金属学与热处理课后习题第十一章-参考答案
金属学及热处理习题参考答案(1-9章)
![金属学及热处理习题参考答案(1-9章)](https://img.taocdn.com/s3/m/59357774f524ccbff12184fa.png)
第一章金属及合金的晶体结构一、名词解释:1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。
2.非晶体:指原子呈不规则排列的固态物质。
3.晶格:一个能反映原子排列规律的空间格架。
4.晶胞:构成晶格的最基本单元。
5.单晶体:只有一个晶粒组成的晶体。
6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。
7.晶界:晶粒和晶粒之间的界面。
8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
9.组元:组成合金最基本的、独立的物质称为组元。
10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。
12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
二、填空题:1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。
2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。
4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。
5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。
6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。
7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。
8.金属晶体中最主要的面缺陷是晶界和亚晶界。
9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。
10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、 (210)、(201)、 (201)、(012)、(012)、(021)、(021)、等晶面。
金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编
![金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编](https://img.taocdn.com/s3/m/edd28e326bec0975f565e23d.png)
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(123)、(0-1-2)、(421)等晶面和[-102]、[-211]、[346]等晶向10、已知面心立方晶格常数为a,分别计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数)答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答:组元:组成合金最基本的、独立的物质。
相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
原因:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的简单的晶体结构称为间隙相。
金属学与热处理崔忠圻第二版课后答案完整版
![金属学与热处理崔忠圻第二版课后答案完整版](https://img.taocdn.com/s3/m/75d72a0780eb6294dc886c9c.png)
第一章金属的晶体结构1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:==a/2H(1 0 0)==√2a/2H(1 1 0)H==√3a/6(1 1 1)面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:==a/2H(1 0 0)==√2a/4H(1 1 0)H==√3a/3(1 1 1)面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
(完整word版)金属学与热处理(哈尔滨工业大学_第二版)课后习题答案
![(完整word版)金属学与热处理(哈尔滨工业大学_第二版)课后习题答案](https://img.taocdn.com/s3/m/121d31f3852458fb760b5683.png)
第一章1•作图表示出立方晶系(1 2 3)、(0 -1-2)、(4 2 1)等晶面和[-1 02]、3•某晶体的原子位于正方晶格的节点上,其晶格常数今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a, Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a, 1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2, (1 1 0)面间距为"2a/2, (1 1 1)面间距为"3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示贝卩OD=c/2,AB=BC=CA=CD=a因厶ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2有(CD)2=(OC)2+(1/2C)2,即I /T J(CU)(c)2- '3 2因此c/a=V8/3=1.6338•试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-v2a/4=0.146a面心立方原子半径R二辺a/4,贝卩a=4R/\2,代入上式有R=0.146X4R/ V2=0.414R9. a )设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912C时丫-Fe的晶格常数为0.3633nm, a -Fe的晶格常数为0.2892nm,当由丫-Fe转化为a -Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属材料与热处理课后习题答案
![金属材料与热处理课后习题答案](https://img.taocdn.com/s3/m/d5273addd0d233d4b04e690c.png)
A、收缩B、膨胀C、不变
四、名词解释
1、晶格与晶包
2、晶粒与晶界
3、单晶体与多晶体
五、简述
1、生产中细化晶粒的常用方法有哪几种?为什么要细化晶粒?
2、如果其他条件相同,试比较下列铸造条件下铸铁晶粒的大小。
(1)金属模浇注与砂型浇注
(2)铸成薄件与铸成厚件
3、金属化合物一般具有复杂的晶体结构。()
4、碳在γ—Fe中的溶解度比在α—Fe中的溶解度小。()
5、奥氏体的强度、硬度不高,但具有良好的塑性。()
6、渗碳体是铁与碳的混合物。()
7、过共晶白口铸铁的室温组织是低温莱氏体加一次渗碳体。()
8、碳在奥氏体中的溶解度随温度的升高而减小。()
9、渗碳体的性能特点是硬度高、脆性大。()
2、大小不变或变化很慢的载荷称为载荷,在短时间内以较高速度作用于零件上的载荷称为载荷,大小和方向随时间发生周期性变化的载荷称为载荷。
3、变形一般分为变形和变形两种,不能随载荷的去除而消失的变形称为
变形。
4、强度是指金属材料在载荷作用下,抵抗或的能力。
5、强度的常用衡量指标有和,分别用符号和表示。
6、如果零件工作时所受的应力低于材料的或,则不会产生过量的塑性变形。
三、选择
1、α—Fe是具有()晶格的铁。
A、体心立方B、面心立方C、密排六方
2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为
()晶格。A、体心立方B、面心立方C、密排六方
3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。
A、α—Fe B、γ—Fe C、δ—Fe
A、屈服点B、抗拉强度C、弹性极限
金属学与热处理(哈尔滨工业大学 - 第二版)课后习题答案 - 附总
![金属学与热处理(哈尔滨工业大学 - 第二版)课后习题答案 - 附总](https://img.taocdn.com/s3/m/e2f02f1b2cc58bd63086bd72.png)
金属学与热处理(哈尔滨工业大学 - 第二版)课后习题答案 -附总第六章1. 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么?2.答:由 Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。
在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。
由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。
位错数目n与引起塞积的晶界到位错源的距离成正比。
晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形。
在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。
另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。
2.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?答:残余内应力存在的原因1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀; 2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力;3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力。
实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命。
3.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。
答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。
在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。
《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]
![《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]](https://img.taocdn.com/s3/m/e4df0f3a3186bceb18e8bb02.png)
第一章金属的晶体结构之阿布丰王创作1-1 作图暗示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包含(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H(1 0 0)==a/2H(1 1 0)==√2a/2H(1 1 1)==√3a/6面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H(1 0 0)==a/2H(1 1 0)==√2a/4H(1 1 1)==√3a/3面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,将各原子中心相连接形成一个正四面体,如图所示:此时c/a=2OD/BC在正四面体中:AC=AB=BC=CD ,OC=2/3CE所以:OD2=CD2-OC2=BC2- OC2OC=2/3CE,OC2=4/9CE2,CE2=BC2-BE2=3/4BC2可得到OC2=1/3 BC2,OD2= BC2- OC2=2/3 BC2OD/BC=√6/3所以c/a=2OD/BC=2√6/3≈1-8 试证明面心立方晶格的八面体间隙半径r=0.414R,四面体间隙半径r=0.225R;体心立方晶格的八面体间隙半径:<1 0 0>晶向的r=0.154R,<1 1 0>晶向的r=0.633R,四面体间隙半径r=0.291R。
金属学与热处理课后答案(哈工大第3版)
![金属学与热处理课后答案(哈工大第3版)](https://img.taocdn.com/s3/m/6c2e0b50a200a6c30c22590102020740be1ecdc3.png)
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向10、已知面心立方晶格常数为a,分离计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子罗列密度(某晶向上的原子罗列密度是指该晶向上单位长度罗列原子的个数)第1 页/共18 页答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答: 组元:组成合金最基本的、自立的物质。
相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分。
固溶体:合金组元之间以不同的比例互相混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在囫囵晶体中都按—定的顺序罗列起来,改变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增强,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
缘故:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的容易的晶体结构称为间隙相。
金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编
![金属学与热处理(第三版)课后习题答案 哈工大工业大学 崔忠圻主编](https://img.taocdn.com/s3/m/edd28e326bec0975f565e23d.png)
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(123)、(0-1-2)、(421)等晶面和[-102]、[-211]、[346]等晶向10、已知面心立方晶格常数为a,分别计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数)答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答:组元:组成合金最基本的、独立的物质。
相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
原因:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的简单的晶体结构称为间隙相。
《金属学与热处理》(第二版)课后习题参考答案
![《金属学与热处理》(第二版)课后习题参考答案](https://img.taocdn.com/s3/m/620ce54649d7c1c708a1284ac850ad02de8007d9.png)
《金属学与热处理》(第二版)课后习题参考答案金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属学与热处理课后习题第十一章-参考答案
![金属学与热处理课后习题第十一章-参考答案](https://img.taocdn.com/s3/m/8204ace4a300a6c30d229f60.png)
第十一章参考答案11-1试述影响材料强度的因素及提高强度的方法答:(1)影响材料强度的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
以钢为例,合金元素的加入可能产生固溶强化、沉淀强化、细晶强化,对提高钢材的强度有利。
对于同一化学成分的合金而言,组织结构不同,其力学性能也不相同。
为了提高其强度,可通过改变热处理工艺或加工工艺来实现。
一般情况下,降低形变温度或提高应变速率,合金的强度会增大。
(2)提高材料强度的途径:加工硬化/形变强化、固溶强化、第二相强化(沉淀强化和弥散强化)、细晶强化/晶界强度(较低温度)。
11-2试述影响材料塑性的因素及提高塑性的方法答:(1)影响材料塑性的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
杂质元素通常对塑性不利,合金元素的加入一般对提高材料的强度有贡献,在等强温度下,只有晶界强化可以提高强度的同时,提高其韧性,使材料获得细晶组织结构可提高其塑性。
一般而言,形变温度的降低或应变速率的提高对强度有利,而对提高塑性不利。
(2)提高材料塑性的途径:降低材料中杂质的含量、细化晶粒、加入韧化元素、加入细化晶粒元素、提高变形温度、降低应变速率。
11-4试就合金元素与碳的相互作用进行分类,指出1)哪些元素不形成碳化物?2)哪些元素为弱碳化物形成元素,性能特点如何?3)哪些元素为强碳化物形成元素,性能特点如何?4)何谓合金渗碳体,与渗碳体相比,其性能如何?答:1)非碳化物形成元素:Ni、Si、Co、Al、Cu等。
2)Mn为弱碳化物形成元素,除少量可溶于渗碳体中形成合金渗碳体外,几乎都溶于铁素体和奥氏体中。
3)Zr、Nb、V、Ti为强碳化物形成元素,与碳具有极强的亲和力,只要有足够的碳,就形成碳化物,仅在缺少碳的情况下,才以原子状态融入固溶体中。
4)合金元素溶入渗碳体中即为合金渗碳体,它是合金元素溶入渗碳体中并置换部分铁原子而形成的碳化物,合金渗碳体比一般渗碳体稳定,硬度高,可以提高耐磨性。
金属学与热处理课后答案(哈工大第3版)
![金属学与热处理课后答案(哈工大第3版)](https://img.taocdn.com/s3/m/34faa7fdb9f67c1cfad6195f312b3169a451ea76.png)
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a 43868%面心立方4a 421274%密排六方6a211274%5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向10、已知面心立方晶格常数为a ,分别计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子排列密度(某晶向上的原子排列密度是指该晶向上单位长度排列原子的个数)答:(100): d ℎkl =a ℎ2+k 2+l 2=a 1+0+0=a (110):d ℎkl =a ℎ2+k 2+l 2=a 1+1+0=22a(111):dℎkl=aℎ2+k2+l2=a1+1+1=33a14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答: 组元:组成合金最基本的、独立的物质。
相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。
固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
原因:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
金属学与热处理课后习题第十一章-参考答案
![金属学与热处理课后习题第十一章-参考答案](https://img.taocdn.com/s3/m/738ad8aabb68a98270fefa12.png)
第十一章参考答案11-1试述影响材料强度的因素及提高强度的方法答:(1)影响材料强度的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
以钢为例,合金元素的加入可能产生固溶强化、沉淀强化、细晶强化,对提高钢材的强度有利。
对于同一化学成分的合金而言,组织结构不同,其力学性能也不相同。
为了提高其强度,可通过改变热处理工艺或加工工艺来实现。
一般情况下,降低形变温度或提高应变速率,合金的强度会增大。
(2)提高材料强度的途径:加工硬化/形变强化、固溶强化、第二相强化(沉淀强化和弥散强化)、细晶强化/晶界强度(较低温度)。
11-2试述影响材料塑性的因素及提高塑性的方法答:(1)影响材料塑性的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
杂质元素通常对塑性不利,合金元素的加入一般对提高材料的强度有贡献,在等强温度下,只有晶界强化可以提高强度的同时,提高其韧性,使材料获得细晶组织结构可提高其塑性。
一般而言,形变温度的降低或应变速率的提高对强度有利,而对提高塑性不利。
(2)提高材料塑性的途径:降低材料中杂质的含量、细化晶粒、加入韧化元素、加入细化晶粒元素、提高变形温度、降低应变速率。
11-4试就合金元素与碳的相互作用进行分类,指出1)哪些元素不形成碳化物2)哪些元素为弱碳化物形成元素,性能特点如何3)哪些元素为强碳化物形成元素,性能特点如何4)何谓合金渗碳体,与渗碳体相比,其性能如何答:1)非碳化物形成元素:Ni、Si、Co、Al、Cu等。
2)Mn为弱碳化物形成元素,除少量可溶于渗碳体中形成合金渗碳体外,几乎都溶于铁素体和奥氏体中。
3)Zr、Nb、V、Ti为强碳化物形成元素,与碳具有极强的亲和力,只要有足够的碳,就形成碳化物,仅在缺少碳的情况下,才以原子状态融入固溶体中。
4)合金元素溶入渗碳体中即为合金渗碳体,它是合金元素溶入渗碳体中并置换部分铁原子而形成的碳化物,合金渗碳体比一般渗碳体稳定,硬度高,可以提高耐磨性。
金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题
![金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题](https://img.taocdn.com/s3/m/7cef1cc96137ee06eff918ea.png)
第六章1.试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么?2.答:由Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。
在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。
由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。
位错数目n与引起塞积的晶界到位错源的距离成正比。
晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形。
在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。
另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。
2.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?答:残余内应力存在的原因1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀;2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力;3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力。
实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命。
3.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。
答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。
在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。
《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]之欧阳地创编
![《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]之欧阳地创编](https://img.taocdn.com/s3/m/feec7d49dd88d0d233d46ae1.png)
第一章金属的晶体结构时间:2021.03.04 创作:欧阳地1-1 作图表示出立方晶系(1 2 3)、(0 -1 -2)、(42 1)等晶面和[-1 0 2]、[-2 1 1]、[34 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H(1 0 0)==a/2H(1 1 0)==√2a/2H(1 1 1)==√3a/6面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H(1 0 0)==a/2H(1 1 0)==√2a/4H(1 1 1)==√3a/3面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
金属学与热处理课后答案(哈工大第3版)
![金属学与热处理课后答案(哈工大第3版)](https://img.taocdn.com/s3/m/245af0f1534de518964bcf84b9d528ea81c72fc5.png)
⾦属学与热处理课后答案(哈⼯⼤第3版)⾦属学与热处理课后答案第⼀章填表:5、作图表⽰出⽴⽅晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶⾯和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向10、已知⾯⼼⽴⽅晶格常数为a,分别计算(100)、(110)、和(111)晶⾯的晶⾯间距;并求出【100】、【110】和【111】晶向上的原⼦排列密度(某晶向上的原⼦排列密度是指该晶向上单位长度排列原⼦的个数)答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答: 组元:组成合⾦最基本的、独⽴的物质。
相:合⾦中结构相同、成分和性能均⼀并以界⾯相互分开的组成部分。
固溶体:合⾦组元之间以不同的⽐例相互混合形成的晶体结构与某⼀组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发⽣了变化,主要包括以下⼏个⽅⾯:1)有晶格畸变,2)有偏聚与有序,3)当低于某⼀温度时,可使具有短程有序的固溶体的溶质和溶剂原⼦在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。
置换固溶体:溶质原⼦位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原⼦尺⼨,电负性,电⼦浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个⼤?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提⾼,⽽塑性、韧性有所下降的现象。
间隙固溶体的强化效果⼤于置换固溶体的强化效果。
原因:溶质原⼦与溶剂原⼦的尺⼨差别越⼤,所引起的晶格畸变也越⼤,强化效果越好。
间隙固溶体晶格畸变⼤于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当⾮⾦属原⼦半径与⾦属原⼦半径的⽐值⼩于0.59时,形成的简单的晶体结构称为间隙相。
间隙相与间隙固溶体有本质的区别,间隙相是⼀种化合物,它具有与其组元完全不同的晶格结构,⽽间隙固溶体则任保持着溶剂组元的晶格类型。
(完整版)金属学及热处理习题参考答案(1-9章)
![(完整版)金属学及热处理习题参考答案(1-9章)](https://img.taocdn.com/s3/m/5b83eae452d380eb63946de5.png)
第一章金属及合金的晶体结构一、名词解释:1 •晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。
2•非晶体:指原子呈不规则排列的固态物质。
3 •晶格:一个能反映原子排列规律的空间格架。
4•晶胞:构成晶格的最基本单元。
5. 单晶体:只有一个晶粒组成的晶体。
6•多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。
7•晶界:晶粒和晶粒之间的界面。
8. 合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
9. 组元:组成合金最基本的、独立的物质称为组元。
10. 相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
11. 组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。
12. 固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相二、填空题:1 .晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。
2•常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。
3•实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。
4•根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。
5•置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。
6 •合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。
7. 同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光—泽,正的电阻温度系数。
8. 金属晶体中最主要的面缺陷是晶界和亚晶界。
9. 位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。
10. 在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)> (201)、(201)、(012)、(012)、(021)、(021)、等晶面。
金属学与热处理第十一章铸铁习题与思考题
![金属学与热处理第十一章铸铁习题与思考题](https://img.taocdn.com/s3/m/70768027ef06eff9aef8941ea76e58fafab04591.png)
金属学与热处理第十一章铸铁习题与思考题(一)填空题1.碳在铸铁中的存在形式有和2.影响铸铁石墨化最主要的因素是和3.根据石墨形态,铸铁可分为、、和4根据生产方法的不同,可锻铸铁可分为和5球墨铸铁是用一定成分的铁水经和后获得的石墨呈的铸铁。
6HT350是的一个牌号,其中350是指为7KTH300-06是的一个牌号,其中300是指为;06是指为8.QT1200—01是的一个牌号,其中1200是指为;01是指为9普通灰口铸铁按基体的不同可分为、、其中以的强度和耐磨性最好。
10.可锻铸铁按基体的不同可分为和11球墨铸铁按铸态下基体的不同可分为、和12.球墨铸铁经等温淬火其组织为13铸铁(除白口铸铁外)与钢相比较,其成分上的特点是和高,其组织上的特点是14球墨铸铁的强度、塑性和韧性较普通灰口铸铁为高,这是因为15生产变质铸铁常选用和作为变质剂。
16.生产球墨铸铁常选用和作为球化剂。
17生产可锻铸铁的方法是18灰口铸铁铸件薄壁处(由于冷却速度快)出现组织,造成困难,采用克服之。
19铸铁具有优良的性、性、性和性。
20普通灰口铸铁软化退火时,铸铁基体中的全部或部分石墨化,因而软化退火也叫做退火。
21.球墨铸铁等温淬火的目的,是提高它以及和22铸铁件正火的目的是提高和,并为表面淬火做好组织准备。
23灰口铸铁经正火处理,所获得的组织为24球墨铸铁的淬透性比较好,一般件采用淬,形状简单硬度要求较高时采用淬。
25.普通灰口铸铁软化退火的主要目的是和(二)判断题1.可锻铸铁在高温状态下可以进行锻造加工2.铸铁可以经过热处理来改变基体组织和石墨形态3.可以通过热处理的方法获得球墨铸铁4.共析反应时形成共析石墨(石墨化)不易进行5.利用热处理方法来提高普通灰口铸铁的机械性能其效果较显著6.可以通过热处理方法提高球墨铸铁的机械性能其效果较显著7.灰口铸铁的抗拉强度、韧性和塑性均较钢低得多,这是由于石墨存在,不仅割裂了基体的连续性,而且在尖角处造成应力集中的结果8.碳全部以渗碳体形式存在的铸铁是白口铸铁9.由于石墨的存在,可以把铸铁看成是分布有空洞和裂纹的钢10.含石墨的铸铁具有低的缺口敏感性11.含石墨的铸铁切削加工性比钢差,所以切削薄壁、快冷的铸铁零件毛坯时容易崩刃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#第十一章参考答案11-1试述影响材料强度的因素及提高强度的方法答:(1)影响材料强度的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
以钢为例,合金元素的加入可能产生固溶强化、沉淀强化、细晶强化,对提高钢材的强度有利。
对于同一化学成分的合金而言,组织结构不同,其力学性能也不相同。
为了提高其强度,可通过改变热处理工艺或加工工艺来实现。
一般情况下,降低形变温度或提高应变速率,合金的强度会增大。
(2)提高材料强度的途径:加工硬化/形变强化、固溶强化、第二相强化(沉淀强化和弥散强化)、细晶强化/晶界强度(较低温度)。
11-2试述影响材料塑性的因素及提高塑性的方法答:(1)影响材料塑性的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
杂质元素通常对塑性不利,合金元素的加入一般对提高材料的强度有贡献,在等强温度下,只有晶界强化可以提高强度的同时,提高其韧性,使材料获得细晶组织结构可提高其塑性。
一般而言,形变温度的降低或应变速率的提高对强度有利,而对提高塑性不利。
(2)提高材料塑性的途径:降低材料中杂质的含量、细化晶粒、加入韧化元素、加入细化晶粒元素、提高变形温度、降低应变速率。
?11-4试就合金元素与碳的相互作用进行分类,指出1)哪些元素不形成碳化物2)哪些元素为弱碳化物形成元素,性能特点如何3)哪些元素为强碳化物形成元素,性能特点如何4)何谓合金渗碳体,与渗碳体相比,其性能如何答:1)非碳化物形成元素:Ni、Si、Co、Al、Cu等。
2)Mn为弱碳化物形成元素,除少量可溶于渗碳体中形成合金渗碳体外,几乎都溶于铁素体和奥氏体中。
3)Zr、Nb、V、Ti为强碳化物形成元素,与碳具有极强的亲和力,只要有足够的碳,就形成碳化物,仅在缺少碳的情况下,才以原子状态融入固溶体中。
》4)合金元素溶入渗碳体中即为合金渗碳体,它是合金元素溶入渗碳体中并置换部分铁原子而形成的碳化物,合金渗碳体比一般渗碳体稳定,硬度高,可以提高耐磨性。
11-5合金元素提高淬透性的原因是什么提高钢的淬透性有何作用常用以提高淬透性的元素有哪些答:(1)合金元素溶入奥氏体中增加了奥氏体的稳定性,使C曲线右移,奥氏体在较低的温度依然能够存在,因此,在较低的临界冷却速度小,奥氏体能够发生马氏体相变,提高了淬透性。
(2)作用:一方面可以使工件得到均匀良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。
(3)常用的提高淬透性的合金元素:Mn、Si、Cr、Ni、B11-6合金元素提高回火稳定性的原因提高回火稳定性的作用常用以提高回火稳定的元素有哪些答:(1)提高稳定性的原因:合金元素推迟马氏体的分解和残余奥氏体的转变、阻碍碳化物的聚集长大、提高铁素体的再结晶温度。
(2)提高稳定性的作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比相同碳含量的钢具有更高的硬度和强度,或者,在保证相同强度/硬度的条件下,可在更高的温度下回火,有利于提高塑性和韧性。
\(3)提高回火稳定性的元素:Cr、Mn、Ni、Mo、W、V、Si.11-7试述碳和合金元素在低合金高强度结构钢中的作用,提高低合金高强度结构钢强韧性的途径是什么答:(1)碳的作用:(a)固溶强化,提高珠光体数量。
碳含量的增加可增大固溶强化和珠光体强化效果,对提高低合金高强度结构钢的强度有利。
(b)碳含量的增加将降低低合金结构钢的塑性和韧性,提高韧脆转变温度,降低焊接性能。
(2)合金元素的作用:(a)固溶强化:如Mn、Si、Cr、Mo等溶于基体固溶体中而引起固溶强化。
(b)沉淀强化:如Ti、Nb和V等强碳化物形成元素形成的MC型碳化物所引起的强化。
.(c)细晶强化:如Ti、Nb和V等强碳化物形成元素形成的MC型碳化物对奥氏体晶界的钉轧作用,对Nb元素在奥氏体晶界的偏聚,均对细化低合金高强度结构钢的组织有利,产生细晶强化作用。
11-10某厂原用45MnSiV生产Φ8mm高强度钢筋,要求σb>1450MPa,σ>1200MPa,δ>5%,其热处理工艺是920℃油淬,470℃回火。
因该钢种缺货,库存有25MnSi钢,请考虑是否可代用,热处理规程该如何调整答:可以代用,因为25MnSi钢为低碳马氏体钢,经适当的热处理后能获得与调质钢相当的综合性能,即较高强度和韧性的组合。
工艺调整:25MnSi钢与45MnSiV相比不含V元素,但有Mn,过热敏感性较大,因而要降低淬火加热温度与45MnSiV相比,25MnSi钢淬透性较低,油淬应改成用盐水淬火为获得所要求的力学性能应采用低温回火。
11-11分析碳和合金元素在高速钢中的作用及高速钢热处理工艺的特点。
答:化学成分:高碳的目的是为了和碳化物形成元素Cr、W、Mo、V等形成碳化物,并保正得到强硬的马氏体基体以提高钢的硬度利耐磨性。
W、Mo、V主要是提高钢的红硬性,因为这些元素形成的碳化物硬度高,产生二次硬化效应,因而显著提高钢的红硬性、硬度和耐磨性。
Cr主要是提高钢的淬透性。
其工艺突出的特点是淬火加热温度非常高,回火温度高,次数多,淬火加热时采用预热。
11-12比较热作模具钢和合金调质钢的合金化及热处理工艺的特点,并分析合金元素作用的异同。
答:(1)合金调质钢合金化特点:在性能上满足机械制造上不同零件的不同需要,各种元素既有特殊作用又相互作用达到改善组织性能的作用。
热作模具钢合金化特点:合金元素增强钢淬透性,强化铁素体,防止回火脆性,提高热疲劳抗力。
·(2)合金调质钢热处理特点:为改善切削加工性需进行预备热处理之后调质处理。
热作模具钢热处理特点:锻造后退火,以降低内应力。
淬火+回火,获得组织均匀的回火托式体索氏体。
(3)合金元素作用:Cr提高淬透性耐回火性,有回火脆性倾向;Mn提高淬透性,有回火脆性倾向;Ni非C化物形成元素,提高基本韧性;Mo提高淬透性,回火性细化晶粒;V强碳化物形成元素细化晶粒;W提高稳定性和耐磨性。
11-13为什么正火状态的40CrNiMo及37SiMnCrMoV钢(直径25mm)都难于进行切削加工请考虑最经济的改善切削加工性能的方法。
答:因为40CrNiMo钢中含有Cr,Ni,Mo几种合金元素,能很好的提高钢的淬透性,使钢在正火状态下就能得到较多的马氏体,大大提高合金的硬度(40CrNiMo 钢正火后硬度在400HBS以上)因而难以切削。
11-14滚齿机上的螺栓,本应用45钢制造,但错用了T12钢,其退火、淬火都沿用了45钢的工艺,问此时将得到什么组织有何性能答:45钢的热处理工艺:完全退火(Ac3以上20-30℃)+淬火(Ac3以上30-50℃)+高温回火。
T12的热处理工艺:球化退火(Ac1以上Accm以下的双相区)+淬火(Ac1以上30-50℃)+低温回火。
错用T12钢,按照45钢的热处理工艺就是T12完全退火+Ac3以上30-50℃淬火T12本来是球化退火,目的是消除网状的二次渗碳体,但错用完全退火,加热温度过高,消除不了网状的二次渗碳体,对性能不利。
然后进行淬火,T12本来是加热到Ac1以上30-50℃,目的是限制了奥氏体的含碳量,减少淬火组织中的残留奥氏体数量。
淬火后获得均匀细小的马氏体和未溶粒状二次渗碳体组织,未溶二次渗碳体的存在有利于淬火钢的硬度及耐磨性。
如果将过共析钢加热到Accm 或者Ac3以上,由于奥氏体晶粒粗大,含碳量提高,使淬火后的马氏体也粗大,且残留奥氏体量增加,不仅降低钢的硬度、耐磨性和韧性,而且还会增大变形和开裂的倾向。
最后进行回火,T12本来是低温回火,得到回火马氏体,但是用高温回火,最终得到回火索氏体。
最终组织为回火索氏体+残留奥氏体+网状二次渗碳体`11-15用9SiCr钢制成圆板牙,其工艺路线为:锻造→球化退火→机械加工→淬火→低温回火→磨平面→开槽开口。
试分析:①球化退火、淬火及回火的目的;②球化退火、淬火及回火的大致工艺。
答:球化退火是为了消除锻造应力,获得球状珠光体和碳化物,降低硬度以利于切削加工并为淬火做好组织准备,减少淬火时的变形与开裂;淬火及回火是为了获得回火马氏体,保证热处理后具有高硬度、高耐磨性。
球化退火工艺:加热温度790—810℃,等温温度700—720℃;淬火工艺:加热温度850—870℃(油淬);回火工艺;160—180℃。
11-16大螺钉旋具要求杆部为细珠光体而顶端为回火马氏体,只有一种外部热源,应如何处理答:表面渗碳后淬火加低温回火。
11-17有一批碳素钢工件淬火后发现硬度不够,估计或者是表面脱碳,或者是淬火时冷却不好未淬上火,如何尽快判断发生问题的原因答:碳素工具钢是Wc=% ~%的高碳钢对碳素工具钢进行球化退火处理,其目的是降低便度,便于机械加工,组织为铁素体基体+细小均匀的粒状Fe3C ,然后采用淬火+低温回火,组织为回火马氏体+粒状渗碳体+少量残余奥氏体,经过热处理可测工件的硬度,若硬度达标,则原因为泽火时冷却不好未淬上火,若硬度仍不够则为表面脱碳。
11-18简述不锈钢的合金化原理。
为什么Cr12MoV钢不是不锈钢,也不能通过热处理的方法使它变为不锈钢答:不锈钢的合金化原理:提高钢耐蚀性的方法很多,如表面涂一层耐蚀金属、涂敷非金属层、电化学保护和改变腐蚀环境介质等。
但是利用合金化方法,提高材料本身的耐蚀性是最有效的防止腐蚀破坏的措施之一,其方法如下:~(1)加入合金元素,提高钢基体的电极电位,从而提高钢的抗电化学腐蚀能力。
一般铜中加入 Cr、Ni, Si多元素均能提高其电极电位。
由于Ni较缺,Si的大量加入会使钢变脆,因此,只有Cr才是显著提高钢基体电极电位常用的元素。
Cr能提高钢的电极电位,但不是呈线性关系。
实验证明钢的电极电位随合金元素的增加,存在着一个量变到质变的关系,遵循1/8规律。
当Cr含量达到一定值时即1/8原子 (1/8, 2/8、3....)时,电极电位将有一个突变。
因此,几乎所有的不锈钢中,Cr含量均在12.% (原子)以上,即% (质量)以上。
(2)加入合金元素使铜的表面形成一层稳定的、完整的与钢的基体结合牢固的纯化膜。
从而提高钢的耐化学腐蚀能力。
如在钢中加入Cr,Si,A1等合金元素,使钢的表层形成致密的Cr2O,SiO2,Al2O3等氧化膜,就可提高钢的耐蚀性。
(3)加入合金元素使钢在常温时能以单相状态存在,减少微电池数目从而提高钢的耐蚀性。
如加入足够数量的Cr或Cr-Ni,使钢在室温下获得单相铁素体或单相奥氏体。
(4)加入Mo、Cu等元素,提高抗腐蚀的能力。
(5)加入Ti,Nb等元素,消除Cr的晶间偏析,从而减轻晶间腐蚀倾向。
(6)加入Mn、N等元素,代替部分Ni获得单相奥氏体组织,同时能大大提高铬不锈钢在有机酸中的耐蚀性Cr12MoV钢为什么不是不锈钢:从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用。