要的.结构力学类中之“位移法”所采用的策略,为“先加强后修复”]:即让结构所有节点完全固定,使所有构件成为彼此无关的单跨超静定梁,即“固定基”,然后再使它们能转动和移动以达到力矩和剪力的平衡,以消除在结点处产生不平衡力和力矩.修复方程本质上为平衡方程,依靠结构在结点处的力或力矩平衡条件列出.为了避免求解联立方程的困难,人们基于位移法又提出了“逐次迭代法”、“弯矩分配法”、“无剪力分配法”等诸多渐近计算手段;而为更便于手工求解,又给出新的假定从而得到多种近似计算方法,如分层法、反弯点法和D值法等.应当说,在电子计算机计算速度和存储容量越来越大的情况下,这些传统渐近或近似求解方法已逐渐退居到次要地位,但为了考查土木工程学生的计算能力和对基本原理的理解,在课程设计或毕业设计中仍然采用之.结构力学中的位移法计算思想对于弹性力学同样难以实现.原因很简单,结构体可视为由多个离散杆件连接而成,但弹性体本身是处处空间连续的几何体,无法确定“固定基”,因此其求解也必须像弹性力学应力法一样建立一个“位移函数”,弹性力学位移法建立边界条件相对容易,但传统的弹性力学位移法求解化为二阶偏微分方程组,求解困难.近年来很多学者已经通过各种方法建立了一些利于求解的位移函数【加,n],大大提高了位移法的应用范围,笔者认为位移法的解析求解已经发展到相当成熟的阶段,建议相应弹性力学教材应适当修改,增加位移法求解的篇幅和算例.可见,同样是力法和位移法,正是由于二类力学研究的初始假定条件不同,导致了其计算方法的本质不同.结构力学的求解思想更易被工程技术人员所接受;而深入探讨物体内部受力和变形特征的弹性力学则多被众多科研人员所思索和研究.5:能量法力学由物理学的一个分支于20世纪初在工程技术的推动下脱离其演变成一个独立学科⋯,现在通常理解的力学主要研究宏观的平衡和机械运动;物理学在摆脱了传统的机械(力学)自然观后也获得了健康飞速的发展.现在看来,最能维系力学与物理学血脉联系的就是能量原理了.能量原理不仅适用于线弹性小变形结构,也适用于非线性非弹性结构;既适用于静定结构,也适用于超静定结构,不仅能用于求解梁、轴、杆结构,也能用于板、壳及一般实体结构.作为教师,应当使学生理解能量原理的普适特征.大学本科的学习深度仅局限于“线性弹性”的范畴.所谓线性,即本构方程的线性关系;所谓弹性是外力与变形同时性的特征.能量原理是各门力学学科都要提及的一部分内容.在力学更偏重于为工程服务时,人们往往将能量原理淡忘;只有用一般手段无法解决时,人们才会重新拾起这个大自然赐予的最基本规律:“能量守恒定律”.正是借助于这个最有利的手段,人们解决了更多令人困惑的难题.能量原理在力学中的各种表达最后都归结为求解不同泛函驻值的问题.能量守恒的思想是学生在中学时代就知道的,后在变形固体问题的研究中又得到了进一步拓展,即虚功原理的思想.“虚功”的概念是学生在力学学习中最易困惑的名词.“实功”是由于力逐渐增加在变形效应上所做功的度量,而“虚功”是在变形结束后人们假像中外力又做的功值.学生在中学时代考虑的物体都是刚体,“功”的概念其本质上就是大学中所提到的“虚功”.其实,所谓“虚功”的提出正是人们为了研究问题的方便而给出的,正如复数的提出是为了保证方程的根域始终要封闭一样,完全是为了研究问题的需要.在结构已经完成实际变形后,使其产生一个虚位移,才能根据能量守恒定律给出外力的虚功与储存变形能的互等关系,进一步根据泛函分析的变分理论给出总势能的变分为零(取驻值)的结论.反之,若以力为虚,则可以给出总余能变分为零的结论.能量法跟力法和位移法是殊途同归,也是结构分析的基本方法.能量变分原理的应用也符合“先修改,后复原”的策略.在能量泛函的表达式中,试探函数可以只满足一部分约束,而让另外的约束由能量变分取极值来达到满足,放弃某些约束就是修改了结构,能量变分则是复原了结构约束.变分法的发展是一个渐进的过程,众多学者在这方面做了大量的研究工作.最小势能原理属于位移型变分原理,结构的势能泛函由满足连续约束的变形试探函数给出,然后让泛函对位移做变分,使势能最小,得到结构位移的解.最小势能原理等价于以位移表示的平衡微分方程和位移表示的应力边界条件,可见,它是通过势能泛函来修改结构使得平衡条件重新满足,这正是“位移法”的求解思想.最小余能原理属于应力型变分原理,结构的余能泛函由满足平衡约束的内力试探函数写出,然后让泛函对内力做变分,使余能最小,得到结构内力的解.最小余能原理等价于以应力表示的应变协调方程(或几何方程)和位移边界条件,可见,它是通过余能泛函来修改结构使得连续条件重新满足,这正是“力法”的求解思想.广义变分原理(胡海昌一鹫津原理)属于应力一位移。

相关文档
最新文档