2020届新高考物理专题复习《磁场》冲刺提升三(Word版附答案)

合集下载

2020年高考磁场专题复习卷(附答案)

2020年高考磁场专题复习卷(附答案)

2020年高考磁场专题复习卷(附答案)一、单选题(共14题;共28分)1.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动.假定两板与冰面间的动摩擦因数相同.已知甲在冰上滑行的距离比乙远,这是由于()A. 在推的过程中,甲推乙的力小于乙推甲的力B. 在推的过程中,甲推乙的时间小于乙推甲的时间C. 在刚分开时,甲的初速度大于乙的初速度D. 在分开后,甲的加速度的大小小于乙的加速度的大小2.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为﹣q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足()A. B>B. B<C. B>D. B<3.平面OM和平面ON之间的夹角为,其横截面纸面如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外一带电粒子的质量为m,电荷量为粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成角已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场不计重力粒子离开磁场的射点到两平面交线O的距离为A. B. C. D.4.关于电场强度、磁感应强度,下列说法中正确的是()A. 由真空中点电荷的电场强度公式E=k 可知,当r趋近于零时,其电场强度趋近于无限大B. 电场强度的定义式E= 适用于任何电场C. 由安培力公式F=BIL可知,一小段通电导体在某处不受安培力,说明此处一定无磁场D. 通电导线在磁场中受力越大,说明磁场越强5.如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下,一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A. B. C. D.6.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两块导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1或U2的变化情况为(不计重力,不考虑边缘效应)()A. 仅增大U1d将增大B. 仅增大U1 d将减小C. 仅增大U2 d将增大D. 仅增大U2 d将减小7.如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到A、B 所需时间分别为t1、t2,则t1∶t2为(重力不计)( )A. 1∶3B. 4∶3C. 1∶1D. 3∶28.如图所示,竖直悬挂的金属棒AB原来处于静止状态.金属棒CD棒竖直放置在水平磁场中,CD与AB通过导线连接组成回路,由于CD棒的运动,导致AB棒向右摆动,则CD棒的运动可能为()A. 水平向右平动B. 水平向左平动C. 垂直纸面向里平动D. 垂直纸面向外平动9.如图5所示,MN为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B1=2B2,一带电荷量为+q、质量为m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下再一次通过O点( )A. B. C. D.10.下列说法中正确的是()A. 磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F与该导线的长度L、通过的电流I乘积的比值.即B=B. 通电导线放在磁场中的某点,该点就有磁感应强度,如果将通电导线拿走,该点的磁感应强度就为零C. 磁感应强度B= 只是定义式,它的大小取决于场源以及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D. 通电导线所受磁场力的方向就是磁场的方向11.如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出()A. 带电粒子带正电,是从B点射入的B. 带电粒子带负电,是从B点射入的C. 带电粒子带负电,是从A点射入的D. 带电粒子带正电,是从A点射入的12.春天,水边上的湿地是很松软的,人在这些湿地上行走时容易下陷,在人下陷时()A. 人对湿地地面的压力大小等于湿地地面对他的支持力大小B. 人对湿地地面的压力大于湿地地面对他的支持力C. 人对湿地地面的压力小于湿地地面对他的支持力D. 下陷的加速度方向未知,不能确定以上说法哪一个正确13.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A. 2cosθB. sinθC. cosθD. tanθ14.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f,则下列说法正确的是()A. 质子在匀强磁场每运动一周被加速一次B. 质子被加速后的最大速度与加速电场的电压大小有关C. 质子被加速后的最大速度不可能超过2πfRD. 不改变B和f,该回旋加速器也能用于加速α粒子二、多选题(共4题;共12分)15.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。

【冲刺必刷】2020届高考物理专题复习《电磁感应》冲刺提升3(Word版附答案)

【冲刺必刷】2020届高考物理专题复习《电磁感应》冲刺提升3(Word版附答案)

电磁感应1.半径为L的圆形边界内分布有垂直圆所在平面的磁场,垂直纸面向里的磁感应强度大小为2B,垂直纸面向外的磁感应强度大小为B,如图所示.AEO为V形导线框,其面积为圆面积的八分之一,其总电阻为R,以角速度ω绕O轴逆时针匀速转动,从图中所示位置开始计时,用i表示导线框中的感应电流(顺时针方向为正),线框中感应电流i随时间t变化图象可能是( )2.如图所示,光滑绝缘的水平桌面上有一直角三角形导线框ABC,其中AB=L,BC=2L,两平行虚线间有一垂直于桌面向下的匀强磁场,磁场宽度为L,导线框BC边与虚线边界垂直.现让导线框从图示位置开始沿BC方向匀速穿过磁场区域.设线框中产生顺时针方向的感应电流为正,则在线框穿过磁场的过程中,产生的感应电流与线框运动距离x的函数关系图象正确的是( )3.(多选)如图所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P之间接一阻值为R的定值电阻,阻值为r的金属棒ab垂直导轨放置并良好接触,其他电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上.t=0时对棒施加一平行于导轨向上的外力F,棒由静止开始沿导轨向上做匀加速直线运动.下列关于通过ab的感应电荷量q、电流I、ab所受外力F及穿过abPM的磁通量Φ随时间t变化的图象中,大致正确的是( )4.(多选)如图所示,在竖直面内有方向垂直纸面向里、高度为h的有界匀强磁场,磁场上、下边界水平.将边长为l(l<h)、质量为m的正方形金属线框abcd从磁场上方某处由静止释放,设ab边通过磁场上边界和磁场下边界时的速度分别为v1和v2;cd边通过磁场下边界时的速度为v 3.已知线框下落过程中ab边始终水平、ad边始终竖直,下列说法正确的是( )A.若v1=v2,则一定有v2>v3B.若v1>v2,则一定有v2>v3C.若v1=v2,从ab离开磁场到cd离开磁场的过程中,线框内产生的焦耳热为mghD.从ab进入磁场到cd离开磁场的过程中,线框内产生的焦耳热为mgh+12mv12−1 2mv325.(多选)如图所示,一个半径为r、粗细均匀、阻值为R的圆形导线框,竖直放置在磁感应强度为B的水平匀强磁场中,线框平面与磁场方向垂直.现有一根质量为m、电阻不计的导体棒,自圆形线框最高点由静止释放,棒在下落过程中始终与线框保持良好接触.已知下落距离为r2时棒的速度大小为v1,下落到圆心O时棒的速度大小为v2,忽略摩擦及空气阻力,下列说法正确的是( )A.导体棒下落距离为r2时,棒中感应电流的方向向右B.导体棒下落距离为r2时,棒的加速度的大小为g-27B2r2v12mRC.导体棒下落到圆心时,圆形导线框的发热功率为B2r2v22RD.导体棒从开始下落到经过圆心的过程中,圆形导线框产生的热量为mgr-12mv226.(多选)如图所示,光滑“∏”形金属导体框平面与水平面的夹角为θ,两侧对称,间距为L,上端接入阻值为R的电阻.ab以上区域内有垂直于金属框平面磁感应强度为B的匀强磁场.质量为m的金属棒MN与金属框接触良好,由图示位置以一定的初速度沿导轨向上运动,进入磁场区域后又继续上升一段距离但未碰及电阻R.已知金属棒上升、下降经过ab处的速度大小分别为v 1、v2,不计金属框、金属棒电阻及空气的阻力.下列说法中正确的是( )A.金属棒上升时间小于下降时间B.v2的大小可能大于mgRsinθB2L2C.上升过程中电阻R产生的焦耳热较下降过程的大D.金属棒上升、下降经过ab处的时间间隔为v1+v2gsinθ7.如图甲所示,足够长的两金属导轨MN、PQ水平平行固定,两导轨电阻不计,且处在竖直向上的磁场中,完全相同的导体棒a、b垂直放置在导轨上,并与导轨接触良好,两导体棒的电阻均为R=0.5 Ω,且长度刚好等于两导轨间距L,两导体棒的间距也为L,开始时磁场的磁感应强度按图乙所示的规律变化,当t=0.8 s时导体棒刚好要滑动.已知L=1 m,滑动摩擦力等于最大静摩擦力.求:(1)每根导体棒与导轨间的滑动摩擦力的大小及0.8 s内整个回路中产生的焦耳热;(2)若保持磁场的磁感应强度B=0.5 T不变,用如图丙所示的水平向右的力F拉导体棒b,刚开始一段时间内b做匀加速直线运动,一根导体棒的质量为多少?(3)在(2)问条件下a导体棒经过多长时间开始滑动?8.如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.9.如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d(导轨电阻不计),其右端接有阻值为R的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度大小为B.一质量为m、电阻为r的匀质导体杆ab垂直于导轨放置,与导轨接触良好,杆与导轨之间的动摩擦因数为μ.对ab施加水平向左的恒力F,使ab从静止开始沿导轨运动,当运动距离为l时,速度恰好达到最大.已知重力加速度大小为g.在此过程中,求:(1)导体杆ab的最大速度v m;(2)电阻R产生的焦耳热Q R.参考答案1.半径为L的圆形边界内分布有垂直圆所在平面的磁场,垂直纸面向里的磁感应强度大小为2B,垂直纸面向外的磁感应强度大小为B,如图所示.AEO为V形导线框,其面积为圆面积的八分之一,其总电阻为R,以角速度ω绕O轴逆时针匀速转动,从图中所示位置开始计时,用i表示导线框中的感应电流(顺时针方向为正),线框中感应电流i随时间t变化图象可能是( )答案B2.如图所示,光滑绝缘的水平桌面上有一直角三角形导线框ABC,其中AB=L,BC=2L,两平行虚线间有一垂直于桌面向下的匀强磁场,磁场宽度为L,导线框BC边与虚线边界垂直.现让导线框从图示位置开始沿BC方向匀速穿过磁场区域.设线框中产生顺时针方向的感应电流为正,则在线框穿过磁场的过程中,产生的感应电流与线框运动距离x的函数关系图象正确的是( )答案D3.(多选)如图所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P之间接一阻值为R的定值电阻,阻值为r的金属棒ab垂直导轨放置并良好接触,其他电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上.t=0时对棒施加一平行于导轨向上的外力F,棒由静止开始沿导轨向上做匀加速直线运动.下列关于通过ab的感应电荷量q、电流I、ab所受外力F及穿过abPM的磁通量Φ随时间t变化的图象中,大致正确的是( )答案BC4.(多选)如图所示,在竖直面内有方向垂直纸面向里、高度为h的有界匀强磁场,磁场上、下边界水平.将边长为l(l<h)、质量为m的正方形金属线框abcd从磁场上方某处由静止释放,设ab边通过磁场上边界和磁场下边界时的速度分别为v1和v2;cd边通过磁场下边界时的速度为v3.已知线框下落过程中ab边始终水平、ad边始终竖直,下列说法正确的是( )A.若v1=v2,则一定有v2>v3B.若v1>v2,则一定有v2>v3C.若v1=v2,从ab离开磁场到cd离开磁场的过程中,线框内产生的焦耳热为mghD.从ab进入磁场到cd离开磁场的过程中,线框内产生的焦耳热为mgh+12mv12−1 2mv32答案ABC5.(多选)如图所示,一个半径为r、粗细均匀、阻值为R的圆形导线框,竖直放置在磁感应强度为B的水平匀强磁场中,线框平面与磁场方向垂直.现有一根质量为m、电阻不计的导体棒,自圆形线框最高点由静止释放,棒在下落过程中始终与线框保持良好接触.已知下落距离为r2时棒的速度大小为v1,下落到圆心O时棒的速度大小为v2,忽略摩擦及空气阻力,下列说法正确的是( )A.导体棒下落距离为r2时,棒中感应电流的方向向右B.导体棒下落距离为r2时,棒的加速度的大小为g-27B2r2v12mRC.导体棒下落到圆心时,圆形导线框的发热功率为B2r2v22RD.导体棒从开始下落到经过圆心的过程中,圆形导线框产生的热量为mgr-12mv22答案BD6.(多选)如图所示,光滑“∏”形金属导体框平面与水平面的夹角为θ,两侧对称,间距为L,上端接入阻值为R的电阻.ab以上区域内有垂直于金属框平面磁感应强度为B的匀强磁场.质量为m的金属棒MN与金属框接触良好,由图示位置以一定的初速度沿导轨向上运动,进入磁场区域后又继续上升一段距离但未碰及电阻R.已知金属棒上升、下降经过ab处的速度大小分别为v 1、v2,不计金属框、金属棒电阻及空气的阻力.下列说法中正确的是( )A.金属棒上升时间小于下降时间B.v2的大小可能大于mgRsinθB2L2C.上升过程中电阻R产生的焦耳热较下降过程的大D.金属棒上升、下降经过ab处的时间间隔为v1+v2gsinθ答案ACD7.如图甲所示,足够长的两金属导轨MN、PQ水平平行固定,两导轨电阻不计,且处在竖直向上的磁场中,完全相同的导体棒a、b垂直放置在导轨上,并与导轨接触良好,两导体棒的电阻均为R=0.5 Ω,且长度刚好等于两导轨间距L,两导体棒的间距也为L,开始时磁场的磁感应强度按图乙所示的规律变化,当t=0.8 s时导体棒刚好要滑动.已知L=1 m,滑动摩擦力等于最大静摩擦力.求:(1)每根导体棒与导轨间的滑动摩擦力的大小及0.8 s内整个回路中产生的焦耳热;(2)若保持磁场的磁感应强度B=0.5 T不变,用如图丙所示的水平向右的力F拉导体棒b,刚开始一段时间内b做匀加速直线运动,一根导体棒的质量为多少?(3)在(2)问条件下a导体棒经过多长时间开始滑动?答案(1)0.25 N 0.2 J (2)0.5 kg (3)2 s8.如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.答案(1)mg(sin θ-3μcos θ)(2)(sin θ-3μcos θ)mgRB2L29.如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d(导轨电阻不计),其右端接有阻值为R的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度大小为B.一质量为m、电阻为r的匀质导体杆ab垂直于导轨放置,与导轨接触良好,杆与导轨之间的动摩擦因数为μ.对ab施加水平向左的恒力F,使ab从静止开始沿导轨运动,当运动距离为l时,速度恰好达到最大.已知重力加速度大小为g.在此过程中,求:(1)导体杆ab的最大速度v m;(2)电阻R产生的焦耳热Q R.答案(1)(R+r)(F-μmg)d2B2(2)R(F-μmg)lR+r −mR(R+r)(F-μmg)22d4B4。

2020年全国3卷高考物理冲刺压轴卷以及答案汇总

2020年全国3卷高考物理冲刺压轴卷以及答案汇总

2020年新课标Ⅲ卷高考物理冲刺压轴卷理科综合·物理(考试时间:55分钟 试卷满分:110分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分。

14.卢瑟福用α粒子轰击氮原子核发现质子的核反应方程41412781He+N O+H n →中,n 的数值为A .18B .17C .16D .815.2018年12月12日由中国研制的“嫦娥四号”探测器实现在月球背面软着陆。

“嫦娥四号”探测器到达月球引力范围时,通过变轨先进入绕月圆轨道,再经变轨,进入椭圆轨道,其中A 、B 两点分别为近月点和远月点,如图所示。

已知月球质量为M ,半径为R ,引力常量为G ,绕月圆轨道半径为r ,忽略地球引力的影响,则嫦娥四号探测器从B 点飞A 点所用的时间为A ()32π2R r GM +B ()32π8R r GM +C 234πR GM D 23πr GM 16.两只相同的电阻,分别通以正弦波形的交流电和方波形的交流电,两种交流电的最大值相等,且周期相等(如图所示)。

在正弦波形交流电的一个周期内,正弦波形的交流电在电阻上产生的焦耳热为Q1,其与方波形交流电在电阻上产生的焦耳热Q2之比Q1:Q2等于A.1:2 B.2:1 C.1:1 D.4:317.小明同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,篮球运动轨迹如下图所示,不计空气阻力,关于篮球从抛出到撞击篮板前,下列说法正确的是A.两次在空中的时间可能相等B.两次抛出的水平初速度可能相等C.两次抛出的初速度竖直分量可能相等D.两次抛出的初动能可能相等18.在平直公路上行驶的a车和b车,其位移时间图象分别为图中直线a和曲线b。

【百日冲刺】2020年高考物理备考专题10磁场含解析

【百日冲刺】2020年高考物理备考专题10磁场含解析

专题10 磁场第一部分名师综述带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。

在历年的高考试题中几乎年年都有这方面的考题。

带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。

带电粒子在复合场中的运动包括带电粒子在匀强电场、交变电场、匀强磁砀及包含重力场在内的复合场中的运动问题,是高考必考的重点和热点。

纵观近几年各种形式的高考试题,题目一般是运动情景复杂、综合性强,多把场的性质、运动学规律、牛顿运动定律、功能关系以及交变电场等知识有机地结合,题目难度中等偏上,对考生的空间想像能力、物理过程和运动规律的综合分析能力,及用数学方法解决物理问题的能力要求较高,题型有选择题、作图及计算题,涉及本部分知识的命题也有构思新颖、过程复杂、高难度的压轴题。

第二部分精选试题一、单选题1.如图所示,边长为L的正六边形abcdef中,存在垂直该平面向内的匀强磁场,磁感应强度大小为B.a 点处的粒子源发出大量质量为m、电荷量为+q的同种粒子,粒子的速度大小不同,方向始终垂直ab边且与磁场垂直,不计粒子的重力,当粒子的速度为v时,粒子恰好经过b点,下列说法正确的是 ( )A.速度小于v的粒子在磁场中运动时间为ππ2ππB.经过d点的粒子在磁场中运动的时间为ππ4ππC.经过c点的粒子在磁场中做圆周运动的半径为2LD.速度大于2v 小于4v的粒子一定打在cd边上【答案】 D【解析】【详解】A、粒子在磁场中做匀速圆周运动,当粒子的速度为v时,粒子恰好经过b点时在磁场中运动了半周,运动时间为12π=ππππ,轨迹半径等于ab的一半.当粒子的速度小于v时,由π=ππππ知,粒子的轨迹半径小于ab的一半,仍运动半周,运动时间仍为12π=ππππ;故A错误.B、在a点粒子的速度与ad连线的夹角为30°,粒子经过d点时,粒子的速度与ad连线的夹角也为30°,则粒子轨迹对应的圆心角等于60°,在磁场中运动的时间π=16π=ππ3ππ;故B错误.C、经过c点的粒子,根据几何知识知,该粒子在磁场中做圆周运动的圆心b,半径为L,故C错误.D、设经过b、c、d三点的粒子速度分别为v1、v2、v3.轨迹半径分别为r1、r2、r3.据几何知识可得,π1=π2,r2=L,r3=2L,由半径公式π=ππ得:v2=2v1=2v,v3=4v1=4v,所以只有速度在这个范围:2v≤v≤4v的粒子ππ才打在cd边上;故D正确.故选D.2.如图所示,在空间有一坐标系xOy中,直线OP与x轴正方向的夹角为30o,第一象限内有两个方向都垂直纸面向外的匀强磁场区域I和II,直线OP是它们的边界,OP上方区域I中磁场的磁感应强度为B。

高考物理三轮冲刺大题提分大题精做13电磁感应中的动力学和能量问题.docx

高考物理三轮冲刺大题提分大题精做13电磁感应中的动力学和能量问题.docx

大题精做十三电磁感应中的动力学和能量问题1.【衡水模拟】如图所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板。

R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。

(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v;(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m,带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x。

【解析】(1)对ab匀速下滑时:Mg sinθ=BIl解得通过棒的电流为:由I=联立解之得:。

(2)对板间粒子有:q=mg根据欧姆定律得R x=联立解之得:mBldqMsinθ。

2.【2017江苏】如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻。

质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下。

当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v。

导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触。

求:(1)MN刚扫过金属杆时,杆中感应电流的大小I;(2)MN刚扫过金属杆时,杆的加速度大小a;(3)PQ刚要离开金属杆时,感应电流的功率P。

【解析】(1)感应电动势感应电流解得(2)安培力牛顿第二定律解得(3)金属杆切割磁感线的速度v0-v,则感应电动势v0-v)电功率解得)2R1.【江苏联考】如图1所示,两条相距d=1 m的平行光滑金属导轨位于同一水平面内,其左端接一阻值R=9 Ω的电阻,右端放置一阻值r=1 Ω、质量m=1 kg的金属杆,开始时,与MP 相距L=4 m。

导轨置于竖直向下的磁场中,其磁感应强度B随时间t的变化规律如图2所示。

给金属杆施加一向右的力F(F未知),使0~2 s内杆静止在NQ处。

2020版高考物理新导学浙江选考大一轮精讲讲义:第九章磁场专题强化三含答案

2020版高考物理新导学浙江选考大一轮精讲讲义:第九章磁场专题强化三含答案

专题强化三带电粒子在叠加场和组合场中的运动命题点一带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动(1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若重力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,可由此求解问题.(2)电场力、洛伦兹力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、洛伦兹力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.例1如图1,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发,沿与x轴正方向的夹角为45°的初速度进入复合场中,正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),粒子继续运动一段时间后,正好垂直于y 轴穿出复合场.不计一切阻力,求:图1(1)电场强度E的大小;(2)磁感应强度B 的大小; (3)微粒在复合场中的运动时间. 答案 (1)mg q (2)mqg l (3)(3π4+1)lg解析 (1)微粒到达A (l ,l )之前做匀速直线运动,对微粒受力分析如图甲:所以,Eq =mg ,得:E =mgq(2)由平衡条件:q v B =2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙:qv B =m v 2r由几何知识可得:r =2l 联立解得:v =2gl , B =m qg l(3)微粒做匀速直线运动的时间:t 1=2lv =l g 做匀速圆周运动的时间:t 2=34π·2l v =3π4l g 在复合场中的运动时间:t =t 1+t 2=(3π4+1)l g. 变式1 如图2,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )图2A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a答案 B解析 设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则 m b g =qE +q v B ②c 在纸面内向左做匀速直线运动,三力平衡,则 m c g +q v B =qE ③比较①②③式得:m b >m a >m c ,选项B 正确.变式2 (2019届效实中学期中)一带电液滴在互相垂直的匀强电场和匀强磁场中做半径为R 的圆周运动,如图3所示,已知电场强度为E ,方向竖直向下,磁感应强度为B ,方向水平(图中垂直纸面向里),重力加速度为g .运动中液滴所受浮力、空气阻力都不计,求:图3(1)液滴是顺时针运动还是逆时针运动; (2)液滴运动的速度多大;(3)若液滴运动到最低点A 时分裂成两个完全相同的液滴,其中一个仍在原平面内做半径R 1=3R 的圆周运动,绕行方向不变,且圆周的最低点仍是A 点,则另一个液滴怎样运动? 答案 见解析解析 (1)、(2)带电液滴所受电场力向上且与重力平衡,知液滴带负电,液滴所受洛伦兹力提供向心力,由左手定则结合题图知液滴顺时针运动. 即Eq =mg ,q v B =m v 2R解得v =gBRE(3)分裂后的液滴电荷量、质量均减半,电场力与重力仍平衡,依据上面运算可得,分裂后第一个液滴的绕行速度大小v 1=gBR 1E =gB ·3RE=3v ,方向向左.分裂后第二个液滴的速度设为v 2,分裂前后水平方向动量守恒,以液滴分裂前的速度方向为正方向 m v =12m v 1+12m v 2,解得v 2=-v即分裂后第二个液滴速度大小为v ,方向向右,所受电场力与重力仍平衡,在洛伦兹力作用下做匀速圆周运动,绕行方向为顺时针,A 点是圆周最高点,圆周半径R 2=R . 命题点二 带电粒子在组合场中的运动 1.带电粒子在组合场中运动的分析思路第1步:分阶段(分过程)按照时间顺序和进入不同的区域分成几个不同的阶段; 第2步:受力分析和运动分析,主要涉及两种典型运动,如下: 匀速圆周运动←粒子垂直于磁感线进入匀强磁场←磁偏转←组合场中两种典型运动→电偏转→粒子垂直于电场线进入匀强电场→类平抛运动 第3步:用规律磁偏转→匀速圆周运动→圆轨迹→找半径→定圆心⎩⎪⎨⎪⎧半径公式周期公式电偏转→类平抛运动⎩⎪⎨⎪⎧初速度方向→匀速直线运动电场方向→匀变速直线运动2.解题步骤(1)找关键点:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键.(2)画运动轨迹:根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形象、直观地解决问题.模型1 磁场与磁场组合例2 人类研究磁场的目的之一是通过磁场控制带电粒子的运动.如图4所示是通过磁场控制带电粒子运动的一种模型.在0≤x <d 和d <x ≤2d 的区域内,存在磁感应强度大小均为B 的匀强磁场,其方向分别垂直纸面向里和垂直纸面向外.在坐标原点有一粒子源连续不断地沿x 轴正方向释放出质量为m 、带电荷量为q (q >0)的粒子,其速率有两种,分别为v 1=23qBd 3m 、v 2=2qBdm .(不考虑粒子的重力以及粒子之间的相互作用)图4(1)求两种速率的粒子在磁感应强度为B 的匀强磁场中做圆周运动的半径R 1和R 2. (2)求两种速率的粒子从x =2d 的边界射出时,两出射点的距离Δy 的大小.(3)在x >2d 的区域添加另一匀强磁场,使得从x =2d 边界射出的两束粒子最终汇聚成一束,并平行y 轴正方向运动.在图中用实线画出粒子的大致运动轨迹(无需通过计算说明),用虚线画出所添加磁场的边界线.答案 (1)233d 2d (2)4(233-1)d (3)见解析图解析 (1)根据q v B =m v 2R 可得:R =m vqB又因为粒子速率有两种,分别为:v 1=23qBd 3m ,v 2=2qBdm解得:R 1=233d ,R 2=2d(2)图甲为某一速率的粒子运动的轨迹示意图,辅助线如图所示,根据几何关系可知:速率为v 1的粒子射出x =2d 边界时的纵坐标为:y 1=2(R 1-R 12-d 2)=233d速率为v 2的粒子射出x =2d 边界时的纵坐标为:y 2=2(R 2-R 22-d 2)=2(2-3)d 联立可得两出射点距离的大小:Δy =y 1-y 2=4(233-1)d(3)两个粒子运动轨迹如图乙中实线所示,磁场边界如图中倾斜虚线所示,可以使得从x =2d 边界射出的两束粒子最终汇聚成一束,并平行y 轴正方向运动.模型2 电场与磁场组合例3 (2016·浙江4月选考·22)如图5为离子探测装置示意图.区域Ⅰ、区域Ⅱ长均为L =0.10 m ,高均为H =0.06 m .区域Ⅰ可加方向竖直向下、电场强度为E 的匀强电场;区域Ⅱ可加方向垂直纸面向里、磁感应强度为B 的匀强磁场,区域Ⅱ的右端紧贴着可探测带电粒子位置的竖直屏.质子束沿两板正中间以速度v =1.0×105 m/s 水平射入,质子荷质比近似为qm =1.0×108 C/kg.(忽略边界效应,不计重力)图5(1)当区域Ⅰ加电场、区域Ⅱ不加磁场时,求能在屏上探测到质子束的外加电场的最大值E max ; (2)当区域Ⅰ不加电场、区域Ⅱ加磁场时,求能在屏上探测到质子束的外加磁场的最大值B max ; (3)若区域Ⅰ加电场E 小于(1)中的E max ,质子束进入区域Ⅱ和离开区域Ⅱ的位置等高,求区域Ⅱ中的磁场B 与区域Ⅰ中的电场E 之间的关系式. 答案 (1)200 V/m (2)5.5×10-3 T (3)B =2E v 解析 (1)质子在电场中做类平抛运动 v y =at =qELm v ,tan α=v y v =EqL m v2质子恰好能到达区域Ⅱ右下端时,外加电场最大, 此时有tan α=H 2L +L 2,得E max =Hm v 23qL 2=200 V/m.(2)质子在磁场中运动有q v B =m v 2R ,即R =m vqB根据几何关系有:R 2-(R -H2)2=L 2时,外加磁场最大得B max =m v H q (L 2+H24)≈5.5×10-3T. (3)质子运动轨迹如图所示.设质子进入磁场时的速率为v ′,则 sin α=v y v ′=at v ′=Eq m ·L v v ′=EqLm vv ′由几何关系知sin α=L 2R =L 2m v ′Bq=BqL 2m v ′,得B =2Ev .变式3 (2017·浙江4月选考·23)如图6所示,在xOy 平面内,有一电子源持续不断地沿x 轴正方向每秒发射出N 个速率均为v 的电子,形成宽为2b 、在y 轴方向均匀分布且关于x 轴对称的电子流.电子流沿x 方向射入一个半径为R 、中心位于原点O 的圆形匀强磁场区域,磁场方向垂直xOy 平面向里,电子经过磁场偏转后均从P 点射出,在磁场区域的正下方有一对平行于x 轴的金属平行板K 和A ,其中K 板与P 点的距离为d ,中间开有宽度为2l 且关于y 轴对称的小孔.K 板接地,A 与K 两板间加有正负、大小均可调的电压U AK ,穿过K 板小孔到达A 板的所有电子被收集且导出,从而形成电流.已知b =32R ,d =l ,电子质量为m,电荷量为e ,忽略电子间的相互作用.图6(1)求磁感应强度B 的大小;(2)求电子从P 点射出时与负y 轴方向的夹角θ的范围;(3)当U AK =0时,每秒经过极板K 上的小孔到达极板A 的电子数; (4)画出电流i 随U AK 变化的关系曲线. 答案 见解析解析 轨迹示意图(1)“磁聚焦”模型要求:R =m v eB ,解得B =m veR .(2)b =32R ,由几何关系知:θ在关于y 轴左、右对称的60°(含)范围内.(3)要进入小孔,电子到达P 点时与y 轴负方向的夹角φ≤45° 则:N 0N =2R sin φ2b =sin φsin 60°≤63则当U AK =0时每秒到达A 板的电子数:N 0=63N . (4)①当U AK ≥0时,进入小孔的电子全部能到A 板 i 1=N 0e =63Ne ②设当U AK =U 1时,φ1=45°对应的电子刚好到达A 板 则eU 1=0-12m (v cos φ1)2,解得U AK =-m v 24e即在区间(-m v 24e ,0)之间,i 2=N 0e =63Ne③当U AK 反向继续增大时,将出现有电子(该临界角度为α) 刚好打到A 板上,而φ>α的电子打不到A 板 i =sin αsin 60°Ne ,eU AK =0-12m (v cos α)2 解得:i =43+8eU AK3m v 2Ne . i =0时,U AK =-m v 22e.综上所述:i -U AK 图线如图所示变式4 如图7所示,O ′PQ 是关于y 轴对称的四分之一圆,在PQNM 区域有均匀辐向电场,PQ 与MN 间的电压为U .一初速度为零的带正电的粒子从PQ 上的任一位置经电场加速后都会从O ′进入半径为R 、中心位于坐标原点O 的圆形匀强磁场区域,磁场方向垂直xOy 平面向外,大小为B ,粒子经磁场偏转后都能平行于x 轴射出.在磁场区域右侧有一对平行于x 轴且到x 轴距离都为R 的金属平行板A 和K ,金属板长均为4R ,其中K 板接地,A 与K 两板间加有电压U AK >0,忽略极板电场的边缘效应,不计重力.已知金属平行板左端连线与磁场圆相切,O ′在y 轴上.图7(1)求带电粒子的比荷qm;(2)求带电粒子进入右侧电场时的纵坐标范围;(3)若无论带电粒子从PQ 上哪个位置出发都能打到K 板上,则电压U AK 至少为多大? 答案 (1)2U B 2R 2 (2)-22R ~22R (3)2+24U 解析 (1)由动能定理可知qU =12m v 2由已知条件可知,带电粒子在磁场中运动的半径R 0=R 洛伦兹力提供粒子在磁场中做圆周运动的向心力, q v B =m v 2R 0.联立解得q m =2UB 2R2(2)如图,沿QN 方向入射的带电粒子,在磁场中做圆周运动的圆心为O 1,由几何关系知,对应的圆心角为135°,离开磁场的出射点a 在y 轴上的投影与O ′的距离为 Δy =R +22R a 点的纵坐标y a =22R同理可得,沿PM 方向入射的带电粒子离开磁场的出射点b 的纵坐标y b =-22R 故带电粒子进入右侧电场时的纵坐标范围为: -22R ~22R(3)只要沿QN 方向入射的带电粒子能打在K 板上,则从其他位置入射的粒子也一定打在K 板上,则在电场中 E =U AK 2RF =qE =ma Δy =R +22R =12at 2 应满足4R ≥v t 解得U AK ≥2+24U .1.如图1甲所示,水平放置的平行金属板M 、N 之间存在竖直向上的匀强电场和垂直于纸面的交变磁场(如图乙所示,垂直纸面向里为正),磁感应强度B 0=50 T ,已知两板间距离d =0.3 m ,电场强度E =50 V/m ,M 板中心有一小孔P ,在P 正上方h =5 cm 处的O 点,一带电油滴自由下落,穿过小孔后进入两板间,若油滴在t =0时刻进入两板间,最后恰好从N 板边缘水平飞出.已知油滴的质量m =10-4 kg ,电荷量q =+2×10-5C(不计空气阻力,重力加速度g 取10 m/s 2,取π=3).求:图1(1)油滴在P 点的速度大小; (2)N 板的长度;(3)交变磁场的变化周期. 答案 (1)1 m/s (2)0.6 m (3)0.3 s解析 (1)由机械能守恒定律,得mgh =12m v 2解得v =1 m/s(2)进入场区时,因为mg =10-3 N ,方向向下,而Eq =10-3 N ,方向向上.所以,重力与电场力平衡,油滴做匀速圆周运动, 所以B 0q v =m v 2R解得R =0.1 m因d =0.3 m ,则若使油滴从N 板边缘水平飞出,需在场内做三次14圆弧运动.所以,N 板的长度L =6R . 解得L =0.6 m(3)油滴在磁场中运动的周期T 0=2πR v =2πmB 0q由(2)分析知交变磁场的周期T =12T 0联立解得T =0.3 s.2.(2019届东阳中学模拟)如图2所示,半径r =0.06 m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1 m 、磁感应强度大小B =0.075 T 的圆形有界磁场区的圆心坐标为(0,0.08 m),平行金属板MN 的极板长L =0.3 m 、间距d =0.1 m ,极板间所加电压U =6.4×102 V ,其中N 极板收集的粒子全部中和吸收.一位于O 处的粒子源向第Ⅰ、Ⅱ象限均匀地发射速度大小v =6×105 m/s 的带正电粒子,经圆形磁场偏转后,从第Ⅰ象限出射的粒子速度方向均沿x 轴正方向.若粒子重力不计、比荷qm =108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin 37°=0.6,cos 37°=0.8.求:图2(1)粒子在磁场中的运动半径R 0;(2)从坐标(0,0.18 m)处射出磁场的粒子,其在O 点入射方向与y 轴的夹角θ; (3)N 板收集到的粒子占所有发射粒子的比例η. 答案 见解析解析 (1)粒子在磁场中做匀速圆周运动,由q v B =m v 2R 0得R 0=m vqB=0.08 m(2)如图所示,从y =0.18 m 处出射的粒子对应入射方向与y 轴的夹角为θ,轨迹圆心与y 轴交于(0,0.10 m)处,由几何关系可得:sin θ=0.8,故θ=53°(3)如图所示,令恰能从下极板右端出射的粒子刚进入电场时的纵坐标为y : 则y =12at 2,a =qUmd ,L =v t ,联立解得y =UqL 22md v 2=0.08 m设此粒子入射时与x 轴正方向夹角为α,则有: y =r sin α+R 0- R 0cos α 可知tan α=43即α=53°比例η=53°180°×100%≈29.4%.3.某高中物理课程基地拟采购一批实验器材,增强学生对电偏转和磁偏转研究的动手能力,其核心结构原理可简化为如图3所示.AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知O 、P 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3m v 02qd ,粒子重力不计.试求:图3(1)粒子从M 点飞离CD 边界时的速度大小; (2)P 、N 两点间的距离;(3)圆形有界匀强磁场的半径和磁感应强度的大小. 答案 (1)2v 0 (2)38d (3)54d 83m v 05qd解析 (1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 点时间:t 1=dv 0粒子在电场中的加速度:a =Eqm =3v 02dP 、M 两点间的距离为:PM =12at 12=32d .粒子在M 点时竖直方向的分速度:v y =at 1=3v 0 粒子在M 点时的速度:v =v 02+v y 2=2v 0 速度偏转角的正切值:tan θ=v yv 0=3,故θ=60°;(2)粒子从N 到O 点时间:t 2=d 2v 0粒子从N 到O 点过程竖直方向的位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d (3)设粒子在磁场中运动的半径为R ,由几何关系得:R cos 60°+R =PN +PM =538d 可得半径:R =5312d由q v B =m v 2R ,即:R =m vqB解得:B =83m v 05qd由几何关系确定区域半径为:R ′=2R cos 30° 即R ′=54d .4.如图4,静止于A 处的离子经电压为U 的加速电场加速后沿图中圆弧虚线通过静电分析器,从P 点垂直CN 进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E 0,方向如图所示;离子质量为m 、电荷量为q ;QN =2d 、PN =3d ,离子重力不计.图4(1)求圆弧虚线对应的半径R 的大小;(2)若离子恰好能打在NQ 的中点,求矩形区域QNCD 内匀强电场场强E 的值;(3)若撤去矩形区域QNCD 内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围. 答案 (1)2U E 0 (2)12U d (3)12d2Um q ≤B <23d2Umq解析 (1)离子在加速电场中加速,根据动能定理, 有:qU =12m v 2离子在辐向电场中做匀速圆周运动,知离子带正电,电场力提供向心力, 根据牛顿第二定律,有qE 0=m v 2R联立解得:R =2UE 0(2)离子做类平抛运动,若恰好能打在NQ 的中点,则 d =v t,3d =12at 2由牛顿第二定律得:qE =ma , 联立解得:E =12Ud(3)离子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律,有 q v B =m v 2r ,则 r =1B2Umq离子能打在QN 上,则离子运动径迹的边界如图中Ⅰ和Ⅱ.由几何关系知,离子能打在QN 上,必须满足:32d <r ≤2d ,则有12d2Um q ≤B <23d2Umq. 5.(2018·宁波市十校联考)一个放射源水平放出α、β、γ三种射线,垂直射入如图5所示磁场,区域Ⅰ和Ⅱ的宽度均为d ,各自存在着垂直纸面的匀强磁场,两区域的磁感应强度大小B 相等,方向相反(粒子运动不考虑相对论效应).已知电子质量m e =9.1×10-31kg ,α粒子质量m α=6.7×10-27kg ,电子电荷量q =1.6×10-19C ,1+x ≈1+x2(|x |<1时).图5(1)若要筛选出速率大于v 1的所有β粒子进入区域Ⅱ,求磁场宽度d 与B 和v 1的关系(用题中所给字母表示即可);(2)若B =0.027 3 T ,v 1=0.1c (c 是光速),计算d ;α粒子的速率为0.001c ,计算α粒子离开区域Ⅰ时的偏移距离(答案均保留三位有效数字);(3)当d 满足第(1)小题所给关系时,请给出速率在v 1<v <v 2区间的β粒子离开区域Ⅱ时的位置. 答案 见解析解析 (1)作出临界轨迹如图甲所示,由几何关系知:r =d ,洛伦兹力提供向心力,由牛顿第二定律得:q v 1B =m e v 12r ,解得:d =m e v 1qB;(2)对电子:d =m e v 1qB =9.1×10-31×0.1×3×1081.6×10-19×0.027 3m =6.25×10-3 m 对α粒子:r α=m αv αq αB =6.7×10-27×0.001×3×1082×1.6×10-19×0.027 3m ≈0.230 m 作出轨迹如图乙所示,竖直方向上的偏移距离:y =r α-r α2-d 2=r α-r α(1-d 2r α)(1+d 2r α)=d 24r α≈4.25×10-5 m ;(3)画出速率分别为v 1和v 2的粒子离开区域Ⅱ的轨迹如图丙所示,速率在v 1<v <v 2区域间射出的β粒子束宽为y 1-y 2, y 1=2d =2m e v 1qB ,y 2=2(r 2-r 22-d 2)=2m eqB(v 2-v 22-v 12).。

2020届高三物理磁场专题训练(带解析)

2020届高三物理磁场专题训练(带解析)

2020届高三物理磁场专题训练(共34题)一、单选题(本大题共12小题)1.如图所示,由Oa、Ob、Oc三个铝制薄板互成120°角均匀分开的I、Ⅱ、Ⅲ三个匀强磁场区域,其磁感应强度分别用B1、B2、B3表示。

现有带电粒子自a点垂直Oa板沿逆时针方向射入磁场中,带电粒子完成一周运动,假设带电粒子穿过铝质薄板过程中电荷量不变,在三个磁场区域中的运动时间之比为1:3:5,轨迹恰好是一个以O为圆心的圆,不计粒子重力,则()A. 磁感应强度B1:B2:B3=1:3:5B. 磁感应强度B1:B2:B3=5:3:1C. 其在b、c处穿越铝板所损失的动能之比为25:2D. 其在b、c处穿越铝板所损失的动能之比为27:52.如图所示,边界OM与ON之间分布有垂直纸面向里的匀强磁场,边界ON上有一粒子源S。

某一时刻,从离子源S沿平行于纸面,向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相等,经过一段时间有大量粒子从边界OM射出磁场。

已知∠MON=30°,从边界OM射出的粒子在磁场中运动的最长时间等于12T(T为粒子在磁场中运动的周期),则从边界OM射出的粒子在磁场中运动的最短时间为()A. 13T B. 14T C. 16T D. 18T3.如图所示,四根相互平行的固定长直导线L1、L2、L3、L4,其横截面构成一角度为60°的菱形,均通有相等的电流I,菱形中心为O.L1中电流方向与L2中的相同,与L3、L4中的相反,下列说法中正确的是()A. 菱形中心O处的磁感应强度不为零B. 菱形中心O处的磁感应强度方向沿OL1C. L1所受安培力与L3所受安培力大小不相等D. L1所受安培力的方向与L3所受安培力的方向相同4.如图所示,圆形磁场区域内有垂直纸面向外的匀强磁场,三个带电粒子A,B,C先后从P点以相同的速度沿PO方向射入磁场,分别从a,b,c三点射出磁场,三个粒子在磁场中运动的时间分别用t A、t B、t C表示,三个粒子的比荷分别用k A,k B,k C表示,三个粒子在该磁场中运动的周期分别用T A、T B、T C表示,下列说法正确的是()A. 粒子B带正电B. t A<t B<t CC. k A<k B<k CD. T A>T B>T C5.如图所示,三角形ABC内有垂直于三角形平面向外的匀强磁场,AB边长为L,∠CAB=30°,∠B=90°,D是AB边的中点。

2020年全国高考物理考前冲刺押题卷(三)(解析版)

2020年全国高考物理考前冲刺押题卷(三)(解析版)

2020年全国高考物理考前冲刺押题卷(三)(考试时间:90分钟 试卷满分:110分)第Ⅰ卷一、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分。

1.下列说法不正确的是( )A .238 92U 经过一次α衰变后变为234 90ThB .由核反应方程137 55Cs →137 56Ba +X ,可以判断X 为电子C .核反应方程42He +14 7N →17 8O +11H 为轻核聚变 D .若16 g 铋210经过15天时间,还剩2 g 未衰变,则铋210的半衰期为5天 【答案】C 【解析】23892U经过一次α衰变后,电荷数少2,质量数少4,变为234 90Th ,A 正确;根据电荷数守恒、质量数守恒知,X 的电荷数为-1,质量数为0,可知X 为电子,B 正确;42He +14 7N →17 8O +11H 为人工转变,C 错误;根据m =m 0⎝⎛⎭⎫12t T ,可得⎝⎛⎭⎫1215T =18,解得T =5天,D 正确.2.如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为L =2 m 的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为d =1.2 m ,重为8 N 的钩码由光滑挂钩挂在轻绳上处于静止状态,则轻绳的弹力大小为( )A .10 NB .8 NC .6 ND .5 N【答案】D【解析】设挂钩所在处为N 点,延长PN 交墙于M 点,如图所示.同一条绳子拉力相等,根据对称性可知两边的绳子与竖直方向的夹角相等,设为α,则根据几何关系可知NQ =MN ,即PM 等于绳长;根据几何关系可得sin α=PO PM =1.22=0.6,则α=37°,根据平衡条件可得2T cos α=mg ,解得T =5 N ,故D 正确,A 、B 、C 错误.3.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H4所用的时间为t 1,第四个H 4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5【答案】C【解析】采用逆向思维法,把运动员的竖直向上运动视为竖直向下初速度为零的匀加速运动,则H 4=12gt 22,设竖直向下运动3H 4高度所用时间为t 3,竖直向下运动H 高度所用时间为t 4,则有3H 4=12gt 23,H =12gt 24,t 1=t 4-t 3,联立解得t 2t 1=2+3,选项C 正确.4.如图所示,MN 是流速稳定的河流,河宽一定,小船在静水中的速度大小一定,现小船从A 点渡河,第一次船头沿AB 方向与河岸上游夹角为α,到达对岸;第二次船头沿AC 方向与河岸下游夹角为β,到达对岸,若两次航行的时间相等,则( )A .α=βB .α<βC .α>βD .无法比较α与β的大小【答案】A【解析】第一次船头沿AB 方向(即为船在静水中的速度方向沿AB 方向)到达对岸,第二次船头沿AC 方向(即为船在静水中的速度方向沿AC 方向)到达对岸,对在这两种情况下的船在静水中的速度进行分解,因两次航行的时间相等,所以在垂直于河岸方向上的速度是相等的.因此两方向与河岸的夹角也相等,即α=β,故A 正确,B 、C 、D 错误.5.如图所示,一颗卫星绕地球做椭圆运动,运动周期为T ,图中虚线为卫星的运行轨迹,A 、B 、C 、D 是轨迹上的四个位置,其中A 距离地球最近,C 距离地球最远.B 和D 点是ABC 和ADC 的中点,下列说法正确的是( )A .卫星在C 点的速度最大B .卫星在C 点的加速度最大C .卫星从A 经D 到C 点的运动时间为T /2 D .卫星从B 经A 到D 点的运动时间为T /2 【答案】C【解析】卫星绕地球做椭圆运动,类似于行星绕太阳运转,根据开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等,则知卫星与地球的连线在相等时间内扫过的面积相等,所以卫星在距离地球最近的A 点速度最大,在距离地球最远的C 点速度最小,卫星在B 、D 两点的速度大小相等,故A 错误;在椭圆的各个点上都是引力产生加速度a =GMr 2,因A 点离地心的距离最小,则A 点的加速度最大,故B 错误;根据椭圆运动的对称性可知t ADC +t CBA =T ,则t ADC =T2,故C 正确;椭圆上近地点A 附近速度较大,远地点C 附近速度最小,则t BAD <T 2,t DCB >T2,故D 错误.6.有5个完全相同的灯泡连接在理想变压器的原、副线圈中,如图所示.若将该线路与交流电源接通,且开关S 接在位置1时,5个灯泡发光亮度相同;若将开关S 接在位置2时,灯泡均未烧坏.则下列可能的是( )A .该变压器是降压变压器,原、副线圈匝数比为4∶1B .该变压器是升压变压器,原、副线圈匝数比为1∶4C .副线圈中的灯泡仍能发光,只是更亮些D .副线圈中的灯泡仍能发光,只是亮度变暗 【答案】AC【解析】五个灯泡发光程度相同,所以原线圈电流与副线圈电流之比为1∶4,根据I 1I 2=n 2n 1=14可知该变压器是降压变压器,原、副线圈匝数比为4∶1,故A 正确,B 错误;接到2位置,原线圈输出电压变大,根据电压与匝数的关系可知副线圈电压变大,所以灯泡的电流变大,灯泡仍能发光,但亮度变大,故C 正确,D 错误.7.如图所示,a 、b 两点位于以负点电荷-Q (Q >0)为球心的球面上,c 点在球面外,则( )A .a 点场强的大小比b 点大B .b 点场强的大小比c 点小C .a 点电势与b 点电势相同D .b 点电势比c 点低 【答案】CD【解析】由点电荷的场强公式E =k Q r 2知,a 、b 两点与-Q 距离相等, 场强大小相等,A 错;由E =k Qr 2知,离-Q 越近, 场强越大,故b 点场强大小比c 点大.或由负点电荷形成的电场的电场线形状是“万箭穿心”,离点电荷越近电场线越密,场强越大,得出b 点的场强大小比c 点的大,B 错;点电荷形成的电场的等势面是以点电荷为球心的一簇球面,离-Q 距离相等的两点的电势相等,C 对;沿电场线的方向是电势降落最快的方向,得出离-Q 越近,电势越低,D 对.8.如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个矩形导线框abcd ,其上、下两边均与磁场边界平行,已知矩形导线框长为2l ,宽为l ,磁场上、下边界的间距为3l .若线框从某一高度处自由下落,从cd 边进入磁场时开始,直至cd 边到达磁场下边界为止,不计空气阻力,下列说法正确的是( )A .线框在进入磁场的过程中感应电流的方向为adcbaB .线框下落的速度大小可能始终减小C .线框下落的速度大小可能先减小后增加D .线框下落过程中线框的重力势能全部转化为内能 【答案】AC【解析】根据楞次定律,线框在进入磁场的过程中感应电流的方向为adcba ,选项A 正确;线圈开始进入磁场后受向上的安培力作用,若安培力大于重力,则线圈进入磁场时做减速运动,线圈完全进入磁场后无感应电流产生,此时不受安培力,只在重力作用下做匀加速运动,选项B 错误,选项C 正确;线框下落过程中,若线圈加速进入磁场,则线框的重力势能转化为线圈的动能和内能;若线圈减速进入磁场,则重力势能和减小的动能之和转化为内能;若线圈匀速进入磁场,则重力势能转化为内能,选项D 错误.第Ⅱ卷二、非选择题:本卷包括必考题和选考题两部分。

【高考复习】2020版高考物理 单元测试 磁场(含答案解析)

【高考复习】2020版高考物理 单元测试 磁场(含答案解析)
A.小球带负电荷,匀强磁场方向垂直于纸面向外 qg
B.小球的电荷量与质量的比值 = mE
C.小球从 a 运动到 b 的过程中,小球和地球组成的系统的机械能守恒 D.小球在 a、b 两点的速度相同
4.用绝缘细线悬挂一个质量为 m、带电荷量为+q 的小球,让它处于如图所示的磁感应强度为
B 的匀强磁场中.由于磁场的运动,小球静止在如图所示位置,这时悬线与竖直方向的夹 角为 α,并被拉紧,则磁场的运动速度和方向可能是( )
A.经过最高点时,三个小球的速度相等 B.经过最高点时,甲球的速度最小 C.甲球的释放位置比乙球的高 D.运动过程中三个小球的机械能均保持不变
12. (多选)如图所示,通电导体棒静止于水平导轨上,棒的质量为 m,长为 L,通过的电流大小 为 I 且垂直纸面向里,匀强磁场的磁感应强度 B 的方向与导轨平面成 θ 角,则导体棒受 到的( )
静止状态,则导线 C 受到的静摩擦力是( )
A. 3B0Il,水平向左
3 C. 2 B0Il,水平向左
B. 3B0Il,水平向右
3 D. 2 B0Il,水平向右
9. (多选)如图所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ, 如果正离子束在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径 r 相同,则它们一定具有相同的 ( )
A.A 接电源正极,B 接电源负极,液体顺时针旋转 B.A 接电源负极,B 接电源正极,液体顺时针旋转 C.A、B 与 50 Hz 的交流电源相接,液体持续旋转 D.仅磁场的 N、S 极互换后,重做该实验发现液体旋转方向不变
3.如图所示,一个质量为 m、电荷量为 q 的带电小球从水平线 PQ 上方 M 点自由下落,以 PQ 为 边界下方有方向竖直向下、电场强度为 E 的匀强电场,同时还有垂直于纸面的匀强磁场, 小球从边界上的 a 点进入复合场后,恰能做匀速圆周运动,并从边界上的 b 点穿出,重力 加速度为 g,不计空气阻力,则以下说法正确的是( )

2020届高考物理专题训练:磁场(两套 附详细答案解析)

2020届高考物理专题训练:磁场(两套 附详细答案解析)

高考物理专题训练:磁场(基础卷)一、 (本题共13小题,每小题4分,共52分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~13题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分)1.关于安培力,下列说法正确的是( )A.通电直导线在某处所受安培力的方向跟该处的磁场方向相同B.通电直导线在某处不受安培力的作用,则该处没有磁场C.通电直导线所受安培力的方向可以跟导线垂直,也可以不垂直D.通电直导线跟磁场垂直时受到的安培力一定最大【答案】D【解析】安培力的方向一定与磁场垂直,也一定与导线垂直,选项A、C错误;当通电直导线与磁场平行放置时,不受安培力作用,选项B错误。

2.在重复奥斯特电流磁效应的实验时,需要考虑减少地磁场对实验的影响,则以下关于奥斯特实验的说法中正确的是( )A.通电直导线竖直放置时,实验效果最好B.通电直导线沿东西方向水平放置时,实验效果最好C.通电直导线沿南北方向水平放置时,实验效果最好D.只要电流足够大,不管通电直导线怎样放置实验效果都很好【答案】C【解析】由于在地球表面小磁针静止时北极指北、南极指南,所以通电直导线沿南北方向水平放置时,电流在小磁针所在位置的磁场方向为东西方向,此时的效果最好。

3.科学研究发现,在地球的南极或北极所看到的美丽极光,是由来自太阳的高能带电粒子受到地磁场的作用后,与大气分子剧烈碰撞或摩擦所产生的结果,如图所示。

则下列关于地磁场的说法中,正确的是( )A.若不考虑磁偏角的因素,则地理南极处的磁场方向竖直向下B.若不考虑磁偏角的因素,则地理北极处的磁场方向竖直向上C.在地球赤道表面,小磁针静止时南极指向北的方向D.在地球赤道表面,小磁针静止时南极指向南的方向【答案】D【解析】在不考虑磁偏角的情况下,地球的南极相当于磁体的北极,故该处的磁场方向竖直向上,选项A、B错误;赤道处的地磁场方向向北,所以小磁针的南极指向南的方向,D正确。

2020高考物理专题卷:专题九《磁场》 含答案解析

2020高考物理专题卷:专题九《磁场》 含答案解析

2020衡水名师原创物理专题卷专题九磁场考点25 电流的磁场安培力(2、3、4、7、10)考点26 洛伦兹力带电粒子在匀强磁场中的运动(6、9、11、13、16、18)考点27 带电粒子在复合场中的运动(1、8、12、15、17、19、20)考点28 现代科技中的电磁场问题(5、14)第I卷(选择题 68分)一、选择题(本题共17个小题,每题4分,共68分。

每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.【山东省实验中学2017届高三第一次诊断性考试】考点27 易一带电粒子在电场和磁场同时存在的空间中(不计重力),不可能出现的运动状态是()A.静止B.匀速直线运动C.匀加速直线运动D.匀速圆周运动2.【2017·浙江省绍兴市高三学考选考科目适应性考试】考点25 易如图所示,电子枪向右发射电子束,其正下方水平直导线内通有向右的电流,则电子束将()A.向上偏转B.向下偏转C.向纸外偏转D.向纸内偏转3.【2017·重庆市高三上学期(一诊)期末测试】考点25 易如图所示,在倾角为30°的光滑斜面上,垂直纸面放置一根长为L、质量为m的直导体棒,导体棒中电流为I.要使导体棒静止在斜面上,需要外加匀强磁场的磁感应强度B的最小值为()A.2mgIL B.32mgILC.mgIL D.3mg4.【2017·天津市五区县高三上学期期末考试】考点25 易如图所示,A、B、C是等边三角形的三个顶点,O是A、B连线的中点.以O为坐标原点,A、B连线为x轴,O、C连线为y轴,建立坐标系.过A、B、C、O四个点各有一条长直导线垂直穿过纸面,导线中通有大小相等、方向向里的电流。

则过C点的通电直导线所受安培力的方向为()A.沿y轴正方向B.沿y轴负方向C.沿x轴正方向D.沿x轴负方向5.【2017·河北省定州中学高三上学期第二次月考】考点28 中速度相同的一束粒子(不计重力)经速度选择器射入质谱仪后的运动轨迹如右图所示,则下列相关说法中正确的是()A.该束带电粒子带正电B.速度选择器的P1极板带负电C.能通过狭缝S0的带电粒子的速率等于1EBD.若粒子在磁场中运动半径越大,则该粒子的比荷越小6.【2017·哈尔滨市第六中学上学期期末考试】考点26中不计重力的两个带电粒子1和2经小孔S 垂直磁场边界,且垂直磁场方向进入匀强磁场,在磁场中的轨迹如图所示.分别用v 1与v 2,t 1与t 2, 11m q 与 22m q 表示它们的速率、在磁场中运动的时间及比荷,则下列说法正确的是( )A .若 11m q < 22m q ,则v 1>v 2B .若v 1=v 2,则 11m q < 22m qC .若 11m q < 22m q ,则t 1<t 2D .若t 1=t 2,则 11m q > 22m q7.【广东省肇庆市2017届高三第二次模拟考试】考点25 难如图甲所示,电流恒定的通电直导线MN ,垂直平放在两条相互平行的水平光滑长导轨上电流方向由M 指向N ,在两轨间存在着竖直磁场,取垂直纸面向里的方向为磁感应强度的正方向,当t =0时导线恰好静止,若B 按如图乙所示的余弦规律变化,下列说法正确的是( )A .在最初的一个周期内,导线在导轨上往复运动B .在最初的一个周期内,导线一直向左运动C .在最初的半个周期内,导线的加速度先增大后减小D .在最初的半个周期内,导线的速度先增大后减小 8.【2017·哈尔滨市第六中学上学期期末考试】考点27 中如图所示,在虚线宽度范围内,存在方向垂直纸面向外磁感应强度为B 的匀强磁场,某种正离子以初速度v 0垂直于左边界射入,离开右边界时偏转角度为 θ.在该宽度范围内,若只存在竖直向下的匀强电场,该离子仍以原来的初速度穿过该区域,偏角角度仍为θ(不计离子的重力),则下列判断正确的是( )A .匀强电场的电场强度大小为θBv E cos 0=S21MNB(甲)(乙) B /Tt /sT θv 0B .匀强电场的电场强度大小为 θBv E sin 0C .离子穿过电场和磁场的时间之比为 θθsinD .离子穿过电场和磁场的时间之比为 0sin v θθ9.【2017年全国普通高等学校招生统一考试物理(全国2卷正式版)】考点26 中如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入的速度为1v ,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速度为2v ,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则 21:v v 为( )32: 21:31: D. 2:10.【2017年全国普通高等学校招生统一考试物理(全国3卷正式版)】考点25 难 如图,在磁感应强度大小为 0B的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为 l .在两导线中均通有方向垂直于纸面向里的电流 I 时,纸面内与两导线距离为 l 的a 点处的磁感应强度为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场1.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B和B、方向均垂直于纸面向外的匀强磁场.一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm6qB B.7πm6qBC.11πm6qBD.13πm6qB2.如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.3.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,电场强度大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘核12H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场,11H的质量为m,电荷量为q,不计重力.求(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强度大小;(3)12H第一次离开磁场的位置到原点O的距离.4.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行,一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π,求该粒子的比荷及其从M点运动6到N点的时间.5.如图所示,直角坐标系中的第Ⅰ象限中存在沿y轴负方向的匀强电场,在第Ⅱ象限中存在垂直纸面向外的匀强磁场.一电荷量为q、质量为m的带正电粒子,在x轴上的a点以速度v0与x轴负方向成60°角射入磁场,从y=L处的b点沿垂直于y轴方向进入电场,并经过x轴上x=2L处的c点.不计粒子重力.求:(1)磁感应强度B的大小;(2)电场强度E的大小;(3)带电粒子在磁场和电场中的运动时间之比.6.如图所示,在坐标系xOy的第一象限有沿x轴正方向的匀强电场,第二象限充满方向垂直坐标平面=5.0×1010 C/kg的带负电粒子从a(6,0)沿y轴正方向射入,速度大小为向外的匀强磁场.有一比荷qmv a=8.0×106 m/s,粒子通过y轴上的b(0,16)点后进入磁场.不计粒子的重力.求:(1)电场强度E的大小,粒子通过b点时速度v b的大小及方向;(2)为使粒子不再进入电场,匀强磁场磁感应强度B应满足什么条件.7.如图,在真空室内的P点,能沿纸面向各个方向不断发射电荷量为+q,质量为m的粒子(不计重力),粒子的速率都相同.ab为P点附近的一条水平直线,P到直线ab的距离PC=L,Q为直线ab上一点, L.当直线ab以上区域只存在垂直纸面向里、磁感应强度为B的匀强磁场时,它与P点相距PQ=√52水平向左射出的粒子恰到达Q点;当ab以上区域只存在平行该平面的匀强电场时,所有粒子都能到达ab直线,且它们到达ab直线时动能都相等,其中水平向左射出的粒子也恰好到达Q点.已知sin 37°=0.6,cos 37°=0.8,求:(1)粒子的发射速率;(2)匀强电场的场强大小和方向;(3)仅有磁场时,能到达直线ab的粒子所用最长时间和最短时间的比值.8.如图所示,在坐标系xOy平面内,区域xOO1a中存在与x轴正方向成60°斜向上的匀强电场,电场强度大小为E1(未知),区域aO1bc内存在一个边界与y轴平行的矩形匀强磁场(图中没画出)区域,方向垂.一质量为m、电荷量为q的直纸面向里,y轴左侧存在竖直向下的匀强电场,电场强度大小E2=mv02qd的A点沿y轴右侧的电场方向以初速度v0射入,粒子刚射入磁带正电粒子从x轴上距直线O1a为d2场时速度为2v0,粒子经磁场偏转后恰好从b点垂直y轴进入y轴左侧匀强电场,最后击中x轴上的C 点,已知OO1=O1b=d,O1a、bc均与x轴平行,粒子重力不计.(1)求y轴右侧匀强电场的电场强度E1的大小;(2)求匀强磁场磁感应强度B的大小及矩形匀强磁场区域的最小面积;(3)求粒子在y轴右侧和左侧电场中的电势能分别变化多少;(4)求粒子从A点运动到C点过程所用的时间.9.如图所示,边长为3L的正方形区域分成相等的三部分,左右两侧为匀强磁场,中间区域为匀强电场.,方向垂直纸面向外;右侧磁场的磁感应强度大小为左侧磁场的磁感应强度大小为B1=√6mqU2qL,方向垂直于纸面向里;中间区域电场方向与正方形区域的上下边界平行.一质量为m、电荷B2=√6mqUqL量为+q的带电粒子,从平行金属板的正极板开始由静止被加速,加速电压为U,加速后粒子从a点进入左侧磁场,又从距正方形上下边界等间距的b点沿与电场平行的方向进入电场,不计粒子重力.求:(1)粒子经过平行金属板加速后的速度大小;(2)粒子在左侧磁场区域内运动时的半径及运动时间;(3)电场强度的取值在什么范围内时,粒子能从右侧磁场的上边缘cd间离开.10.如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界线,OM与x轴负方向成45°夹角.在+y轴与直线OM的左侧空间存在沿x轴负方向的匀强电场,场强大小为E,在+x轴下方与直线OM的右侧空间存在垂直纸面向里的匀强磁场,磁感应强度大小为B.一带负电微粒从坐标原点O 沿y轴负方向进入磁场,第一次经过磁场边界时的位置坐标是(-L,-L).已知微粒的电荷量大小为q,质量为m,不计微粒所受重力,微粒最后从+y轴上某点飞出场区(图中未画出),求:(1)带电微粒从坐标原点O进入磁场时的初速度.(2)带电微粒在电场和磁场区域运动的总时间.11.如图所示,PQ为一竖直放置的荧光屏,一半径为R的圆形磁场区域与荧光屏相切于O点,磁场的方向垂直纸面向里且磁感应强度大小为B,图中的虚线与磁场区域相切,在虚线的上方存在水平向左的匀强电场,电场强度大小为E.在O点放置一粒子发射源,能向右侧180°角的范围发射一系列的带正电的粒子,粒子的质量为m、电荷量为q,经测可知粒子在磁场中的轨道半径为R,忽略粒子的重力及粒子间的相互作用.求:(1)如图,当粒子的发射速度方向与荧光屏成60°角时,该带电粒子从发射到达到荧光屏上所用的时间为多少?粒子到达荧光屏的位置距O点的距离为多大?(2)从粒子源发射出的带电粒子到达荧光屏时,距离发射源的最远距离应为多少?参考答案1.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为1B和B、方向均垂直于纸面向外的2匀强磁场.一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm6qB B.7πm6qBC.11πm6qBD.13πm6qB答案B2.如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.答案(1)4UB2d2(2)Bd24Uπ2+√333.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,电场强度大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘核12H先后从y轴上y=h点以相同的动能射出,速度方向沿x 轴正方向.已知 11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场,11H 的质量为m,电荷量为q,不计重力.求 (1) 11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)12H 第一次离开磁场的位置到原点O 的距离.答案(1)2√33h (2)√6mE qh (3)2√33(√2-1)h4.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行,一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.答案(1)见解析图(2)2El′Bl (3)4√3El′B2l2BlE(1+√3πl18l′)⑧5.如图所示,直角坐标系中的第Ⅰ象限中存在沿y轴负方向的匀强电场,在第Ⅱ象限中存在垂直纸面向外的匀强磁场.一电荷量为q、质量为m的带正电粒子,在x轴上的a点以速度v0与x轴负方向成60°角射入磁场,从y=L处的b点沿垂直于y轴方向进入电场,并经过x轴上x=2L处的c点.不计粒子重力.求:(1)磁感应强度B的大小;(2)电场强度E的大小;(3)带电粒子在磁场和电场中的运动时间之比.答案(1)3mv02qL (2)mv022qL(3)2π96.如图所示,在坐标系xOy的第一象限有沿x轴正方向的匀强电场,第二象限充满方向垂直坐标平面=5.0×1010 C/kg的带负电粒子从a(6,0)沿y轴正方向射入,速度大小为向外的匀强磁场.有一比荷qmv a=8.0×106 m/s,粒子通过y轴上的b(0,16)点后进入磁场.不计粒子的重力.求:(1)电场强度E的大小,粒子通过b点时速度v b的大小及方向;(2)为使粒子不再进入电场,匀强磁场磁感应强度B应满足什么条件.(2)B<2.0×10-3 T答案(1)6.0×103 N/C 1×107 m/s,与竖直方向夹角的余弦cos θ=457.如图,在真空室内的P点,能沿纸面向各个方向不断发射电荷量为+q,质量为m的粒子(不计重力),粒子的速率都相同.ab为P点附近的一条水平直线,P到直线ab的距离PC=L,Q为直线ab上一点, L.当直线ab以上区域只存在垂直纸面向里、磁感应强度为B的匀强磁场时,它与P点相距PQ=√52水平向左射出的粒子恰到达Q点;当ab以上区域只存在平行该平面的匀强电场时,所有粒子都能到达ab直线,且它们到达ab直线时动能都相等,其中水平向左射出的粒子也恰好到达Q点.已知sin 37°=0.6,cos 37°=0.8,求:(1)粒子的发射速率;(2)匀强电场的场强大小和方向;(3)仅有磁场时,能到达直线ab的粒子所用最长时间和最短时间的比值.答案(1)5BqL8m (2)25qLB28m(3)2.208.如图所示,在坐标系xOy平面内,区域xOO1a中存在与x轴正方向成60°斜向上的匀强电场,电场强度大小为E1(未知),区域aO1bc内存在一个边界与y轴平行的矩形匀强磁场(图中没画出)区域,方向垂直纸面向里,y轴左侧存在竖直向下的匀强电场,电场强度大小E2=mv02qd.一质量为m、电荷量为q的带正电粒子从x轴上距直线O1a为d2的A点沿y轴右侧的电场方向以初速度v0射入,粒子刚射入磁场时速度为2v0,粒子经磁场偏转后恰好从b点垂直y轴进入y轴左侧匀强电场,最后击中x轴上的C 点,已知OO1=O1b=d,O1a、bc均与x轴平行,粒子重力不计.(1)求y轴右侧匀强电场的电场强度E1的大小;(2)求匀强磁场磁感应强度B的大小及矩形匀强磁场区域的最小面积;(3)求粒子在y轴右侧和左侧电场中的电势能分别变化多少;(4)求粒子从A点运动到C点过程所用的时间.答案(1)3√3mv024qd (2)3mv0qd23d2(3)32mv022m v02(4)(81+16√3+8π)d36v09.如图所示,边长为3L的正方形区域分成相等的三部分,左右两侧为匀强磁场,中间区域为匀强电场.左侧磁场的磁感应强度大小为B1=√6mqU2qL,方向垂直纸面向外;右侧磁场的磁感应强度大小为B2=√6mqUqL,方向垂直于纸面向里;中间区域电场方向与正方形区域的上下边界平行.一质量为m、电荷量为+q的带电粒子,从平行金属板的正极板开始由静止被加速,加速电压为U,加速后粒子从a点进入左侧磁场,又从距正方形上下边界等间距的b点沿与电场平行的方向进入电场,不计粒子重力.求: (1)粒子经过平行金属板加速后的速度大小;(2)粒子在左侧磁场区域内运动时的半径及运动时间;(3)电场强度的取值在什么范围内时,粒子能从右侧磁场的上边缘cd间离开.答案(1)√2qUm (2)√3πL3√2m3qU(3)11U16L≤E≤2UL10.如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界线,OM与x轴负方向成45°夹角.在+y轴与直线OM的左侧空间存在沿x轴负方向的匀强电场,场强大小为E,在+x轴下方与直线OM的右侧空间存在垂直纸面向里的匀强磁场,磁感应强度大小为B.一带负电微粒从坐标原点O 沿y轴负方向进入磁场,第一次经过磁场边界时的位置坐标是(-L,-L).已知微粒的电荷量大小为q,质量为m,不计微粒所受重力,微粒最后从+y轴上某点飞出场区(图中未画出),求:(1)带电微粒从坐标原点O进入磁场时的初速度.(2)带电微粒在电场和磁场区域运动的总时间.答案(1)qBLm,方向沿y 轴负方向 (2)2πm qB+BL E +√mL qE11.如图所示,PQ 为一竖直放置的荧光屏,一半径为R 的圆形磁场区域与荧光屏相切于O 点,磁场的方向垂直纸面向里且磁感应强度大小为B,图中的虚线与磁场区域相切,在虚线的上方存在水平向左的匀强电场,电场强度大小为E.在O 点放置一粒子发射源,能向右侧180°角的范围发射一系列的带正电的粒子,粒子的质量为m 、电荷量为q,经测可知粒子在磁场中的轨道半径为R,忽略粒子的重力及粒子间的相互作用.求:(1)如图,当粒子的发射速度方向与荧光屏成60°角时,该带电粒子从发射到达到荧光屏上所用的时间为多少?粒子到达荧光屏的位置距O 点的距离为多大?(2)从粒子源发射出的带电粒子到达荧光屏时,距离发射源的最远距离应为多少? 答案(1)2πm3qB +2-√32qB m+√qE R+BR √3qRmE (2)R+2BR √qR mE。

相关文档
最新文档