丙烷脱氢(PDH)介绍 PPT
丙烷脱氢(PDH)介绍
![丙烷脱氢(PDH)介绍](https://img.taocdn.com/s3/m/002d5176b84ae45c3b358c51.png)
C3H6+ H2
传统的蒸汽热裂解装置(乙烯装置),C-C和C-H打断, 生产乙烯和丙烯。温度800~920℃,转化率~93%,乙烯 收率~42%,丙烯~17%。
• 催化脱氢:
所谓的“丙烷脱氢”,温度590~630 ℃ ,单程转化率 33%~44%,选择性~86%。
丙烷脱氢制丙烯反应热力学 性质
(1)吸热反应; (2)平衡常数随温度的升高而增大; (3)分子数增加的可逆反应;
• 近年来随着乙烯装置原料轻质化,丙烯相的缺口增大, 丙烷脱氢开始兴起。
• 结论:需求推动生产,丙烯属于大宗产品,需求量大尤其 下游需求大据[中国化工报]报道仅聚丙烯:预计新增产能 超过300万吨至2500万吨以上。下游需求增速约7.7%,进 口量280万吨,国内产量约2000万吨,产能利用率为80%
• 聚丙烯(PP)、异丙苯、羰基醇、丙烯腈、环氧丙 烷、丙 烯酸….
PDH
DCC/CPP
MTO
乙烯裂解
FCC
丙烷脱氢
PROPANE DEHYDROGENATION 一、丙烷脱氢反应机理 二、丙烷脱氢主要工艺技术及特点 三、工艺命脉,谁主沉浮
从丙烷脱氢到丙烯
• 反应表观方程式:
C3H8
• 热裂解脱氢:
• 设备管道材料复杂,高温钢(304H),普通碳钢 ,低温碳钢或低温合金钢(A33GR6,09MnNiDR ,3.5Ni),不锈钢。
• 反应器衬耐火材料。
• 高温管道,低温管道应力计算,反应框架的结构 设计,诸多机组采购技术服务,大型设备的专门 设计。
五、丙烷脱氢的工程特点
Catofin反应器衬里
Oleflex流程简图
反应区、
催化剂连续再生区、 产品分离区
丙烷脱氢介绍
![丙烷脱氢介绍](https://img.taocdn.com/s3/m/1030f48d856a561252d36f7e.png)
五、丙烷脱氢的工程特点 Catofin反应器衬里
谢谢
2020/11/26
37
技术
工艺仍在改进,殊途同归,任重道远
谢谢!
Catofin 流程简图
四、丙烷脱氢主要工艺技术 Catofin反应五步骤示意
四、丙烷脱氢主要工艺技术 Catofin反应器简图
四、丙烷脱氢主要工艺技术 Star流程简图
四、丙烷脱氢主要工艺技术 Star反应器简图
四、丙烷脱氢主要工艺技术 脱乙烷塔
湿火炬(WF) ,干火炬(DF), 冷火炬(CF),液体倒空系统(LD) 其它: 燃料气,循环水,仪表空气,工厂空气…..
丙烷脱氢的工程特点(四)
• 设备大型化,管道“设备化”。 • 设备管道材料复杂,高温钢(304H),普通碳钢,低温碳钢或低温合金钢(A33GR6,09MnNiDR
,3.5Ni),不锈钢。 • 反应器衬耐火材料。
1、反应原料加热、进出料换热、余热回收(废锅)互相交错; 2、再生空气加热、再生空气换热、余热回收(废锅)互相交错。 (二)压缩: 三段压缩,闭环的调温水系统回收低温热能,用于产品塔塔釜加热热源。
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二) (三)产品回收(低温回收):
目的:通过深冷方式回收碳三,同时分离氢气、甲烷等轻烃; 工艺介质从常温逐级冷凝冷却到-98 ℃,丙烯制冷、乙烯制冷提供不同级别冷源:
丙烷脱氢介绍
2020/11/26
1
丙烷脱氢
PROPANE DEHYDROGENATION 一、丙烷脱氢反应机理 二、丙烷脱氢主要工艺技术及特点 三、工艺命脉,谁主沉浮
丙烷脱氢(PDH)介绍(格式整齐)
![丙烷脱氢(PDH)介绍(格式整齐)](https://img.taocdn.com/s3/m/09e16b2359eef8c75fbfb3c7.png)
18
四、丙烷脱氢主要工艺技术
Star反应器简图
高级材料
19
高级材料
20
高级材料
21
高级材料
22
四、丙烷脱氢主要工艺技术
脱乙烷塔
高级材料
23
四、丙烷脱氢主要工艺技术
产品精制
高级材料
24
四、丙烷脱氢主要工艺技术
丙烯制冷简图
高级材料
25
高级材料
26
高级材料
27
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(一)
(二)压缩:
三段压缩,闭环的调温水系统回收低温热能,用于产品塔 塔釜加热热源。
高级材料
29
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
(三)产品回收(低温回收):
目的:通过深冷方式回收碳三,同时分离氢气、甲烷等轻 烃;
工艺介质从常温逐级冷凝冷却到-98 ℃,丙烯制冷、乙烯 制冷提供不同级别冷源:
三、丙烷脱氢主要工艺技术
目前主要几种丙烷脱氢技术
高级材料
6
Ol e f le x工艺
• Ol e f le x工艺是UOP公司所拥有的一种烷 烃脱氢专利技术, 至201 4年已建成投产 1 1套生产装置,总 能力达37 40 k t / a
高级材料
7
Oleflex流程简图
反应区、
催化剂连续再生区、 产品分离区
丙烯压缩提供:13℃, -1℃ , -23℃, -35℃ 乙烯制冷提供:-63℃, -100℃
(四)产品精制:
透平的乏汽作为塔釜热源,塔釜的再沸器便是透平的表面 冷凝器。
调温水系统回收低温热能,也用于塔釜热源的一部分。
高级材料
中国丙烷脱氢产业发展分析ppt课件
![中国丙烷脱氢产业发展分析ppt课件](https://img.taocdn.com/s3/m/2225b28f5ef7ba0d4b733b13.png)
丙烷储运条件决定项目选址,对项目经济效益有重要影响。
29
国内在建拟建丙烷脱氢项目布局
30
产业链延伸:
主产品丙烯下游延伸,建设聚丙烯、环氧丙 烷、丙烯酸装置。
副产氢气仅作为燃料影响经济效益,建议与 环氧丙烷、己内酰胺、煤制甲醇、炼油装置 联动考虑,深度利用。大量副产氢气综合利 用对项目经济性有着相当影响。
31
32
13
丙烷脱氢技术特点:
专产丙烯 装置大型化 流程简单 相对投资低 副产单一 低碳环保
14
丙烷脱氢项目可行性分析
15
丙烷脱氢项目可行性分析:
丙烯与丙烷价差 丙烷脱氢项目实施要素
16
丙烷脱氢制丙烯的特点是只用唯一一种原料 丙烷生产一种产品丙烯,与其它生产技术相比, 通过丙烷脱氢技术获得同等规模的丙烯产量相对 简单。但丙烷原料价格对生产成本影响较大,因 此工艺的经济性取决于丙烷与丙烯的差价。
天然气为干气和湿气两种。湿气中的甲烷含量在90%以下,乙烷 、丙烷、丁烷等烷烃含量在10%以上,可将湿气凝析液中的丙烷、丁 烷等组分分离出来获得丙烷。 • 炼油厂液化气
炼油厂液化气是在石油炼制和加工过程中所产生的副产气体,其数 量取决于炼油厂的生产方式和加工深度,一般约为原油质量的4%~10% 左右。根据炼油厂的生产工艺,炼油副产气体含有C1~C5组分,利 用分离吸收装置将其中的C3组分分离提炼出来,获得丙烷。
17
丙烯与丙烷价差
18
丙烷脱氢(PDH)工程经验介绍
![丙烷脱氢(PDH)工程经验介绍](https://img.taocdn.com/s3/m/3839389c998fcc22bcd10d94.png)
2015/7/24丙烷脱氢工程经验介绍PROPANE DEHYDROGENATION (PDH) PROJECT EXPERIENCEsnec丙烷脱氢工程经验介绍PROPANE DEHYDROGENATION (PDH) PROJECT EXPERIENCE概况INTRODUCTION宁波海越丙烷与混合碳四利用项目是浙江省和宁波市“十二五”重点建设项目,项目位于浙江省宁波市北仑青峙工业园区,主要工艺装置有:气分、丙烷脱氢、甲乙酮、异辛烷及配套的锅炉、罐区、循环水场、空分等设施。
其中,丙烷脱氢装置是该项目的核心工艺装置,也是目前国内外已建成的同类最大规模装置之一。
概况INTRODUCTION装置概况如下:生产能力:60万吨/年(单线);产品纯度≥99.6wt%;小时产量:75吨/小时。
操作弹性:60~110%操作时数:连续运行8000小时/年。
技术来源:美国CB&I LUMMUS公司CATOFIN丙烷脱氢工艺。
设计及总承包方:中石化宁波工程公司采取EPC总承包模式,承担丙烷脱氢装置的工程设计(基础工程设计+详细工程设计)、采购、施工(含大型设备吊装)和开车服务等各项工作。
工艺技术及流程TECHNOLOGY & PROCESS本装置引进美国CB&I LUMMUS公司的CATOFIN丙烷脱氢工艺。
该工艺以丙烷为原料,采用高效的铬系脱氢催化剂在八台固定床反应器中进行脱氢反应,再经低温回收及产品精制后,得到聚合级丙烯产品。
该工艺具有丙烷转换率高、丙烯选择性好、原料适应性强及装置在线率高等优点。
⏹反应单元⏹产品压缩单元⏹低温回收单元⏹产品精制单元⏹丙烯制冷单元⏹乙烯制冷单元⏹废水汽提单元•按照工艺流程的要求、物料介质的特性和设备的类型进行布置。
•PDH工艺装置占地长×宽:320m×110m 占地面积:35200平方米注:装置占地不包括配套的公用工程、变电所、仪表机柜间、循环水场等。
丙烷脱氢(PDH)介绍报告
![丙烷脱氢(PDH)介绍报告](https://img.taocdn.com/s3/m/58589ee4770bf78a65295499.png)
四、丙烷脱氢主要工艺技术
丙烷脱氢反应单元
四、丙烷脱氢主要工艺技术
脱乙烷塔
四、丙烷脱氢主要工艺技术
产品精制
四、丙烷脱氢主要工艺技术
丙烯制冷简图
四、丙烷脱氢主要工艺技术
乙烯制冷简图
四、丙烷脱氢主要工艺技术
几种技术各自特点
序号 1 2 3 4 反应器参数 型式 数量/台 操作方式 尺寸 Oleflex 移动床 4 连续 Φ3.2m~4.2m Catofin 固定床 8 循环操作 Φ7.9m×17.2m
四、丙烷脱氢主要工艺技术
Catofin反应器简图
四、丙烷脱氢主要工艺技术
Catofin反应五步骤示意
四、丙烷脱氢主要工艺技术
UOP反应器简图
四、丙烷脱氢主要工艺技术
反应器
四、丙烷脱氢主要工艺技术
Star反应器简图
四、丙烷脱氢主要工艺技术
丙烷脱氢主要单元
• 反应:
原料加热,反应,催化剂再生,预热回收(废锅等)。
丙烷脱氢的工程特点(二)
• 系统复杂: (一)反应系统:
1、反应原料加热、进出料换热、余热回收(废锅)互相 交错; 2、再生空气加热、再生空气换热、余热回收(废锅)互 相交错。
(二)压缩:
三段压缩,闭环的调温水系统回收低温热能,用于产品塔 塔釜加热热源。
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
• 系统复杂: 蒸汽系统:
4.0MPag,1.0MPag,0.35MPag
火炬:
湿火炬(WF) ,干火炬(DF), 冷火炬(CF),液体倒空系统(LD)
其它:
燃料气,循环水,仪表空气,工厂空气…..
丙烷脱氢副产氢
![丙烷脱氢副产氢](https://img.taocdn.com/s3/m/3bc2ed72590216fc700abb68a98271fe910eafdd.png)
丙烷脱氢副产氢摘要:一、丙烷脱氢概述二、丙烷脱氢副产氢的工艺过程三、丙烷脱氢副产氢的应用领域四、丙烷脱氢副产氢的发展前景五、总结正文:一、丙烷脱氢概述丙烷脱氢(PDH,Propane Dehydrogenation)是一种重要的石油化工工艺,其主要目的是通过脱氢反应将丙烷(C3H8)转化为丙烯(C3H6)。
在这个过程中,副产物氢气(H2)被同时产生。
丙烷脱氢副产氢在全球范围内得到了广泛关注,因为它具有较高的经济价值和环保意义。
二、丙烷脱氢副产氢的工艺过程丙烷脱氢副产氢的工艺过程主要包括以下几个步骤:1.原料准备:将丙烷作为原料,经过过滤、干燥等预处理,确保原料的纯净度。
2.脱氢反应:将预处理的丙烷送入脱氢反应器,在高温(约400-600℃)和催化剂的作用下,丙烷发生脱氢反应,生成丙烯和氢气。
3.产物分离:反应产物经过冷却、分离,将丙烯和氢气分离出来。
4.氢气提纯:对副产物氢气进行提纯,以满足不同应用领域的纯度要求。
5.产品应用:将提纯后的氢气应用于各个领域,如石油精炼、化学工业、燃料电池等。
三、丙烷脱氢副产氢的应用领域1.石油精炼:丙烷脱氢副产氢可用于石油精炼过程中的加氢脱硫、加氢裂化等工艺。
2.化学工业:丙烷脱氢副产氢可用于生产氨、甲醇、合成橡胶等化学品。
3.燃料电池:氢气作为燃料电池的燃料,具有高能量密度、无污染等优点。
4.氢能交通:氢气作为新能源汽车的燃料,可实现零排放,有利于改善环境质量。
四、丙烷脱氢副产氢的发展前景随着全球对环保和能源转型的关注,丙烷脱氢副产氢的发展前景十分广阔。
一方面,丙烷脱氢副产氢可以缓解石油资源短缺问题,提高石油化工行业的可持续发展能力;另一方面,丙烷脱氢副产氢有助于推动氢能产业的发展,实现能源结构的优化。
五、总结丙烷脱氢副产氢作为一种清洁、高效的能源,具有广泛的应用前景。
通过优化丙烷脱氢副产氢的工艺过程,提高氢气纯度和产量,有望为我国能源化工行业注入新的活力。
LUMMUS和UOP和STAR丙烷脱氢(PDH)工艺介绍
![LUMMUS和UOP和STAR丙烷脱氢(PDH)工艺介绍](https://img.taocdn.com/s3/m/01dc4a7ef61fb7360b4c65a3.png)
丙烷脱氢2020年1月PROPANE DEHYDROGENATION一、丙烷脱氢反应机理二、轻烃催化脱氢历史变迁三、丙烷脱氢催化剂四、丙烷脱氢主要工艺技术五、丙烷脱氢的工程特点提纲丙烯生产技术FCC DCC/CPP MTO PDH乙烯裂解一、丙烷脱氢反应机理从丙烷脱氢到丙烯•反应表观方程式:C3H8 C3H6+ H2•热裂解脱氢:传统的蒸汽热裂解装置(乙烯装置),C-C和C-H打断,生产乙烯和丙烯。
温度800~920℃,转化率~93%,乙烯收率~42%,丙烯~17%。
•催化脱氢:所谓的“丙烷脱氢”,温度590~630℃,单程转化率33%~44%,选择性~86%。
一、丙烷脱氢反应机理丙烷脱氢制丙烯反应•平衡反应:C3H8C3H6+ H2(吸热)•反应产物、副产物:H2, CH4, C2H4, C2H6, C3H6, C3H8, C4+•热力学性质决定:(1)吸热反应;(2)平衡常数随温度的升高而增大;适当适当的高的反应温度(3)分子数增加的可逆反应;反应压力越低越有利.因此,提高反应温度和降低压力有利于反应向正方向进行;但反应温度过高将造成非催化热裂和深度脱氢反应加剧,导致选择性降低。
通常催化脱氢反应温度控制在590~630 ℃。
温度-热裂解副反应曲线一、丙烷脱氢反应机理轻烃催化脱氢历史变迁•催化剂相同,脱氢温度不同。
•上世纪60年代,正丁烷脱/异丁烷脱氢盛极一时,以获得丁二烯/异丁烯;随着热裂解制乙烯/丙烯并副产丁二烯/异丁烯(即统称的乙烯装置)的发展,催化脱氢制烯烃渐渐退出市场。
•近年来随着乙烯装置原料轻质化,丙烯相对的缺口增大,丙烷脱氢开始兴起。
异丁烷脱氢制异丁烯正丁烷脱氢制丁二烯异丁烷脱氢制异丁烯二、轻烃催化脱氢历史变迁三、丙烷脱氢催化剂丙烷脱氢催化主要有以下几种:铬系催化剂,如Catofin工艺采用的催化剂;铂系催化剂,如Olefex工艺采用的催化剂;氧化脱氢类催化剂。
(氧化脱氢是指在催化剂作用下采用适当的氧化剂与丙烷反应生成丙烯与水,其焓变小于零,为放热反应,无需外界加热、节省能源,与催化脱氢过程相比,可以克服热力学平衡的限制并降低催化剂的减活作用。
丙烷脱氢(PDH)介绍报告 共39页
![丙烷脱氢(PDH)介绍报告 共39页](https://img.taocdn.com/s3/m/c2ded3b1524de518964b7d52.png)
• 后续的各单元,是典型单元操作。与乙烯装置分 离单元相似,但流程相对较短。
四、丙烷脱氢主要工艺技术
Catofin反应器简图
四、丙烷脱氢主要工艺技术
Catofin反应五步骤示意
四、丙烷脱氢主要工艺技术
UOP反应器简图
四、丙烷脱氢主要工艺技术
反应器
Catofin 固定床
4 连续
8 循环操作
Φ3.2m~4.2m
Φ7.9m×17.2m
639~650
590~600
0.23
-0.05
670
400(外壳)
0.65/F.V. 304S.S 加热炉加热反应原料
0.28/F.V.
C.S&耐火材料衬里
热空气加热催化剂+加热 炉适度加热反应原料
UOP提供的Pt系催化剂
C3H8
• 热裂解脱氢:
C3H6+ H2
传统的蒸汽热裂解装置(乙烯装置),C-C和C-H打断, 生产乙烯和丙烯。温度800~920℃,转化率~93%,乙烯 收率~42%,丙烯~17%。
• 催化脱氢:
所谓的“丙烷脱氢”,温度590~630 ℃ ,单程转化率 33%~44%,选择性~86%。
一、丙烷脱氢反应机理
南方化学公司提供的Cr 系催化剂
连续再生(CCR)
间歇切换再生
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(一)
(Catofin PDH) • 工艺参数跨度大:
温度:高温704℃;低温-104℃。
压力:负压:0.05MPa(绝);正压:2.39MPag。
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
丙烷脱氢(PDH)介绍ppt课件
![丙烷脱氢(PDH)介绍ppt课件](https://img.taocdn.com/s3/m/258c3188581b6bd97f19eaed.png)
21
22
四、丙烷脱氢主要工艺技术
脱乙烷塔
23
四、丙烷脱氢主要工艺技术
产品精制
24
四、丙烷脱氢主要工艺技术
丙烯制冷简图
25
26
27
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(一)
(Catofin PDH) • 工艺参数跨度大:
温度:高温704℃;低温-104℃。 压力:负压:0.05MPa(绝);正压:2.39MPag。
技术
12
工艺仍在改进,殊途同归,任重道远
13
谢谢!
14
Catofin 流程简图
15
四、丙烷脱氢主要工艺技术
Catofin反应五步骤示意
16
四、丙烷脱氢主要工艺技术
Catofin反应器简图
17
四、丙烷脱氢主要工艺技术
Star流程简图
18
四、丙烷脱氢主要工艺技术
Star反应器简图
19
20
• 上世纪60年代,正丁烷脱/异丁烷脱氢盛极一时,以获得丁 二烯/异丁烯;随着热裂解制乙烯/丙烯并副产丁二烯/异丁 烯(即统称的乙烯装置)的发展,催化脱氢制烯烃渐渐退 出市场。
• 近年来随着乙烯装置原料轻质化,丙烯相对的缺口增大, 丙烷脱氢开始兴起。
• 结论:需求推动生产,丙烯属于大宗产品,需求量大尤其 下游需求大据[中国化工报]报道仅聚丙烯:预计新增产能 超过300万吨至2500万吨以上。下游需求增速约7.7%,进 口量280万吨,国内产量约2000万吨,产能利用率为80% 11
因此,提高反应温度和降低压力有利于反应向正方向进行;
但反应温度过高将造成非催化热裂和深度脱氢反应加剧, 导致选择性降低 。通常催化脱氢反应温度 控制在 590~630 ℃ 。
丙烷脱氢(PDH)介绍课件
![丙烷脱氢(PDH)介绍课件](https://img.taocdn.com/s3/m/dd100c8e6edb6f1aff001fbb.png)
PROPANE DEHYDROGENATION
2012年6月
PPT学习交流
1
提纲
一、丙烷脱氢反应机理 二、轻烃催化脱氢历史变迁 三、丙烷脱氢催化剂 四、丙烷脱氢主要工艺技术 五、丙烷脱氢的工程特点
PPT学习交流
2
丙烯生产技术
FCC
MTO
PDH
乙烯裂解
DCC/CPP
PPT学习交流
3
一、丙烷脱氢反应机理
PPT学习交流
27
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(一) (Catofin PDH)
• 工艺参数跨度大:
温度:高温704℃;低温-104℃。
压力:负压:0.05MPa(绝);正压:2.39MPag。
PPT学习交流
28
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
• 系统复杂:
(一)反应系统:
PPT学习交流
4
一、丙烷脱氢反应机理
丙烷脱氢制丙烯反应
• 平衡反应:
C3H8 ⇔ C3H6 + H2 (吸热)
• 反应产物、副产物:
H2, CH4, C2H4, C2H6, C3H6, C3H8, C4+ • 热力学 性质决定:
(1)吸热反应;
(2)平衡常数随温度的升高而增大;适当适当的高的反 应温度
1、反应原料加热、进出料换热、余热回收(废锅)互相 交错;
(3)分子数增加的可逆反应;反应压力越低越有利.
因此,提高反应温度和降低压力有利于反应向正方向
进行;但反应温度过高将造成非催化热裂和深度脱氢反应
加剧,导致选择性降低 。P通PT学常习交催流 化脱氢反应温度 控制在
5
丙烷脱氢单原子pt催化剂
![丙烷脱氢单原子pt催化剂](https://img.taocdn.com/s3/m/5aa5f224b94ae45c3b3567ec102de2bd9605deaf.png)
丙烷脱氢单原子pt催化剂Propane dehydrogenation (PDH) is a process that involves the removal of a single hydrogen atom from propane to produce propylene. This reaction is typically catalyzed by platinum (Pt) catalysts. In this response, I will provide a detailed explanation of the PDH process, discussing its importance, reaction mechanism, catalyst requirements, and potential challenges.Firstly, it is important to understand the significance of propane dehydrogenation. Propylene is a key building block in the petrochemical industry, used in the production of various products such as plastics, synthetic fibers, and rubber. The PDH process allows for the conversion of propane, a readily available and relatively inexpensive feedstock, into a more valuable product. This makes it an economically attractive process for propylene production.The reaction mechanism of propane dehydrogenation involves the removal of a hydrogen atom from propane,resulting in the formation of propylene. This reaction is typically carried out at high temperatures (around 500-600°C) to facilitate the breaking of the carbon-hydrogen bonds. The platinum catalyst provides the necessary activation energy for the reaction to occur at these temperatures. It acts as a surface for the adsorption and activation of propane molecules, promoting the removal of a hydrogen atom.The choice of platinum as a catalyst for propane dehydrogenation is based on its unique properties. Platinum is known for its high catalytic activity and selectivity towards the dehydrogenation reaction. It has a high surface area, allowing for a greater number of active sites for propane adsorption and reaction. Additionally, platinum exhibits excellent thermal stability, maintaining its catalytic activity even at high temperatures. These characteristics make platinum an ideal catalyst for PDH.However, the use of platinum catalysts in propane dehydrogenation also presents some challenges. One major challenge is the deactivation of the catalyst due to carbondeposition. During the reaction, carbonaceous species can adsorb onto the platinum surface, blocking the active sites and reducing the catalytic activity. To overcome this issue, catalyst regeneration methods, such as oxidative or steam treatments, are employed to remove the carbonaceousdeposits and restore the catalyst activity.Another challenge in PDH is the control of selectivity. While platinum catalysts are highly selective towards propylene formation, there is also a tendency for side reactions, such as cracking and hydrogenation, to occur. These side reactions can lead to the formation of undesired byproducts and decrease the overall yield of propylene. Catalyst design and optimization, along with appropriate reaction conditions, are crucial in achieving highselectivity towards propylene.In conclusion, propane dehydrogenation with Ptcatalysts is a vital process for the production of propylene. It offers a cost-effective and efficient routefor converting propane into a valuable chemical building block. The platinum catalyst provides the necessarycatalytic activity and selectivity for the dehydrogenation reaction. However, challenges such as catalyst deactivation and control of selectivity need to be addressed for the successful implementation of PDH. Overall, PDH with Pt catalysts plays a significant role in the petrochemical industry and contributes to the production of various essential products.。
丙烷脱氢(PDH)介绍 PPT
![丙烷脱氢(PDH)介绍 PPT](https://img.taocdn.com/s3/m/a6b27820ec3a87c24128c461.png)
一、丙烷脱氢反应机理
温度-热裂解副反应曲线
二、轻烃催化脱氢历史变迁
轻烃催化脱氢历史变迁
异丁烷脱氢 制异丁烯
正丁烷脱氢 制丁二烯
异丁烷脱氢 制异丁烯
• 催化剂相同,脱氢温度不同。
• 上世纪60年代,正丁烷脱/异丁烷脱氢盛极一时,以获得丁 二烯/异丁烯;随着热裂解制乙烯/丙烯并副产丁二烯/异丁 烯(即统称的乙烯装置)的发展,催化脱氢制烯烃渐渐退 出市场。
• 催化脱氢:
所谓的“丙烷脱氢”,温度590~630 ℃ ,单程转化率 33%~44%,选择性~86%。
一、丙烷脱氢反应机理
丙烷脱氢制丙烯反应
• 平衡反应:
C3H8 ⇔ C3H6 + H2 (吸热)
• 反应产物、副产物:
H2, CH4, C2H4, C2H6, C3H6, C3H8, C4+ • 热力学 性质决定:
四、丙烷脱氢主要工艺技术
Star反应器简图
四、丙烷脱氢主要工艺技术
丙烷脱氢主要单元
• 反应: 原料加热,反应,催化剂再生,预热回收(废锅等)。
• 压缩:
将反应器提升到后续所需的压力,三段压缩,压力提升到 11.4bar。
四、丙烷脱氢主要工艺技术
丙烷脱氢主要单元
• 产品回收:
逐级冷凝,C2及以上组分逐步冷凝下来,5股液相进入脱 乙烷塔,未凝的富氢尾气(H2, CH4)进入PSA。
加热炉:进料加热炉、再生空气加热炉、废锅 压缩机:产品压缩机、再生空气压缩机、丙烯压缩机、乙 烯压缩机 反应器:8台 塔器:脱乙烷塔、产品塔(分段、双塔)、脱油塔、脱丁 烷塔、工艺凝液汽提塔
五、丙烷脱氢的工程特点
设备汇总表
五、丙烷脱氢的工程特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
三、丙烷脱氢催化剂
丙烷脱氢催化主要有以下几种:
铬系催化剂,如Catofin工艺采用的催化剂; 铂系催化剂,如Olefex工艺采用的催化剂; 氧化脱氢类催化剂。
(氧化脱氢是指在催化剂作用下采用适当的氧化剂与丙烷反 应生成丙烯与水,其焓变小于零,为放热反应,无需外界 加热、节省能源,与催化脱氢过程相比,可以克服热力学 平衡的限制并降低催化剂的减活作用。该催化剂离实现工 业化尚远。)
(1)吸热反应; (2)平衡常数随温度的升高而增大;适当适当的高的反 应温度 (3)分子数增加的可逆反应;反应压力越低越有利.
因此,提高反应温度和降低压力有利于反应向正方向 进行;但反应温度过高将造成非催化热裂和深度脱氢反应 加剧,导致选择性降低 。通常催化脱氢反应温度 控制在 590~630 ℃ 。
目的:通过深冷方式回收碳三,同时分离氢气、甲烷等轻 烃; 工艺介质从常温逐级冷凝冷却到-98 ℃,丙烯制冷、乙烯 制冷提供不同级别冷源: 丙烯压缩提供:13℃, -1℃ , -23℃, -35℃ 乙烯制冷提供:-63℃, -100℃
(四)产品精制:
透平的乏汽作为塔釜热源,塔釜的再沸器便是透平的表面 冷凝器。 调温水系统回收低温热能,也用于塔釜热源的一部分。
• 乙烯制冷: 多级压缩,汽-液,液体多压力下蒸发,提供不同 级别冷剂, -63℃, -100℃
• 其他配套公用工程系统(火炬,燃料气,蒸汽, 仪表空气,氮气。)
四、丙烷脱氢主要工艺技术
丙烷脱氢反应单元
四、丙烷脱氢主要工艺技术
脱乙烷塔
四、丙烷脱氢主要工艺技术
产品精制
四、丙烷脱氢主要工艺技术
丙烯制冷简图
H2, CH4
C2H4,C2H6,C3H6, C3H8, C4+
脱乙烷塔中将C2分离出来。
C2H4, C2H6
C3H6, C3H8, C4+
• 产品精制:
产品塔中将聚合级丙烯分离出来。
C3H6
C3H8, C4+
四、丙烷脱氢主要工艺技术
丙烷脱氢主要单元
• 丙烯制冷: 多级压缩,汽-液,液体多压力下蒸发,提供不同 级别冷剂。 13℃, -1℃ , -23℃, -35℃
丙烷脱氢(PDH)介绍
提纲
一、丙烷脱氢反应机理 二、轻烃催化脱氢历史变迁 三、丙烷脱氢催化剂 四、丙烷脱氢主要工艺技术 五、丙烷脱氢的工程特点
丙烯生产技术
FCC
MTO
PDH
乙烯裂解
DCC/CPP
一、丙烷脱氢反应机理
从丙烷脱氢到丙烯
• 反应表观方程式:
C3H8
• 热裂解脱氢:
C3H6+ H2
传统的蒸汽热裂解装置(乙烯装置),C-C和C-H打断, 生产乙烯和丙烯。温度800~920℃,转化率~93%,乙烯 收率~42%,丙烯~17%。
• 催化脱氢:
所谓的“丙烷脱氢”,温度590~630 ℃ ,单程转化率 33%~44%,选择性~86%。
一、丙烷脱氢反应机理
丙烷脱氢制丙烯反应
• 平衡反应:
C3H8 ⇔ C3H6 + H2 (吸热)
• 反应产物、副产物:
H2, CH4, C2H4, C2H6, C3H6, C3H8, C4+ • 热力学 性质决定:
• 系统复杂: (一)反应系统:
1、反应原料加热、进出料换热、余热回收(废锅)互相 交错; 2、再生空气加热、再生空气换热、余热回收(废锅)互 相交错。
(二)压缩:
三段压缩,闭环的调温水系统回收低温热能,用于产品塔 塔釜加热热源。
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
(三)产品回收(低温回收):
一、丙烷脱氢反应机理
温度-热裂解副反应曲线
二、轻烃催化脱氢历史变迁
轻烃催化脱氢历史变迁
异丁烷脱氢 制异丁烯
正丁烷脱氢 制丁二烯
异丁烷脱氢 制异丁烯• 催化剂相Fra bibliotek,脱氢温度不同。
• 上世纪60年代,正丁烷脱/异丁烷脱氢盛极一时,以获得丁 二烯/异丁烯;随着热裂解制乙烯/丙烯并副产丁二烯/异丁 烯(即统称的乙烯装置)的发展,催化脱氢制烯烃渐渐退 出市场。
四、丙烷脱氢主要工艺技术
目前主要几种丙烷脱氢技术
Catofin LUMMUS
Oleflex UOP
Star UHDE
四、丙烷脱氢主要工艺技术
Catofin 流程简图
四、丙烷脱氢主要工艺技术
Oleflex流程简图
四、丙烷脱氢主要工艺技术
Star流程简图
四、丙烷脱氢主要工艺技术
几种技术明显区别
四、丙烷脱氢主要工艺技术
乙烯制冷简图
四、丙烷脱氢主要工艺技术
几种技术各自特点
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(一)
(Catofin PDH) • 工艺参数跨度大:
温度:高温704℃;低温-104℃。
压力:负压:0.05MPa(绝);正压:2.39MPag。
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
加热炉:进料加热炉、再生空气加热炉、废锅 压缩机:产品压缩机、再生空气压缩机、丙烯压缩机、乙 烯压缩机 反应器:8台 塔器:脱乙烷塔、产品塔(分段、双塔)、脱油塔、脱丁 烷塔、工艺凝液汽提塔
• 各种技术明显区别在反应,各自具有明显特点。
• 后续的各单元,是典型单元操作。与乙烯装置分 离单元相似,但流程相对较短。
四、丙烷脱氢主要工艺技术
Catofin反应器简图
四、丙烷脱氢主要工艺技术
Catofin反应五步骤示意
四、丙烷脱氢主要工艺技术
UOP反应器简图
四、丙烷脱氢主要工艺技术
反应器
四、丙烷脱氢主要工艺技术
Star反应器简图
四、丙烷脱氢主要工艺技术
丙烷脱氢主要单元
• 反应: 原料加热,反应,催化剂再生,预热回收(废锅等)。
• 压缩:
将反应器提升到后续所需的压力,三段压缩,压力提升到 11.4bar。
四、丙烷脱氢主要工艺技术
丙烷脱氢主要单元
• 产品回收:
逐级冷凝,C2及以上组分逐步冷凝下来,5股液相进入脱 乙烷塔,未凝的富氢尾气(H2, CH4)进入PSA。
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(二)
• 系统复杂: 蒸汽系统:
4.0MPag,1.0MPag,0.35MPag
火炬:
其它:
湿火炬(WF) ,干火炬(DF), 冷火炬(CF),液体倒空系统(LD)
燃料气,循环水,仪表空气,工厂空气…..
五、丙烷脱氢的工程特点
丙烷脱氢的工程特点(三)
• 设备种类繁多