高等数学A1教学PPT课件1:01-函数概念与基本性质
合集下载
函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程
《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
高等数学第一章1.1 函数ppt课件
22 22 2222 a b 2 a b c d c d
2 2 22 22 (| x | | y |) | x y | 2 a b c d 2 ac 2 b
为证三角不等式只须证明
2 22 2 ac bd a b c d
为证上式,又只须证明
点a叫做这邻域的中心 , 叫做这邻域的半径 .
U ( a ) { x a x a } .
a
a
0
a
x
U a ). 点 a 的去心的 邻域 , 记作 (
U ( a ) { x 0 x a } .
a a ; ab a b ; 运算性质: b b a x a ; x a ( a 0 ) x a 或 x a ; x a ( a 0 )
a , b R , 且 a b .
{ x a x b } 称为开区间,
o a b { x a x b } 称为闭区间, o
记作 ( a ,b )
x 记作 [ a ,b ] x
a
b
{ x a x b } 称为半开区间, { x a x b } 称为半开区间,
(3) 狄利克雷函数
1 当 x 是有理数时 yD (x ) 0 当 x 是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g ( x )} y min{ f ( x ), g ( x )}
y
f (x)
y
f (x)
g(x)
o
x
g(x)
x y x y . 绝对值不等式: 绝对值不等式的两个变形公式:
2 2 22 22 (| x | | y |) | x y | 2 a b c d 2 ac 2 b
为证三角不等式只须证明
2 22 2 ac bd a b c d
为证上式,又只须证明
点a叫做这邻域的中心 , 叫做这邻域的半径 .
U ( a ) { x a x a } .
a
a
0
a
x
U a ). 点 a 的去心的 邻域 , 记作 (
U ( a ) { x 0 x a } .
a a ; ab a b ; 运算性质: b b a x a ; x a ( a 0 ) x a 或 x a ; x a ( a 0 )
a , b R , 且 a b .
{ x a x b } 称为开区间,
o a b { x a x b } 称为闭区间, o
记作 ( a ,b )
x 记作 [ a ,b ] x
a
b
{ x a x b } 称为半开区间, { x a x b } 称为半开区间,
(3) 狄利克雷函数
1 当 x 是有理数时 yD (x ) 0 当 x 是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g ( x )} y min{ f ( x ), g ( x )}
y
f (x)
y
f (x)
g(x)
o
x
g(x)
x y x y . 绝对值不等式: 绝对值不等式的两个变形公式:
高一数学ppt课件函数
的。
有界性
函数在其定义域内有最 大值和最小值。
周期性
函数在其定义域内每隔 一定周期重复出现。
对称性
函数图像关于某条直线 对称。
02
函数的分类
一次函数
01
02
03
04
一次函数是函数的一种,其图 像为一条直线。
一次函数的一般形式为 y = ax + b,其中 a 和 b 是常数
,且 a ≠ 0。
一次函数的图像会根据 a 和 b 的值变化,当 a > 0 时,函 数为增函数;当 a < 0 时,
在物理学中,许多基本定律和定 理都是通过函数来表达的,如牛
顿第二定律和万有引力定律。
化学反应的动力学
在化学反应动力学中,反应速率 与反应物浓度的关系通常可以用 函数来表示,如指数函数和双曲
线函数。
生物学的生长模型
在生物学中,许多生物体的生长 和繁殖规律可以用函数来描述, 如指数增长和逻辑斯蒂增长模型
函数为减函数。
一次函数在数学、物理和工程 等领域有广泛应用。
二次函数
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,且 a ≠ 0。
二次函数的图像会根据 a 的值变化, 当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
二次函数的图像是一个抛物线,其顶 点坐标可以通过公式 (-b/2a, cb^2/4a) 计算得出。
三角函数
三角函数包括正弦函数、余弦 函数和正切函数等。
三角函数的图像是周期性的波 形曲线。
三角函数的性质包括周期性、 奇偶性和振幅等,对于不同的 函数表达式有不同的性质。
三角函数在解决实际问题如振 动、波动和交流电等方面有广 泛应用。
有界性
函数在其定义域内有最 大值和最小值。
周期性
函数在其定义域内每隔 一定周期重复出现。
对称性
函数图像关于某条直线 对称。
02
函数的分类
一次函数
01
02
03
04
一次函数是函数的一种,其图 像为一条直线。
一次函数的一般形式为 y = ax + b,其中 a 和 b 是常数
,且 a ≠ 0。
一次函数的图像会根据 a 和 b 的值变化,当 a > 0 时,函 数为增函数;当 a < 0 时,
在物理学中,许多基本定律和定 理都是通过函数来表达的,如牛
顿第二定律和万有引力定律。
化学反应的动力学
在化学反应动力学中,反应速率 与反应物浓度的关系通常可以用 函数来表示,如指数函数和双曲
线函数。
生物学的生长模型
在生物学中,许多生物体的生长 和繁殖规律可以用函数来描述, 如指数增长和逻辑斯蒂增长模型
函数为减函数。
一次函数在数学、物理和工程 等领域有广泛应用。
二次函数
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,且 a ≠ 0。
二次函数的图像会根据 a 的值变化, 当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
二次函数的图像是一个抛物线,其顶 点坐标可以通过公式 (-b/2a, cb^2/4a) 计算得出。
三角函数
三角函数包括正弦函数、余弦 函数和正切函数等。
三角函数的图像是周期性的波 形曲线。
三角函数的性质包括周期性、 奇偶性和振幅等,对于不同的 函数表达式有不同的性质。
三角函数在解决实际问题如振 动、波动和交流电等方面有广 泛应用。
《高一数学函数性质》课件
函数在物理中的应用包括运动学、力学、 电磁学等领域,用于描述物理量的变化。
3 函数在经济中的应用
4 函数在生物中的应用
经济学中的函数应用主要涉及到市场分析、 成本效益分析和经济模型等方面。
生物学中的函数应用主要涉及到种群增长、 代谢率、酶动力学等方面。
总结
函数的性质和运算
通过总结这些函数的性质和 运算,我们能够更好地理解 和应用函数。
二次函数
二次函数的最高次项为二次,表达式一般为 y = ax^2 + bx + c,其中 a、b、c 是实数且 a ≠ 0。
三次函数
三次函数的最高次项为三次,表达式一般为 y = ax^3 + bx^2 + cx + d,其中 a、b、c、d 是实数且 a ≠ 0。
指数函数
指数函数以指定的底数为底,自变量是指数的 函数,表达式一般为 y = a^x,其中 a 是正实数 且不等于 1。
常见函数的性质
对数函数
对数函数是指数函数的反函数,以指定的底数 为底,自变量是函数值的函数,表达式一般为 y = log_a(x),其中 a 是正实数且不等于 1。
正弦函数
正弦函数是三角函数之一,在平面直角坐标系 上呈现周期性变化的波形,表示为 y = sin(x),其 中 x 表示弧度。
余弦函数
《高一数学函数性质》 PPT课件
# 高一数学函数性质
函数的定义与性质,包括定义域、值域、象,图像与单调性,奇偶性和周期 性等。
函数的定义与性质
函数的定义
函数是一种特殊的关系,它将一个集合的每 个元素映射到另一个集合的唯一元素。
定义域、值域和象
函数的定义域是指能使函数有意义的实数集 合,值域是函数的所有可能输出的实数集合。
人教高中数学A必修一《函数的概念》函数的概念与性质PPT教学课件
.
(b , +∞)
。
[b , +∞)
.
(-∞,+∞) 数轴上所有的点
例题四:把下列集合用区间表示出来:
(1){x|3<x<5}; (2){x|x≤6}; (3){x|1<x<3}∪{x|7<x<8}; (4){x|x≠0}; (5){x|5≤x<7}.
20
答案 (1)(3,5); (2)(-∞,6]; (3)(1,3)∪(7,8); (4)(-∞,0)∪(0,+∞); (5)[5,7).
7
二 十 世 纪
康托尔提出了我们今天要学习的函数的概念
8
二.函数的概念
设A,B是非空的数集,如果按某个确定的对应关系f,使对于集合A中 的任意一个x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数,记作y=f(x),其中x∈A,y∈B.
其中x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y值叫 做函数值。
例题五:
(1){x|x≤-3}用区间表示为
答案: (1)(-∞,-3]
(2)数集{x|x>5}用区间表示为
(2)(5,+∞)
(3)数集{x|1<x≤7}用区间表示为
(3)(1,7]
(4)数集{x|x<-2或x≥6}用区间表示为 (4)(-∞,-2)∪[6,+∞)
21
注意:
1.区间是集合 2.区间的左端点必须小于右端点 3.区间中的元素都是实数,可以在数轴上表示出来 4.以-∞或+∞为区间的一端时,这一端必须是小括号
函数的概念
我们知道的函数有哪 些?
高一必修一数学课件PPT
03
角度与弧度的互化
掌握角度与弧度之间的转换方法,进行实例计算。
三角函数定义及性质
三角函数定义
学习正弦、余弦、正切等三角函数的 定义,掌握各象限内三角函数的取值 。
单位圆与三角函数线
三角函数的性质
探讨三角函数的奇偶性、周期性等基 本性质,进行应用分析。
利用单位圆理解三角函数的几何意义 ,绘制三角函数线。
高一必修一数学课件
目录
• 函数与导数 • 三角函数与解三角形 • 数列与数学归纳法 • 平面向量与空间向量初步认识 • 立体几何初步认识 • 不等式与线性规划问题求解策略
01 函数与导数
函数概念及性质
函数定义
明确函数的概念,理解函数的三 要素,掌握函数的表示方法。
函数的性质
理解函数的单调性、奇偶性、周 期性等基本性质,并能进行简单 应用。
展示线性规划问题的求解过程和应用价值。
1.谢谢聆 听
两角和与差公式
01
02
03
两角和公式
学习正弦、余弦、正切的 两角和公式,理解公式的 推导过程。
两角差公式
掌握正弦、余弦、正切的 两角差公式,进行实例计 算。
二倍角公式
推导正弦、余弦、正切的 二倍角公式,解决相关问 题。
解直角三角形和应用举例
解直角三角形
运用三角函数知识解决直角三角形中的边长和角度问题。
等差数列通项公式
an=a1+(n-1)d,其中d为公差。
等差数列前n项和公式
Sn=n/2(2a1+(n-1)d)。
等比数列及其前n项和公式推导
等比数列定义
01
从第二项起,每一项与它的前一项的比等于同一个常数的一种
函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
函数的基本性质ppt课件
−
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
函数概念ppt课件
复合函数的运算规则
复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1
。
02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。
复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1
。
02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。
函数的概念ppt课件
函数的特性
确定性
对于给定的输入值,函数总是产生一个唯一的 输出值。
可计算性
函数可以在有限的步骤内计算出输出值。
可重复性
对于相同的输入值,函数总是产生相同的输出值。
函数的类别
多项式函数
由多项式组成的函数,如二次 函数、三次函数等。
指数函数
输出值与输入值的指数相关的 函数。
线性函数
输出值与输入值成正比关系的 函数。
极限的分类
根据函数趋于某点的不同方 式,极限分为左极限和右极 限。
极限的性质
极限具有唯一性、有界性、 局部保号性等性质。
极限的运算性质
极限的加减乘除法则
极限的加减乘除运算法则可以用来计算极限。
极限的复合运算
复合运算是指将多个基本运算组合在一起进行计算。
重要极限及其推论
重要极限是极限计算中常用的几个基本极限,它们具 有形式简单、应用广泛的特点。
优化组织管理
在组织管理中,函数可以用来优化流程和资源配置,提高组织效率和 绩效。
1.谢谢聆 听
对应关系
自变量与因变量之 间的对应关系。
变量
函数中的自变量和 因变量。
定义域
函数中自变量的取 值范围。
解析式
用数学表达式来表 示函数关系。
值域
函数中因变量的取 值范围。
图表法表示函数
坐标系
建立直角坐标系,以横轴表示自变量,纵轴 表示因变量。
连线
描点
根据函数的对应关系,在坐标系上描出相应 的点。
用平滑的曲线将这些点连接起来,形成函数 图像。
函数的连续性
连续性的定义
如果函数在某一点处的极限等于该点的函数 值,则函数在该点连续。
大一-高等数学函数ppt课件
AB
由属于A但不属于B的元素组成的集称 为A与B的差集,记作A–B 或A\ B 即
A B {x |x A 但 x B }
AB
返回 上页 下页
完整版PPT课件
15
全集 :又所研究的全 成部 的事 集物 合构 称 . 为
积为 I或U. 若研究某一问题 考时 虑将 对所 象的全体 集看 ,作全
记为 I,则对于任意 A集I,I合 A(即I \ A)称为 A的补集,
A BA B(或A (B)cAc Bc)德 . 摩根 . 律
返回 上页 下页
完整版PPT课件
17
二.区间与邻域
设a和b都是实数,将满足不等式a<x<b的所有实数组 成的数集称为开区间,记作(a,b)即
(a,b) ={x|a<x<b}, a和b称为开区间(a,b)的端点,这里a (a,b)且b (a,b). 数集 [a,b]={x|a≤x≤b}为闭区间,a和b也称为闭区间[a,b]的 端点 , a∈[a,b]且b∈[a,b].
返回 上页 下页
完整版PPT课件
5
第四,理清脉络。对所学的知识要有一个整体的把 握,及时总结知识体系,这样不仅可以加深对知识的 理解,还会对进一步的学习有所帮助。
返回 上页 下页
完整版PPT课件
6
微积分是近代数学发展的里程碑
微积分的建立是人类头脑最伟大的创造之一, 一部微积分发展史,是人类一步一步顽强地认 识客观事物的历史,是人类理性思维的结晶。 它给出的一整套科学方法,开创了科学的新纪 元,并因此加强与加深了数学的作用。 恩格斯说:“在一切理论成就中,未必再有什么像 17世纪下半叶微积分的发现那样被看作人类精神的 最高胜利了。如果在某个地方我们看到人类精 神的纯粹的和惟一的功绩,那就正是在这里。”
新教材高中数学人教A版必修第一册第一节函数的概念PPT课件
第三章 函数的概念与性质
3.1.1 函数的概念及其表示
函数是刻画变量之间对应关系的数学模型和工具
初中函数的概念定义
如果有两个变量x和y,并且对于x的每一个确定 的值,y都有唯一的值与其对应. 那么就说x叫做 自变量,y是x的函数。 l
(1)正方形的周长l与边长x的对应关系 l 4x 这个函数与正比例函数y 4x相同吗?
(2)y x与y x 2 是同一函数吗? x
问题1 某“复兴号”高速列车加速到350km/h后保 持匀速运行半小时.
(1)在这半小时内,列车行进的路程S与运行时 间t的关系如何表示?这是一个函数吗?
S=350t
对于任一时刻t,都有唯一确定的路程S和它对应.
(2)有人说:这趟列车加速到350km/h后,运行 1h就前进了350km。“你认为这个说法正确吗? 你能确定这趟列车运行多长时间前进210km 吗?”
{y y f x, x A}
新教材高中数学人教A版必修第一册第 一节函 数的概 念PPT 课件
新教材高中数学人教A版必修第一册第 一节函 数的概 念PPT 课件
函数三要素
定义域 对应关系f 值域
根据函数三要素来熟悉一次函数,二 次函数和反比例函数
函数
定义域
值域
对应关系f
y kx bk 0 R
例题讲解 例1 已知函数 f (x) x 3 1 .
2 x
⑴求函数的定义域;
⑵求 f (3), f ( 2)的值;
3
⑶当a 0时,求 f (a), f (a 1)的值。
例2下列哪个函数与 y = x 是同一函数?
⑴ y ( x)2;
⑵ y 3 x3;
⑶ y x2;
x2 ⑷ y .
3.1.1 函数的概念及其表示
函数是刻画变量之间对应关系的数学模型和工具
初中函数的概念定义
如果有两个变量x和y,并且对于x的每一个确定 的值,y都有唯一的值与其对应. 那么就说x叫做 自变量,y是x的函数。 l
(1)正方形的周长l与边长x的对应关系 l 4x 这个函数与正比例函数y 4x相同吗?
(2)y x与y x 2 是同一函数吗? x
问题1 某“复兴号”高速列车加速到350km/h后保 持匀速运行半小时.
(1)在这半小时内,列车行进的路程S与运行时 间t的关系如何表示?这是一个函数吗?
S=350t
对于任一时刻t,都有唯一确定的路程S和它对应.
(2)有人说:这趟列车加速到350km/h后,运行 1h就前进了350km。“你认为这个说法正确吗? 你能确定这趟列车运行多长时间前进210km 吗?”
{y y f x, x A}
新教材高中数学人教A版必修第一册第 一节函 数的概 念PPT 课件
新教材高中数学人教A版必修第一册第 一节函 数的概 念PPT 课件
函数三要素
定义域 对应关系f 值域
根据函数三要素来熟悉一次函数,二 次函数和反比例函数
函数
定义域
值域
对应关系f
y kx bk 0 R
例题讲解 例1 已知函数 f (x) x 3 1 .
2 x
⑴求函数的定义域;
⑵求 f (3), f ( 2)的值;
3
⑶当a 0时,求 f (a), f (a 1)的值。
例2下列哪个函数与 y = x 是同一函数?
⑴ y ( x)2;
⑵ y 3 x3;
⑶ y x2;
x2 ⑷ y .
人教版A版必修一《函数的概念及其表示》课件ppt
自主诊断 2.(多选)(2023·南宁质检)下列图象中,是函数图象的是
√
√
√
在函数的对应关系中,一个自变量只对应一个因变量,在图象中, 图象与平行于y轴的直线最多有一个交点,故选项B中的图象不是函 数图象.
自主诊断
3.(多选)下列选项中,表示的不是同一个函数的是
A.y= x3+-3x与 y=
x+3 3-x
(4)若对任意实数x,均有f(x)-2f(-x)=9x+2,求f(x)的解析式.
0
(解方程组法)∵f(x)-2f(-x)=9x+2,
①
∴f(-x)-2f(x)=9(-x)+2,
②
由①+2×②得-3f(x)=-9x+6,
∴f(x)=3x-2(x∈R).
思维升华
函数解析式的求法 (1)配凑法.(2)待定系数法.(3)换元法.(4)解方程组法.
√B.y=x2 与 y=(x-1)2 √C.y= x2与 y=x
√D.y=1 与 y=x0
自主诊断
对于 A 选项,y= x3+-3x的定义域是[-3,3), y= x3+-3x的定义域是[-3,3), 并且 x3+-3x= x3+-3x,所以两个函数的定义域相同,对应关系相同, 所以是同一个函数;
√C.f(x)=x-,xx,≥x0<,0, g(t)=|t|
D.f(x)=x+1,g(x)=xx2--11
对于 A,f(x)= x2的定义域为 R,g(x)=( x)2 的定义域为[0,+∞), 不是同一个函数; 对于B,f(x)的定义域为{x|x≠0},g(x)的定义域为{x|x≠1},不是同一 个函数; 对于C,两个函数的定义域、对应关系均相同,是同一个函数; 对于 D,f(x)=x+1 的定义域为 R,g(x)=xx2--11的定义域为{x|x≠1}, 不是同一个函数.
高等数学教学课件 第一节 函数的概念1
数 {xx 集 a} 称a 的 为 邻 ,点 域
点a叫做这邻域的中心 , 叫做这邻域的半径.
记作 U ( a , ) { x a x a } .
a
a
a x
点 a的去心 邻的 域 ,记作U(a,).
。
U (a,){x0xa}.
8/48
为了方便, 有时把(开 a,区 a)称 间a 为 的
2.复合函数可以由两个以上的函数经过复 合构成.
例如y coxt, y u, ucov,tv x .
2
2
2、初等函数 由常数和基本初等函数经过有限次
四则运算和有限次的函数复合步骤所构成并可用
一个式子表示的函数,称为初等函数.
31/48
6. 函数的运算
设f(函 x )g ,(x ) 的 数定 D 1 ,D 2 ,义 D D 1域 D 2 Φ , 为 则我们可以定义这函两数个的下列运算:
y
y f (x)
f (x2 )
f ( x1 )
o
x
I
22/48
设函 f(x)数 的定D 义 , 区 域 I间 为 D ,
如果 I上 对任 于 x 1 及 x 2 意 ,区 当 x 1 两 x 2 间 时 , 恒 ( 2 )f有 (x 1 ) f(x 2 ),
则称函 f(x)在 数区 I上 间是单调 ; 减
左 邻域, 把开 (a,区 a)间 称a为 的 右 邻域.
有时候我们只关邻心域某的个中a心, 是
而没有必要强 半调 径邻 时域 ,的 我 U(a)们 表就 示用
点a的某个邻域.
9/48
二、函数概念
定义 设 x和 y 是两个变量,D是一个给定的数集, 如 果 对 于 每 个 数 xD,变量 y 按照一定法则总有
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x D~g Dg
称之为函数 y f (u) 与 u g(x) 复合而成的复合函数。
其中,u 称为中间变量。
复合函数
u g(x)
·x
D g D~ g
Rg Df
Rg
y f (u)
u
· · D f
··y R f
? 如何
描述
例13
由函数 y u
u [0, ) ,
u 1 x2 可构成复合函数
22
画画图就一目了然.
我们以后将运用微积分的方法研究函数的单调性。
2. 有界性 有界性
有界 有上界 有下界
函数有界性的定义
设函数 y = f ( x ) 在区间 I 上有定义。 若存在实数 A , B , 使对一切 x I 恒有
A f(x)B 则称函数 y = f ( x ) 在区间 I 上有界。
x0 I , 使得 | f ( x0 ) | > M 成立。
例8 讨论函数函数的有界性 :y x2。
解 函数的定义域为: Df (, ) 。
因为 M 0,取 x0 M 1(, ),有 | f (x0 ) | ( M 1)2 M 1 M,
故函数 y x2 在其定义域内是无界的。
2. 函数的表示法
解析法 表格法 图示法
3. 求函数定义域举例
数学分析的主要研究对象是函数,确定函数的 定义域是一件十分重要的事情。
通常依据:分式的分母不能为零;负数不能开 偶次方;已知的一些函数的定义域;物理意义;几 何意义等来确定函数的定义域。
例1
求函数 y 4 x2 1 的定义域. ln(x 1)
x A, 存在唯一的y R,按照规则 f 与 x 对应,
则称 f 为定义在 A 上的函 数,记为
y f (x),x A。 其中,A 称为函数 f 的定义域。
习惯上,称 f (x) 为函数,或称 y
实质上,函数 y f (x) 就是映射
是 x 的函数;称
f : AR
曲线 y f (x) 为
高等院校非数学类本科数学课程
高等数学A1
—— 一元微积分学
首先,理解基本概念。数学中有很多概念。
概念反映的是事物的本质,弄清楚了它是如何定 义的、有什么性质,才能真正地理解一个概念。
其次,掌握基本理论(定理性质推论结论
等)。定理是一个正确的命题,分为条件和结论 两部分。对于定理除了要掌握它的条件和结论以 外,还要搞清它的适用范围,做到有的放矢。
在不需要区别上面两种情况时,一般将统称为函 数在区间 I 上单调增加, 记为 f (x) I 。
设函数 f (x) 在区间 I 上有定义, x1,x2 I, 若 x2 x1 f (x2 ) f (x1),则称函数 f (x) 在区
间 I 上是单调减少的。 若 x2 x1 f (x2 ) f (x1),则称函数 f (x) 在区
2 t 2, 2 t 3,
x2 2x 1, 1 x 2, 故 f (x)
2x 2, 2 x 3,
1, x 0
例4
求
y
sgn x
0,
x0
的定义域。
1, x 0
解
y y = sgn x
1
O
x
1
该函数称为符号函数,其定义域为 ( , ) .
也称为克朗涅哥函数
例5
x R , 将 x 表示为:
。 O 1 2 3 4 x
3 3 0 [3] 3
1
。。 2
3 3 0
3
[3] 3
想想取整函数的图形是什么样子?
例6
Dirichlet 1805—1859
狄利克雷函数就不能作 出几何图形.
1, x 为有理数 y D(x)
0 , x 为无理数
狄利克雷是德国数学家,他以出色的数学才 能,以及在数论、分析和数学物理方程等领域的 杰出成果,成为继高斯之后与雅可比齐名的德国 数学界的核心人物之一。
设有映射 y f (u) , u Df 及 u g(x) , x Dg ,
如果对于映射 g(x) 的定义域 ( 或定义域的一部分 )中
的每一个 x 所对应的 u 值,都属于 f (u) 的定义域 Df ,
那么, 将 u g(x) 代入 y f (u) 消去 u 后, 就有
y f (g(x)) ( f g) (x)
解
由负数不能开偶次方, 得
4 x2 0 x [2, 2 ]
由对数函数的定义域, 得
x 1 0 x (1, )
由分母不能为零, 得
ln (x 1) 0 x 2
综上所述,该函数的定义域为 D = ( 1, 2 ) 。
例2
设f
(x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2
P21 第5,7行有误。
三、函数的代数运算 函数的加减乘除
判断函数相同
如何判断两个函数是否相同? 定义域与对应规则均相同的两个函数相同。
例11 函数 f (x) ln x2 与 g(x) 2 ln x 是否相同?
解
f (x) 的定义域为
Df (, 0) (0, ) ,
g(x) 的定义域为 Dg (0, ) ,
二、函数的基本性质
单调性 有界性 奇偶性 周期性
1.单调性 设函数 f (x) 在区间I 上有定义, x1,x2 I ,
若 x2 x1 f (x2 ) f (x1),则称函数 f (x) 在区 间 I 上是单调增加的。
若 x2 x1 f (x2 ) f (x1),则称函数 f (x) 在区 间 I 上是严格单调增加的。
偶函数的图形 关于 y 轴对称。
奇函数的图形 关于坐标原点对称。
例9 指出下列函数在其定义域内 哪些是奇函数,哪些是偶函数:
奇 1) y sin x 偶 2) y cosx 奇 3) y x
4) y x x4 偶 5) y | x | 偶 6) y 5 奇 7) y sgn x 奇 8) y ln ( x 1 x2 )
若函数 y f (x) 在区间 I 上有下界,则必有
无穷多个下界,所有下界中最大者称为函数在区 间 I 上的下确界,记为 inf f (x) 。
xI
可以证明:有上(下)界的函数必有上(下)确界.
提一个问题: 如何证明或判断函数无界?
证明或判断无界,通常依据:
函数 y = f (x) 在区间 I 上无界, 则不论 M > 0 的值取得多么大, 总
y
y= f( x )
O
x
m
O
x
在区间 I 上:
函数 y = f ( x ) 有界
f ( x ) 既有上界又有下界.
y
B
y f (x)
O
x
A
若函数 y f (x) 在区间 I 上有上界,则必有 无穷多个上界,所有上界中最小者称为函数在区 间 I 上的上确界,记为 sup f (x) 。
xI
有上(下)界的函数是否必有上(下)确界?
证明提示:令 f (x) g(x) h(x),其中
g(x) f (x) f (x),h(x) f (x) f (x)。
2
2
4. 周期性
设函数 y = f ( x ) , x (, ) 。
若存在 0 , 对一切 x (, ) 恒有
y=f(x)=f(x),
则称 f ( x )为周期函数, 称为函数 f ( x )
间 I 上是严格单调减少的。
在不需要区别上面两种情况时,一般将统称为函数 在区间 I 上单调减少, 记为 f (x) I 。
函数的单调性是一个局部性的
性质, 它与所讨论的区间I 有关.
例7 y sin x 在其定义域内不是单调函数,但
在 [ , ] 上,sin x ;
22
在 [ , 3 ] 上,sin x ;
4) 既不是奇函数又不是偶函数
定理
在关于坐标原点对称的区间 I 内: 两个偶(奇)函数之和仍是一偶(奇)函数。 两个偶(奇)函数之积均为一个偶函数。 一个偶函数与一个奇函数之积是一个奇函数。
定理
在关于坐标原点对称的区间 I 内有 定义的任何一个函数 f ( x ),均可表示为 区间 I 内的一个偶函数与一个奇函数之和 的形式。
否则, 称函数 y = f ( x ) 在区间 I 上无界。
函数有界示意图
y
y
B y= f( x )
O
x
A
O
x
B
y= f( x ) A
函数 y = f ( x ) 在区间 I 上有界
M 0,使 | f (x) | M。
设函数 y = f ( x ) 在区间 I 上有定义。
若存在实数 M (可正, 可负),对一切 x I 恒有
x (, )
y 1 x2
x [1, 1]
函数复合后一般应重新验证它的定义域
例14 解
函数 y arccos ln(x2 1) 是由哪几个
2. 了解函数的单调性、有界性、奇偶性和 周期性,熟悉基本初等函数的性质及其图 形。
3. 理解初等函数的概念,会建立简单实际 问题中的函数关系式。
函数的概念与基本性质
一、函数的概念 二、函数的基本性质 三、函数的代数运算 四、反函数
一、函数的基本概念
1. 函数的定义
设A 为非空实数集。若存在一个规则 f,使得
解
f
(x)
1 2
0 x1 1 x2
f
(x
3)
1 2
0 x31 1 x32
1 3 x 2
2 2 x 1 故 D f :[3,1]
x2, 0 x 1,
例3 已知 f (x 1)