高一数学第一学期期末考试试题及答案

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

河南省郑州中学2024届高一上数学期末复习检测试题含解析

河南省郑州中学2024届高一上数学期末复习检测试题含解析
18.有一批材料,可以建成长为 240 米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料 隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.
19.已知函数
f
x
a 3x 1 3x 1
(1)当 a 1时,解方程 lg f 2x lg f x 1 lg16 ;
(1)用“五点法”做出函数 f x 在 x 0, 2 上的简图;
(2)若方程
f
x
a在
x
2 3
,
5 6
上有两个实根,求
a
的取值范围.
参考答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D
【解题分析】利用分段函数在 R 上单调递减的特征直接列出不等式组求解即得.
A.
1 3
,1
B.
,
1 3
1,
C.
1 3
,
1 3
D.
,
1 3
1 3
,
7.下面四个不等式中不正确的为
A. sin 1 1 15 15
B. 20.9 0.92
C.
ln
1 2
log3
1 2
D. 20.3 0.30.2
8.函数 f (x) 2 tan( x 3) 的最小正周期为 2
【解题分析】设函数 y x2 4x 3 ,求出 x [0, 4]时 y 的取值范围,再根据 a [2, 2]讨论 a 的取值范围,判断 f x
是否能取得最大值 3 ,从而求出对应的概率值
【题目详解】在区间 2, 2 上任取一个数 a ,基本事件空间对应区间的长度是 4 , 由 y x2 4x 3 x 22 1, x [0,4] ,得 y [1,3] ,

广东深圳中学2023-2024学年高一上学期期末考试数学试题 答案解析

广东深圳中学2023-2024学年高一上学期期末考试数学试题 答案解析

深圳中学2023-2024学年度第一学期期末考试试题评分标准年级:高一 科目:数学命题人:贺险峰 审题人:邱才颙、黎建蒙单项选择题:题号 1 2 3 4 5 6 7 8 答案 CB AB CC BA多项选择题:题号 9 10 11 12 答案 ABCACDBCAB二、填空题:13. 95 . 14. 12 . 15. 43 . 16.1[4,]2−一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”, “老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”, 所以最合理的是按年龄段分层随机抽样. 故选:C2.【详解】因为7πrad 3154=,终边落在第四象限,且与45−角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==−+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限. 故选:B.3.【详解】根据三角函数定义可知3cos 5α=, 又22sin cos 1αα+=,则225cos 31sin cos ααα−===. 故选:A4.【详解】因为21cos 212sin 3αα=−=,所以3sin 3α=±,因为()0,πα∈,所以3sin 3α=. 故选:B .5.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t −≤≤,所以11525()11525P t −≤≤+,即90()140P t ≤≤, 即此人的血压在血压计上的读数为140/90mmhg ,故①正确; 因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围, 即此人的血压不在健康范围内,故②错误,③正确; 对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ), 则此人的心跳为180T=次/分,故④正确; 故选:C6.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%−=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确. 故选:C .7.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象, 再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤−∈−⎢⎥⎣⎦,令π23x t −=,π2π,33t ⎡⎤∈−⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33−⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x −+−=,则125π6x x +=,所以()125π3tan tan 63x x +==−. 故选:B8.【详解】考虑三角函数的定义域,将选项代入验证可得最大“好整数”为1 故选:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确; 根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确. 故选:ABC.10.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=−−== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒−︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=−︒−︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502−︒−︒−︒===−︒−︒−︒,D 正确. 故选:ACD11.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值, 所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =, 所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+−⨯⨯=,解得2413m =, 所以D 错误. 故选:BC .12.【详解】因为ππ31sin ,cos ,3322⎛⎫⎛⎫−=− ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,3cos 2α=−,所以5π2π,6k k α∈=+Z , 则()()cos sin 2sin cos 2sin 2f x x x x ααα=−=−5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=−−=− ⎪ ⎪⎝⎭⎝⎭Z ,A: 22111cos 22sin 222αα⎛⎫−==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=−== ⎪⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度, 所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+−=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫−= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈−=⇒=+Z Z , 仅0k =,1,即5π11π,1212x =符合题意, 即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分. 13.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =. 故答案为:9514.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<, 又02βπ<<,所以π3παβ<+<,且()533sin 142αβ+=<, 所以π2π3αβ<+<,则()()211cos 1sin 14αβαβ+=−−+=−,243sin 1cos 7αα=−=, 所以()()()cos cos cos cos sin sin βαβααβααβα=+−=+++⎡⎤⎣⎦111534311471472=−⨯+⨯=. 故答案为:12 15.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x −=−,即sin cos cos sin x x ϕωωϕ=−, 又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=; 又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=, 故答案为:43.16.【详解】cos cos sin sin cos cos 1y αβαβαβ=−+−−(cos 1)cos (sin )sin (cos 1)βαβαβ=+−−+22(cos 1)sin sin()(cos 1)ββαϕβ=+++−+22cos sin()(cos 1)βαϕβ=++−+由sin()[1,1]αϕ+∈−,得22cos (cos 1)22cos (cos 1)y ββββ−+−+≤≤+−+, 令1cos t β=+,则[0,2]t ∈,则2222t t y t t ≤≤−−−, 所以22212()422y t t t ≥−−=−++≥−,当且仅当2t =,即cos 1β=时取等号,且222112()222y t t t ≤−=−−+≤,当且仅当22t =,即1cos 2β=−时取等号, 所以y 的取值范围为1[4,]2−.故答案为:1[4,]2−四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17(本题满分10分)已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫−−− ⎪⎝⎭=⎛⎫−−− ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α−=,求()f α的值.【详解】(1)()f α=()sin cos sin cos sin sin αααααα⋅⋅−==−⋅ --------------5分(2)由诱导公式可知()1sin πsin 5αα−=−=,即1sin 5α=−--------7分又α是第三象限角,所以22126cos 1sin 155αα⎛⎫=−−=−−=− ⎪⎝⎭------------9分 所以()26cos 5f αα=−=.-----------------------10分18(本题满分12分)据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨? 【详解】(1)()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯=,1.300a ∴=--------------------2分 用水量在(]9,12的频率为0.06530.195⨯=,392000.195n ∴==(户)---------------4分 (2)()0.0150.0250.0500.0650.08530.720.8++++⨯=<,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72−∴+⨯=−(吨)-------------------------8分(3)设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>, 则()16.6316.6570w m =⨯+−⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.------------------------12分19(本题满分12分)已知函数()()223sin πcos 2cos f x x x x =−+.(1)若ππ,63x ⎡⎤∈−⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =−在区间π,6m ⎡⎤−⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【详解】(1)由题意得()()223sin πcos 2cos f x x x x=−+π3sin2cos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,-----------------4分当ππ,63x ⎡⎤∈−⎢⎥⎣⎦,则ππ5π2[,]666x +∈−,则1πsin 2126x ⎛⎫−≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;---------------------6分(2)由题()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=−⎭=在区间π,6m ⎡⎤−⎢⎥⎣⎦上有且仅有两个零点,--------7分当π,6x m ⎡⎤∈−⎢⎥⎣⎦时,πππ2[,2]666u x m =+∈−+,原问题转化为sin y u =在ππ[,2]66m −+有且仅有2个零点,-----------------9分故π5π11ππ22π,61212 m m ≤+<≤<解得,即5π11π,1212m ⎡⎫⎪⎢⎣⎭的取值范围是.-------------12分20(本题满分12分)某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份. (参考数据:lg 20.3010,lg 30.4711≈≈).【详解】(1)函数()0,1x y ka k a =>>与()120,0y px k p k =+>>在()0,∞+上都是增函数, 随着x 的增加,函数()0,1xy ka k a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1xy ka k a =>>符合要求,------2分根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;---6分(2)当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,---------8分 由3233210323x⎛⎫⋅>⨯ ⎪⎝⎭,得3102x⎛⎫> ⎪⎝⎭,-------------9分 所以32lg1011log 10 5.93lg3lg 20.47110.3010lg 2x >==≈≈−−,----------------11分 又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.-----------12分21(本题满分12分)已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线2x π=−是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*R,N n λ∈∈,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【详解】(1)由三角函数的周期公式可得2π2πω==,()()sin 2f x x ϕ∴=+,--------2分 令()π2πZ 2x k k ϕ+=+∈,得()ππZ 422k x k ϕ=−+∈, 由于直线2x π=−为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ−=−+∈, 得()3ππZ 2k k ϕ=+∈,由于0πϕ<<,1k ∴=−,则2ϕπ=, 因此,()πsin 2cos 22f x x x ⎛⎫=+= ⎪⎝⎭;-------------------4分(2)将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin 242y x x x ⎡⎤⎛⎫⎛⎫=−=−= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,-----------------6分()()()2cos 2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=−++,令()0F x =,可得22sin sin 10x x λ−−=,令[]sin 1,1t x =∈−,得2210t t λ−−=,280λ∆=+>,则关于t 的二次方程2210t t λ−−=必有两不等实根1t 、2t ,则1212t t =−,则1t 、2t 异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()0,πN n n *∈均有偶数个根,从而方程22sin sin 10x x λ−−=在()()0,πN n n *∈也有偶数个根,不合乎题意;-----------8分(ii )当11t =−时,则2102t <<,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x x λ−−=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ−−=在()0,1348π上有36742022⨯=个根, 由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解, 因此,关于x 的方程22sin sin 10x x λ−−=在区间()0,1349π上有2024个根,不合乎题意,-------------------10分 (iii )当11t =,则2102t −<<,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ−−=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ−−=在()0,1348π上有36742022⨯=个根, 由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ−−=在区间()0,1349π上有2023个根,合乎题意; 此时,2211110λλ⨯−⨯−=−=,得1λ=,综上所述:1λ=,1349n =.---------------------------12分22(本题满分12分)已知二次函数()f x 满足:()2132f x x x +=++.()24log 231xg x ⎛⎫=+ ⎪−⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明); (3)设()2cos cos 2h x x m x =+(,2ππ2x ⎡⎤∈−⎢⎥⎣⎦),若()()f h x g h x ≥⎡⎤⎡⎤⎣⎦⎣⎦,求实数m 的值. 【详解】(1)由题意()2132f x x x +=++,令1t x =+,则1x t =−,有()22(1)3(1)2f t t t t t =−+−+=+,故()2f x x x =+ ------------2分(2)函数()24log 231x g x ⎛⎫=+ ⎪−⎝⎭,由420031x x +>⇒>−,即定义域为()0,+∞, 且4231xu =+−在()0,+∞上单调递减及2log y u =单调递增 所以()24log 231xg x ⎛⎫=+⎪−⎝⎭在()0,+∞上单调递减.---------------4分 且()g x 的值域是()1,+∞------------------6分(3)结合(2)结论知()24log 231xg x ⎛⎫=+⎪−⎝⎭在()0,+∞上单调递减且()12g =, 又()2f x x x =+在()0,+∞上单调递增且()12f =故当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<, 由()()()1f h x g h x h x ≥⇒≥⎡⎤⎡⎤⎣⎦⎣⎦恒成立,-----------------8分 即()22cos 2cos 11x m x +−≥在,22x ππ⎡⎤∈−⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈, 则不等式()22210mt t m +−+≥在[]0,1t ∈上恒成立,-----------9分 ①当0m =时,不等式化为210t −≥,显然不满足恒成立; ②当0m >时,将0t =代入得()10m −+≥,与0m >矛盾; ③当0m <时,只需()()10,1,12210,1,m m m m m m −+≥⎧≤−⎧⎪⇒⇒=−⎨⎨+−+≥≥−⎪⎩⎩,综上,实数m 的值为1−.---------------------12分。

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

2023-2024学年广东省深圳中学高一学期期末数学试题及答案

深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。

辽宁省大连市2023-2024学年高一上学期期末考试数学答案

辽宁省大连市2023-2024学年高一上学期期末考试数学答案

大连市2023~2024学年度第一学期期末考试高一数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、单项选择题:1.C 2.C 3.D 4.A 5.B 6.B 7.D 8.A 二、多项选择题:9.AC 10.ACD 11.BCD 12.BC 三、填空题:13.1 14.2()f x x -=(答案不唯一) 15.8;8.7 16.四、解答题:17.(本小题满分10分)解:(1)2(2,3)2(1,2)(2,3)(2,4)(4,1)+=+-=+-=-a b …………………2分|2|+==a b …………………4分(2)方法一:由已知得(2,3)(1,2)(2,23)λλλλ+=+-=+-+a b ,(2,3)(1,2)(21,32)λλλλ+=+-=+-a b …………………6分因为与共线,所以(2)(32)(21)(23)λλλλ+-=+-+ …………………8分 解得1λ=或1λ=-. …………………10分方法二:由已知(2,3)=a ,(1,2)=-bλ+a b λ+a b因为2(2)13⨯-≠⨯,所以a 与b 不共线, …………………6分 所以a b λ+≠0,因为与共线,所以存在实数μ,使得()a b a b λμλ+=+ …………………8分即a b a b λμλμ+=+,所以1λμλμ=⎧⎨=⎩,解得1λ=或1λ=- …………………10分18.(本小题满分12分) 解:(1)由频率分布直方图可知,(0.0050.0050.00750.020.0025)201a +++++⨯=解得0.01=a . …………………3分 (2)估计80%分位数为0.80.10.10.150.41101150.01----+=. ……………6分(3)由频率分布直方图可知,得分在[50,70)分数段的人数为1000.0052010⨯⨯=人,得分在[70,90)分数段的人数为1000.00752015⨯⨯=人. …………………7分 由分层抽样可知,在[50,70)分数段抽取两人,分别记为12,a a ,在[70,90)分数段抽取三人,分别记为123,,b b b , …………………8分 因此这个试验的样本空间可记为{}12111213212223121323Ω,,,,,,,,,a a a b a b a b a b a b a b b b b b b b =, 共包含10个样本点. …………………9分方法一:记A :抽取的这2名学生至少有1人成绩在[70,90)内,则}111213212223121323{,,,,,,,,=A a b a b a b a b a b a b b b b b b b ,包含9个样本点,……………10分 所以()109=P A . …………………12分 方法二:记A :抽取的这2名学生至少有1人成绩在[70,90)内, 则A :抽取的这2名学生成绩都在[50,70)内,}12{=A a a ,包含1个样本点, …………………10分所以()101=P A , λ+a b λ+a b从而1()1()911010=-=-=P A P A . …………………12分 19.(本小题满分12分)解:设,(1,2,3)=i i A B i 分别表示甲、乙在第i 次投篮投中. (1)所求的概率为1111211()()()323==⨯=P A B P A P B . …………………4分(2)所求的概率为111211223111211223()()()()++=++P A A B A A B A B A P A P A B A P A B A B A1211212111333233232327=+⨯⨯+⨯⨯⨯⨯=. …………………8分 (3)所求的概率为11211221121122()()()+=+P A B A A B A B P A B A P A B A B2112121232332329=⨯⨯+⨯⨯⨯=. …………………12分 20.(本小题满分12分)(1)当时,01<-xx 可化为(1)0-<x x , 所以原不等式的解集(0,1)=M . …………………2分(2)①因为322a =221=,所以2221(log )log 2y x x =- ……………3分 令2log t x =,则(0,2)t ∈所以211[,3)216=-∈-y t t ,即1[,3)16A =- …………………5分可化为()(1)0--<x m x 当1>m 时,(1,)M m =,不合题意; …………………7分当1=m 时,=∅M ,不合题意; …………………9分 当1<m 时,(,1)M m =, 因为,所以116<-m . …………………11分 0m =01x mx -<-{|3}MA x m x =<<综上所述,116<-m . …………………12分 ②因为313log 18log 2a =+=29log 3=,所以21(2)22x x y =-⋅ ………………3分 令2x t =,则(0,2)t ∈所以211[,3)216=-∈-y t t ,即1[,3)16A =- …………………5分可化为 ()(1)0--<x m x 当1>m 时,(1,)M m =,不合题意; …………………7分当1=m 时,=∅M ,不合题意; …………………9分 当1<m 时,(,1)M m =, 因为,所以116<-m . …………………11分 综上所述,116<-m . …………………12分 21.(本小题满分12分)(1)证明:令()(1)1=+-g x f x ,因为∈x R , …………………1分()()(1)(1)2g x g x f x f x +-=++-+-所以222(12)220121212x x x x-+=+-=-=+++…………………3分所以函数()g x 为奇函数, …………………4分 函数()f x 的图象关于点(1,1)对称. …………………5分 (2)解:方法一:由(1)知2()(1)1112-=+-=-+xg x f x ,任取12,x x ∈R ,且21>x x ,因为2121122121222(22)()()12122(12)(12)--+----=-=++++x x x x x x x x g x g x ,因为21>x x ,所以21220->x x ,所以21()()>g x g x ,01x mx -<-{|3}MA x m x =<<所以函数()g x 在R 上为增函数, …………………7分 因为2()(21)2+->f a f a ,所以2(11)11(221)-+->--+f a f a ,所以2(1)(22)->--g a g a , …………………9分 因为函数()g x 为奇函数,所以2(1)(22)->-+g a g a , …………………10分 因为函数()g x 在R 上为增函数,所以2122->-+a a , …………………11分 即2230+->a a ,解得31<->或a a . …………………12分 方法二:任取12,x x ∈R ,且21>x x ,因为21211221211111224(22)()()12122(12)(12)x x x x x x x x f x f x --+----=-=++++,因为21>x x ,所以21220->x x ,所以21()()>f x f x ,所以函数()f x 在R 上为增函数, …………………7分 由(1)有()(2)2+-=f x f x …………………8分 因为2()(21)2+->f a f a ,所以22(2)(21)2--+->f a f a ,所以2(21)(2)->-f a f a , …………………10分 因为函数()f x 在R 上为增函数,所以2212a a ->-, …………………11分 即2230+->a a ,解得31<->或a a . …………………12分 22.(本小题满分12分)解:(1)因为3x x e e -+=,所以2310x x e e -+=令=xs e ,则1s ,2s 为2310-+=s s 的两根,所以1212121+⋅=⋅==x x x xs s e e e ,得120+=x x . …………………2分(2)22()2()12x x x x g x e e a e e --=+-++ 令-=+x x t e e ,因为0>x e ,所以2-=+≥x x t e e当且仅当x x e e -=,即0=x 时等号成立. …………………3分 因为2222--=+x x t e e ,所以222212210(2)=--+=-+≥y t at t at t 的最小值为1 当2≤a 时,1441-=a ,解得134=a ,不合题意 …………………5分 当2>a 时,2101-+=a ,解得3a =±,所以3a =. …………………7分 综上所述3=a . …………………8分 (3)因为()x F x e =,所以1()ln F x x -=,所以ln 1ln()1()ln()=ln()x mx h x me mx e mx --=++ …………………9分方法一:令ln()1mx u e -=,则ln ln()1u mx =- 所以ln 12=++≥y u u ,因为ln 1=++y u u 在(0,)+∞上是增函数,且当1=u 时,2=y所以ln()11mx u e -=≥,即ln()1ln ln 10mx m x -=+-≥, …………………11分 所以1ln ln -≤m x 在(,)∈+∞x e 上恒成立,所以1ln 1-≤m ,解得1≥m . …………………12分方法二:令ln()v mx =,则12v y e v -=+≥,因为1v y e v -=+在R 上是增函数,且当1v =时,2=y所以1v ≥,即ln()ln ln 1v mx m x ==+≥, …………………11分 所以1ln ln -≤m x 在(,)∈+∞x e 上恒成立,所以1ln 1-≤m ,解得1≥m . …………………12分。

浙江省杭高三校2023-2024学年高一上学期期末数学试题含答案

浙江省杭高三校2023-2024学年高一上学期期末数学试题含答案

杭高2023学年第一学期期末考试高一数学参考答案(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α终边上一点()43P ,-,则sin α=()A.3 B.45-C.35D.34-【答案】C 【解析】【分析】根据三角函数的定义可求sin α的值.【详解】因为()43P ,-,故5OP =,故3sin 5α=,故选:C.2.已知2log 0.5a =,0.52b =,sin 2c =,则,,a b c 的大小关系为()A.a b c <<B.b<c<aC.c<a<bD.a c b<<【答案】D 【解析】【分析】分别利用函数2log y x =、2x y =和sin y x =的单调性,对“2log 0.5a =,0.52b =,sin 2c =”三个因式进行估值即可.【详解】因为函数2log y x =是增函数,且0.51<,则22log 0.5log 10a =<=,因为函数2x y =是增函数,且0.50>,则0.50221b =>=,因为正弦函数sin y x =在区间π3π[,22上是减函数,且π2π2<<,所以π0sin πsin 2sin 12c =<=<<,所以a c b <<,故选:D.3.函数2lg 43()()f x x x =+-的单调递减区间是()A.3,2⎛⎤-∞ ⎥⎝⎦B.3,2⎡⎫+∞⎪⎢⎣⎭C.31,2⎛⎤- ⎥⎝⎦D.3,42⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】计算出函数定义域后结合复合函数的单调性计算即可得.【详解】由()()243lg f x x x =+-可得,2430x x+->,解得()1,4x ∈-,故()f x 的定义域为()1,4-,由ln y x =为增函数,令243t x x =+-,对称轴为32x =,故其单调递减区间为3,42⎡⎫⎪⎢⎣⎭,所以()()243lg f x x x =+-的单调递减区间为3,42⎡⎫⎪⎢⎣⎭.故选:D.4.“01a <<且01b <<”是“log 0a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两者之间的推出关系可得条件关系.【详解】若01a <<且01b <<,则log log 10a a b >=,故log 0a b >成立,故“01a <<且01b <<”是“log 0a b >”的充分条件.若log 0a b >,则log log 1a a b >,故11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,故“01a <<且01b <<”不是“log 0a b >”的必要条件,故“01a <<且01b <<”是“log 0a b >”的充分不必要条件.故选:A.5.设函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩.若4()95f f ⎡⎤=⎢⎥⎣⎦,则a 等于()A.12B.2C.13D.3【答案】B 【解析】【分析】按照从内到外的原则,先计算4()5f 的值,再代入4()95f f ⎡⎤=⎢⎥⎣⎦,即可求出a 的值.【详解】由于函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩,且415<,则44(51355f =⨯-=,且31>,所以34()(3)195f f f a ⎡⎤==+=⎢⎥⎣⎦,即38a =,得2a =.故选:B.6.已知函数()24f x x ax =-+在()1,2上有且只有一个零点,则实数a 的取值范围是()A.[)8,10 B.()8,10 C.[)4,5 D.()4,5【答案】D 【解析】【分析】根据题意将零点问题转化为函数图象公共点问题进而求解答案即可.【详解】因为函数()24f x x ax =-+在()1,2上有且只有一个零点,所以24x ax +=,即4x a x+=在()1,2上有且只有一个实根,所以4y x x=+与y a =的函数图象在()1,2x ∈时有一个公共点,由于4y x x =+在()1,2单调递减,所以442121a +<<+,即45a <<.故选:D7.已知()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω在2π0,3⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是()A.(]0,4 B.10,4⎛⎤ ⎝⎦C.10,4⎛⎫ ⎪⎝⎭D.(]0,1【答案】B 【解析】【分析】先求出π3x ω+取值范围,再由()f x 在2π0,3⎛⎫⎪⎝⎭上单调递增得2πππ332ω+≤,最后结合题意求出ω的取值范围即可.【详解】因为2π0,3x ⎛⎫∈ ⎪⎝⎭,0ω>,所以ππ2ππ,3333x ω⎛⎫+∈+ ⎪⎝⎭,要使得()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增,则2πππ332ω+≤,解得14ω≤,又由题意可知0ω>,所以104ω<≤,故选:B8.中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状.不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4AB CD ==,4BC =,8AD =,则该玉佩的面积为()A.16π3- B.32π3-C.16π3D.32π3【答案】B【解析】【分析】取AD 的中点为M ,连接BM 、CM ,延长AB ,CD 交于点O ,利用平面几何知识得到扇形的圆心角,进而利用扇形面积公式和三角形的面积公式计算求得该玉佩的面积.【详解】如图,取AD 的中点为M ,连接BM ,CM ,延长AB ,CD 交于点O ,由题意,△AOB 为等腰三角形,又∵AB CD =,∴AD //BC ,又∵M 为AD 的中点,8,4AD BC ==,∴AM 与BC 平行且相等,∴四边形ABCM 为平行四边形,∴4MC AB ==,同理4CM AB ==,∴△ABM ,△CDM 都是等边三角形,∴△BOC 是等边三角形,∴该玉佩的面积138844234S π=⨯⨯⨯-⨯⨯=32π3-.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()f x 的图象是连续不断的,且有如下对应值表:x1234567()f x 4-2-1421-3-在下列区间中,函数()f x 必有零点的区间为()A.(1,2)B.(2,3)C.(5,6)D.(5,7)【答案】BCD 【解析】【分析】根据零点存在定理可判断零点所在区间.【详解】由所给的函数值表知,()()()()()()()()120,230,560,570,f f f f f f f f ><<<由零点存在定理可知:()f x 在区间()()()2,3,5,6,5,7内各至少有一个零点,故选:BCD.10.设函数()πsin 2,6f x x x ⎛⎫=+= ⎪⎝⎭R ,若ππ,22α⎛⎫∈- ⎪⎝⎭,函数()f x α+是偶函数,则α的值可以是()A.π6-B.π3-C.π6D.π3【答案】BC 【解析】【分析】由题意可得()πsin 226f x x αα⎛⎫+=++⎪⎝⎭,结合偶函数的性质与ππ,22α⎛⎫∈- ⎪⎝⎭计算即可得.【详解】()πsin 226f x x αα⎛⎫+=++ ⎪⎝⎭,又其为偶函数,则图像关于y 轴对称,则ππ2π,62k k α+=+∈Z ,得ππ,62k k α=+∈Z ,又ππ,22α⎛⎫∈- ⎪⎝⎭,则π6α=或π3α=-.故选:BC.11.已知函数())ln1f x x x =++.则下列说法正确的是()A.()1lg3lg 23f f ⎛⎫+= ⎪⎝⎭B.函数()f x 的图象关于点()0,1对称C.对定义域内的任意两个不相等的实数12,x x ,()()12120f x f x x x -<-恒成立.D.若实数,a b 满足()()2f a f b +>,则0a b +>【答案】ABD 【解析】【分析】选项A 、B ,先利用函数解析式得出结论:()()2f x f x -+=,由于1lglg33=-,只需验证()()lg3lg32f f +-=是否成立即可;选项B ,需验证点()(,)x f x 和点()(,)x f x --关于点()0,1对称即可;选项C ,利用复合函数单调性的“同增异减”的原则判断即可;选项D ,将不等式()()2f a f b +>转化为()()()2f a f b f b >-=-的形式,借助函数()f x 单调性判断即可.【详解】对于A 、B 选项,对任意的x ∈R ,0x x x >+≥,所以函数())ln1f x x x =++的定义域为R ,又因为()())()1])1f x f x x x x x -+=+-++++22ln(1)22x x =+-+=,由于()()()1lg3lg lg3lg323f f f f ⎛⎫+=+-= ⎪⎝⎭,故A 正确;由于函数()f x 满足()()2f x f x -+=,所以任意点()(,)x f x 和点()(,)x f x --关于点()0,1对称,故函数()f x 的图象关于点()0,1对称,故B 正确;对于C 选项,对于函数())ln h x x =+0x x x >+≥,得该函数的定义域为R ,()()))()22lnlnln 10h x h x x x x x -+=-+=+-=,即()()h x h x -=-,所以函数()h x 为奇函数,当0x ≥时,内层函数u x =为增函数,外层函数ln y u =为增函数,所以函数()h x 在[)0,∞+上为增函数,故函数()h x 在(],0-∞上也为增函数,因为函数()h x 在R 上连续,故函数()h x 在R 上为增函数,又因为函数1y x =+在R 上为增函数,故函数()f x 在R 上为增函数,故C 不正确;对于D 选项,由()()2f x f x -+=,得2()()f x f x -=-,因为实数a ,b 满足()()2f a f b +>,所以()()()2f a f b f b >-=-,同时函数()f x 在R 上为增函数,可得a b >-,即0a b +>,故D 正确.故选:ABD.12.函数()lg f x x =,有0a b <<且()()22a b f a f b f +⎛⎫==⎪⎝⎭,则下列选项成立的是()A.1ab =B.14a <C.3<<4b D.517328a b +<<【答案】ACD 【解析】【分析】利用对数性质判断选项A ;再利用零点存在定理判断得3<<4b ,从而判断选项B 、C 、D.【详解】因为()lg ,f x x =有0a b <<且()()2,2a b f a f b f +⎛⎫== ⎪⎝⎭所以lg lg =a b ,即lg lg a b -=,得lg lg 0a b +=所以1ab =,且()()0,1,1,.a b ∞∈∈+所以A 正确22112lg 2lg lg 24b b b b b +++==(因为12b b+>),故22142,b b b=++即4324210,b b b -++=()()321310b b b b ----=,令()3231,g b b b b =---当13b <<时,()3222313310g b b b b b b b =---<---<当4b >时,()32222314311(1)10g b b b b b b b b b b b =--->---=--=-->,而()()30,40,g g 故()0g b =在()3,4之间必有解,所以存在b ,使得3 4.b <<所以C 正确111,43a b ⎛⎫=∈ ⎪⎝⎭,所以B 不正确11517,2238a b b b +⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,所以D 正确故选:ACD【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.第Ⅱ卷三、填空题:本题共4小题,每小题5分,20分.13.计算:23(log 9)(log 4)⋅=____________.【答案】4【解析】【分析】根据题意,由换底公式代入计算,即可得到结果.【详解】()()23log 9log 4=lg 9lg 2×lg 4lg 32lg 3lg 2=×2lg 2lg 3=4.故答案为:414.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式___________.【答案】()()πtan ,πZ 2f x x x k k =≠+∈(答案不唯一).【解析】【分析】联想正切函数可得结果.【详解】满足题意的函数为()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).故答案为:()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).15.已知()f x 为定义在R 上的奇函数,且又是最小正周期为T 的周期函数,则πsin 32T f ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦的值为____________.【答案】2【解析】【分析】根据函数的周期和奇偶性得到02T f ⎛⎫=⎪⎝⎭,进而得到ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.【详解】因为()f x 的最小正周期为T ,故222T T T f f T f ⎛⎫⎛⎫⎛⎫=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又()f x 为奇函数,故22T T f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,故22T T f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,即202T f ⎛⎫= ⎪⎝⎭,解得02T f ⎛⎫= ⎪⎝⎭,故ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.故答案为:3216.对于任意实数,a b ,定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩.设函数()3f x x =-+,()2log g x x =,则函数{}()min (),()h x f x g x =的最大值是_______.【答案】1【解析】【分析】画出()f x 和()g x 的图象,得到()h x 的图象,根据图象得到最大值.【详解】在同一坐标系中,作出函数()(),f x g x 的图象,依题意,()h x 的图象为如图所示的实线部分,令23log 2x x x -+=⇒=,则点()2,1A 为图象的最高点,因此()h x 的最大值为1,故答案为:1四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知cos sin 3cos sin θθθθ-=-+.(1)求tan θ的值;(2)求222sin 113cos +-θθ的值.【答案】(1)2-(2)132【解析】【分析】(1)根据题意整理可得sin 2cos θθ=-,进而可得结果;(2)根据齐次式问题分析求解,注意“1”的转化.【小问1详解】因为cos sin 3cos sin θθθθ-=-+,整理得sin 2cos θθ=-,所以sin tan 2cos θθθ==-;【小问2详解】因为tan 2θ=-,所以2222222222222sin 12sin sin cos 3sin cos 13cos sin cos 3cos sin 2cos θθθθθθθθθθθθ++++==-+--()()22223tan 1tan 321213222θθ⨯-+==--+=-.18.已知集合{}1217A xx =≤-≤∣,函数()f x =的定义域为集合B .(1)求A B ⋂;(2)若{}M xx m =≤∣,求R M B ⋃=时m 的取值范围.【答案】(1){34}A B xx ⋂=<≤∣(2)[)3,+∞【解析】【分析】(1)解一次与二次不等式,结合具体函数定义域的求法化简集合,A B ,再利用交集的运算即可得解;(2)利用集合的并集结果即可得解.【小问1详解】集合{}{}121714A xx x x =≤-≤=≤≤∣∣,由2230x x -->,得1x <-或3x >,则集合{1B xx =<-∣或3}x >,所以{34}A B xx ⋂=<≤∣.【小问2详解】因为R M B ⋃=,{}M xx m =≤∣,则3m ≥,故m 的取值范围是[)3,+∞.19.已知()sin()f x x π=-223,(1)求()f x 的最小正周期和对称轴方程;(2)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)最小正周期为π;对称轴方程为5,122k x k Z ππ=+∈;(2)()max 1f x =,()min 2f x =-;【解析】【分析】(1)由正弦函数的性质计算可得;(2)由x 的取值范围,求出23x π-的取值范围,再由正弦函数的性质计算可得;【详解】解:(1)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==,令2,32x k k Z πππ-=+∈,解得5,122k x k Z ππ=+∈,故函数的对称轴为5,122k x k Z ππ=+∈(2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当236x ππ-=,即4x π=时函数取得最大值()max 14f x f π⎛⎫== ⎪⎝⎭,当232x ππ-=-,即12x π=-时函数取得最小值()min 212f x f π⎛⎫=-=- ⎪⎝⎭20.已知函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯.(1)求()f x 的解析式;(2)求方程()8f x =-的解集.【答案】(1)()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩(2){}2,1,1,2--【解析】【分析】(1)根据偶函数的性质直接求解即可;(2)根据题意先求0x ≥时符合题意的解,再结合偶函数对称性求出方程解集即可.【小问1详解】因为函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯,所以任取0x <,则0x ->,此时()()1432xx f x f x --+=-=-⨯,所以()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩【小问2详解】当0x ≥时,令()14328xx f x +=-⨯=-,即()226280xx -⨯+=,令2x t =,则2680t t -+=,解得2t =或4t =,当22x t ==时,1x =,当24x t ==时,2x =,根据偶函数对称性可知,当0x <时,符合题意的解为=1x -,2x =-,综上,原方程的解集为{}2,1,1,2--21.已知函数()222cos 1f x x x =+-.(1)求()f x 的单调递增区间;(2)若π102313f α⎛⎫-=⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 4α⎛⎫+ ⎪⎝⎭的值.【答案】(1)πππ,π,Z36k k k ⎡⎤-++∈⎢⎥⎣⎦(2)26【解析】【分析】(1)由降幂公式和辅助角公式化简函数解析式,整体代入法求单调递增区间;(2)由π102313f α⎛⎫-= ⎪⎝⎭,代入函数解析式解出cos α和sin α,由两角和的正弦公式求解πsin 4α⎛⎫+ ⎪⎝⎭的值.【小问1详解】()222cos 12cos 2f x x x x x =+-=+1π2sin 2cos 22sin 2226x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,令Z 262πππ2π22π,k x k k -+≤+≤+∈,解得2ππ2π22πZ ,33k x k k -+≤≤+∈,即ππππ,Z 36k x k k -+≤≤+∈,所以()f x 的单调递增区间为πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】由π102313f α⎛⎫-=⎪⎝⎭得5sin 213πα⎛⎫-= ⎪⎝⎭,所以5cos 13α=-,又因为π,π2α⎛⎫∈⎪⎝⎭,所以12sin 13α==,所以πππsin sin cos cos sin 44426ααα⎛⎫+=+= ⎪⎝⎭.22.已知函数()22log f x x =-,()()21,11,1x x g x f x x ⎧-≤⎪=⎨->⎪⎩.(1)求()g x 的最大值;(2)若对任意[]14,16x ∈,2R x ∈,不等式()()()12212kf x f xg x ⋅>恒成立,求实数k 的取值范围.【答案】(1)1(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)根据分段函数性质讨论函数单调性与最值,结合指数函数和对数函数相关知识求解最值即可;(2)根据题意转化为对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,代入函数表达式进行化简,令21log ,24m x m =≤≤,将不等式化为()()2211k m m --->,结合二次函数相关知识分类讨论即可.【小问1详解】当1x ≤时,()21xg x =-,此时022x <≤,1211x -<-≤,则()0211xg x ≤=-≤;当1x >时,()()211log g x f x x =-=-单调递减,此时()()11g x g <=,综上所述,当1x =时,取得()g x 的最大值1;【小问2详解】因为对任意[]14,16x ∈,2R x ∈,不等式()()()21122kf x f xg x ⋅>恒成立,且()21g x ≤,所以对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,由题意得,()()()()()()22112121212122log 22log 22log 1log kkf x f x x x k x x ⋅=--=---,令21log ,24m x m =≤≤,则不等式可化为()()2211k m m --->,即()2223230m k m k +--+>对任意[]2,4m ∈恒成立,令()()[]222323,2,4h m m k m k m =+--+∈,则函数图象开口向上,对称轴()233222k km --=-=⨯,当322k -≤,即1k ≥-时,()()()min 2843230h m h k k ==+--+>,解得12k >,符合题意;当3242k -<<时,即51k -<<-时,()2min 323022k k k h m h --+-⎛⎫==> ⎪⎝⎭,即2230k k -+<,不等式无解,该情况舍去;当342k-≥时,即5k ≤-时,()()()min 43283236110h m h k k k ==+--+=+>,解得116k >-,不符合题意,该情况舍去.综上所述,实数k 的取值范围为1,2∞⎛⎫+⎪⎝⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d=∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.。

高一数学上学期期末试题及答案

高一数学上学期期末试题及答案

高一数学上学期期末试题及答案一、选择题(每题4分,共40分)1. 若f(x)=x^2-4x+3,则f(1)的值为:A. 0B. -2C. 1D. 22. 函数y=x^3-3x^2+2的导数为:A. 3x^2-6xB. x^2-6x+2C. 3x^2-6x+2D. x^3-6x^2+63. 已知集合A={x|x<0},B={x|x>0},则A∩B的元素个数为:A. 0C. 2D. 无数个4. 以下哪个不是等差数列:A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 1, 4, 7, 105. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若a, b, c是等比数列,且a+b+c=14,b^2=ac,则b的值为:A. 2C. 7D. 147. 函数y=2^x的反函数为:A. y=log2(x)B. y=2^(-x)C. y=-2^xD. y=x^(1/2)8. 已知向量a=(3, -1),b=(2, 4),则向量a+b的坐标为:A. (5, 3)B. (1, 3)C. (5, -3)D. (1, -3)9. 函数y=x^2-6x+8的顶点坐标为:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)10. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且a=2,b=1,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。

12. 已知等差数列{an}的首项a1=3,公差d=2,则a5=________。

13. 已知向量a=(1, 2),b=(3, -2),则向量a·b=________。

贵州省贵阳市2023-2024学年高一上学期期末考试 数学 含答案

贵州省贵阳市2023-2024学年高一上学期期末考试 数学 含答案

贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U ={0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N = {3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为()u`C.{3}A.{l,2,3,4,5}B.{4,5}D.02命题“3xE R, x2 + x+1 � 0”的否定是()2A.3x e R, x2 + x +l之0B.3x E R, x2 + x+l< 0D.Vx茫R,x·+x+l< 0C.VxER,x2 +x+ l < 0 23对任意角a和fJ."sina = sin/J“是“a=fJ”的()A充分不必要条件B必要不充分条件C.充要条件D既不充分也不必要条件24已知函数f(x)= �+log。

,(2-x),则f(x)的定义域为()4x-3A (扣) B.(扣]C.(-oo,2) D (三)u(扣)5设函数f(x)=2·'+x的零点为X o'则X o所在的区间是()A.(-1,0) C.(1,2)B.(-2,-1) D.(0,1)6设a=(½/,b= 2(c = log2¾,则a,b,c的大小关系为(A. c<a<bB. c < b < aC. a<b<cD.a<c<bII冗7下列选项中,与sin(-飞-)的值不相等的是()A.2sin l5°sin 75°B.cosl8° cos42° -sinl8° sin42°C.2cos2l5°-lD.tan22.5° l-tan2 22.5°8.某池塘野生水葫芦的援盖面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,其中说法错误的是(y/m2l 6t---------------- ,,,81----------t'一气, ,, ,, ,A此指数函数的底数为2B在第5个月时,野生水葫芦的稷盖面积会超过30m2C野生水葫芦从4m2荽延到12m2只需1.5个月D设野生水葫芦蔓延至2m2,3m2,6m2所需的时间分别为x1,x2,x3,则有X1+x2 = X3二、多项选择题(本题共2小题,每小题4分,共8分.在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得2分,有选错得0分.)9已知a,b,c eR,则下列命题正确的是()I IA若->一,则a<ba bB若ac2> bc2,则(1>bC.若a<b,c <d,则a-c<b-dD若a>b > O,c > 0,则a a+c一>b b+cIO下列说法中,正确的是()IA函数y=-在定义域上是减函数e x -1B.函数y=——一是奇函数e x +lC函数y= f(x+a)-b为奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形D函数f(x)为定义在(-x,,O)U(O冲心)上的奇函数,且f(3) = I.对千任意x,,x2E (0,长't:)),x1:;cx2,汀(x,)-x2f(x2) 3都有1>0成立,则.f(x)三一的解集为(-OCJ,-3] u(0,3]X1 -x2''X三、填空题(本大题共5小题,每小题4分,共20分.请将你认为正确的答案填在答题卷的相应位置上.)11若幕函数f(x)=(11i2-2m-2)义”在(0,+~)上单调递增,则实数m=12函数y= sinx+ cosx的最大值是s13 已知圆和四边形(四个角均为直角)的周长相等,而积分别为S I'鸟,则_]_的最小值为s214已知函数f(x) = 2sin(cv x+(p)(co> O,I例<:)的部分图像如图所示,则f行)=X-2.一一一一-壹15已知函数f(X) = 2kx2 -kx -i (0 ::; X ::;; 2, k E R),若k=I,则该函数的零占为若对沁XE[0,2],不等式f(x) < -2k恒成立,则实数K的取值范围为四、解答题(本大题共4小题,每小题8分,共32分.解答应写出文字说明,证明过程或演算步骤.)16已知角0的终边过点(-3,4),求角0的三个三角函数值.17.(I)已知芦+a令=3,求a+矿的值:(2)已知log2[ l og3 (log4X)] =0'求X的值18 已知函数f(x)=x-�IX(I)判断函数f(x)的奇偶性:1(2)根据定义证明函数f(x)=x--在区间(0,+幻)上单调递增X冗19将函数f(x) =c o s(x+ �)的图象上所有点的横坐标缩短到原来的上,纵坐标不变,得到函数g(x的() 图象(I)求函数g(x)的单调递增区间和对称中心:(2)若关于X的方程2sin2x-m c o s x-4= 0在XE(吟)上有实数解,求实数m的取值范围五、阅读与探究(本大题1个小题,共8分解答应写出文字说明,条理清晰.)20. 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的瓜要途径,是思想阀门发现新问题、新结论的篮要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(I)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等l l例如,ab=I,求证:一+-=l.I+a I+b证明:原式ab I b I+—=—+—=I. ab+a I+b b+I l+b阅读材料二:解决多元变掀问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究a+b例如,正实数a,b满足ab=L求(l+a)b解:由ab=I,得b=一,的最小值1 a+b a+--;; _ a 2+1_ (a+l }2-2(a+l)+2= = = ..(I+a)b I a+la+I (l+a )� a 2 2 =(a+l)+二-2�2✓(a+l)二-2=2✓2-2,当且仅当a+I =✓2,即a=✓2-1,b = ✓2 +1时,等号成立a+b.. (l+a)b的最小值为2J5-2波利亚在《怎样解题》中指出:“当你找到第一个腮菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征结合阅读材料解答下列问题:(I)已知ab=I,求+——了的值;l+a 2. l +bI I(2)若正实数a,b 满足ab=I,求M =--=--+ 的最小值I+a I+3b贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U = {0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N={3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为(u`A.{l,2,3,4,5}【答案】B【解析】B.{4,5}【分析】求出M n N,得到阴影部分表示的渠合C.{3}[详解】图中阴影部分表示的渠合为N中元素去掉M n N的元素后的梊合,MnN = {0,1,2,3们{3,4,5}={习,故图中阴影部分表示的集合为{4,5}故选:B2.命题“3xER,x2+x+l2:0”的否定是()A.3x ie R, x2 + x+l ;;:: 0B.3x E R, x2 + x+I <0C.VxER,x2+x+l<0 2D.Vx茫R,X4+x+l< 0【答案】C【解析】【分析】根据命题的否定即可求解D.0【详解】命题“:3x E R, x 2+ x + 1 2:: 0”的否定是“"ix E R,x 2+x+ 1< 0",故选:C3对任意角a 和/3,"sin a = s in/3“是“a=/3”的()A 充分不必要条件B必要不充分条件C.充要条件D 既不充分也不必要条件【答案)B 【解析】【分析】根据三角函数的性质,结合必要不充分的定义即可求解【详解】由sina=s in/3可得a=/J+2朊或者a+/3=冗+2幻,kEZ,故sina=s in/3不能得到a=/3,但a=/3,则sina= s in/3,故“sina=sin/3“是“a=/3”的必要不充分条件,故选:B2 4已知函数f(x) =�+log 。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

北京市朝阳区2023-2024学年高一上学期期末质量检测数学试题含答案

北京市朝阳区2023-2024学年高一上学期期末质量检测数学试题含答案

北京市朝阳区2023~2024学年度第一学期期末质量检测高一数学(答案在最后)(考试时间120分钟满分150分)本试卷分为选择题(共50分)和非选择题(共100分)两部分第一部分(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}{}2,1,2,3,2,Z A B x x k k =-==∈∣,则A B = ()A.{2,1}-B.{2,2}- C.{1,2}D.{2,3}【答案】B 【解析】【分析】根据题意,结合集合交集的概念,即可求解.【详解】由集合{}{}2,1,2,3,2,Z A B xx k k =-==∈∣,集合B 由,所有偶数构成,集合A 中只有-2,2两个偶数,故{2,2}A B =- .故选:B.2.命题“x ∀∈R ,都有||0x x +≥”的否定为()A.x ∃∈R ,使得||0x x +<B.x ∃∈R ,使得||0x x +≥C.x ∀∈R ,都有||0x x +≤D.x ∀∈R ,都有||0x x +<【答案】A 【解析】【分析】根据全称命题的否定知识即可求解.【详解】由“x ∀∈R ,使得0x x +≥”的否定为“x ∃∈R ,使得0x x +<”,故A 正确.故选:A.3.已知,,a b c ∈R ,且a b >,则下列不等式一定成立的是()A.22a b >B.ac bc> C.22a b> D.11a b<【答案】C 【解析】【分析】根据题意,利用不等式的基本性质,以及特例法,结合指数函数的单调性,逐项判定,即可求解.【详解】对于A 中,例如1,2a b ==-,此时满足a b >,但22a b <,所以A 错误;对于B 中,当0c =时,ac bc =,所以B 不正确;对于C 中,由指数函数2x y =为单调递增函数,因为a b >,可得22a b >,所以C 正确;对于D 中,例如1,2a b ==-,此时满足a b >,但11a b>,所以D 不正确.故选:C.4.设x ∈R ,则“x >1”是“2x >1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由1x >可得21x >成立,反之不成立,所以“1x >”是“21x >”的充分不必要条件考点:充分条件与必要条件5.已知0x 是函数3()e x f x x =+的一个零点,且()()00,,,0a x b x ∈-∞∈,则()A.()0,()0f a f b <<B.()0,()0f a f b >> C.()0,()0f a f b >< D.()0,()0f a f b <>【答案】D 【解析】【分析】判断出()f x 的单调性,根据0x 是函数()f x 的一个零点求出()f x 的值域可得答案.【详解】因为3e ,x y y x ==为x ∈R 上的单调递增函数,所以3()e x f x x =+为x ∈R 上的单调递增函数,又因为0x 是函数3()e x f x x =+的一个零点,所以()0,x x ∈-∞时()0f x <,()0,x x ∈+∞时()0f x >,若()()00,,,0a x b x ∈-∞∈,则()0,()0f a f b <>.故选:D.6.已知112223211,,log 332a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则()A.a b c <<B.c a b<< C.b a c<< D.c b a<<【答案】C 【解析】【分析】根据幂函数和对数函数的单调性比较大小即可.【详解】因为幂函数12y x =在[)0,∞+上单调递增,12133<<,所以112212133⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即1b a <<,因为对数函数23log y x =在()0,∞+单调递减,1223<,所以223312log log 123>=,即1c >,所以b a c <<,故选:C.7.已知函数ππ()2sin()0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示,则()A.π1,4ωϕ==- B.π1,4ωϕ==C.π2,4ωϕ==-D.π2,4ωϕ==【答案】B 【解析】【分析】结合三角函数的周期性求ω,利用特殊点的相位求ϕ的值.【详解】由图可知:7π3ππ244T =-=⇒2πT =,由2π2πω=⇒1ω=.由3ππ4ϕ+=⇒3πππ44ϕ=-=.故选:B8.函数()|sin |cos f x x x =+是()A.奇函数,且最小值为 B.C.偶函数,且最小值为 D.【答案】D【解析】【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =+=+,因为[0,π]x ∈,可得ππ5π[,]444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =;当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =;当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.9.已知函数()f x 的图象是在R 上连续不断的曲线,()f x 在区间项[1,)+∞上单调递增,且满足()()20f x f x -+=,()23f =,则不等式3(1)3f x -<+<的解集为()A.(2,2)- B.(1,1)- C.(0,2)D.(1,3)【答案】B 【解析】【分析】通过条件分析函数具有的性质,再把函数不等式转化为代数不等式求解.【详解】由()()2f x f x -=-得:()f x 的图象关于点()1,0对称;()23f =⇒()03f =-;又()f x 在R 上连续不断,且在[)1,+∞上单调递增,所以()f x 在R 上单调递增.()313f x -<+<⇒012x <+<⇒11x -<<.故选:B10.在一定通风条件下,某会议室内的二氧化碳浓度c 随时间t (单位:min )的变化规律可以用函数模型0etc c δλ-=+近似表达.在该通风条件下测得当0,5,10t t t ===时此会议室内的二氧化碳浓度,如下表所示,用该模型推算当15t =时c 的值约为()t 0510c0.15%0.09%0.07%A.0.04%B.0.05%C.006%.D.0.07%【答案】C 【解析】【分析】根据题意知建立方程组分别求出51e3δ-=,0.09%λ=,从而可求解.【详解】由题意得:当0t =时,0000.15%c c ec δλλ-=+=+=①,当5t =时,5e0.09%c c δλ-=+=②,当10t =时,10e0.07%c c δλ-=+=③,由-①②得51e 0.06%δλ-⎛⎫-= ⎪⎝⎭④,由-②③得55e1e 0.02%δδλ--⎛⎫-= ⎪⎝⎭⑤,由⑤④得51e 3δ-=⑥,所以00.09%3c c λ=+=⑦,由-①⑦得20.06%3λ=,解得0.09%λ=,所以当15t =时,315555001e eee0.15%0.09%0.09%0.0633%3c c c δδδδλλ----⎛⎫=+=+⨯⨯=-+⨯≈ ⎪⎝⎭,故C 正确.故选:C.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.函数()()lg 1f x x =+的定义域为_________________.【答案】()1-+∝,【解析】【分析】根据对数的真数大于零,列出不等式解出即可.【详解】由10x +>得1x >-,则函数()()lg 1f x x =+的定义域为()1-+∝,.故答案为:()1-+∝,12.若1x >,则11x x +-的最小值是_____.【答案】3【解析】【分析】111111x x x x +=-++--,利用基本不等式可得最值.【详解】∵1x >,∴11111311x x x x +=-++≥=--,当且仅当111x x -=-即2x =时取等号,∴2x =时11x x +-取得最小值3.故答案为:3.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,若角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,角β的终边与角α的终边关于原点对称,则sin α=__________,cos β=__________.【答案】①.35②.45【解析】【分析】根据角α终边经过点43,55P ⎛⎫- ⎪⎝⎭,从而可求出sin α,cos α,再根据角β的终边与角α的终边关于原点对称,从而可求解cos β.【详解】对空①:由点43,55P ⎛⎫- ⎪⎝⎭在角α的终边上,所以445cos 5α-=-,335sin 5α==.对空②:由角β的终边与角α的终边关于原点对称,所以4cos cos 5a β=-=.故答案为:35;45.14.已知函数()21x f x a =⋅-的图象过原点,则=a __________;若对x ∀∈R ,都有()f x m >,则m 的最大值为__________.【答案】①.1②.1-【解析】【分析】根据函数()f x 过原点,从而求出a 的值;对于()f x m >,只需求出()min f x m >,从而可求解.【详解】对空①:由函数()·21xf x a =-过原点,即()00·210f a =-=,得1a =;对空②:由函数()21xf x =-在定义域上单调递增,且()211xf x =->-恒成立,所以m 的最大值为1-.故答案为:1;1-.15.将函数()sin 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于y 轴对称,则ϕ的一个取值为__________.【答案】π4(答案不唯一)【解析】【分析】根据图象平移变换得到()g x 的解析式,结合图象关于y 轴对称,令()01g =±,求出ϕ的值.【详解】函数()sin 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,则()()sin 2g x x ϕ=+,因为函数()g x 的图象关于y 轴对称,则()()0sin 201g ϕ=+=±,即sin 21ϕ=±,所以π2π2k ϕ=+,即π1π42k ϕ=+,N k ∈,所以ϕ的一个取值为π4,故答案为:π4(答案不唯一).16.已知函数()2f x x b =+,()g x 为偶函数,且当0x ≥时,2()4g x x x =-,记函数()()()()()()(),,f x f x g x T x g x f x g x ⎧≥⎪=⎨<⎪⎩,给出下列四个结论:①当0b =时,()T x 在区间[2,)-+∞上单调递增;②当8b =-时,()T x 是偶函数;③当0b <时,()T x 有3个零点;④当8b ≥时,对任意x ∈R ,都有()0T x >.其中所有正确结论的序号是__________.【答案】①③【解析】【分析】根据题意,结合函数()(),f x g x 的解析式,利用函数的新定义,结合函数的图象、函数的零点的定义,逐项判定,即可求解.【详解】因为()g x 为偶函数,且当0x ≥时,2()4g x x x =-,当0x <时,可得()2()4g x g x x x =-=+,所以224,0()4,0x x x g x x x x ⎧-≥=⎨+<⎩,对于①中,当0b =时,()2f x x =,令()()f x g x =,解得0,2,6x x x ==-=,如图所示,()224,22,224,2x x x T x x x x x x ⎧+<-⎪=-≤≤⎨⎪->⎩,结合图象,可得函数()T x 在区间[2,)-+∞上单调递增,所以①正确;对于②中,当8b =-时,可得()28f x x =-,令2428x x x -=-,即2680x x -+=,解得2x =或4x =,当2x <时,可得()()T x g x =;当24x ≤≤时,可得()()T x f x =;当4x >时,可得()()T x g x =,即2224,04,02()28,244,4x x x x x x T x x x x x x ⎧+<⎪-≤<⎪=⎨-≤<⎪⎪-≥⎩,其中()()33,32f f -=-=-,所以()()33f f -≠,所以当8b =-时,函数()T x 不是偶函数,所以②不正确;对于③中,当0b <时,令()0f x =,即20x b +=,解得02bx =->,当0x <时,令()0g x =,即240x x +=,解得4x =-,当0x ≥时,令()0g x =,即240x x -=,解得0x =或4x =,若042b <-<时,函数()T x 有三个零点,分别为4x =-,0x =和2b x =-;若42b-=时,即8b =-时,函数()T x 有三个零点,分别为4x =-,0x =和4x =;若42b->时,即8b <-时,函数()T x 有三个零点,分别为4x =-,0x =和4x =;综上可得,当0b <时,函数()T x 有三个零点,所以③正确;对于④中,当0x <时,令()0g x =,即240x x +=,解得4x =-,将点(4,0)-代入函数()y f x =,可得2(4)0b ⨯-+=,解得8b =,如图所示,当8b ≥时,函数()0T x ≥,所以④不正确.故答案为:①③.三、解答题(本大题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程)17.已知集合{}2340,{0}A xx x B x x a =--≤=->∣∣.(1)当4a =时,求A B ⋃;(2)若()A B =∅R ð,求实数a 的取值范围.【答案】(1){}1A B x x ⋃=≥-(2)1a <-【解析】【分析】(1)化简集合,A B ,直接利用并集运算求解即可;(2)化简集合,根据交集运算结果求解参数.【小问1详解】由题知,{}{}234014A xx x x x =--≤=-≤≤∣,{}{0}B x x a x x a =->=>∣,因为4a =,所以{}4B x x =>,所以{}1A B x x ⋃=≥-.【小问2详解】因为()A B =∅R ð,且{}14A x x =-≤≤,{}R B x x a =≤ð,所以1a <-.18.已知,αβ为锐角,21sin ,tan()102ααβ=+=.(1)求tan α和tan β的值;(2)求2αβ+的值.【答案】(1)1tan 7α=,1tan 3β=(2)π4【解析】【分析】(1)先根据同角三角函数平方关系求出cos α,再根据商数关系和两角和正切公式化简得结果;(2)根据二倍角公式得sin 2,cos 2ββ,,再根据两角和余弦公式得()cos 2αβ+,最后根据范围求结果.【小问1详解】因为,αβ为锐角,2sin 10α=,所以cos 10α==,所以2sin 110tan cos 77210ααα==,又因为tan tan 1tan()1tan tan 2αβαβαβ++==-,所以1tan 3β=,【小问2详解】因为,αβ为锐角,1tan 3β=,所以22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩,解得sin 10cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩,所以sin 22sin cos 3101052βββ==⨯=⨯,24cos 212sin 5ββ=-=,所以()43cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=,又因为,αβ为锐角,所以3π022αβ<+<,所以π24αβ+=.19.设函数()2()log 4(1)x f x m m =+>-.(1)当0m =时,求(1)f 的值;(2)判断()f x 在区间[0,)+∞上的单调性,并用函数单调性的定义证明你的结论;(3)当[0,)x ∈+∞时,()f x 的最小值为3,求m 的值.【答案】(1)2(2)()f x 在区间[0,)+∞上的单调递增,证明见解析(3)7【解析】【分析】(1)求出函数()f x 的解析式,进而求出(1)f 的值;(2)利用函数单调性的定义证明单调性;(3)由(2)的单调性,可得()()min 03f x f ==,求出m 的值.【小问1详解】当0m =时,222()log 4log 22x x f x x ===,所以(1)2f =.【小问2详解】()f x 在区间[0,)+∞上的单调递增,证明如下:在[0,)+∞上任取12,x x ,且12x x <,则()()()()1122122224log 4log 4log 4x x x x m m m m f x f x =++--+=+,因为120x x ≤<,1m >-,所以12144x x ≤<,所以12044x x m m <+<+,即121440x x m m <+<+,所以12204log 4x x m m++<,即()()120f x f x -<,所以()()12f x f x <,即()f x 在区间[0,)+∞上的单调递增.【小问3详解】[0,)x ∈+∞时,由(2)可得()f x 在[)0,∞+上单调递增,所以()()()()022min 0log 4log 13f x f m m ==+=+=,所以3217m =-=.20.设函数2()2cos cos (0)f x x x x m ωωωω=++>,且(0)1f =.(1)求m 的值;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求ω的值及()f x 的零点.条件①:()f x 是奇函数;条件②:()f x 图象的两条相邻对称轴之间的距离是π;条件③:()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,63⎡⎤⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)1m =-(2)选择①,不存在;选择②,12ω=,ππ,Z 6k k -+∈;选择③,1ω=,ππ,Z 122k k -+∈【解析】【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据(0)1f =,即可求解;(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【小问1详解】2()2cos cos f x x x x mωωω=++πcos 212sin 216x x m x m ωωω⎛⎫=++=+++ ⎪⎝⎭,又1(0)2112f m =⨯++=,所以1m =-.【小问2详解】由(1)知,()π2sin 26f x x ω⎛⎫=+⎪⎝⎭,选择①:因为()f x 是奇函数,所以()00f =与已知矛盾,所以不存在()f x .选择②:因为()f x 图象的两条相邻对称轴之间的距离是π,所以π2T =,2πT =,2π21Tω==,12ω=则()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭,令()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭,解得ππ,Z 6k x k -+∈=.即()f x 零点为ππ,Z 6k k -+∈.选择③:对于()π2sin 26f x x ω⎛⎫=+⎪⎝⎭,0ω>,令πππ2π22π,Z 262k x k k ω-+≤+≤+∈,ππ3π2π22π,Z 262k x k k ω+≤+≤+∈,解得ππππ,Z 36k k x k ωωωω-+≤≤+∈,ππ2ππ,Z 63k k x k ωωωω+≤≤+∈,即()f x 增区间为ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦,()f x 减区间为ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦,因为()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,63⎡⎤⎢⎥⎣⎦上单调递减,所以0k =时符合,即()f x 在ππ,36ωω⎡⎤-⎢⎥⎣⎦上单调递增,在π2π,63ωω⎡⎤⎢⎣⎦上单调递减,所以π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩且2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩,解得1ω=,则()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以令()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭,解得ππ,Z 122k x k =-+∈,即()f x 零点为ππ,Z 122k k -+∈.21.已知集合{}12,,,n A a a a = ,其中*n ∈N 且*4,(1,2,,)i n a i n ≥∈=N ,非空集合B A ⊆,记()T B 为集合B 中所有元素之和,并规定当B 中只有一个元素b 时,()T B b =.(1)若{1,2,5,6,7,8},()8A T B ==,写出所有可能的集合B ;(2)若{}{}1233,4,5,9,10,11,,,A B b b b ==,且()T B 是12的倍数,求集合B 的个数;(3)若{1,2,3,,21}(1,2,,)i a n i n ∈-=L L ,证明:存在非空集合B A ⊆,使得()T B 是2n 的倍数.【答案】21.{}8,{}1,7,{}2,6,{}1,2,522.423.证明见详解【解析】【分析】根据条件,可列出(1)(2)中所有满足条件的B ;对(3),分情况讨论,寻找使()T B 是2n 倍数的集合B .【小问1详解】所有可能的集合B 为:{}8,{}1,7,{}2,6,{}1,2,5.【小问2详解】不妨设:123b b b <<,由于123311b b b ≤<<≤,且123,,b b b A ∈,所以()123345123091011T B b b b ++=≤=++≤=++.由题意,()T B 是12的倍数时,()12T B =或()24T B =.当()12T B =时,因为12334512b b b ++≥++=,所以当且仅当{}3,4,5B =时,()12T B =成立,故{}3,4,5B =符合题意.当()24T B =时,若311b =,则1213b b +=,故{}3,10,11B =或{}4,9,11B =符合题意;若310b =,则1214b b +=,故{}5,9,10B =符合题意;若39b =,则12345918b b b ++≤++=,无解.综上,所有可能的集合B 为{}3,4,5,{}3,10,11,{}4,9,11,{}5,9,10.故满足条件的集合B 的个数为4.【小问3详解】(1)当n A ∉时,设12···n a a a <<<,则1212,,···,,2,2,···,2n n a a a n a n a n a ---∈{}1,2,3,···,1,1,···,21n n n -+-,这2n 个数取22n -个值,故其中有两个数相等.又因为12···n a a a <<<,于是1222···2n n a n a n a ->->>-,从而12,,···,n a a a 互不相等,122,2,···,2n n a n a n a ---互不相等,所以存在μ,ν{}1,2,···,n ∈使得2a n a μν=-.又因a n μ≠,a n ν≠故μν≠.则{},B a a μν=,则()2T B a a n μν=+=,结论成立.(2)当n A ∈时,不妨设n a n =,则121,,···,n a a a -(4n ≥),在这1n -个数中任取3个数,i j k a a a <<.若j i a a -与k j a a -都是n 的倍数,()()2k i k j j i a a a a a a n -=-+-≥,这与(],,0,21i j k a a a n ∈-矛盾.则,,i j k a a a 至少有2个数,它们之差不是n 的倍数,不妨设()2121a a a a ->不是n 的倍数.考虑这n 个数:1a ,2a ,12a a +,123a a a ++,···,121···n a a a -+++.①若这n 个数除以n 的余数两两不同,则其中必有一个是n 的倍数,又1a ,22a n <且均不为n ,故存在21r n ≤≤-,使得()12···N*r a a a pn n +++=∈.若p 为偶数,取{}12,,···,r B a a a =,则()T B pn =,结论成立;若p 为奇数,取{}12,,···,,r n B a a a a =,则()()1T B pn n p n =+=+,结论成立.②若这n 个数除以n 的余数中有两个相同,则它们之差是n 的倍数,又21a a -,1a 均不是n 的倍数,故存在21s t n ≤<≤-,使得()()()1212······N*t s a a a a a a qn q +++-+++=∈.若q 为偶数,取{}12,,···,s s t B a a a ++=,则()T B qn =,结论成立;若q 为奇数,取{}12,,···,,s s t n B a a a a ++=,则()()1T B qn n q n =+=+,结论成立.综上,存在非空集合B A ⊆,使得()T B 是2n 的倍数.T B是2n的倍数是问题的关键.【点睛】关键点点睛:如何找到非空集合B,使得()。

高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套本试卷满分150分,考试时间120分钟。

请在答题卷上作答。

第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.若sinα=-,且α为第四象限角,则tanα的值为( )A. B.- C. D.-2.已知f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在区间 [-1,3]上的解集为()A. (1,3)B. (-1,1)C. (-1,0)∪(1,3)D. (-1,0)∪(0,1)3.若cos(2π-α)=,则sin等于( )A.- B.- C. D.±4.设集合A={x|1<x<4},B={x|-1≤x≤3},则A∩(∁R B)等于( )A.{x|1<x<4} B.{x|3<x<4} C.{x|1<x<3} D.{x|1<x<2}∪{x|3<x<4} 5.下列表示函数y=sin在区间上的简图正确的是( )6.已知函数f(x)=sin(ω>0)的最小正周期为π,则函数f(x)的图象的一条对称轴方程是( ) A.x= B.x= C.x= D.x=7.使不等式-2sin x≥0成立的x的取值集合是( )A.B.C.D.8.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在上单调递减9.已知函数y=3cos(2x+)的定义域为[a,b],值域为[-1,3],则b-a的值可能是( )A. B. C. D.π10.一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32 m(即OM长),巨轮的半径长为30 m,AM=BP=2 m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t) m,则h(t)等于( )A.30sin+30 B.30sin+30C.30sin+32 D.30sin11.若函数y=f(x)是奇函数,且函数F(x)=af(x)+bx+2在(0,+∞,)上有最大值8,则函数y=F(-∞,,0)上有 ( )A.最小值-8 B.最大值-8 C.最小值-6 D.最小值-412.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( ) A.75,25 B.75,16 C.60,25 D.60,16第II卷非选择题(共90分)13.若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是________.14.若不等式(m2-m)2x-()x<1对一切x∈(-∞,-1]恒成立,则实数m的取值范围是________.15.函数y=sin2x+2cos x在区间[-,a]上的值域为[-,2],则a的取值范围是________.16.函数y=sinωx(ω>0)的部分图象如图所示,点A,B是最高点,点C是最低点,若△ABC是直角三角形,则ω的值为________.三、解答题(共6小题,共70分)17.(12分)已知定义在区间上的函数y=f(x)的图象关于直线x=对称,当x≥时,f(x)=-sin x.(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.18. (10分)已知函数f(x)=cos(2x-),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.19. (12分)已知函数g(x)=A cos(ωx+φ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:(1)函数f(x)在上的值域;20. (12分)已知f(x)=x2+2x tanθ-1,x∈[-1,],其中θ∈(-,).(1)当θ=-时,求函数f(x)的最大值;(2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数.21.(12分)已知函数f(x)=x2-(a+1)x+b.(1)若b=-1,函数y=f(x)在x∈[2,3]上有一个零点,求a的取值范围;(2)若a=b,且对于任意a∈[2,3]都有f(x)<0,求x的取值范围.22. (12分)已知抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点.(1)求m的取值范围;(2)若抛物线与x轴的两个交点为A,B,且点B的坐标为(3,0),求出点A的坐标,抛物线的对称轴和顶点坐标.答案1.D2. C3.A4. B5.A6.C7.C8.D9.B10.B11.D12.D13.[,]14.-2<m<315.[0,]16.17.(1)y=f(x)的图象如图所示.(2)任取x∈,则-x∈,因函数y=f(x)图象关于直线x=对称,则f(x)=f,又当x≥时,f(x)=-sin x,则f(x)=f=-sin=-cos x,即f(x)=(3)当a=-1时,f(x)=a的两根为0,,则Ma=;当a∈时,f(x)=a的四根满足x1<x2<<x3<x4,由对称性得x1+x2=0,x3+x4=π,则Ma=π;当a=-时,f(x)=a的三根满足x1<x2=<x3,由对称性得x3+x1=,则Ma=;当a∈时,f(x)=a两根为x1,x2,由对称性得Ma=. 综上,当a∈时,Ma=π;当a=-时,Ma=;当a∈∪{-1}时,Ma=.18.(1)f(x)的最小正周期T===π.当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.(2)∵x∈[-,],则2x-∈[-,],故cos(2x-)∈[-,1],∴f(x)max=,此时2x-=0,即x=;f(x)min=-1,此时2x-=-,即x=-.19.解(1)由图知B==1,A==2,T=2=π,所以ω=2,所以g(x)=2cos(2x+φ)+1.把代入,得2cos+1=-1,即+φ=π+2kπ(k∈Z),所以φ=2kπ+(k∈Z).因为|φ|<,所以φ=,所以g(x)=2cos+1,所以f(x)=2cos+1.因为x∈,所以2x-∈,所以f(x)∈[0,3],即函数f(x)在上的值域为[0,3].(2)因为f(x)=2cos+1,所以2cos+1≥2,所以cos≥,所以-+2kπ≤2x-≤+2kπ(k∈Z),所以kπ≤x≤kπ+(k∈Z),所以使f(x)≥2成立的x的取值范围是.20.解(1)当θ=-时,f(x)=x2-x-1=(x-)2-,x∈[-1,].∴当x=-1时,f(x)的最大值为.(2)函数f(x)=(x+tanθ)2-(1+tan2θ)图象的对称轴为x=-tanθ,∵y=f(x)在[-1,]上是单调函数,∴-tanθ≤-1或-tanθ≥,即tanθ≥1或tanθ≤-.因此,θ角的取值范围是(-,-]∪[,).22.(1)∵抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点,∴方程x2-2(m-1)x+(m2-7)=0有两个不相等的实数根,∴Δ=4(m-1)2-4(m2-7)=-8m+32>0,∴m<4.(2)∵抛物线y=x2-2(m-1)x+(m2-7)经过点B(3,0),∴9-6(m-1)+m2-7=0,m2-6m+8=0,解得m=2或m=4.由(1)知m<4,∴m=2.∴抛物线的解析式为y=x2-2x-3.令y=0,得x2-2x-3=0,解得x 1=-1,x 2=3, ∴点A 的坐标为(-1,0). 又y =x 2-2x -3=(x -1)2-4,∴顶点坐标为(1,-4),对称轴为直线x =1.高一第一学期数学期末试卷及答案一、选择题(本题共12小题,每小题5分,共60分)1. 2{4,21,}A a a =--,=B {5,1,9},a a --且{9}A B ⋂=,则a 的值是( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 2. 函数()14log 12-=x y 的定义域为( )A.)21,0(B. )43(∞+, C .)21(∞+, D.⎝ ⎛⎭⎪⎫34,13. 若方程032=+-mx x 的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A. )2(∞+,B. )20(, C .)4(∞+, D. )4,0(4.设2150.a =,218.0=b ,5.0log 2=c ,则( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<5. 为了得到函数)33sin(π-=x y 的图象,只需把函数x y 3sin =的图象( ) A .向右平移9π个单位长度 B .向左平移9π个单位长度 C .向右平移3π个单位长度 D .向左平移3π个单位长度6. 给出下列各函数值:① 100sin ;②)100cos( -;③)100tan(-;④sin 7π10cos πtan17π9.其中符号为负的是( )A .①B .② C.③ D .④7.设D 为ABC ∆所在平面内一点3BC CD =,则( ) A. AD =34AB +31AC B.1433AD AB AC =-C. AD = 31-AB +34AC D.4133AD AB AC =-8. 已知210cos 2sin ,=+∈αααR ,则=α2tan ( ) A. 53-43-或 B. 43- C. 43 D. 53-9. 设10<<a ,实数,x y 满足1||log 0ax y-=,则y 关于x 的函数的图像形状大致是( ) A B C D10.若函数)1,0( )2(log )(2≠>+=a a x x x f a 在区间)21,0(内恒有()0f x >,则()f x 的单调递增区间为( )A. )21,(--∞ B. ),41(+∞-C. (0,+∞)D. )41,(--∞ 11. 已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数)2(2)(x f b x g --= ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )A .),87(+∞ B. )2,47( C.)1,87( D. )4,27(12. 设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) .A .3B .4C .5D .6二、填空题(本题共4小题,每小题5分,共20分)13. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②OM MP <<0; ③0<<MP OM ;④ 0OM MP <<,其中正确的是______________________。

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

高一上期末数学试卷带答案

高一上期末数学试卷带答案

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1/2D. 0答案:D2. 若函数f(x) = x^2 - 4x + 4的图像的对称轴是()A. x = 2B. y = 2C. x = -2D. y = -2答案:A3. 已知等差数列{an}的前三项分别是2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:B4. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,且a^2 + b^2 = c^2,则三角形ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 无法确定答案:B5. 下列函数中,在定义域内单调递减的是()A. y = x^2B. y = 2xC. y = -x^2D. y = x^3答案:C6. 已知等比数列{an}的前三项分别是1,2,4,则该数列的公比是()A. 1B. 2C. 4D. 1/2答案:D7. 在直角坐标系中,点P(2,3)关于直线y=x的对称点是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)答案:A8. 若函数f(x) = |x| + 1在x=0处的导数等于()A. 1B. 0C. -1D. 不存在答案:A9. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an等于()A. 19B. 20C. 21D. 22答案:C10. 已知函数f(x) = x^3 - 3x + 2,则f'(x) =()A. 3x^2 - 3B. 3x^2 - 2C. 3x^2 + 3D. 3x^2 + 2答案:A二、填空题(每题5分,共50分)11. 函数y = (x - 1)^2 + 2的最小值是__________。

答案:212. 等差数列{an}的前10项和S10 = 110,则第5项a5 =__________。

答案:1113. 若等比数列{an}的首项a1 = 3,公比q = 2,则第4项a4 =__________。

华大新2025届高一数学第一学期期末综合测试试题含解析

华大新2025届高一数学第一学期期末综合测试试题含解析

f
(x)
tan

2
x
3
1
的对称中心是
k 2
6
,1

k Z

其中正确命题的序号是________.
16.已知定义在区间[a 2023, 2024]上的奇函数 f (x) 满足: f (2 x) f (x) ,且当 x [1, 0] 时,
f (x) a log2 (b x) ,则 f (2021) f (2022) ____________.
【解析】可直接根据题意转化为方程 x x 1 2x 2t 有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即
可求得各个 t 的值
【详解】由题意得方程 x x 1 2x 2t 有两个不等实根,
当方程有两个非负根时,
令 x 0 时,则方程为 x x 1 2x 2t ,整理得 x2 3x 2t 0
4sin
0
(1)求
tan
4
的值;
(2)求
sin
2
2
的值.
20.如图,已知在正四棱锥 P ABCD 中, M 为侧棱 PD 的中点,
(1)证明: PB / /平面ACM ;
连接 AC、BD 相交于点 O
(2)证明: 平面ACM 平面PBD ;
(3)设 AB 2 ,若质点从点 A 沿平面 PAD 与平面 PCD 的表 棱锥 P ABCD 的体积
AO ∴ AOA 60 .
故选:C
【点睛】本题考查了二面角的平面角的作法,重点考查了运算能力,属基础题. 7、B 【解析】由三角函数的定义即可得到结果.
【详解】∵ 480 角的终边上一点 (4, a) , ∴ tan 480 tan1200 3 a ,

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套(满分:100分 时间:90分钟)一、选择题(每题4分,共40分)1.设集合{}{}3,22,1,0==B A ,,则=⋃B A ( ) {}3,2,1,0.A {}3,1,0.B {}1,0.C {}2.D2.(普通班)直线AB 的倾斜角为ο45,则直线AB 的斜率等于( )1.A 1.-B 5.C 5.-D(兰天班)已知直线0y =++C B Ax 不经过第一象限,且C B A ,,均不为零,则有( )0.<C A 0.>C B 0.>BC C 0.<BC D3.下列函数中,既是奇函数又是增函数的是( )3.x y A = 1.-=x y B x y C 3log .= xy D ⎪⎭⎫⎝⎛=21.4.若直线02=++a y x 经过圆04222=-++y x y x 的圆心,则a 的值为( ) 4.A 0.B 4.-C 3.D5.下列说法中,正确的是( ).A 经过不同的三点有且只有一个平面 .B 分别在两个平面内的两条直线是异面直线 .C 垂直于同一个平面的两条直线平行.D 垂直于同一个平面的两个平面平行6.已知一个几何体的三视图如图所示,则该几何体的体积为( )π12.A π8.B π38.C π320.D7.点()1,2-P 为圆()25122=+-y x 的弦AB 的中点,则直线AB 的方程为( ) 01.=-+y x A 032.=-+y x B 03.=--y x C 052.=--y x D8.(普通班)圆02:22=-+x y x A 和圆04:22=-+y y x B 的公切线条数是( ) A .4条 B .3条 C .2条 D .1条(兰天班)已知半径为1的动圆与定圆()()167522=++-y x 相切,则动圆圆心的轨迹方程是()()()2575.22=++-y x A ()()()()1575375.2222=++-=++-y x y x B 或()()975.22=++-y x C ()()()()9752575.2222=++-=++-y x y x D 或9.已知点()b a M ,在直线1543=+y x 上,则22b a +的最小值为( )2.A3.B415.C 5.D10.定义在R 上的奇函数()x f ,满足()01=f ,且在()∞+,0上单调递增,则()0>⋅x f x 的解集为( ){}11.>-<x x x A 或 {}0110.<<-<<x x x B 或{}110.-<<<x x x C 或 {}101.><<-x x x D 或二、填空题(每题4分,共16分)11.(普通班)在正方体1111D C B A ABCD -中,异面直线C B AD 11,所成的角的大小为 . (兰天班)直三棱柱111C B A ABC -中,1AA AB AC ==,且异面直线B A AC 11与所成角为ο60,则CAB ∠等于 .12. 若直线()03412:1=+-+m y x m l 与直线()035:2=-++m y m x l 平行,则m 的值为 .13. (普通班)一个正方体的顶点都在同一个球面上,且棱长为4,这个球的体积为 . (兰天班)球的内接圆柱的底面积为π4,侧面积为π12,则该球的表面积为 . 14. 设点()()2,2,5,3---B A ,直线l 过点()1,1P 且与线段AB 相交,则直线l 的斜率k 的取值范围是(用区间表示) .三、解答题(共44分)15.(10分)已知圆()()()025522>=-+-a y a x ,截直线05=-+y x 的弦长为25.(1)求圆的一般式方程;(2)求过点()15,10P 的圆的切线所在的直线一般式方程.16.(10分)(普通班)如图,在三棱锥ABC V -中,ABC 平面平面⊥VAB ,VAB ∆为正三角形,2==⊥BC AC BC AC 且,M O 、分别为VA AB 、的中点 .(1)求证:MOC VB 平面//; (2)求证:VAB MOC 平面平面⊥ .(兰天班)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为21,F F ,且221=F F ,点⎪⎭⎫ ⎝⎛23,1在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 相交于B A ,两点,且B AF 2∆的面积为7212,求以2F 为圆心与直线l 相切的圆的方程.17.(12分)如图,边长为2的正方形中,BC BF BE 41==,M 是BD 和EF 的交点,将DCF AED ∆∆、分别沿DF DE 、折起,使C A 、两点重合与点A '. (1)求证:MD A EF '⊥面; (2)求三棱锥EFD A -'的体积;(3)求二面角E DF A --'的平面角的余弦值.18. (12分)已知函数()11log 21--=x axx f ,其中a 为常数且0<a ,若函数的图像关于原点对称. (1)求a 的值;(2)当()+∞∈,1x 时,()()mx x f <-+1log 21恒成立,求实数m 的取值范围;(3)若关于x 的方程()()k x x f +=21log 在[]3,2上有解,求k 的取值范围.答案一、 选择题1、A2、A C3、A4、B5、C6、D7、C8、CD9、B 10、A 二、填空题11、(普通班)60°(兰天班)90°12、m=﹣ , 13、32π. 25π 14、K -3或k 1三、解答题15、(1)解:,圆心 到直线距离,,圆的一般式方程为(2)解:若切线斜率不存在, ,符合若切线斜率存在,设,切线:或切线的一般式方程为x-10=0或16、(普通班)(1)证明:因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB .又因为OM ⊂平面MOC ,VB ⊄平面MOC ,所以VB ∥平面MOC .(2)证明:因为AC=BC ,O 为AB 中点, 所以OC ⊥AB .因为平面VAB ⊥平面ABC ,平面VAB∩平面ABC=AB ,OC ⊂平面ABC ,所以OC ⊥平面VAB .因为OC ⊂平面MOC ,所以平面MOC ⊥平面VAB(兰天班)(1)设椭圆的方程为, 由题意可得:椭圆C 两焦点坐标分别为,所以,所以,又,17、18、(1)解:∵函数f(x)的图象关于原点对称,∴函数f(x)为奇函数,∴f(﹣x)=﹣f(x),即log =﹣log = log ,解得:a=﹣1或a=1(舍)(2)解:f(x)+ log (x-1)= log (1+x),x>1时,它是减函数,log (1+x)<﹣1,∵x∈(1,+∞)时,f(x)+ log (x﹣1)<m恒成立,∴m≥﹣1;(3)解:由(1)得:f(x)= log (x+k),即log = log (x+k),即=x+k,即k= ﹣x+1在[2,3]上有解,g(x)= ﹣x+1在[2,3]上递减,g(x)的值域是[﹣1,1],∴k∈[﹣1,1]高一数学第一学期期末试卷及答案一.选择题:共12小题,每小题5分,共60分。

广东省湛江市2023-2024学年高一上学期期末考试 数学(含答案)

广东省湛江市2023-2024学年高一上学期期末考试 数学(含答案)

湛江市2023—2024学年度第一学期期末高中调研测试高一数学试卷(答案在最后)(满分:150分,考试时间:120分钟)2024年1月注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、考场号和座位号填写在答题卡上,并将考号条形码粘贴在答题卡上的指定位置.2.阅读答题卡上面的注意事项,所有题目答案均答在答题卡上,写在本试卷上无效.3.作答选择题时,如需改动,用橡皮擦干净后,再选涂其他答案.非选择题如需改动,先划掉原来的答案,然后再写上新的答案.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“(),0x ∀∈-∞,有20x x -=”的否定为()A.(),0x ∃∈-∞,使20x x -≠ B.[)0,x ∃∈+∞,使20x x -≠C .(),0x ∀∈-∞,有2x x -≠ D.[)0,x ∞∀∈+,有2x x -≠2.若集合{}1,3,5,6,7A =,{}Z 19B x x =∈≤≤,则图中阴影部分表示的集合中的元素个数为()A.3B.4C.5D.63.sin 300cos 0︒︒的值为()A .B.12C.12-D.24.已知函数()()2sin f x x ωϕ=+(0ω>,0πϕ<<)的图象如图所示,则ϕ=()A.π6B.π3C.2π3D.5π65.函数()3ln f x x x=-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,46.角的度量除了有角度制和弧度制之外,在军事上还有密位制(gradient system ).密位制的单位是密位,1密位等于周角的16000.密位的记法很特别,高位与低两位之间用一条短线隔开,例如1密位写成0-01,1000密位写成10–00.若一扇形的弧长为4π,圆心角为40-00密位,则该扇形的半径为()A .4B.3C.2D.17.已知函数()22e4(2)x f x x -=--,则()f x 的图象大致为()A. B.C. D.8.在R 上定义新运算a b ad bc c d =-,若存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤成立,则m 的最小值为()A.83-B.23-C.0D.83二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合{}1143,A x x k k ==-∈Z ,{}2221,B x x k k ==+∈Z ,则()A.7A B∈∩ B.13A B∈ C. A B⋃ D.A B B= 10.已知0c b a <<<,则()A.ac b bc a+<+ B.3232a c b c +>+C.a c ab c b+<+ D.<11.下列函数在()1,∞+上单调递增的为()A.()4f x x x=+B.()ln 2f x x =+C.()225f x x x =-+ D.()2,23,2x x f x x x ⎧>=⎨+≤⎩12.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,满足()π6f x f x ⎛⎫=-- ⎪⎝⎭,5π012f ⎛⎫= ⎪⎝⎭,且在π2π,189⎛⎫⎪⎝⎭上单调,则ω的取值可能为()A.1B.3C.5D.7三、填空题:本题共4小题,每小题5分,共20分.13.函数()2lg1xxf x -=+的定义域为______________.14.已知120πx x ≤<≤,满足12sin sin x x =,则12cos 2x x +=______________.15.德国数学家高斯在证明“二次互反律”的过程中首次定义了取整函数[]y x =,其中[]x 表示“不超过x的最大整数”,如[]3.143=,[]0.6180=,[]2.718283-=-,则23251lg lg8lg 7log 10⎡⎤-++=⎢⎥⎣⎦________.16.已知函数()214,0222,0x x x x f x x ⎧--+≤⎪=⎨⎪->⎩,若存在实数a ,b ,c 满足a b c <<,且()()()f a f b f c ==,则()()a b f c +的取值范围是______________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)若α的终边经过点()2,4P -,求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)若π0,2α⎛⎫∈ ⎪⎝⎭,且π3sin 45α⎛⎫-= ⎪⎝⎭,求sin α的值.18.已知幂函数()mf x x =的图象过点()25,5.(1)求()8f 的值;(2)若()()132f a f a +>-,求实数a 的取值范围.19.已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.20.随着时代的发展以及社会就业压力的增大,大学生自主创业的人数逐年增加.大学生小明和几个志同道合的同学一起创办了一个饲料加工厂.已知该工厂每年的固定成本为10万元,此外每生产1斤饲料的成本为1元,记该工厂每年可以生产x 万斤司料.当046x <<时,年收入为4001004x ⎛⎫-⎪+⎝⎭万元;当46x ≥时,年收入为92万元.记该工厂的年利润为()f x 万元(年利润=年收入-固定成本-生产成本).(1)写出年利润()f x 与生产饲料数量x 的函数关系式;(2)求年利润的最大值.21.已知函数()2sin cos sin f x x x x =+.(1)求()f x 的最小值及相应x 的取值;(2)若把()f x 的图象向左平移π3个单位长度得到()g x 的图象,求()g x 在[]0,π上的单调递增区间.22.已知函数()42x xf x a =-⋅.(1)当2a =时,求()f x 在[]1,2-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.湛江市2023—2024学年度第一学期期末高中调研测试高一数学试卷(满分:150分,考试时间:120分钟)2024年1月注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、考场号和座位号填写在答题卡上,并将考号条形码粘贴在答题卡上的指定位置.2.阅读答题卡上面的注意事项,所有题目答案均答在答题卡上,写在本试卷上无效.3.作答选择题时,如需改动,用橡皮擦干净后,再选涂其他答案.非选择题如需改动,先划掉原来的答案,然后再写上新的答案.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“(),0x ∀∈-∞,有20x x -=”的否定为()A.(),0x ∃∈-∞,使20x x -≠ B.[)0,x ∃∈+∞,使20x x -≠C.(),0x ∀∈-∞,有2x x -≠ D.[)0,x ∞∀∈+,有2x x -≠【答案】A 【解析】【分析】根据全称命题否定为特称命题即可.【详解】根据将全称命题否定为特称命题即可.可得“(),0x ∞∀∈-,有20x x -=”的否定为“(),0x ∞∃∈-,使20x x -≠”,故选:A .2.若集合{}1,3,5,6,7A =,{}Z 19B x x =∈≤≤,则图中阴影部分表示的集合中的元素个数为()A.3B.4C.5D.6【答案】B 【解析】【分析】利用集合运算求解阴影部分即可.【详解】易知{}1,2,3,4,5,6,7,8,9B =,故图中阴影部分表示的集合为{}2,4,8,9,共4个元素,故选:B .3.sin 300cos 0︒︒的值为()A.0B.12C.12-D.【答案】D 【解析】【分析】利用诱导公式和特殊角的三角函数值求出答案.【详解】()()sin 300cos 0sin 300360sin 60sin 602︒︒=︒-︒=-︒=-︒=-.故选:D .4.已知函数()()2sin f x x ωϕ=+(0ω>,0πϕ<<)的图象如图所示,则ϕ=()A.π6B.π3C.2π3D.5π6【答案】D 【解析】【分析】根据题意,利用()01f =,得到1sin 2ϕ=,结合题意,即可求解.【详解】由函数()f x 的图象知,()02sin 1f ϕ==,则1sin 2ϕ=,因为0ω>,且0x =处在函数()f x 的递减区间,所以5π2π,Z 6k k ϕ=+∈,又因为0πϕ<<,所以5π6ϕ=.故选:D .5.函数()3ln f x x x=-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,4【答案】C 【解析】【分析】根据零点存在性定理即可求解.【详解】由于3ln ,==-y x y x均为定义域(0,+∞)内的单调递增函数,所以函数()f x 在()0,∞+上单调递增,()f x 至多只有一个零点,且()32ln 202f =-<,()3ln 310f =->,故()()230f f ⋅<,所以该函数的零点所在的区间是()2,3.故选:C .6.角的度量除了有角度制和弧度制之外,在军事上还有密位制(gradient system ).密位制的单位是密位,1密位等于周角的16000.密位的记法很特别,高位与低两位之间用一条短线隔开,例如1密位写成0-01,1000密位写成10–00.若一扇形的弧长为4π,圆心角为40-00密位,则该扇形的半径为()A.4B.3C.2D.1【答案】B 【解析】【分析】根据题意可得40-00密位的圆心角的弧度为4π3,进而根据扇形的弧长公式即可求解.【详解】40-00密位的圆心角的弧度为2π4π400060003⨯=,设该扇形的半径为r ,由4π4π3r ⨯=,解得3r =,故选:B .7.已知函数()22e4(2)x f x x -=--,则()f x 的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由特值法,函数的对称性对选项一一判断即可得出答案.【详解】因为()0222e e 0440(02)4f -=-=-<-,故C 错误;又因为()()4222222e e e4444(42)(2)(2)x x x f x f x x x x -+--+--+=-=-==-+--+-,故函数()f x 的图象关于2x =对称,故B 错误;当x 趋近2时,2e x -趋近1,2(2)x -趋近0,所以()22e 4(2)xf x x -=--趋近正无穷,故D 错误.故选:A .8.在R 上定义新运算a b ad bc c d =-,若存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤成立,则m 的最小值为()A.83-B.23-C.0D.83【答案】A 【解析】【分析】根据题意,转化为2min 41x m x ⎛⎫≥ ⎪-⎝⎭,令函数()241x f x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦,结合函数的奇偶性和单调性,求得()min 83f x =-,即可求解.【详解】由a b ad bc c d=-,可得()4401mx m x mx m x-=--≤,因为存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤,即2min 41x m x ⎛⎫≥ ⎪-⎝⎭,令函数()241x f x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦,由()()f x f x -=-,可得()f x 是奇函数,且()00f =,当102x <≤时,()41f x x x=-,所以()f x 在10,2⎛⎤⎥⎝⎦上单调递减,所以()803f x -≤<,同理可得,当102x -≤<时,()803f x <≤,故()min 83f x =-,即83m ≥-,所以实数m 的最小值为83-.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合{}1143,A x x k k ==-∈Z ,{}2221,B x x k k ==+∈Z ,则()A.7A B ∈∩B.13A B∈ C. A B⋃ D.A B B= 【答案】BC 【解析】【分析】依题意列举A 、B 中的元素,观察可得答案【详解】依题意,{},3,1,5,9,13,17,21,A =- ,{},3,1,1,3,5,7,9,11,13,15,17,19,21,B =-- ,观察可知A ,D 错误,B ,C 正确,故选:BC .10.已知0c b a <<<,则()A.ac b bc a+<+ B.3232a c b c +>+C.a c ab c b+<+ D.<【答案】AB 【解析】【分析】根据不等式的性质判断A 、B 、D ,利用赋值法判断C.【详解】因为0c b a <<<,所以ac bc <,且b a <,故ac b bc a +<+,故A 正确;因为0b a <<,所以33a b >,故3232a c b c +>+,故B 正确;取4a =,1b =,12c =-,则7a cb c +=+,4a b =,故C 错误;因为0c <<,则>,故D 错误,故选:AB .11.下列函数在()1,∞+上单调递增的为()A.()4f x x x=+B.()ln 2f x x =+ C.()225f x x x =-+ D.()2,23,2x x f x x x ⎧>=⎨+≤⎩【答案】BC 【解析】【分析】A 选项,由对勾函数性质得到A 错误;B 选项,根据对数函数性质直接得到B 正确;C 选项,配方后得到函数的单调性;D 选项,求出()()2.12f f <,故D 错误.【详解】A 选项,由对勾函数性质可知()4f x x x=+在()1,2上单调递减,在()2,∞+上单调递增,故A 错误;B 选项,()ln 2f x x =+在()0,∞+上单调递增,故B 正确;C 选项,()()222514f x x x x =-+=-+在()1,∞+上单调递增,故C 正确;D 选项,因为()25f =,()()22log 5log 552f f ===,故D 错误.故选:BC .12.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,满足()π6f x f x ⎛⎫=-- ⎪⎝⎭,5π012f ⎛⎫= ⎪⎝⎭,且在π2π,189⎛⎫⎪⎝⎭上单调,则ω的取值可能为()A.1B.3C.5D.7【答案】AB 【解析】【分析】由()π6f x f x ⎛⎫=-- ⎪⎝⎭,知函数()f x 的图象关于直线π12x =-对称,结合5π012f ⎛⎫= ⎪⎝⎭可知5π12是函数()f x 的零点,进而得到=2+1n ω,Z n ∈,由()f x 在π2π,189⎛⎫⎪⎝⎭上单调,可得6ω≤,进而1,3,5ω=,分类讨论验证单调性即可判断.【详解】由()π6f x f x ⎛⎫=-- ⎪⎝⎭,知函数()f x 的图象关于直线π12x =-对称,又5π012f ⎛⎫= ⎪⎝⎭,即5π12是函数()f x 的零点,则()()5ππ112π2121121244n T n ω+=+⋅=+⋅⋅,Z n ∈,即=2+1n ω,Z n ∈.由()f x 在π2π,189⎛⎫⎪⎝⎭上单调,则12π2πππ29186ω⋅≥-=,即6ω≤,所以1,3,5ω=.当1ω=时,由5ππ12k ϕ+=,Z k ∈,得5ππ12k ϕ=-+,Z k ∈,又π2ϕ<,所以5π12ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,5π13π7π,123636x ⎛⎫-∈-- ⎪⎝⎭,所以()5πsin 12f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上单调递增,故1ω=符合题意;当3ω=时,由5π3π12k ϕ⨯+=,Z k ∈,得5ππ4k ϕ=-+,Z k ∈,又π2ϕ<,所以π4ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,ππ5π3,41212x ⎛⎫-∈- ⎪⎝⎭,所以()πsin 34f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上单调递增,故3ω=符合题意;当5ω=时,由5π5π12k ϕ⨯+=,Z k ∈,得25ππ12k ϕ=-+,Z k ∈,又π2ϕ<,所以π12ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,π7π37π5,123636x ⎛⎫-∈ ⎪⎝⎭,所以()πsin 512f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上不单调,故5ω=不符合题意.综上所述,1ω=或3.故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13.函数()2lg 1x xf x -=+的定义域为______________.【答案】{}12x x -<<【解析】【分析】根据对数真数必须大于零可得不等式,求解得到定义域【详解】依题意,201x x->+,得()()202101x x x x -<⇔-+<+,则12x -<<,故所求定义域为{}12x x -<<.故答案为:{}12x x -<<14.已知120πx x ≤<≤,满足12sin sin x x =,则12cos 2x x +=______________.【答案】0【解析】【分析】根据三角函数的对称性可得12πx x +=,即可代入求解.【详解】因为120πx x ≤<≤,由12sin sin x x =,得12πx x +=,所以12cos02x x +=.故答案为:015.德国数学家高斯在证明“二次互反律”的过程中首次定义了取整函数[]y x =,其中[]x 表示“不超过x的最大整数”,如[]3.143=,[]0.6180=,[]2.718283-=-,则2325421lg lg8lg 7log 10⎡⎤-++=⎢⎥⎣⎦________.【答案】1【解析】【分析】通过已知条件确定取整函数[]y x =的取值法则,即[]=x a ,1a x a ≤<+;利用对数运算法则计算2325421lg lg8lg 7log 10-++,进而确定23251lg lg8lg 7log 10⎡⎤-++⎢⎥⎣⎦的值.【详解】232511lg lg8lg lg lg 252lg 57lg 10742⎛-+=⨯+=+ ⨯⎝,因为()lg 0y x x =>为增函数,所以0lg1lg 5lg101=<<=,112lg 522<+<,故23251lg lg8lg 17log 10⎡⎤-+=⎢⎥⎣⎦.故答案为:116.已知函数()214,0222,0x x x x f x x ⎧--+≤⎪=⎨⎪->⎩,若存在实数a ,b ,c 满足a b c <<,且()()()f a f b f c ==,则()()a b f c +的取值范围是______________.【答案】(]18,2--【解析】【分析】画出分段函数图像,数形结合,找到三根的关系,利用图像交点求出最后结果.【详解】作出函数()f x 的图象,知4a b +=-,()1922f c ≤<,故()()182a b f c -<+≤-,即()()a b f c +的取值范围是(]18,2--.故答案为:(]18,2--四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)若α的终边经过点()2,4P -,求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)若π0,2α⎛⎫∈ ⎪⎝⎭,且π3sin 45α⎛⎫-= ⎪⎝⎭,求sin α的值.【答案】(1)13-;(2)7210【解析】【分析】(1)首先根据正切定义求出tan 2α=-,再利用两角和的正切公式计算即可;(2)根据同角三角函数关系求出π4cos 45α⎛⎫-= ⎪⎝⎭,再利用两角和的正弦公式计算即可.【详解】(1)因为α的终边经过点()2,4P -,所以4tan 22α==--,所以()πtan 1211tan 41tan 123ααα+-+⎛⎫+===- ⎪---⎝⎭.(2)因为π0,2α⎛⎫∈ ⎪⎝⎭,则πππ,444α⎛⎫-∈- ⎪⎝⎭,且π3sin 045α⎛⎫-=> ⎪⎝⎭,所以π4cos 45α⎛⎫-= ⎪⎝⎭,所以sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦34525210=⨯+⨯=.18.已知幂函数()mf x x =的图象过点()25,5.(1)求()8f 的值;(2)若()()132f a f a +>-,求实数a 的取值范围.【答案】(1)()8f =(2)23,32⎛⎤ ⎥⎝⎦【解析】【分析】(1)代入点到函数中即可求解解析式,进而可求解值,(2)根据函数的单调性,即可求解.【小问1详解】依题意,255m=,解得12m =,故()12f x x =(0x ≥),则()1288f ==.【小问2详解】易知()12f x x =在[)0,∞+上是增函数,依题意,10320132a a a a +≥⎧⎪-≥⎨⎪+>-⎩,解得2332a <≤,故实数a 的取值范围为23,32⎛⎤ ⎥⎝⎦.19.已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】(1){}30,2A B x x x -=-≤≤=或,B A -=∅.(2)[]2,1-【解析】【分析】(1)用集合的新定义求解即可;(2)由“x A ∈”是“x B ∈”的必要条件得到B A ⊆,再利用范围求出即可.【小问1详解】()(){}{}23032A x x x x x =-+≤=-≤≤,当1a =时,{}02B x x =<<,所以{}30,2A B x x x -=-≤≤=或,B A -=∅.【小问2详解】因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,故1312a a -≥-⎧⎨+≤⎩,解得21a -≤≤,即实数a 的取值范围是[]2,1-.20.随着时代的发展以及社会就业压力的增大,大学生自主创业的人数逐年增加.大学生小明和几个志同道合的同学一起创办了一个饲料加工厂.已知该工厂每年的固定成本为10万元,此外每生产1斤饲料的成本为1元,记该工厂每年可以生产x 万斤司料.当046x <<时,年收入为4001004x ⎛⎫- ⎪+⎝⎭万元;当46x ≥时,年收入为92万元.记该工厂的年利润为()f x 万元(年利润=年收入-固定成本-生产成本).(1)写出年利润()f x 与生产饲料数量x 的函数关系式;(2)求年利润的最大值.【答案】(1)()40090,046482,46x x f x x x x ⎧--<<⎪=+⎨⎪-≥⎩(2)54【解析】【分析】(1)根据年利润公式列分段函数解析式即可;(2)结合基本不等式和一元二次函数性质分别求分段函数的最值,比较即可得最大值.【小问1详解】由题意,当046x <<时,()f x =400400100109044x x x x ⎛⎫---=-- ⎪++⎝⎭;当46x ≥时,()f x =921082x x --=-;所以()40090,046482,46x x f x x x x ⎧--<<⎪=+⎨⎪-≥⎩;【小问2详解】当046x <<时,()f x ()40040090944945444x x x x ⎡⎤=--=-++≤-⎢⎥++⎣⎦,当且仅当40044x x =++即16x =时等号成立;当46x ≥时,()f x 82824636x =-≤-=;因为5436>,所以当16x =时,年利润()f x 有最大值为54万元.21.已知函数()2sin cos sin f x x x x =+.(1)求()f x 的最小值及相应x 的取值;(2)若把()f x 的图象向左平移π3个单位长度得到()g x 的图象,求()g x 在[]0,π上的单调递增区间.【答案】(1)7π,Z 8x k k π=+∈时,()fx 取得最小值12.(2)π0,24⎡⎤⎢⎥⎣⎦,13π,π24⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)化简得到()π1sin 2242f x x ⎛⎫=-+ ⎪⎝⎭,根据正弦型函数的性质,即可求解;(2)化简得到()5π1sin 22122g x x ⎛⎫=++ ⎪⎝⎭,结合题意,利用正弦型函数的性质,即可求解.【小问1详解】因为()211cos 2π1sin cos sin sin 2sin 222242x f x x x x x x -⎛⎫=+=+=-+ ⎪⎝⎭,所以当π3π22π,Z 42x k k -=+∈,即7ππ,Z 8x k k =+∈时,()f x 取得最小值12.【小问2详解】由函数()ππ15π1sin 2sin 2323422122g x f x x x π⎡⎤⎛⎫⎛⎫⎛⎫=+=+-+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由π5ππ222π,Z 2122k x k k π-≤+≤+∈,可得11ππππ,Z 2424k x k k -≤≤+∈,又[]0,πx ∈,取0k =时,可得π024x ≤≤;取1k =时,可得13ππ24x ≤≤;所以()g x 在[]0,π上的单调递增区间为π0,24⎡⎤⎢⎥⎣⎦,13π,π24⎡⎤⎢⎥⎣⎦.22.已知函数()42x x f x a =-⋅.(1)当2a =时,求()f x 在[]1,2-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.【答案】(1)()f x 最小值为1-;()f x 最大值8(2)6a =【解析】【分析】(1)换元后结合二次函数单调性得到最值;(2)令22x x m -=+,求出2m ≥,转化为()22h m m am =--在区间[)2,+∞上存在最小值11-,分22a ≤和22a >两种情况,结合函数单调性,得到方程,求出实数a 的值.【小问1详解】当2a =时,()()2422222x x x x f x ==-⨯-⨯,令2x t =,因为[]1,2x ∈-,所以1,42t ⎡⎤∈⎢⎥⎣⎦.所以()22211y t t t =-=--,1,42t ⎡⎤∈⎢⎥⎣⎦.故当1t =时,min 1y =-;当4t =时,max 8y =,即当0x =时,()f x 取得最小值1-;当2x =时,()f x 取得最大值8.【小问2详解】()()()2424222222x x x x x x x x g a a x a ----=-⋅+-⋅=+-⋅+-,令22x x m -=+,则2m =≥,当且仅当22-=x x ,即0x =时,等号成立,于是问题等价转化为()22h m m am =--在区间[)2,+∞上存在最小值11-,二次函数()h m 的对称轴方程为2a m =,当22a ≤,即4a ≤时,()h m 在区间[)2,+∞上单调递增,此时存在最小值()222h a =-,令2211a -=-,解得132a =,不符合题意,舍去;当22a >,即4a >,()h m 在区间2,2a ⎡⎫⎪⎢⎣⎭上单调递减,在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以存在最小值222222424a a a a h ⎛⎫=--=-- ⎪⎝⎭,令22114a --=-,解得6a =(负值舍去).综上得,6a =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第一学期期末考试试题及答案
Document number【980KGB-6898YT-769T8CB-246UT-18GG08】
B
2007学年度第一学期期末考试高一数学试题
高级中学 胡志英
考试时间:120分钟 满分:150分
一选择题(本大题共10小题,每小题5分,共50分,在每小题的四个选项
中,有一项是符合题目要求的)
1.已知集合{},)0A x y x y =-=(,{},)0B x y x y =+=
(,则A B =( ) (湖南版)
A {}0
B {}0,0
C {}(0,0)
D ∅
2.下列函数中与函数y x =相同的是 ( ) (人教A 版)
A 2
y = B y =y =2
x y x
=
3.过点的直线的倾斜角为( )(人教B 版) A 00 B 030 C 060 D 090
4.在空间中,下列命题正确的是( ) (人教B 版)
(1) 平行于同一条直线的两条直线平行;(2)平行于同一条直线的两条平面
平行;
(3)平行于同一平面的两条直线平行;(4)平行于同一平面的两个平面平行;
A 1
B 2
C 3
D 4
5.设()ln 26f x x x =+-,则下列区间中使()0f x =有实数解的区间是( )(人教A 版)
A [1,2]
B [2,3]
C [3,4]
D [4,5]
6.如果奇函数()f x 在区间[3,7]上是增函数且最小值是5,那么()f x 在区间[7,3]--上是( )(湖南版)
A 增函数且最大值为5-
B 增函数且最小值为5-
C 减函数且最大值为5-
D 减函数且最小值为5- 7.如图,已知正六棱柱的最大对角面的面积为42m ,
互相平行的两个侧面的距离为2m ,则这个六棱柱 的体积为( )(北师大版)
A 33m
B 36m
C 312m
D 以上都不对 8.已知01x y a <<<<,则有( ) (湖南版)
A ()log 0xy a <
B ()0log 1xy a <<
C ()1log 2xy a <<
D ()log 2xy a > 9.如图,在正方形1111ABCD A B C D -中,1AA a =,
,E F 分别是,BC DC 的中点,则异面直线1AD 与
EF 所成角为( )(江苏版)
A 030
B 045
C 060
D 09010.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+,则当0x ≤时,函数()f x 的解析式为( )(人教A 版)
A ()(1)f x x x =-
B ()(1)f x x x =-+
C ()(1)f x x x =-
D ()(1)f x x x =--
B
B
A
O
第二部分 非选择题(共100分)
二填空题(本大题共4小题,每题5分,共20分)
11.在空间直角坐标系中,点(1,3,0),(2,0,4)A B -的距离是___________.(人教B 版)
12.函数()f x =___________.(人教B 版)
13.已知函数2,0
(),0x x f x x x ≥⎧=⎨<⎩,则((2))f f -=___________.(江苏版)
14.已知圆224
x y +=和圆224440x y x y ++-+=关于直线l 对称,则直线方程为___________. (人教A 版)
三解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算
步骤)
15.(10分)已知函数1,1()11,1x f x x x x >⎧=-≤≤<-⎪⎩
,求1(3)(3)()3f f f +-的值。

(湖南版)
16.(12分)已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈ (1) 求(),()f x g x 的单调区间;
(2)求(),()f x g x 的最小值。

(人教A 版) 17.(13分)()()()01006已知三角形三顶点A 4,,B 8,,C ,求 (1)AC 边上的高所在的直线方程;
(2)过A 点且平行于BC 的直线方程。

(北师大版) 18.(14分)如图,在正方形1111ABCD A B C D - 中,,M N 分别是11,A B BC 的中点, (1)求证:MN ABCD 平面
(2)求证:1
1AC BDC ⊥平面(北师大版)
19.(15分)如图,有一块半径为2计划剪裁成等腰梯形ABCD 的形状,它的下底AB
是O 的直径,上底CD 的端点在圆周上,写出这 个梯形周长y 和腰长x 间的函数解析式,并求出它 的定义域。

(人教A 版)
20(16分)已知圆22:(1)(2)25,C x y -+-=直线:(21)(1)740l m x m y m +++--=, (1) 求证:直线l 恒过定点;
(2) 判断直线l 被圆C 截得的弦长何时最长,何时最短并求截得的弦长最短
时,求m 的值以及最短长度。

(人教A 版)
参考答案
二、填空题:
12.[0,)+∞ 14.20x y -+= 三解答题:
15解: 因为(3)1f = ,(3)3f -=-,21()3f = (5分)
所以
21(3)(3)()1313133
f f f +-=+-=+⨯=+(10分)
16解:(1)函数22()2(1)1f x x x x =-=--,对称轴为1x =,(2分) 所以函数()f x 在(,1)-∞为减函数,在1,)+∞[为增函数;(4分)
函数22()2(1)1,[2,4]g x x x x x =-=--∈ 所以函数()g x 在[2,4]上是增函数。

(6分) (2)函数()f x 的最小值为1-,(3分)
函数()g x 的最小值为0。

(6分)
17解:(1)设直线的方程为 ()108y k x -=-(1分) 由题意得:1AC k k ⋅=-(3分)
11306240
AC
k k =-
=-=--(5分)
所以所求方程:()3
1082y x -=-即3240x y --=(7分)
(2)设直线的方程为 ()4y k x =-(8分 )
由题意得:1061
802BC k k -==
=-(11分 ) 所以所求方程:()1
42
y x =-即220x y --=(13分 )
18解:(1)
11111111,,(3AC AC ABCD A C AC M A B A C A C 连结因为为中点,N 为BC 中点,所以MN 分)因为,在平面内(5分)
所以MN 平面ABCD (7分)
(2)连结BD ,由1111ABCD A B C D -为正方体为正方体可知(8分)
111111111111,12(1314AA BD
AC BD BD A AC
A A AC A A A AC ACC A BD A M BC A M BD
BC B
A M BDC ⊥⎫⎪⊥⎪
⇒⊥⎬=⎪⎪⊆⎭⊥⊥=⊥面面所以(分)
同理可得分)
因为所以(分)
19解:做DE AB ⊥,垂足为E ,由已知可得090ADB ∠=,(2分)
,4AD x AB ==因为,于是
22222
54
,2424642
AD AE AB AD x AE AB x x CD AB AE =⨯===-=-⨯=-(分)
所以(分)
2
442
x y AB BC CD AD x x
=+++=++-+于是 2
282x x =-++(9分)
0,0,AD CD >>由于所以
22
0,0,401242
x x x >>->(分)
解得
0x <<14分) 所以,所求的函数为
2
28,02
x y x x =-++<<15分)
20解:(1)证明:直线l 的方程课化为(27)(4)0x y m x y +-++-=(3分)
2703
401x y x x y y +-==⎧⎧⎨⎨
+-==⎩⎩联立解得 (5分) 所以直线恒过定点(3,1) (7分)
(2) 当直线l 过圆心C 时,直线被圆截得的弦长最长。

(8分) 当直线l CP ⊥时,直线被圆截得的弦长最短(9分)
直线l 的斜率为21121
,1312
CP m k k m +-=-==-+- (10分)
由211.()112m m +--=-+解得34
m =-(12分)
此时直线l 的方程是250x y --= (13分)
圆心(1,2)C 到直线250x y --=的距离为d =
=(14分)
AP BP ====(15分)
所以最短弦长是2AB AP == (16分)。

相关文档
最新文档