低应变检测原理及波形初步判识(汇编)

合集下载

低应变检测图解ppt课件

低应变检测图解ppt课件
(3)测试中手锤均在桩顶中心敲击部位混凝 土应平整、坚硬,手锤应与桩顶垂直,避免含 有水平分量。
完整版课件
23
(4)测完应做好数据处理和检测记录,检测记录的有 效位数和计量单位均以国际标准为准。
(5)低应变动力信号处理
信号叠加平均应选择重复性好的信号,其次还要除 去基线漂移大的信号。
低应变激振时桩土体系只产生弹性响应,而要达到 极限状态需使桩周土产生弹塑性响应,因此低应变法 不能提供桩的承载力。
3
完整版课件
4
完整版课件
5
基桩检测
1.2主题内容与适用范围
为了确保现场低应变动力检测的正常 进行,取得正确可靠的检测数据,使低 应变动力检测工作规范、有序,特制定 基桩低应变检测作业指导书。
本作业指导书适用于检测各类预制桩 和混凝土灌注桩的桩身质量,推定缺陷 类型,性质及其部位。
完整版课件

2L/c时刻前出现严重缺陷反射 波或周期性反射波,无桩底反射 波;
缺陷谐振峰排列基本等间距, 相邻频差Δf’>c/2L,无桩底 谐振峰;
或因桩身浅部严重缺陷使波形 呈低频大振幅衰减振动,完无整桩版课底件 反射波。
或因桩身浅部严重缺陷只出现 单一谐振峰,无桩底谐振峰。28
三角观测法
超过中线3类桩,低于中线的2类桩或1类桩
低应变一般适用桩的长/径比在30以内,此时,可
得到明显桩底反射,但以下情况除外。
i应力波的衰减程度主要不是桩长/径比,而主要是
由桩土的刚度比决定的,桩土刚度比愈大,应力波衰
减程度就愈小,因此,当细长桩具有较强的摩擦时,
应力波沿桩身的传播也会被严重衰减。
完整版课件
24
基桩检测
ii遇有连续缩颈、混凝土离析或标号低时应力波将 大量被吸收。

低应变检测原理及波形初步判识(汇编)

低应变检测原理及波形初步判识(汇编)

低应变检测原理及波形初步判识一、低应变动测原理1、低应变反射波法源于应力波理论,基本原理是在桩顶进行竖向激振,使桩中产生应力波,弹性波沿着桩身向下传播,当桩身存在明显波阻抗界面(如桩底、断裂或离析、夹泥等部位)或桩身截面积变化(如缩颈或扩径)部位,将产生反射波,利用特定的仪器设备经接收、放大、滤波和数据处理,可识别来自桩身不同部位的反射信息。

通过对反射信息进行分析计算,来判断桩身完整性,判定桩身缺陷的程度及其位置。

2、桩判定标准在《建筑基桩检测技术规范》JGJ106-2003(以下简称《规范》)中,桩身完整性定义为:反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标;桩身缺陷定义为:使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。

注意,桩身完整性不是严格的定量指标,对不同的桩身完整性检测方法,具体的判定特征各异,但为了便于采用,应有一个统—的分类标准。

所以,桩身完整性类别是按缺陷对桩身结构承载力的影响程度,统一划分为四类的:Ⅰ类——桩身完整。

Ⅱ类——桩身有轻微缺陷.不会影响桩身结构承载力的发挥。

Ⅲ类——桩身有明显缺陷,对桩身结构承载力有影响。

一般应采用其他方法验证其可用性,或根据具体情况进行设计复核或补强处理。

Ⅳ类——桩身存在严重缺陷,—般应进行补强处理。

二、低应变动力测桩法的分类低应变动力测桩以所采用的激振方式及所观测的振动响应的不同分为两类,即瞬态法和稳态法。

(一)、瞬态法所谓瞬态法就是采用激振方式并观测橇的瞬态振动响应的方法,是对桩顶面施以轴向瞬时冲击力或施以一冲量来激发桩的振动的方式,就是桩在瞬时冲击力或冲量的作用下,桩的振动随时间的变化过程,振动时间的持续时间一般不会超过1S。

根据冲量的大小和可控制程度可分为:1、人工锤击法。

这种激振方式是最简单、方便的,但这种人工锤击方式的冲量是随机的和不能较准确控制的,并且也不是完全轴向的,因而在观测振动响应时,重复性有进较差。

低应变法检测原理及案例

低应变法检测原理及案例

低应变法检测原理及案例宝子们!今天咱来唠唠低应变法检测这个事儿。

先说说低应变法检测原理哈。

你可以把要检测的桩想象成一个小怪兽,这个小怪兽藏在地下,咱得想办法知道它内部是不是有啥毛病。

低应变法呢,就像是给这个小怪兽来个小震动,然后看它的反应。

具体来说呀,咱用一个小锤子在桩顶轻轻敲那么一下,就像在小怪兽的脑袋上轻轻弹了个脑瓜崩儿。

这一敲呢,就会产生应力波,这个应力波就会沿着桩身往下跑。

如果桩身是健康的、完整的,那这个应力波就会比较顺畅地跑下去,再反弹回来,就像一个小球在一个光滑的管道里弹来弹去一样。

但是呢,如果桩身有缺陷,比如说中间有个地方断了或者有个大空洞,那这个应力波到了这个地方就会像遇到了一堵墙一样,一部分波就会反射回来,而且这个反射回来的波和正常的波就不一样啦。

咱就可以通过检测这个反射波的情况,来判断桩身是不是有问题,就像通过小怪兽被弹脑瓜崩儿后的反应来判断它是不是哪里不舒服一样。

咱再聊聊案例吧。

就说我之前经历过的一个工程。

那是一个盖大楼的工程,地下的桩可多啦。

有一根桩看起来好像没啥问题,表面也挺光滑的。

可是呢,按照规定还是得做低应变法检测。

检测的师傅就拿着小锤子,“当当当”地敲了几下。

结果仪器上显示的波就有点怪怪的。

这就像是小怪兽本来应该正常叫几声,结果却发出了一种很奇怪的声音。

师傅就仔细研究这个波形,发现这个波在桩身大概中间的位置有一个很强的反射信号。

这就意味着啥呢?很可能这个桩中间有缺陷啊。

后来施工方就把这根桩周围挖开一看,好家伙,原来在浇筑桩身的时候,中间有一部分混凝土没有灌好,有个大空洞呢。

多亏了这个低应变法检测,要是没发现这个问题,这大楼盖在这根有问题的桩上,那可就危险了,说不定以后大楼会倾斜或者出现裂缝呢。

这就好比你穿了一双鞋,要是鞋底有个大洞你不知道,走着走着可能就会摔跤一样。

还有一个案例呢。

在一个桥梁工程里,那些桩就像桥梁的脚一样,必须得稳稳当当的。

检测的时候,刚开始看波形好像都挺正常的。

低应变检测图解ppt课件

低应变检测图解ppt课件

精选课件PPT
29
基桩检测
3.3在检测过程中发现生异常现场时的处理方法
在检测过程中出现异常波形时,应在现场及时研
究,排除影响测试的不良因素后再重复测度。重复测
试的波形与原波形应具有相似性。
3.4在检测过程中发生意外事故时的处理方法
A: 正在检测过程因外界干扰和其它不可预见的事故时, 应关机停止检测。若发生干扰影响测试结果,则应重
(3)测试中手锤均在桩顶中心敲击部位混凝 土应平整、坚硬,手锤应与桩顶垂直,避免含 有水平分量。
精选课件PPT
23
(4)测完应做好数据处理和检测记录,检测记录的有 效位数和计量单位均以国际标准为准。
(5)低应变动力信号处理
信号叠加平均应选择重复性好的信号,其次还要除 去基线漂移大的信号。
低应变激振时桩土体系只产生弹性响应,而要达到 极限状态需使桩周土产生弹塑性响应,因此低应变法 不能提供桩的承载力。
一、低应变法检测的概念 二、低应变法的现场检测 三、 检测数据的分析和结果判断
精选课件PPT
1
基桩检测
一、低应变法检测的概念 1 .1目的 根据国家行业标准《建筑基桩检测技
术规范》JGJ 106-2003、J256-2003对低应 变工程检测做必要的细化和补充。
精选课件PPT
2
精选课件PPT
精选课件PPT
31
3.6 低应变检测法试验报告包括下内内容:
i工程名称、工程地点、试验目的和试验日期。
ii施工单位、设计单位、拟建上部建筑结构形式。
iii试验场地的工程地质概况,试桩平面图。
iv试验仪器设备以及对试验过程中出现的异常现象
的说明。
v实测波形,试验数据整理,分析方法,拟合波形

低应变法

低应变法

低应变法低应变动力试桩法主要用于桩的完整性检测,根据激振方式的不同,又可分为反射波法(小锤敲击法)、机械阻抗法、水电效应法和共振法等数种。

目前研究和应用的比较多的低应变动测方法主要是反射波法。

现场测试示意图本方法对桩身缺陷程度只作定性判断。

对于桩身不同类型的缺陷,反射波测试信号中主要反映出桩身阻抗减小的信息,缺陷性质往往较难区分。

●基本原理:反射波法是建立在一维波动理论基础上,将桩假设为一维弹性连续杆,在桩身顶部进行竖向激振产生弹性波,弹性波沿着桩身向下传播,当桩身存在明显差异的界面(如桩底、断桩和严重离析等)或桩身截面积变化(如缩径或扩径)部位,波阻抗将发生变化,产生反射波,通过安装在桩顶的传感器接收反射信号,对接收的反射信号进行放大、滤波和数据处理,可以识别来自桩身不同部位的反射信息。

利用波在桩体内传播时纵波波速、桩长与反射时间之间的对应关系,通过对反射信息的分析计算,判断桩身混凝土的完整性及根据平均波速校核桩的实际长度,判定桩身缺陷程度及位置。

●适用范围1、低应变适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。

只能定性判定,不能定量2、低应变法是通过一维波动理论分析来判定基桩的桩身完整性,这种方法也称之为反射波法(或瞬态时域分析法)3、低应变法的理论基础是一维线弹性杆件模型,因此受检桩的长细比、瞬态激励脉冲有效高频分量的波长与桩的横向尺寸之比不宜小于10,设计桩身横截面宜基本规则。

另外,一维理论要求应力波在桩身中传播时平截面假设成立,所以,对于薄壁钢管桩、大直径现浇薄壁混凝土管桩和类似于H型钢桩的异型桩,若激励响应在桩顶面接收时,低应变方法不适用。

低应变能识别的缺陷类型仪器要求:检测仪器的主要技术性能指标应符合现行行业标准《基桩动测仪》JG/T3055的有关规定。

具有连续采集、快速自动存贮、显示实测信号和处理分析信号的功能《建筑基桩检测技术规范》(JGJ106)对仪器设备的要求如下:(1)检测仪器的主要技术性能指标应符合现行行业标准《基桩动测仪》JG/T3055的有关规定;(2)瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应为电磁式稳态激振器,其激振力可调,扫频范围为10Hz~2000Hz。

(完整word)低应变原理

(完整word)低应变原理

低应变原理一、低应变反射波法的基本原理低应变反射波法是以一维弹性杆平面应力波波动理论为基础的.将桩身假定为一维弹性杆件(桩长〉>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播,当桩身存在明显的波阻抗Z变化界面时,将产生反射和透射波,反射的相位和幅值大小由波阻抗Z变化决定。

桩身波阻抗Z由桩的横截面积A、桩身材料密度ρ等决定:Z=ρCA假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗Z1=ρ1C1A1,下部波阻抗Z2=ρ2C2A2。

①当Z1=Z2时,表示桩截面均匀,无缺陷.②当Z1>Z2时,表示在相应位置存在截面缩小或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。

③当Z1〈Z2时,表示在相应位置存在扩径,反射波与入射波速度信号相位相反。

当桩身存在缺陷时,根据缺陷反射波时刻与桩顶锤击触发时刻的差值△t和桩身传播速度C来推算缺陷位置Lx: Lx=△t·C/2二、低应变反射波法的几个建议1、桩头直接在素混凝土(浮浆)上进行测试,结果无论怎么改变传感器以及传感器的安装,无论怎么改变振源,测试信号都不理想,往往在测试信号的浅层部位存在较严重的反向脉冲.一般情况下,桩头的处理以露出新鲜含骨料的混凝土面为止,而且要尽量平整、干净(桩头不要破碎、不要有杂物、不要有水);这可以通过随身携带凿子以凿平安装点和锤击点或委托施工方在测试前帮忙进行桩头处理,这样有利于传感器的安装和力棒的锤击.2、传感器传感器的安装对现场信号的采集影响较大,理论上传感器越轻、越贴近桩面、与桩面之间接触刚度越大,传递特性越好,测试信号也越接近桩面的质点振动。

所有动测均要求如此。

对实心桩的测试,传感器安装位置宜为距桩心2/3~3/4半径处;对空心桩的测试,锤击点与传感器安装位置宜在同一水平面上,且与桩中心连线形成90°夹角,传感器安装位置宜为桩壁厚的1/2处.传感器的安装技巧以及耦合剂的选择对加速度计和高阻尼速度计很重要.安装之前,应找到1—2块平整面(不太平整时可用斧头、凿子等工具修理或用调好的石膏填充);安装面有灰时,应吹尽、揉尽或洗尽以确保安装时粘接紧密.桩头不平时,以石膏安装最好。

低应变检测

低应变检测

时程曲线图与扩径多次反射信号
缺陷的判定: 缩径类缺陷:同相位波形,存在多解性,例如:
离析、空洞、二次浇灌面、夹泥、缩径 地层由硬变软 扩径类缺陷:反相位波形 必须收集与掌握基桩施工过程的全部技术资料、档案,包括 工程场地的工程地质勘察报告、水文地质概况 灌注桩的成孔方式、成孔工艺 灌注桩的作业环境、灌注工艺、施工记录、异常情况
质点振动而振动,线圈切割磁力线,产生感应电动势输出处理。 临界阻尼——传感器设计在0.6~0.7倍临界阻尼,只振动1~2个
周期,有利于信号的接收和识别 幅频特性——谐振峰小于30Hz,上限频率频率1500-2000Hz
频率低于谐振峰后,灵敏度下降 灵敏度——200mV/(cm·s-1 )
缺点——高频上不去,低频下不来,影响了使用。
一般桩身混凝土的泊桑比σ=(0.2~0.25)
Vp =(1.05 ~ 1.1)VB
VB =(0.9 ~ 0.95) Vp
这是超声波所测声速大于反射波所测声速的原因
1.4 桩土体系内声波传播规律
入射的半球面波有一些是
斜入射的,根据折射定律
,在桩身侧面将产生折射纵波PP和 折射横波PS,使一部分能量由桩身 折射扩散进入地层。折射入地层的 能量与斜入射的折射系数 RT 有关
积分后的 速度信号
速度信号 积分后的 位移信号
第二组信号 原始加速度信号
第二组信号 积分后的 速度信号
低通+积分 速度信号
3.3 信号放大
线性放大,波幅按固定的放大倍数放大 指数放大,波幅是按指数规律衰减,按指数放大的目的
是突出深部缺陷及桩底信号 放大延迟,桩头和浅部信号较强,不需要放大处理,
假设C=4000m/s ΔF=C/2L

低应变

低应变

• 5、信号采集与筛选 • 信号采集和筛选应符合下列规定: • (1)根据桩直径大小,桩中心对称布置2-4个检测点;(2)对 检测信号应作叠加平均处理,每个检测点参与叠加平均处理的 有效信号数量不宜少于3个。 • (3)检测时应随时检查采集信号的质量,判断实测信号是否反 映桩身完整性特征。 • (4)信号不应失真和产生零漂,信号幅值不应超过测量系统的 量程。 • (5)对于同一根受检桩,不同检测点及多次实测时域信号一致 性较差,应分析原因,增加检测点数量。
• • • • • •
(一)低应变法概述 (二)反射波法检测原理 (三)抽样方法和检测数量 (四)仪器设备 (五)现场操作 (六)检测数据分析与评价
• • • •
• •
• • •
(一)低应变法概述 目前国内外普遍采用瞬态冲击方式,通过实测桩顶加速度或速度响 应时域曲线,通过一维波动理论分析来判定基桩的桩身完整性,这种方 法称之为反射波法(或瞬态时域分析法)。 一般动测仪器都具有傅立叶变换功能,可通过速度幅频曲线辅助分 析判定桩身完整性,即所谓瞬态频域分析法; 也有些动测仪器还具备实测锤击力并对其进行傅立叶变换的功能, 进而得到导纳曲线,这称之为瞬态机械阻抗法。 无论是瞬态的时域分析还是频域分析,分析的结果应该是一致的。 另外还有稳态激振的方式,直接得到导纳曲线,称为稳态机械阻抗 法。 1、适用范围 一维杆件模型要求桩的长细比大于5,瞬态激振的有效高频分量的 波长与桩的横向尺寸之比也大于5,设计桩身截面也要基本规则。 低应变法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度 及其位置。低应变法只可用于检测混凝土桩有效检测长度范围内是否存 在缺陷,具体工程的有效检测长度应通过现场试验确定。
• (五)现场操作 • 1、桩头处理 • 凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面, 桩顶表面应平整干净且无积水;桩顶的材质、强度、截面尺寸 应与原桩身基本等同;妨碍正常测试操作的桩顶外露主筋应割 掉。受检桩混凝土强度至少达到设计强度的70%,或其预留试 件强度代表值不低于15 MPa 。预应力混凝土管桩桩头法兰盘应 连接牢固,否则应割除。 • 实践证明,桩头处理直接影响测试信号的质量,为确保检测 时应力波的正常传递,桩顶的混凝土质量应能代表桩身混凝土 质量。当灌注桩桩头部分桩身截面很不规则时,应将截面不规 则部分凿除后进行检测。为了确保传感器安装牢固,需要时可 采用便携式砂轮机等磨平。 • • 2、激振锤的选择 • 应针对不同的测试对象选择不同的激振锤,小桩选择较小 的锤,大桩选择较重的锤或力棒。 •

低应变检测(RSM-24FD-)完整版本

低应变检测(RSM-24FD-)完整版本

•桩底 •截面发生变化 •夹泥 •离析 •混凝土质量变化 •土层变化
17.03.2020
24
第一章 基本概念及检测原理
检测原理
低应变所能检测到的现象
17.03.2020
25
第一章 基本概念及检测原理
检测原理
低应变不能检测到的现象
17.03.2020
26
第一章 基本概念及检测原理
检测原理
低应变检测的优点
第三章 现场测试技术
信号采集
键入文 件名称
17.03.2020
此时已完成一根桩的现场测试
单击完 成保存
59
第三章 现场测试技术
现场采集注意事项
➢桩头处理——是试验成功的关键
➢测试环境——避免干扰
➢激振技术——锤头选取、激振点、激 振力
➢传感器的选择及安装——速度计、加 速度计、耦合
➢采集完数据存盘——三道一致,桩底
2、断桩、特别是浅部断桩,一般均可准确判别。
3、有经验的测桩专家,在同一根桩上可识别两种以上缺陷(第一缺 陷为次要缺陷)。
4、可准确判定缺陷位置(可精确到10%)。
5、可初步判定缺陷类型(视测桩经验定)。
6、不能很好地区分二类桩与三类桩。
7、不能给缺陷程度定量(初步研究成果尚需工程印证)。
178.0、3.20不20能定量分析缺陷程度对单桩承载力的影响 。
➢低应变法测桩轻便、速度快(50-200根/日) 、 价格便宜
➢可以检测到距桩顶较近部位的缺陷(相比高应变)
➢可以检测到轻微缺陷(相比高应变)
➢准备简便
➢操作简单
➢经验丰富
17.03.2020
27
第一章 基本概念及检测原理

低应变检测原理及方法

低应变检测原理及方法

低应变检测原理及方法有关低应变检测原理及方法在我们的日常生活以及学习中,我们或多或少会接触到不少的物理知识点,下面小编为大家整理了有关低应变检测原理及方法,希望对大家有帮助。

1、检测原理检测方法采用低应变法,混凝土桩的物理强度远大于桩周土的物理强度,在桩顶沿垂直方向激发的弹性应力波基本上是沿桩周传播的,由于桩底持力层及桩身质量缺陷位置上的波阻抗与正常混凝土波阻抗存在差异,因而:(1)通过分析缺陷反射波a.相位变化、频率变化、多次反射性可判断桩基的缩颈、扩警、松散、夹泥、离析、断桩等质量缺陷现象。

b.振幅的.大小可判断缺陷的程度。

c.桩身缺陷位置应按下式计算:其中:x——桩身缺陷至传感器安装点的距离(m);tx——速度波第一峰与缺陷反射波峰间的时间差(ms)c——受检桩的桩身波速(m/s),无法确定时用cm值替代;f——幅频信号曲线上缺陷相邻谐振峰间的频差(HZ)(2)当桩长已知、桩底反射信号明确时,在地质条件、设计桩型、成桩工艺相同的基桩中,选取不少于5根Ι类桩的桩身波速值按下式计算其平均值。

其中:cm——桩身波速的平均值(m/s);且ci/cm/cm5%;ci——第i根受检桩的桩身波速值(m/s)L——测点下桩身长(m);T——速度波第一峰与桩底反射波峰间的时间差(ms);f——幅频曲线上桩底相邻谐振峰间的频差(HZ);n——参加波速平均值计算的基桩数量(n≥5)。

2、现场测试方法①把混凝土桩顶灌浆部分凿去凿平,使桩顶出露新鲜表面,为减少杂波干扰,此表面必须平整干净,出露的钢筋不应有较大晃动。

②传感器应稳固地粘放在桩顶上,并进行敲击测试。

③每根桩测试曲线如出现异常波形应在现场及时研究,排除影响测试的不良因素后再重复测试。

3、检测仪器及设备①检测仪器的主要技术性能指标应符合《基桩动测仪》JG/T 3055的有关规定,且应具有信号显示、储存、和处理分析功能。

②瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应包括激振力可调、扫频范围为10~2000HZ的电磁式稳态激振器。

低应变基桩完整性检测基本原理与应用课件

低应变基桩完整性检测基本原理与应用课件
.
第三章 现场测试技术

形存盘
单次存 盘键入 文件名 称
单击确 认完成 保存
此时已完成一根桩的现场测试
.
第三章 现场测试技术

场干扰
•现场有重型机械在施工回产生振动干扰 • 解决方案: 建议在检测采样时停止
•现场电压不稳造成干扰 • 解决方案: 建议仪器使用前提前充满 电。 •
.
第三章 现场测试技术
波阻抗: Z CA
: 密度;C: 应力波速;A: 桩横截面积。
一维直杆: d<<L的杆件
.
第一章 基本概念及检测原理 应力波 在桩中的传播
应力波在桩中的传播
振源: 手锤锤击桩端面。点振源 传播介质: 桩L远大于桩径。一维直 杆 传播: 应力波以锤击点为中心半球 向外传播,当应力波传播至桩身一 定距离S后(一般S>1D-2D),波 振面才近似为平面。此时手锤锤击 桩端认为是应力波在一维杆件中竖 直方向传播
2.简述反射法检测灌注桩桩身完整性判定中IV类桩的时域 信号特征有哪些? 答:2L/c时刻前出现严重缺了陷反射波或周期性反射波, 无桩底反射法;或因桩身浅部严重缺陷使波形呈现低频大 振幅衰减振动,无桩底反射波。
.
3.简述反射法检测灌注桩的现场检测步骤? 答:(1)灌注桩凿去桩 顶浮浆或松散、破损部分,并露出 坚硬的混凝土表面;桩顶表面应平整干净且无积水;妨碍正 常测试的桩顶外露主筋应割掉。 (2)传感器安装应与桩顶面垂直;用耦合剂粘结时,应具有 足史够的粘结强度。 (3)激振点位置应选择在桩中心,测量传感器安装位置宜为 距桩中心2/3半径处。 (4)通过现场敲击试验,选择合适重量的激振力锤和锤垫, 宜用宽脉冲获取桩底或桩身下部缺陷反射信号,宜用窄脉冲 获取桩身上部缺陷反射信号。 (5)根据桩径大小,桩心对称布置2~4个检测点;每个检测 点记录的有效信号数不宜少于3个。

第1章 低应变

第1章 低应变

第 1 章 低应变检测法
第 1 节 基本理论
一、应力波和波阻抗 1.应力波 1.应力波:当介质的某个地方突然受到一种扰动, 应力波 这种扰动产生的变形会沿着介质由近及远传播开去, 这种扰动传播的现象称为应力波。 2.波阻抗 2.波阻抗: 波阻抗 :密度;C:应力波速;A:桩横截面积。 一维直杆:d<<L的杆件
速度传感器
加速度传感器
组合手锤
二、采集仪
RSM—24FD分体机 RSM—24FD分体机
三、软件简介 主操作界面
设置界面
波形处理界面
第 3 节
现场测试技术
一、检测流程 二、影响测试的 因素 三、典型波形 三、典型波形
一、检测流程
第 1步 第 2步 第 3步 第 4步 第 5步 第 6步 第 7步 第 8步 桩头处理 仪器连接 传感器安装 程序设置 手锤锤击 信号采集 信号分析 结果打印
4
现行的规范《建筑桩基技术规范》 JGJ94-2008) 现行的规范《建筑桩基技术规范》(JGJ94-2008) 对桩基的设计、施工、验收均作出明确的规定: 对桩基的设计、施工、验收均作出明确的规定: 1.设计前要进行试桩(包括桩身完整性、 1.设计前要进行试桩(包括桩身完整性、承载力及 设计前要进行试桩 可沉桩性); 可沉桩性); 2.施工过程中要进行质量控制和中间验收; 2.施工过程中要进行质量控制和中间验收; 施工过程中要进行质量控制和中间验收 3.施工完毕后还要进行质量验收(包括桩身完整陛 3.施工完毕后还要进行质量验收( 施工完毕后还要进行质量验收 和承载力) 和承载力)。 基桩质量验收检测是检验基桩施工是否满足设计要 确保建筑物使用的安全。 求,确保建筑物使用的安全。基桩质量检测主要包括成 桩质量检测和承载力检测。 桩质量检测和承载力检测。

低应变检测原理

低应变检测原理

低应变检测原理
低应变检测是一种常见的材料力学性能测试方法,用于研究材料在应力作用下的形变和力学性能变化。

其原理主要基于材料在受力过程中产生的微小形变量的测量。

在低应变检测中,通常使用应变计或者微应变计进行测量。

应变计是一种常见的测量设备,利用金属线或者半导体材料的电阻变化来测量材料的应变。

微应变计则更为精密,利用光学原理或者电子束的散射来测量材料的微小形变。

在实验过程中,首先将应变计或者微应变计粘贴到待测试材料的表面,然后对材料施加一定的载荷,使其发生形变。

当材料发生形变时,应变计或者微应变计所采集到的数据会发生相应的变化。

通过分析这些数据,可以得到材料的应变量,从而了解材料的力学性能。

低应变检测通常应用于材料的拉伸、压缩、剪切等力学试验中。

通过测量材料在受力过程中的微小形变,可以得到材料的弹性模量、屈服强度、延伸率等重要力学性能参数。

这些参数对于材料的设计、评估和品质控制具有重要意义。

综上所述,低应变检测原理是通过测量材料受力后产生的微小形变来研究材料的力学性能变化。

通过应变计或者微应变计的测量,可以获取材料的应变量,从而了解材料的力学特性。

通过低应变检测,可以为材料的设计和品质控制提供重要参考。

《低应变动测原理》课件

《低应变动测原理》课件
详细描述
低应变动测原理基于这样一个事实,即当结构受到微小的外力作用时,会产生微小的振 动。这些振动会改变结构的动态特性,如频率、阻尼和模态等。通过测量这些振动特性
,可以推断出结构的内部状况,如损伤、脱胶、腐蚀等。
低应变动测原理的应用范围
总结词
低应变动测原理广泛应用于桥梁、建筑、航空航天、汽车、船舶等领域的结构健康监测和损伤检测。
详细描述
首先,该方法假设结构损伤不会导致显著的动态特性变化,因此可以通过比较损伤前后的振动特性来检测损伤。 其次,该方法假设可以准确测量结构的振动响应,包括振幅、频率和相位等信息。为了获得准确的测量结果,通 常需要使用高精度的传感器和测量设备,并进行适当的信号处理和分析。
Part
02
低应变动测的物理基础
信号的特征提取
时域特征
从信号的时域波形中提取出反映 被测物体特性的特征参数。
波形特征
提取信号的波形特征,如峰值、 谷值、波形畸变等,用于评估被 测物体的状态和性质。
频域特征
将信号进行频谱分析,提取出反 映被测物体特性的频域特征参数 。
统计特征
对信号进行统计分析,提取出反 映被测物体特性的统计特征参数 。
不同学科领域的专家将共 同合作,共同推动低应变 动测技术的进步和应用。
THANKS
感谢您的观看
地下管线探测
地下管线探测是城市建设和维护中不可或缺的一环。低应变动测技术可以通过对 地下管线的振动响应进行测量和分析,确定管线的位置、埋深、走向等信息,为 城市规划和管线维护提供重要的技术支持。
与传统的钻探方法相比,低应变动测具有无损、高效、准确等优势,能够更好地 保护城市地下设施和环境。
地质勘察
采集频率
根据实际需求选择合适的 采集频率,确保信号的完 整性和准确性。

低应变检测原理课件

低应变检测原理课件

信号采集器
信号采集器功能
信号采集器负责接收传感器传来的信 号,并将其转换为可处理的数据。
数据采样频率
采集的数据需要有一定的采样频率, 以满足对结构振动频率的测量要求。
数据采集方式
信号采集器通常采用连续采集或触发 采集的方式,根据实际需求进行选择 。
数据处理软件
数据处理软件功能
数据处理软件负责对采集 到的数据进行处理、分析 和解释,以评估结构的健 康状况。
在建筑领域,低应变检测可用 于评估混凝土结构、钢结构等 建筑物的损伤和承载能力。
在石油化工领域,低应变检测 可用于评估储罐、管道等设备
的腐蚀和损伤情况。
低应变检测的重要性
01
低应变检测具有非破坏性、无损 、高效等优点,能够快速准确地 评估结构的完整性或损伤状态, 为结构的维护和加固提供依据。
02
低应变检测对于保障结构安全、 延长结构使用寿命具有重要意义 ,能够有效地预防结构事故的发 生。
03
04
精度不高
由于低应变检测的原理限制, 其精度相对较低,可能无法准
确识别微小的问题。
易受干扰
低应变检测可能会受到环境因 素(如风、雨、车辆等)的干 扰,影响测量结果的准确性。
需要专业人员操作
低应变检测需要专业人员进行 操作,以确保测量结果的可靠
性。
成本较高
低应变检测需要使用专业的设 备和传感器,因此成本相对较
数据处理流程
数据处理软件通常包括数 据预处理、特征提取、模 式识别等步骤,以提取出 有用的信息。
结果可视化
数据处理软件还应具备将 结果可视化的功能,以便 更好地理解和解释结果。

操作流程
准备工作 数据采集 数据处理 结果评估

低应变检测图解

低应变检测图解
(3)测试中手锤均在桩顶中心敲击部位混凝 土应平整、坚硬,手锤应与桩顶垂直,避免含 有水平分量。
23
(4)测完应做好数据处理和检测记录,检测记录的有效 位数和计量单位均以国际标准为准。
(5)低应变动力信号处理
信号叠加平均应选择重复性好的信号,其次还要除 去基线漂移大的信号。
低应变激振时桩土体系只产生弹性响应,而要达到 极限状态需使桩周土产生弹塑性响应,因此低应变法 不能提供桩的承载力。
一、低应变法检测的概念 二、低应变法的现场检测 三、 检测数据的分析和结果判断
1
基桩检测
一、低应变法检测的概念 1 .1目的 根据国家行业标准《建筑基桩检测技
术规范》JGJ 106-2003、J256-2003对低应 变工程检测做必要的细化和补充。
2
3
4
5
基桩检测
1.2主题内容与适用范围 为了确保现场低应变动力检测的正常
类别
时域信号特征
幅频信号特征

2L/c时刻前无缺陷反射波,有桩 桩底谐振峰排列基本等间距,
底反射波
其相邻频差Δf≈c/2L
桩底谐振峰排列基本等间

2L/c时刻前出现缺陷反射波,有 距,其相邻频差Δf≈c/2L,轻
桩底反射波
微缺陷产生的谐振峰与桩底谐
振峰之间的频差Δf’>c/2L
Ⅲ 有明显缺陷反射波,其特征介于Ⅱ类与Ⅳ类之间
波长也愈短,当高频分量的波长和桩径属同一数量级
时,会使应力波产生严重的弥散,但往往为了探测浅
层缺陷,又不得不采用短脉冲。
25
基桩检测
三、 检测数据的分析和结果判断 3.1 根据波列图中的入射波和反射波的波形、相位、振
幅、频率及波的到达时间等特征,来推断单桩完整性。 i反射波波形规则,波列清晰,桩底反射波明显,易

低应变法浅部缺陷测试波形分析与验证总结

低应变法浅部缺陷测试波形分析与验证总结

低应变法浅部缺陷测试波形分析与验证总结一、绪论低应变法是一种常用的非破坏性测试方法,广泛应用于工程领域中的材料缺陷检测和质量控制。

其原理是通过对材料施加低应变加载,通过分析加载过程中的应变波形来得到材料内部的缺陷信息。

本文对低应变法浅部缺陷测试进行了波形分析与验证总结。

二、低应变法浅部缺陷测试低应变法浅部缺陷测试主要适用于表面近似平行、深度较浅的缺陷检测。

其测试过程可以分为三个步骤:施加低应变加载、测量应变波形、分析波形数据。

起首,在被测材料表面施加低应变加载。

低应变加载可以接受多种方式,如压缩、扭转或拉伸。

加载过程中需要保持应变的大小在线性范围内,以确保测试结果的准确性。

加载结束后,记录加载过程中的应变波形。

其次,测量应变波形。

通常使用应变计或应变测量仪来实时测量加载过程中的应变值。

测量的数据可以以时间序列的形式记录下来,并与加载过程的附加信息(如加载速率、加载方式等)一同保存。

最后,对波形数据进行分析。

波形数据分析是低应变法浅部缺陷测试的核心内容。

依据应变波形的特征,可以裁定出材料的缺陷类型、位置和程度。

常用的波形分析方法有峰值分析、频谱分析和波形对比等。

通过对波形进行分析,可以快速准确地裁定材料的质量状况。

三、波形分析与验证总结1. 峰值分析峰值分析是对应变波形中峰值部分进行提取和分析的方法。

依据峰值的外形、大小和时间分布状况,可以裁定出材料中的缺陷类型和位置。

例如,在材料表面存在一个凸起的缺陷,峰值分析可以展示出波形中的一个明显的峰值,其位置对应于缺陷的位置。

在验证过程中,我们在试验室中接受了模拟的缺陷样本进行了峰值分析的验证。

验证结果表明,峰值分析方法能够准确地检测到样本中的缺陷,并且对于不同类型和尺寸的缺陷都有良好的灵敏度和鉴别能力。

2. 频谱分析频谱分析是将应变波形信号转化为频域信号进行分析的方法。

通过分析频谱图可以得到材料中各个频率成分的信息,从而裁定出材料中的缺陷类型和程度。

例如,当材料中存在一个内部缺陷时,频谱分析可以显示出频谱图中的异常峰值,这些峰值对应于缺陷引起的能量耗散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低应变检测原理及波形初步判识
一、低应变动测原理
1、低应变反射波法源于应力波理论,基本原理是在桩顶进行竖向激振,使桩中产生应力波,弹性波沿着桩身向下传播,当桩身存在明显波阻抗界面(如桩底、断裂或离析、夹泥等部位)或桩身截面积变化(如缩颈或扩径)部位,将产生反射波,利用特定的仪器设备经接收、放大、滤波和数据处理,可识别来自桩身不同部位的反射信息。

通过对反射信息进行分析计算,来判断桩身完整性,判定桩身缺陷的程度及其位置。

2、桩判定标准
在《建筑基桩检测技术规范》JGJ106-2003(以下简称《规范》)中,桩身完整性定义为:反映桩身截面尺寸相对变化、桩身材料密实性和连续性的综合定性指标;桩身缺陷定义为:使桩身完整性恶化,在一定程度上引起桩身结构强度和耐久性降低的桩身断裂、裂缝、缩颈、夹泥(杂物)、空洞、蜂窝、松散等现象的统称。

注意,桩身完整性不是严格的定量指标,对不同的桩身完整性检测方法,具体的判定特征各异,但为了便于采用,应有一个统—的分类标准。

所以,桩身完整性类别是按缺陷对桩身结构承载力的影响程度,统一划分为四类的:Ⅰ类——桩身完整。

Ⅱ类——桩身有轻微缺陷.不会影响桩身结构承载力的发挥。

Ⅲ类——桩身有明显缺陷,对桩身结构承载力有影响。

一般应采用其他方法验证其可用性,或根据具体情况进行设计复核或补强处理。

Ⅳ类——桩身存在严重缺陷,—般应进行补强处理。

二、低应变动力测桩法的分类
低应变动力测桩以所采用的激振方式及所观测的振动响应的不同分为两类,即瞬态法和稳态法。

(一)、瞬态法
所谓瞬态法就是采用激振方式并观测橇的瞬态振动响应的方法,是对桩顶面施以轴向瞬时冲击力或施以一冲量来激发桩的振动的方式,就是桩在瞬时冲击力或冲量的作用下,桩的振动随时间的变化过程,振动时间的持续时间一般不会超过1S。

根据冲量的大小和可控制程度可分为:
1、人工锤击法。

这种激振方式是最简单、方便的,但这种人工锤击方式的冲量是随机的和不能较准确控制的,并且也不是完全轴向的,因而在观测振动响应时,重复性有进较差。

2、自由落锤冲击法。

这种激振方式是用一个已知重量短柱或球形锤,自桩顶面一定高度处自由下落冲击桩顶面来激发桩的振动,这种冲击力不但能保证沿桩轴方向,而且冲量大小和冲击点位都是可控的,因此是一种比较好的的瞬态激振方式。

3、水电效应冲击法。

这种激振方式是在桩顶面设置盛有水的刚性容器,水中放置两个极性相反、有一定距离的电极,在接通电源的瞬间,两电极间发生脉冲放电形成一个脉冲力作用,通过水传递到桩顶面。

比较适应于截面较大的桩。

(二)稳态法
就是用用稳态激振方式并观测桩的稳态振动响应的方法,是对桩顶面施以一个幅值恒定的轴向诣振力来激发桩的振动的方式,实现这种激振方式一般采用电磁激振器,桩在诣振力的作作下做强迫振动,当诣振力的频率与桩的阻尼自振频率相等时,便会引起桩的共振作用,这种动测方法正是利用了共振特性,所以又可将这种动测方法称为“共振法”。

这里我们主要简单说一下瞬态法。

1、瞬态法数学模型
假定桩是一维弹性杆, 在桩顶利用手锤(或力棒) 施加一脉冲力
F ( T) 后, 激发一应力波沿桩身传播, 遇到波阻抗变化处产生反射
波, 根据波动理论和弹性波在桩身内沿轴向传播的基本规律, 振动速度可以表达为:
式中: VR 为反射波的速度量; V1 为入射波的速度量; ρ为桩自身质量密度; C 为波速; A为桩的横截面积; N 为桩身完整性系数
(1) 当N > 1 , ρ1 C1A1 >ρ2 C2A2 , 此时, 反射波VR 与入射波V1 同相位。

例如: 桩身存在离析(即ρ↓、C ↓)、缩径(即A ↓)、夹泥缺陷(即ρ↓)或嵌岩桩底沉渣过厚( A 变化) , 以及摩擦桩桩底反射都会出现反射波VR 与入射波V1 同相位的情况。

(2) 当N < 1 , ρ1 C1A1 <ρ2 C2A2 , 此时, 反射波VR 与入射波V1 反相位。

例如: 扩径、端承桩桩底反射波形都属于此类型。

若假定 C 已知, 从实测的反射波曲线可以计算出桩长或缺陷位置L
C 为波速; TR 为反射时间。

2、低应变检测示意图
3、低应变理论波形曲线
1)完整桩波形曲线
2)扩径桩波形曲线
在桩身扩径处有ρ1 = ρ2, c1= c2,A 1< A 2, 因此其反射系数R < 0, 故扩径处反射波与入射波反相(如图4所示). 根据平均纵波波速和反射波走时差
t′, 可以估算扩径的位置L ′, 即有L ′= ct′ö 2.
3)缩径桩波形曲线
在桩身缩径处有ρ1 = ρ2, c1= c2,A 1> A 2, 因此其反射系数R < 0, 故
缩径处反射波与入射波同相(如图6所示). 同样根据平均纵波波速c 和反射波走
时差t′, 可以估算缩径的位置L ′, 即有L ′= ct′ö 2
4)断桩波形曲线
在桩身断裂处, 其反射系数R = 1, 即在桩身断裂处发生全反射, 这时往往可以见到多次反射波, 桩底反射信号很难见到。

4、实际工程中低应变波形曲线
实际施工中桩身材料不是非常均匀一致的,因此实际波形曲线没有理论曲线归整,也就是平直段不完全是一条直线。

1)、完整桩实测波形曲线
2)、扩径桩实测波形曲线
3)、缩径桩实测量波形曲线
4)、离析桩实测曲线
在桩身离析和胶结不良处有ρ1 = ρ2 , c1= c2, A 1= A 2, 其反射系数R > 0, 故反射波与入射波理论上应该同相, 但由于波速发生改变, 使得波的频率也发生变化, 其高频成分衰减较快, 使得波形变得平坦(如图所示).至于是由离析还是胶结不良引起的, 则要结合施工时的情况和地质报告等辅助资料来加以区
分。

5)、断桩实测波形曲线
6)、嵌岩桩实测波形曲线
对嵌岩桩, 如果桩底没有浮渣或浮渣比较少, 桩和基岩接触良好, 则桩底
反射信号不明显, 但经过指数放大等技术处理, 有时可以见到一反相反射信号. 如果桩底浮渣较多, 有时可以看到一同相反射波出现, 由于浮渣对波的吸收较强, 有时也很难见到反射信号(如图)
5、检测中注意事项
1)激振问题
激振脉冲波的频率大约在300~ 1 500 Hz 左右. 不同的桩长和桩型, 其激振的频率不一样, 一般60 m 左右的摩擦桩或30 m 左右的摩擦端承桩, 脉冲波的主频在300~ 500 Hz 左右; 10~ 20m 的短桩, 脉冲波的主频在500~ 1 000 Hz 左右; 小于10 m 的短桩, 脉冲波主频可高至1 000~ 1 500 Hz.
激振时另外一个要注意的问题是激振的能量要适中, 并不是能量越大越好. 对于硬地层, 由于桩身内脉冲波能量扩散较多, 其所需的激振能量应稍微大一些. 此外, 激振时要干脆、利索, 不要拖泥带水, 最好是由有经验的人专门激振。

2)传感器与粘结剂的选择
传感器是基桩检测的“眼睛”, 它的频响特性、阻尼大小、灵敏度和动态范围等对实测波形的影响非常大. 反射波法对传感器有特殊的要求, 由于传感器处于激振点附近, 很强的激振信号要不畸变的接收下来, 同时又要把传播几十米长距离后反射回来的波加以接收转换成电信号, 因此传感器的量程范围和动态范围要足够宽, 且要有较高的灵敏度. 在强烈的激振下, 其余振要短, 这就要求它有良好的阻尼特性.。

在传感器性能较好的情况下, 必须选择好粘结剂, 使传感器与基桩得到较好的耦合. 目前常用的粘结剂有石膏粉、橡皮泥、蛇皮膏、黄油等, 此外, 有些检测人员还使用咀嚼后的口香糖作为粘结剂. 在这些粘结剂中, 石膏粉粘结的耦合频率较高, 而后几种的耦合频率较低. 应该注意的是, 当桩头较湿时, 采用橡皮泥和蛇皮膏作为粘结剂其粘结的效果不是很好, 此时最好用石膏粉。

3)、桩头的处理
灌注桩的桩头往往有一层浮浆, 特别是人工挖孔灌注桩, 由于桩头一般低于地面, 成桩后经沉淀作用, 会使桩身上部出现一层较厚的浮浆, 这使得在用小锤激振时能量不够集中, 发散较快, 激振的脉冲波频较低, 影响检测效果, 因此在检测时必须将浮浆打掉, 同时保持桩头平整.
此外, 预制桩在贯入过程中桩头可能产生破损, 灌注桩在破除浮浆时也可使桩头产生破碎, 这将使弹性波能量快速衰减, 严重时使激发的脉冲波不规则, 严重影响检测效果, 甚至造成误判现象. 因此, 我们在检测时要注意桩头情况.
4)、辅助资料的收集
在进行桩基检测时应该注意辅助资料的收集, 结合辅助资料来分析桩身的缺陷类型. 这些辅助资料包括岩土工程地质勘察报告、灌注桩的成孔工艺、成桩机具和工艺以及桩基施工记录等. 根据这些辅助资料, 可以分析可能出现哪些缺陷, 甚至缺陷出现的部位。

相关文档
最新文档