人教版七年级上册第二章2.1字母表示数
七年级数学上册第二章整式的加减2.1整式(第一课时用含字母的式子表示数量关系)教案(新版)新人教版
![七年级数学上册第二章整式的加减2.1整式(第一课时用含字母的式子表示数量关系)教案(新版)新人教版](https://img.taocdn.com/s3/m/4e29407490c69ec3d4bb7503.png)
第一课时用含字母的式子表示数量关系一、教学目标(一)学习目标1.理解字母表示数的意义,正确分析实际问题中的数量关系,初步体会“数式通性”.2.能熟练地把实际问题中的数量关系规范书写出来.3.熟练准确规范的列式解决实际问题中的数量关系.(二)学习重点理解字母表示数的意义,正确分析实际问题中的数量关系并用含字母的式子表示数量关系,体会抽象的数学思想.(三)学习难点用含字母的式子规范表示实际问题中的数量关系.二、教学设计(一)课前设计1.预习任务(1)欣赏一组图片,了解图片背景.问题1:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶km h.列车在冻土地段行驶时,根据已知数据求出列车行驶的路程.速度是100 /(1)2h行驶的路程是 200km,3h驶的路程是 300km,4h驶的路程是 400km,h驶的路程是 100km .(2)字母表示时间,用v表示速度,列车行驶的路程是vtkm .2.预习自测(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价 .【知识点】字母表示数.【解题过程】810p =0.8p 元. 【思路点拨】现价=原价×折数×110. 【答案】0.8p 元.(2)某产品前年的产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量 . 【知识点】字母表示数 【解题过程】mn 件.【思路点拨】去年的产量=前年的产量×m 倍. 【答案】mn 件.(3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积 . 【知识点】字母表示数.【解题过程】体积= a a h ⨯⨯ =2a h 3cm . 【思路点拨】长方体体积=长×宽×高. 【答案】2a h 3cm .(4)用式子表示数n 的相反数 . 【知识点】字母表示数. 【解题过程】n -.【思路点拨】求一个数的相反数就在这个数前面添上一个“负号”. 【答案】n -. (二)课堂设计 问题探究探究一 字母表示数的意义▲●活动① (回顾列式,感受数式通性) 师问:前面的字母,表示什么含义? 生答:表示时间总结:字母代表时间,那么可以和数一样参与运算,并且可以简明的表示列车行驶的路程与时间、速度的关系.用恰当的式子表示下列各题数量关系.(1)5箱苹果重m kg ,每箱重 kg ; (2)一个数比a 的2倍小5,则这个数为 ;(3)全校学生总数是x ,其中女生占总数的52%,则女生人数是 ,男生人数是 ;(4)某校前年购买计算机x 台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,则学校三年共购买计算机 台;(5)某班有a 名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;(6)一个两位数,十位上的数字为a ,个位上的数字为b ,则这个两位数为 ; 师生活动:学生独立列式,然后同桌交流,学生代表板书,老师巡视. 解:(1)5m;(2) 25a -;(3) 0.52x ,0.48x ;(4) 24=7++x x x x ;(5) 425a -;(6)10a b +.师问:式子中m 、x 、a 、b 在各自实际问题中分别表示什么意义? 生答:学生抢答师问:字母在不同的实际问题中表示的意义不一样,可以表示一个数,可以参与各种运算,你能再举一些例子说明吗? 生答:抽学生举例.师追问:你能再赋予0.52x 一个含义吗?n -一定是一个负数吗? 学生举行抢答.总结:虽然字母在不同的实际问题中表示的意义不一样,但与数一样可以参与各种运算. 【设计意图】通过学生自己独立列式,独立对问题中的关键信息的勾划解读研究,找到如何用含字母的式子表示数量关系,增强学生的符号感和数学符号的简洁美,本例中解释时可以允许学生借助实例进行说明,这样更有利于学生接受和认可,起到很好地过渡作用. ●活动② (回顾列式,探究列式的方法)师问:用含字母的式子表示实际问题中数量关系是如何通过列式表达出来的?生答:列式就是把实际问题中表示数量关系的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为数学符号语言.师问:分析实际问题时,我们应在列式前抓题目中的哪些关键语句理解便于明确它们的意义以及它们之间的数量关系?生答:我们应抓住题目中的如和、差、积、商、大、小、多、少、倍、分、倒数、相反数等词语理解.师问:在列式中还是否应该注意理清语句的层次,明确运算顺序呢? 生答:要.师问:在用字母表示数量关系时我们还应该记住必要的、常用的哪些公式? 生答:如几何图形的周长公式、面积公式、体积计算公式等.总结:列式就是把实际问题中表示数量关系的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为数学符号语言.分析实际问题时应注意:①抓住关键词理解,明确它们的意义以及它们之间的数量关系,如和、差、积、商、大、小、多、少、倍、分、倒数、相反数等词语理解.②应该注意理清语句的层次,明确运算顺序. ③联想相关的概念和公式.【设计意图】通过师生互动让学生在经历列式的过程中知道列式表示数量的关系的步骤和方法,体会从具体到抽象的数学思想. 探究二 代数式的规范书写▲ ●活动①(整合旧知,探究书写规则)师问:在书写一个代数式时我们应怎样书写才简洁、美观、规范? 生答:学生小组讨论,再分组回答交流.总结:老师在学生交流的基础上进行归纳总结强调:①数与字母、字母与字母相乘一般要省略乘号或者用·表示,如a b ⨯表示ab 或·a b . ②数与字母相乘时,数必须写在字母前面,当这个数为1时可以省略不写,如1ab 表示为ab ;当这个数是-1时,只省略1,但“负号”不能省略,如-1ab 表示为- ab ;当这个数是带分数时必须把这个数化为假分数,如235ab -应表示为175ab -. ③式子中出现除法运算时,必须按分数形式来写,如3m ÷应表示为3m . ④带单位时,若遇有加减运算符号的式子适当添加括号,如()ab cd - kg .【设计意图】让学生知道用字母表示数量关系的式子时须要按要求书写规范,从而保证式子的规范、简洁.●活动② (反思过程,强化式子的规范书写) 师问:判定下列式子书写是否规范?不规范的请改正.x y ⨯, 526ab , 3x , 1n -, 3b ÷学生举手抢答.总结:x y ⨯应该省略乘号,526ab 系数不能是带分数,3x 的系数应写在字母前面,1n -中1该省略,3b ÷应写成分数形式.【设计意图】更进一步强化列式时的规范书写的重要性.体会规范书写的简洁美. 探究三 会用准确规范的列式表示实际问题中简单的数量关系.★▲ ●活动①例1.(1)一条河的水流速度是2.5 /km h ,船在静水中的速度是v /km h ,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(a )(图中长度单位: cm ),用式子表示三角尺的面积;(4)如图(b )是一所住宅的建筑平面图(图中长度单位: m ),用式子表示这所住宅的建筑面积.【知识点】列式表示数量关系. 【数学思想】从具体到抽象的数学思想.【解题过程】解:(1)船在这条河中的顺水行驶的速度是( 2.5v +)/km h ,逆水行驶的速度是( 2.5v -) /km h .(2)买3个篮球,5个排球、2个足球共需要(352x y z ++)元.(3)三角尺的面积等于三角形的面积减去圆面积,根据图中的数据,得到三角尺的面积(单位: 2cm )是(212ab r π-)2cm . (4)住宅的建筑面积的等于四个长方形面积的和,根据图中标出的尺寸,可得到这所住宅的建筑面积(单位: 2m )是(2218x x ++)2m .【思路点拨】(1)船在河流中行驶时,船的速度需要分两种讨论:顺水行驶时,船的速度=船在静水中的速度+水流速度 逆水行驶时,船的速度=船在静水中的速度-水流速度(2)(3)(4)应根据给出关系列出式子,但要注意书写的规范与简洁.【答案】(1)船在这条河中顺水行驶的速度是( 2.5v +) /km h ,逆水行驶的速度是( 2.5v -)/km h . (2)共需要(352x y z ++)元.(3)三角尺的面积(单位: 2cm )是2212ab cm r ⎛⎫ ⎪⎝⎭-π.(4)这所住宅的建筑面积(单位: 2m )是(2218x x ++)2m . 【设计意图】让学生经历由数到式的过程,感受从特殊到一般的过程,体会到用字母表示数的简洁性和必要性,为下面继续学习用含字母的式子表示数量关系做好引导.练习:(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用式子表示在这个月内销售这种商品的收入.(2)圆柱体的底面半径、高分别是r ,h ,用式子表示圆柱体的体积.(3)有两片棉田,一片有p 2hm (公顷, 21hm =4210m ),平均每公顷产棉花a kg ;另一片有q 2hm ,平均每公顷产棉花b kg ,用式子表示两片棉田上棉花的总产量.(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm ,小正方形的边长是b mm ,用式子表示剩余部分的面积. 【知识点】列式表示数量关系.【解题过程】解:(1)收入=销售量×单价,收入为4.8m ; (2)圆柱体的体积=底面积×高,2v r h π=;(3)总产量=一片土地的产量+另一片土地的产量,即()ap bq + kg ; (4)剩余面积=大正方形的面积-小正方形的面积,即()22a b - 2mm . 【思路点拨】认真勾划关键词,弄清语句层次,明确运算顺序,规范表达.【答案】(1)4.8 m 元;(2) 2r h π;(3) ()ap bq + kg ;(4) ()22a b - 2mm .【设计意图】通过练习进一步弄清字母表示式子的步骤和规范的书写,让学生明白用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明的表示出来.●活动②例2:测得一种树苗的高度与树苗生长年数的有关数据如下表(树苗原高100cm ).根据表格思考下面问题:前四年树苗高度的变化与年数有什么关系?假设以后各年树苗高度的变化与年数保持上述关系,用式子表示生长了n 年的树苗的高度. 【知识点】列式表示数量关系. 【数学思想】特殊到一般.【解题过程】解:根据表中的数据可得前四年树苗高度变化与年数间的关系为:树苗每年比前一年长高5cm ,则生长了n 年的树苗高度为:(100+5n )cm .【思路点拨】观察表中所给出的数据,可以得到前四年树苗高度的变化与年数间的关系;由表中数据可知树苗原高是100cm ,并且每年以5cm 的高度逐步生长,从而可以用关于n 的式子表示出第n 年树苗的高度,从而解答题目. 【答案】(100+5n )cm .练习:礼堂第1排有20个座位,后面每排都比前一排多一个座位.用式子表示第n 排的座位数.【知识点】式子表示规律. 【数学思想】特殊到一般.【解题过程】解:礼堂第1排有20个座位,后面每排都比前一排多一个座位;礼堂第2排有21个座位,礼堂第3排有22个座位,礼堂第4排有23个座位,...... 礼堂第n 排有座位数为:20(1)201n n +-=+-=19n + 答:礼堂第n 排有座位(19)n +个. 【答案】(19)n +个.【设计意图】通过表格数据的观察、分析总结得出数据的变化与生长的年数的关系,准确的列出式子表达这一规律,培养学生的观察分析问题的能力. 课堂总结 知识梳理(1)知道字母可以表示一个数,字母可以参与运算.(2)用含字母的式子表示实际问题中数量关系时要注意的问题:①数与字母、字母与字母相乘一般要省略乘号,如a b ⨯表示ab 或a ·b .②数与字母相乘时,数必须写在字母前面,当这个数为1时可以省略不写,如1ab 表示为ab .当这个数是-1时,只省略1,但“负号”不能省略,如-1ab 表示为- ab .当这个数是带分数时必须把这个数化为假分数,如235ab -应表示为175ab -. ③式子中出现除法运算时,必须按分数形式来写,如3m ÷应表示为3m . ④带单位时,若遇有加减运算符号的式子适当添加括号,如()ab cd - kg . (3)列式表示数量关系解决实际问题的步骤和方法. 重难点归纳:(1)字母表示数的意义.(2)含字母的式子表示实际问题中数量关系的方法和步骤. (3)代数式的书写应注意的问题.。
2.1.1用字母表示数(教案)-人教版七年级数学上册
![2.1.1用字母表示数(教案)-人教版七年级数学上册](https://img.taocdn.com/s3/m/8d0c8a16ce84b9d528ea81c758f5f61fb7362820.png)
在今天的教学中,我发现学生们对于用字母表示数的概念接受程度不一。有的学生能够迅速理解字母的抽象意义,而有的学生则对这个概念感到困惑。这让我意识到,在接下来的教学中,我需要更加注重对学生的个别辅导,尤其是对于那些理解上存在困难的学生。
在讲授过程中,我尝试通过生活实例引入字母表示数的概念,让学生们感受到数学与生活的紧密联系。这一点从学生的反馈来看,效果还是不错的。他们能够更直观地理解字母在数学中的运用,知道如何将实际问题转化为代数表达式。
在总结回顾环节,我发现学生们对本节课的知识点掌握得还算不错,但仍有一些疑问。这提醒我在课后要关注学生的反馈,及时解答他们的疑惑,确保他们能够真正理解并运用所学知识。
1.加强对学生的个别辅导,关注他们的学习困难,针对性地进行指导。
2.增加字母与数字结合运算的练习,让学生更熟练地掌握这个难点。
3.继续采用实践活动和小组讨论的方式,提高学生的合作能力和实践能力。
-掌握代数式的简写和字母与数字的结合表示方法;
-运用字母表示数进行简单的运算和问题解决。
三、教学难点与重点
1.教学重点
(1)理解字母表示数的意义:字母在数学中的抽象表示是本节课的核心内容。教师应强调字母可以表示未知数、已知数以及数与数之间的关系,如a+b表示a与b的和。
举例:讲解如何用字母表示购买苹果的例子,假设每千克苹果的价格为a元,购买了b千克,那么总共需要支付的金额可以表示为ab元。
(3)用字母表示数进行问题解决:将字母表示数应用于实际问题解决,对学生来说是一个挑战。
难点举例:解决实际问题,如“小明今年a岁,比小红大b岁,求小红今年的年龄。”,让学生学会如何列出代数式并进行求解。
在教学过程中,教师要针对这些难点进行详细的讲解和示范,设计丰富的教学活动,帮助学生克服难点,确保学生对核心知识的理解透彻。
七年级数学上册(人教版)2.1.1用字母表示数优秀教学案例
![七年级数学上册(人教版)2.1.1用字母表示数优秀教学案例](https://img.taocdn.com/s3/m/5031c58d77a20029bd64783e0912a21615797f5e.png)
(二)讲授新知
1.教师引导学生从具体情境中抽象出用字母表示数的模型,如用字母表示长方形的面积、速度等。
2.讲解字母表示数的基本规则,如字母的大小写、指数、运算符号等,让学生能正确书写和解读字母表示数。
3.通过例题演示和讲解,让学生掌握用字母表示数的方法和技巧,如解方程、求代数式的值等。
4.教师运用比喻、形象直观的教具等,帮助学生理解和记忆字母表示数的概念和规则。
(三)学生小组讨论
1.教师提出具有挑战性的问题,引导学生进行小组讨论,如“你能用字母表示出一个立方体的体积吗?”
2.学生通过合作、交流、分享,共同解决问题,提高其沟通能力和团队合作精神。
3.教师巡回指导,关注学生在讨论过程中的表现,及时给予反馈和指导,帮助学生克服困难。
4.鼓励学生发挥自己的想象力,创造性地用字母表示数,培养其创新思维能力。
(四)总结归纳
1.教师引导学生对所学知识进行总结和反思,帮助其构建知识体系,提高其思维品质。
2.学生通过总结,明确用字母表示数的意义、方法和应用,巩固所学知识。
3.教师强调用字母表示数在数学学习和实际生活中的重要性,激发学生继续学习的动力。
3.小组合作:本案例合理划分学习小组,鼓励学生进行合作学习。在小组合作中,学生可以通过讨论、交流和分享,提高自己的沟通能力和团队合作精神,同时也能从他人那里获得不同的观点和思路,有助于提高自己的学习效果。
4.反思与评价:教师引导学生进行总结和反思,帮助学生构建知识体系,发现自己的不足,明确改进方向。同时,教师采用多元化的评价方式,关注学生的学习过程和成果,充分发挥评价的诊断和反馈作用。
5.作业小结:教师布置具有层次性和实际意义的作业,让学生在完成作业的过程中,巩固所学知识,提高其解决问题的能力。同时,教师及时批改作业,给予评价和反馈,帮助学生巩固知识,提高其学习效果。
人教版七年级数学课件:2.1《整式》----用字母表示数 (共34张PPT)
![人教版七年级数学课件:2.1《整式》----用字母表示数 (共34张PPT)](https://img.taocdn.com/s3/m/8bd28da5360cba1aa911da11.png)
某校组织学生到距离学校8 km的科技馆参观,学生小宇因 事没能赶上学校的包车,于是准备在学校门口改乘出租车去科 技馆,出租车的收费标准如下:
里程 3 km以下(含3 km) 3 km以上,每增加1 km
收费(元) 7.00 1.20
4
阶段综合测试三(期中二)
(1)设出租车行驶的里程数为x(x≥3) km,付给出租车的费 用为________ 元(请用含x的式子表示);
怎样分析数量关系,并用含有字母 的式子表示数量关系呢?
我们用字母t表示时间,列车在冻土地 段的行驶速度是100km/h,t小时行驶的 总路程为多少?
分 因温为馨行提驶示的:总1路、程数=和速字度母×相时乘间,,通常省 析:所略把以乘数t小号字时或写行用在驶“ 字的母·总的”路前表程面示为,。1在00省xt略,乘即号10时0tkm。
用含字母的式子表示数量关系的步骤:
1.找出数量之间的关系
2.确定研究对象,再用字母表示.
3.规范的写出字母表达式
例 用含有字母的式子表示数量关系.
(2)苹果原价是每千克p元,按8折优惠出售,用 式子表示现价;
(3)某产品前年的产量是n件,去年的产量是前 年的m倍,用式子表示去年的产量;
(4)一个长方体包装盒的长和宽都是acm,高是 hcm,用式子表示它的体积;
(v-2.5) km/h.
顺水速度=船静水航行的速度+水流速度
逆水速度=船静水航行的速度-水流速度
例2: 用含有字母的式子表示数量关系.
(3)如图(长度单位:cm),
则三角尺的面积为
(1 2
ab
r2 )cm2
a
r b
(4)如图是一所住宅的建筑平面图,
人教版七年级上册第二章2.1用字母表示数优秀教学案例
![人教版七年级上册第二章2.1用字母表示数优秀教学案例](https://img.taocdn.com/s3/m/4071e6c10129bd64783e0912a216147916117e57.png)
二、教学目标
(一)知识与技能
本节课旨在让学生掌握字母表示数的基本方法,培养学生运用字母进行数学表达和简化解题的能力。通过本节课的学习,学生能理解字母表示数的意义,会正确用字母表示数,并能够运用字母解决实际问题。
在讲授新知后,我组织学生进行小组讨论。我将学生分成若干小组,每组学生共同探讨和解决实际问题,例如:“如果小明买了更多的铅笔和橡皮,价格也不同,如何用字母表示数解答这个问题?”学生通过小组讨论,能够进一步巩固对字母表示数知识的理解,培养他们的合作交流能力和解决问题的能力。
(四)总结归纳
在学生小组讨论后,我进行总结归纳。我邀请学生分享他们在小组讨论中的发现和解决问题的方法,然后我将这些方法和知识点进行总结,强调重点和难点,帮助学生形成完整的知识体系。
在导入新课后,我正式讲授字母表示数的基本方法。首先,我向学生介绍字母表示数的定义和意义,解释为什么需要用字母表示数。然后,我详细讲解字母表示数的规则和方法,例如,如何用字母表示变量、如何表示数的运算等。在讲解过程中,我结合具体的例子进行演示,让学生能够清晰地理解和掌握字母表示数的方法。
(三)学生小组讨论
学生需要在教师的引导下,学会观察、分析、归纳和总结,培养他们的逻辑思维能力和创新精神。同时,通过小组合作交流,学生能提高沟通表达能力和团队协作能力,培养集体荣誉感和责任感。
(三)情感态度与价值观
本节课的情感态度与价值观目标是培养学生的学习兴趣,激发他们的自信心和自主学习能力。通过本节课的学习,学生应该能够体验到数学的乐趣,认识到数学在生活中的重要性,培养积极的学习态度和良好的学习习惯。
七年级数学上册 2.1 用字母表示数教案 (新版)新人教版
![七年级数学上册 2.1 用字母表示数教案 (新版)新人教版](https://img.taocdn.com/s3/m/d71feff1a76e58fafbb003d3.png)
2.1用字母表示数教学目标:教材分析:用字母表示数 ,使学生的思维实现由数到式的飞跃 ,它是有理数的概括与抽象 ,是由算术进入代数的开始 ,是整式乘除和代数式运算的根底 .在知识的呈现上表达由特殊到一般的思维过程 ,充分展示了知识的发生开展过程 ,知识的呈现过程与学生的已有生活经验密切联系 ,开展学生运用数学的意识和能力 ,用字母表示数的思想 ,对学生学好代数知识起关键作用 ,为后续的代数学习奠定根底 .重点:体会字母表示数的意义 ,掌握用字母表示数的方法 .难点:引导学生抽象概括过程 .教学设计理念:教师在整节课的活动中 ,扮演的是学生学习的参与者、合作者、指导者的角色 .注重学生获得的结论 ,更注重获得结论的过程 .如参与意识、探究方法、表达能力及合作交流的意识 ,等等 .学生情况分析:初一学生对身边有趣的现象充满好奇 ,对一些具有规律性的问题充满了探究的欲望 .他们非常乐于动手操作 ,有很强的好胜心和表现欲;同时学生也具备了一定的归纳总结、表达的能力 ,根本上能在教师的引导下就某一主题展开讨论 .教具准备:多媒体课件、棋子 .教学设计:一、创设情境 ,导入新课导语:字母在我们的日常生活中运用非常广泛 ,谁能举出一些用到字母的实例 ?如:(1 )简谱中的字母表示音调; (2 )飞机从A地到B地 ,字母表示地点; (3 )饮料瓶上标出500ml ,字母ml表示体积单位毫升; (4 )车牌号前字母E表示某地区……看来生活中用字母的例子真不少 ,那么数学中用到字母的例子也很多 ,也可以用字母表示数 .请大家做个抢答游戏 (展示课件 ) .活动1:算24点 .利用给出的四张扑克牌里的数字信息 ,在较短的时间内摆一道四那么运算式子,结果必须是24点,摆好即举手发言 .利用摆出的式子,如:⨯+K ,问K代表什么 ?还有J、Q、A呢 ?+22453=点拨:这里的字母表示的是一个具体数 ,那么数学中字母还可以表示其它的数吗 ?怎样用字母表示数 ?用字母表示数有哪些好处呢 ?今天我们就专门研究 "用字母表示数〞这一节 .板书课题:第二章、走近代数§2.1用字母表示数二、合作交流 ,解读探究活动2:唱儿歌 (展示课件 )要求学生齐声朗读儿歌 ,当声音不齐时 ,问明原因 ,怎么解决 ?(要算眼数、腿数 ,速度不一致 ,有快有慢 ,所以声音不齐 . )有计算规律吗 ? (嘴数 =只数 ,眼数 =只数×2 ,腿数 =只数×4 ) .问:任意只青蛙时怎么唱 ? (文字语言很别扭 ,用符号语言 ,用字母n表示只数 )齐读:n只青蛙n张嘴 ,2n只眼睛 ,4n条腿 .点拨:这里的n表示3、5、6……很多很多数 ,代表一个变化的数 ,那么这样表示的好处是什么 ?简单、明确 ,高度概括 .注意:书写要求 .那么 ,过去你用字母表示过数吗 ?活动3、4:用字母表示学过的运算律和计算公式 (学生答复 ) .问:数字表示和字母表示的运算律或公式意义有什么不同 ?(数字表示只说明一个特例 ,而字母表示代表一般性的规律 ,更简单明确 ,便于应用 . ) 活动5:探索规律 (展示课件 (1 )、 (2 )、 (3 ) ) .通过观看屏幕图形变化过程 ,研究其边数与正方形个数的关系 ,由简单到复杂 ,由具体的正方形与边数关系 ,得出一般性规律性结论 ,并用字母表示出来 .(给学生充分的时间思考、交流、实验 ,从中体会如何用字母代替数分析出数量间的关系 ,从而列出表达式 (代数式和关系式 . )三、稳固应用展示课件 .注意书写要求并板书 ,全部让学生答复 ,初步学会用字母表示数量关系式(列代数式 ) .四、小结本节课学习了用字母表示数 ,请大家说说字母可表示哪些数 ?有什么好处 ?(1)字母可表示一个具体的或变化的数;(2)字母可表示公式、运算律;(3)字母可表示有趣的数学规律 ,它更简单明确 ,便于应用;(4)有了这些 ,本章将带你走进代数世|界 .教学反思1 、要主动学习、虚心请教,不得偷懒. 老老实实做"徒弟〞,认认真真学经验,扎扎实实搞教研.2 、要勤于记录,善于总结、扬长避短. 记录的过程是个学习积累的过程, 总结的过程就是一个自我提高的过程.通过总结, 要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善.3 、要突破创新、富有个性,倾心投入. 要多听课、多思考、多改良,要正确处理好模仿与开展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的根底上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格, 弘扬工匠精神, 努力追求自身教学的高品位.。
人教版七年级上册数学教案:第二章 2.1整式
![人教版七年级上册数学教案:第二章 2.1整式](https://img.taocdn.com/s3/m/6200fa1d6fdb6f1aff00bed5b9f3f90f76c64d10.png)
第二章 整式的加减2.1 整式第1课时 用字母表示数1.在现实情境中进一步理解用字母表示数的意义,让学生在探索现实世界数量关系的过程中,建立符号意识.(重点)2.领会用字母表示数时数量关系的一种抽象化,是代数的一个重要特点.(难点)阅读教材P 54~56,思考下列问题.如何用字母表示数.自学反馈1.我们常用字母 t 表示行驶的时间,在小学列方程解应用题时,用字母 x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0). 3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.一本名著有a 页,王红读了b 天,还剩c 页未读,王红平均每天读了a -c b页.活动1 小组讨论例1 用字母表示加法的结合律和乘法的分配律.解:加法结合律:(a +b)+c =a +(b +c);乘法分配律:(a +b)c =ac +bc.例2 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼比赛”.如图所示:按照上面的规律,摆n 条“金鱼”需用火柴棒的根数为(A )A .2+6nB .8+6nC .4+4nD .8n活动2 跟踪训练1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃.2.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元.3.七年级一班全班同学合影,第1排站b 个人,以后每排都比前一排多2人,那么第3排站(b +4)人,第n 排站b +2(n -1)人.4.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2 .5.如图,下面图形的周长是2a +2b .6.找规律,填一填.摆1个这样的三角形需要3根小棒,摆2个这样的三角形需要5根小棒,摆3个这样的三角形需要7跟小棒,摆4个这样的三角形需要9根小棒,……摆11个这样的三角形需要23根小棒, 摆n 个这样的三角形需要(2n +1)根小棒. 活动3 课堂小结 如何用字母表示数,用字母表示数时需要注意些什么. 第2课时 单项式1.理解单项式、单项式的系数、单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数.2.初步学会观察、对比、归纳的方法;发展学生的观察能力、思维能力及分析能力.阅读教材P 56~57,思考下列问题.1.单项式、单项式的系数及单项式的次数的概念.2.区别单项式的系数和次数.知识探究1.由数与字母或字母与字母相乘组成的代数式叫单项式.2.单项式中的数字因数叫单项式的系数.3.单项式中所有字母的指数的和叫单项式的次数.自学反馈1.在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x . 2.(1)-a 的系数是-1,次数是1;(2)单项式-3x 2的系数是-3,次数是2;(3)2ab 3c 3的系数是23,次数是5. 3.下列说法正确的是(C )A .x 不是单项式B .x +2y 是单项式C .-x 的系数是-1D .0不是单项式(1)当一个单项式的系数是1或-1时,通常省略不写,如a 2bc ,-abc 等;(2)单项式的系数是带分数时,通常写成假分数,如134x 2y 写成74x 2y.活动1 小组讨论例1 用单项式表示下列各式.(1)边长为x 的正方形的周长为4x ;(2)一辆汽车的速度是v 千米∕时,行驶t 小时所走过的路程为vt 千米.(3)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn 2元. (4)如图所示,边长为a 的正方体的表面积为6a 2,体积为a 3.例2 找出下列各式中的单项式,并写出各单项式的系数和次数. 23a ,5a +2b ,-y ,z 5x 7,a bc ,-18a 2b ,-x 2yz 2bc. 解:23a ,-y ,z 5x 7,-18a 2b. 其中23a 的系数为23,次数为1; -y 的系数为-1,次数为1;z 5x 7的系数为1,次数为12;-18a 2b 的系数为-18,次数为3.活动2 跟踪训练1.如果单项式-xy m z n 和5a 4b n 都是五次单项式,那么m 、n 的值分别为(D )A .2,3B .3,2C .4,1D .3,12.下列说法中正确的是(D )A .0不是单项式B .-3abc 2的系数是-3 C .-23x 2y 23的系数是-13 D .πab 2的次数是2 4.同时含有a 、b 、c 且系数为1的5次单项式是哪些?解:a 2b 2c ,a 2bc 2,ab 2c 2,a 3bc ,ab 3c ,abc 3.5.球的表面积等于π与球半径的平方的积的4倍;球的体积等于π与球半径的立方的积的43.(用单项式表示) 解:4πr 2,43πr 3. 3.下列各式:①123ab ;②x·2;③30%a ;④m -2;⑤3x 2-y 2.其中不符合代数式书写要求的有(D ) A .5个 B .4个 C .3个 D .2个活动3 课堂小结1.字母表示数.2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式1.使学生理解多项式、整式的概念,会准确确定一个多项式的项和次数.2.通过实例列整式,培养学生分析问题、解决问题的能力.3.培养学生积极思考的学习态度、合作交流的意识,了解整式的实际背景,进一步感受字母表示数的意义.阅读教材P 57~58,思考下列问题.1.多项式及有关概念.2.准确确定多项式的次数和项.知识探究1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.2.单项式和多项式统称为整式.自学反馈1.多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,常数项是-1.2.多项式-m 2n 2+m 3-2n -3是四次四项式,最高次项的系数为-1,常数项是-3.3.多项式3a 3-14中,常数项是(D ) A .1 B .-1 C .14 D .-144.多项式13a 2b -16是(B ) A .二次二项式 B .三次二项式C .一次二项式D .三次三项式活动1 小组讨论例1 先填空,再分析写出的式子有什么特点?与你的同伴交流.(1)减肥后,体重由80千克下降了n 千克,是(80-n)千克;(2)买一本练习本需要x 元,买一支中性笔需要y 元,买一块橡皮需要z 元,买4本练习本,5支中性笔,2块橡皮共需要(4x +5y +2z)元.例2 指出下列多项式的次数与项:(1)23xy -14; (2)a 2+2a 2b +ab 2-b 2;(3)2m 3n 3-3m 2n 2+53mn. 解:(1)2次,23xy ,-14. (2)3次,a 2,2a 2b ,ab 2,-b 2.(3)6次,2m 3n 3,-3m 2n 2,53mn. 活动2 跟踪训练1.下列说法中正确的有(A )①单项式-12πx 2y 的系数是-12; ②多项式a +3b +ab 是一次多项式;③多项式3a 2b 3-4ab +2的第二项是4ab ;④2x 2+1x-3是多项式. A .0个 B .1个 C .2个 D .3个2.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b 7;⑦-5;⑧x +y 5. 整式:{①②③④⑤⑥⑦⑧…}多项式:{③⑥⑧…}单项式:{①②④⑤⑦…}3.指出下列多项式的项和次数.(1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次.4.指出下列多项式是几次几项式:(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式.活动3 课堂小结1.多项式的概念.2.项、常数项、多项式的次数.。
2.1+整式+用字母表示数(列代数式)+讲练课件+2023-2024学年人教版数学七年级上册
![2.1+整式+用字母表示数(列代数式)+讲练课件+2023-2024学年人教版数学七年级上册](https://img.taocdn.com/s3/m/34ff6c840d22590102020740be1e650e53eacf16.png)
C
)
A.a48
B.x÷y
C.a(x+y)
D.1 abc
用字母表示数的实际应用
例2 【教材P54例1改编】填空:
(1)每包书有6册,n包书有
6n
册;
(2)若小红花10元共买了x支铅笔,则每支铅笔为
(3)全校有x人,女生占52%,则女生有
52%x
元;
人;
(4)某种苹果每千克x(x<10)元,用50元买5 kg这种苹果,应找回
(2) 若 一 辆 汽 车 每 小 时 行 驶 v 千 米 , 则 走 完 100 千 米 所 需 的 时 间
为
小时;
(3)公交车上原来有24人,若后面上来了a人,则现在公交车上有
+a)
人.
(24
3.填空:
(1)某班 共有 a 个 学生 , 如果 其 中男 生 人数 占 45%, 那 么女 生 人数
解:(1)一个三角形的底为a,高为b,则该三角形的面积为 ab.(答案
不唯一,合理即可)
(2)苹果单价为x元/kg,梨单价为y元/kg,则买3 kg苹果和3 kg梨一共
要付3(x+y)元.(答案不唯一,合理即可)
7.某市的出租车收费标准是:乘车里程不超过3 km的收费是起步价
加出租车燃油附加费,共8元;乘车里程超过3 km的,除了照收8元以
ah
cm2;
(2)两个圆的圆心相同,大圆的半径为R cm,小圆的半径为r cm,则圆环
的面积是
(πR2-πr2)
cm2.
3.(1)一个长方体包装盒的长和宽都是a cm,高为h cm,
则它的体积为
七年级数学上册(人教版)2.1整式(第1课时)用字母表示数说课稿
![七年级数学上册(人教版)2.1整式(第1课时)用字母表示数说课稿](https://img.taocdn.com/s3/m/484c6f49ec630b1c59eef8c75fbfc77da369975d.png)
(一)教学策略
我将采用的主要教学方法包括启发式教学、情境教学和任务驱动法。启发式教学能够引导学生主动思考,激发学生的学习兴趣和探究欲望,有助于培养学生的创新意识和解决问题的能力。情境教学通过将知识融入具体的生活情境中,增强学生对知识的应用意识,使学生能更好地理解字母表示数的实际意义。任务驱动法则通过设计具有挑战性的学习任务,引导学生主动探索,培养学生的自主学习能力。
2.课堂互动可能不够充分,影响学生的学习积极性。
3.学生在练习中可能出现常见的错误,需要及时纠正和指导。
应对措施:
1.针对抽象概念,我将通过更多的实际例子和直观演示来帮助学生理解。
2.加强课堂互动,通过提问、小组讨论等方式,提高学生的参与度。
3.及时关注学生的练习情况,提供个性化的指导和反馈。
课后评估教学效果时,我会:
课后作业的目的是巩固所学知识,提升学生的应用能力。我将布置以下作业:
1.书面作业:设计一定数量的书面练习题,让学生独立完成,巩固字母表示数的方法。
2.实践作业:让学生收集生活中的实际问题,用字母表示数,并撰写解题过程,提高知识运用能力。
3.预习作业:布置下一节课的相关内容,让学生提前预习,培养自主学习能力。
1.收集学生的课堂反馈和作业完成情况,分析学生的学习效果。
2.反思自己的教学设计和方法,评估是否达到了教学目标。
3.根据评估结果,调整教学策略,改进教学方法,如增加互动环节、调整练习难度等,以确保学生能够更好地掌握知识。
4.互相评价:鼓励学生相互评价,学会欣赏他人的优点,发现自身的不足,促进共同进步。
四、教学过程设计
(一)导入新课
新课导入是吸引学生注意力和兴趣的关键环节。我将采用以下方式导入新课:
人教版七年级上册数学用字母表示数
![人教版七年级上册数学用字母表示数](https://img.taocdn.com/s3/m/ad0adce2e518964bce847c9d.png)
活动4 例题与练习
(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要 z 元, 用式子表示买 3个篮球、5个排球、2个足球共需要的钱数;
解:买3个篮球、5个排球、2个足球共需要 (3x 5y 2z) 元.
活动4 例题与练习
(3)如左下图(图中长度单位:cm),用式子表示三角尺的面积; (4)右 下图是一所பைடு நூலகம்宅的建筑平面图(图中长度单位:m),用式子表 示这所住宅的建筑面积.
则(2)班的总成绩为____23_m_+__5_____分;
(3)某商店积压了一批商品,为尽快售出,该商店采取如下销售方案:将原来 每件m元的商品,加价50%,再做两次降价处理,第一次降价30%,第二次降 价10%.经过两次降价后的价格为___0_._9_4_5_m__元.
练习
1.教材P56 练习第1,2,3,4题.
三、教学设计
活动1 新课导入 做一做: 1.若正方形的边长为a,则它的面积为__a_2_. 2.若三角形的一边长为a,并且这条边上的高为h,则这个三角形的面积 为__a_h_. 3.鸡兔同笼,鸡a只,兔b只,则共有__(a_+__b_)__个头, __(_2_a_+__4_b_)__只脚.
活动2 探究新知
例3 用字母表示下列问题中的数量关系:
(1)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每 个80元,排球每个60元,购买这些篮球和排球的总费用为__(_8_0_m_+__6_0_n_)__元;
2 (2)在运动会中,(1)班的总成绩为m分,(2)班比(1)班总成绩的 3 还多5分,
1.教材P54 例1上面的内容.
例1 用含有字母的式子表示下列数量 (1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价; (2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表
人教版数学七年级上册2.1.1用含有字母的式子表示数量关系(教案)
![人教版数学七年级上册2.1.1用含有字母的式子表示数量关系(教案)](https://img.taocdn.com/s3/m/43fc49b10875f46527d3240c844769eae009a396.png)
在今天的教学中,我发现学生们对于用字母表示数量关系的概念接受程度还不错,但实际操作时还是遇到了一些困难。尤其是在将实际问题抽象成数学模型的过程中,他们有时会困惑于如何选择合适的字母来表示未知数。这说明我们在教学中需要更多的实例来帮助学生建立起这种对应关系。
我注意到,通过小组讨论和实验操作,学生们对这一概念有了更深的理解。他们在讨论中积极思考,互相启发,这种互动式的学习方式显然对他们很有帮助。这也提醒我,在今后的教学中,应该更多地采用这种形式,让学生在实践中学习和探索。
2.教学难点
-对字母表示数的理解,特别是字母所代表的数的范围和性质,这是学生容易混淆的地方。
-在将实际问题抽象为数学模型时,如何选择合适的字母表示未知数,以及如何构建字母表达式子。
-理解含有字母的式子在不同情境下的具体含义,例如在速度×时间=路程中,同样的字母可能代表不同的值。
举例:难点之一是学生对字母表示数的范围理解不深,如a+1表示a加1,但学生可能不清楚a可以取哪些值。教师需要通过具体例子说明,a可以是任何实数,包括正数、负数和零。
三、教学难点与重点
1.教学重点
-理解和掌握用字母表示数的意义和方法,这是本节课的核心内容,涉及到对数的抽象和符号的使用。
-学会用含有字母的式子表示常见的数量关系,如单价×数量=总价、速度×时间=路程等,并能正确书写这些关系式。
-能够根据实际问题抽象出数量关系,并用字母表达式子,解决具体问题。
举例:在讲解单价、数量和总价的关系时,重点强调如何将“单价”和“数量”用字母表示,并引导学生理解a×b(a表示单价,b表示数量)就是总价的概念。
3.重点难点解析:在讲授过程中,我会特别强调字母表示数的意义和如何构建含有字母的式子。对于难点部分,比如字母的取值范围,我会通过举例和比较来帮助大家理解。
人教版初中数学七年级上册第二章2.1.1用字母表示数
![人教版初中数学七年级上册第二章2.1.1用字母表示数](https://img.taocdn.com/s3/m/33818abea1116c175f0e7cd184254b35eefd1adf.png)
提高训练
10.某工厂去年的产值是 a 万元,今年比去年增加 10%,则今年的 产值是___(1_+_1_0_%_)a_或__(_a+__1_0%_a_) ___万元.
【解析】今年产值=(1+10%)×去年产值,故答案为(1+10%)a.
提高训练11.2018·源自台改编 图 2-1-2 中的各个图形都是由相同的玫 瑰花按照一定的规律摆成的,按此规律摆下去,第 n 个图形中 有___4_n____朵玫瑰花.
第二章 整式的加减
2.1.1 用字母表示数
新知探究 用字母表示数及数量关系
列车在冻土地段的行驶速度是100km/h,则: (1)列车2h行驶路程是多少千米? (2)列车3h行驶路程是多少千米? (3)列车t h行驶路程是多少千米?
新知探究 用字母表示数及数量关系
2. 某产品前年是n件,去年产量是前年产量的m倍,用式子表示去年 产量; 3.一个长方体包装盒的长和宽都是a厘米,高h厘米,用式子表示它的体积 ; 4.一条河的水流速度是2.5km/h,船在静水中的速度是v km/h,用式子表示船
针对训练
1.
2.
C
C
针对训练
3.
(b-a+1)
4.
提高训练
1.
C
提高训练
9. 某书店出售图书的同时,推出一项租书业务,每租看 1 本书, 租期不超过 3 天,每天租金为 a 元;租期超过 3 天,从第 4 天开始每天另加收 b 元.如果租看 1 本书 7 天归还,那么 租金为___[_3_a_+_4_(_a_+_b_)_]_或__(7_a_+__4_b)____元.
在这条河中顺水行驶和逆水行驶的速度; 5.买一个篮球x元,一个排球y元,一个足球z元,用式子表示买3个篮球,
人教版七年级数学上册同步备课 《第二章》2.1.1 用字母表示数(教学设计)(无答案)
![人教版七年级数学上册同步备课 《第二章》2.1.1 用字母表示数(教学设计)(无答案)](https://img.taocdn.com/s3/m/cd30cca1b9f67c1cfad6195f312b3169a551ea74.png)
2.1.1 用字母表示数教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.1.1 用字母表示数,内容包括:字母表示数的意义、字母表示数的书写要求.2.内容解析用字母表示数是学习数学符号的重要一步,从研究一个个特定的数到用字母表示一般的数,是学生认识上的一个飞跃.用字母表示数,便于从具体情景中抽象出数学关系的变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题.从这一节课开始,意味着将把学生从数的领域带入到代数式的世界,这将使学生的数学知识结构与数学观点.基于以上分析,确定本节课的教学重点为:理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系.二、目标和目标解析1.目标(1)理解字母表示数的意义.(抽象能力)(2)会用含有字母的式子表示实际问题中的数量关系.(应用意识)2.目标解析在具体情境中体会字母表示数的意义,能用字母表示数,用含有字母的式子表示数量关系,培养符号感.经历观察、发现、交流、归纳并用含有字母的式子表示规律、数量关系的过程,提高分析、归纳能力,掌握由特殊到一般的认识规律,体验数形结合的数学方法的优越性.激发学生用字母表示数的兴趣,体会发现规律的快乐,感受用字母表示数的简洁美.三、教学问题诊断分析在前面的学习中,主要学习的是数的有关概念和运算,学生习惯用数的相关知识解决实际问题由“数”到“式”的过程,是一个抽象的过程虽然学生小学学过用字母表示数,对含有字母的数学式子不会感到生疏,但七年级学生符号意识较弱,分析问题能力有待逐步提高,在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难教学中要通过大量的学生熟悉的实际问题,有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.基于以上分析,确定本节课的教学难点为:正确分析实际问题中的数量关系,用式子表示数量关系.四、教学过程设计(一)情境引入1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水;2只青蛙2张嘴,4只眼睛8条腿,扑通2声跳下水;3只青蛙3张嘴,6只眼睛12条腿,扑通3声跳下水;4只青蛙____张嘴,_____只眼睛_____条腿,扑通_____声跳下水;……a只青蛙____张嘴,____只眼睛____条腿,扑通____声跳下水.(二)自学导航独立思考:试着用含有字母的式子表示下列数量.(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价_____元.①数和字母相乘,可省略乘号,并把数字写在字母的前面.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量______件.①字母和字母相乘,乘号可以省略不写或用“ • ” 表示. 一般情况下,按26个字母的顺序从左到右来写.(3)练习簿的单价为0.5元,圆珠笔的单价是3.2元,买a本练习簿和b支笔的总价是元.①后面带单位的相加或相减的式子要用括号括起来.(4)小明的家离学校s千米,小明骑车上学.若每小时行10千米,则需时.①除法运算写成分数形式,即除号改为分数线.(5)若每斤苹果31元,则买m斤苹果需元.3①带分数与字母相乘时,带分数要写成假分数的形式.(6)姚明个子高,经测量他通常跨一步的距离1米,若取向前为正,向后为负,那么姚明向前跨a步为米,向后跨a步为米.①当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.(三)总结提升列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言.要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;①理清语句层次,明确运算顺序;①牢记一些概念和公式.列式注意事项:1.表示数的字母相乘时,可用“·”代替乘号或省略不写.如:a×b 通常写作a·b 或ab.2.数和字母相乘时,数字应写在字母前面.如:a×2通常写作2a.3.带分数与字母相乘时,应把带分数化成假分数.如:323×a 通常写作113a.4.式子中出现除法运算时,一般按分数形式来写.如:y÷3通常写作:y 3 .5.最后一步是加、减运算时,如果有单位,要用括号把式子括起来.如:温度由2①上升t①后是(2+t)①.(四)考点解析例1.(1)标价是a 元的商品打7折后的售价是_______元;(2)预计某产品今年的产量是xt ,恰好是去年产量的3倍,则去年的产量是______;(3)一个直角三角形的两条直角边长分别为m ,n ,则这个三角形的面积是_______.【迁移应用】1.下列式子符合规范书写要求的是( )A.-1xB.a×7C.b aD.115xy2.在下列表述中,不能用式子5a 表示的是( )A.5的a 倍B.a 的5倍C.5个a 的和D.5个a 的积3.一列火车从甲站出发,5h 行驶mkm ,则这列火车的中m 平均速度是_______km/h.例2.(1)一条河的水流速度是2.5km/h ,船在静水中的速度是vkm/h ,用式子表示船在这条河中顺水行驶和逆水行驶时的速度.【分析】船在河流中行驶时,船的速度需要分两种情况讨论:①顺流行驶时,顺水速度=静水速度+水流速度;①逆流行驶时,逆水速度=静水速度-水流速度.解:(1)船在这条河中顺水行驶的速度为(v +2.5)km/h ,逆水行驶时的速度为(v -2.5)km/h.(2)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,用式子表示买 3个篮球、5个排球、2个足球共需要的钱数.【分析】商品买卖问题中重要的数量关系:总价=单价×数量.解:买3个篮球、5个排球、2个足球共需要(352)x y z ++元.(3)如下图(图中长度单位:cm ),用式子表示三角尺的面积.【分析】三角板的面积等于三角形的面积减去圆的面积,根据图形中的数据,得三角形的面积是12ab cm 2,圆的面积是πr 2cm 2.解:三角尺的面积(单位:cm 2)是21π2ab r -.(4)如下图是一所住宅的建筑平面图(图中长度单位:m ),用式子表示这所住宅的建筑面积.【分析】住宅的建筑面积等于各部分面积的和,根据图中标注的尺寸,可以求出各部分的面积,再求和就是住宅的建筑面积.解:这所住宅的建筑面积(单位:m 2)是2218x x ++. 【迁移应用】1.某商品在国庆节期间,为了提高销售量,在原单价为a 元的基础上降价10%,则降价后的单价为( )A.(1+10%)a 元B.(1-10%)a 元C.(1+10%a)元D.10%a 元2.如图是一枚铜钱,外圆半径为acm ,里面的正方形边长为bcm ,则这枚铜钱的面积为_________cm 2.3.(1)办公桌的价格是每张a 元,办公椅的价格是每把b 元,用式子表示买3张办公桌、5把办公椅共需要的钱数;(2)某公司去年的销售额为a 元,成本为销售额的60%,税额和其他费用合计为销售额的p%,用式子表示该公司去年的年利润;(3)如图,有一块长为18m ,宽为10m 的长方形土地,现将左侧和上侧留出宽度是xm(0<x <9)的小路,余下的部分作为菜园,用式子表示长方形菜园的面积.例3.列式表示:(1)连续三个由小到大的奇数,中间的奇数是2n+1,写出第一个和第三个奇数;(2)一个三位数,个位上的数为a,十位上的数为b,百位上的数为c,请写出这个三位数.解:(1)第一个奇数为2n-1,第三个奇数为2n+3;(2)这个三位数为100c+10b+a.【迁移应用】1.一个两位数,十位上的数是a,十位上的数比个位上的数大1,这个两位数是( )A.a(a-1)B.10a(a-1)C.10a+(a-1)D.10a+(a+1)2.已知m是两位数,n是一位数,把m直接写在n后面,就成了一个三位数,这个三位数可表示为( )A.10n+mB.nmC.n+10mD.100n+m【解析】因为m是两位数,n是一位数,把1m直接写在n后面,形成一个三位数,那么n就成了这个三位数百位上的数,所以这个三位数可表示成100n+m.3.一个两位数,个位上的数是m,十位上的数是n,则这个两位数是______;若交换两个数位上的数,则新得到的两位数是______;若在原两位数后面加个1,则得到的三位数是___________.【解析】若在原两位数后面加个1,得到一个三位数,那么这个三位数百位上的数是n,十位上的数是m,个位上的数是1,则所得的三位数为100n+ 10m+1.例4.某市乘坐出租车时,收费标准如下:不超过3km,收取起步价12元;超出3km后,超出部分每千米收取1.8元.写出某人乘坐出租车出行xkm(x>3)的费用.解:因为xkm大于3km,所以超出(x-3)km.所以乘车费用为[12+1.8(x-3)]元.【迁移应用】1.某商店将定价为每件5元的商品按下列优惠方式销售:若购买不超过10件,按原价付款;若一次性购买10 件以上,超过部分打“8折”.小果买了a件(a>10)该商品,应付款______________元.【解析】因为a>10,所以超过部分有(a-10)件,超过部分每件需付5×0.8=4(元) , 故共付款[5×10+4(a-10)]元,即[50+4(a-10)]元.2.为了鼓励节约用电,某地对居民用电收费标准规定如下:每户每月用电不超过100度,每度按0.52元计算;每月用电超过100度,其中的100度仍按原标准收费,超过部分按每度0.75元计算.小敏家4月份用电a度,则小敏家4月份应缴纳电费多少元?(用含a的式子表示)解:当a不超过100时,应缴纳电费0.52a元;当a超过100时,应缴纳电费[52+0.75(a-100)]元.例5.请你用式子表示下列图形中阴影部分的面积.解:(1)直接法:S 阴影=(a -x)b;割补法:S 阴影=ab -bx.(2)S 阴影=12a(a -b). 【迁移应用】1.如图,已知长方形的长为a ,宽为b ,两个半圆的直径都为b ,请用含有字母的式子表示图中阴影部分的面积.解:S 阴影=ab -2×12π(b 2)2=ab -14πb 2.2.用不同的方法表示出图中阴影部分的面积.(至少写出两种)解:对原图进行割补如图所示:方法1:S阴影=bc+d(a-c);方法2:S阴影=ad+c(b-d);方法3:S阴影=ab-(a-c)(b-d).例6.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成……第n(n是正整数)个图案由_______个基础图形组成.(用含n的式子表示)【迁移应用】1.如图,按照规律排列下去,第n个图中有________个三角形.【解析】第1个图中三角形的个数为2×1,第2个图中三角形的个数为2×2,第3个图中三角形的个数为2×3……由此我们可以发现:第n个图中三角形的个数为2n.2.如图是由边长相同的小正方形组成的图形,其中部分小正方形涂有阴影.依此规律,第n个图中有_______个涂有阴影的小正方形.【解析】由题图可得,第1个图中涂有阴影的小正方形的个数为5=4+1,第2个图中涂有阴影的小正方形的个数为9=4×2+1,第3个图中涂有阴影的小正方形的个数为13=4×3+1……故第n个图中涂有阴影的小正方形的个数为4n+1.(五)小结梳理列式时应注意:①数与字母、字母与字母相乘省略乘号;①数与字母相乘时数字在前;①式子中出现除法运算时,一般按分数形式来写;①带分数与字母相乘时,把带分数化成假分数;①带单位时,适当加括号.五、教学反思。
新人教版初中数学七年级上册《第二章整式的加减:2.1整式:章前引言及列代数式》公开课获奖教案_0
![新人教版初中数学七年级上册《第二章整式的加减:2.1整式:章前引言及列代数式》公开课获奖教案_0](https://img.taocdn.com/s3/m/9d2edd4f01f69e3143329462.png)
人教版七年级上册数学第二章整式2.1 整式-用字母表示数一、教学目标(1)理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.(2)经历用含有字母的式子表示实际问题的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.二、学习重难点:理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系,感受其中“抽象”的数学思想.三、教学过程1.导入(展示青藏铁路的照片)2.探究新知问题一青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,根据已知数据求出列车行驶的路程.(1)2 h行驶多少千米?3 h呢?t h呢?(2)字母t表示时间,且t为非负数.如果用v表示速度,列车行驶的路程是多少?(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?(对以上问题进行讲解分析,强调整式书写格式)例1(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;(4)用式子表示数n的相反数.问题二怎样分析数量关系并用含有字母的式子表示数量关系呢?分析然后列式①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.例2(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一包方便面需要x元,买一瓶饮料需要y元,买一袋辣条需要z 元,用式子表示买 3包方便面、5瓶饮料、2袋辣条共需要的钱数;(3)如左下图(图中长度单位:cm),用式子表示三角尺的面积;(4)右下图是一所住宅的建筑平面图(图中长度单位:m),用式子表示这所住宅的建筑面积.注意:整式书写格式列式时:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前,为常数;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;3.练习想一想1、2、(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用式子表示在这个月内销售这种商品的收入.(2)圆柱体的底面半径、高分别是r,h,用式子表示圆柱体的体积.(3)有两片棉田,一片有m hm2 (公顷,1 hm2 =104 m2 ),平均每公顷产棉花a kg;另一片有n hm2 ,平均每公顷产棉花b kg,用式子表示两片棉田上棉花的总产量.(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部分的面积.4.小结5.作业教科书习题2.1的第1题,第2题,第7题四、板书设计五、教学反思。
七年级数学上册第二章整式的加减2.1整式第1课时用字母表示数复习课件(新版)新人教版
![七年级数学上册第二章整式的加减2.1整式第1课时用字母表示数复习课件(新版)新人教版](https://img.taocdn.com/s3/m/0ed7d60f4b35eefdc8d33335.png)
(4)某商品的原价是 a,提价 10%后的价格; (5)有一个三位数,个位数字比十位数字少 4,百位数字是个位数字的 2 倍, 设 x 表示十位数字,用式子表示这个三位数.
解:(1)5x2-2; 1 (2)-x+y ; (3)(x-y)2; (4)(1+10%)a; (5)100(2x-8)+10x+(x-4).
3.[2017· 六盘水]下列式子正确的是( C ) A.7m+8n=8m+7n B.7m+8n=15mn C.7m+8n=8n+7m D.7m+8n=56mn 4.[2017· 海南]已知 a=-2,则式子 a+1 的值为( C ) A.-3 B.-2
C.-1 D.1 5.“x 的 2 倍与 5 的和”用代数式表示为
第二章 整式的加减
2.1 第1课时 用字母表示数
学习指
学习指南
★教学目标★ 1.通过数学活动让学生操作、思考、体会字母表示数的意义,初步理解、掌 握用字母表示数的方法,进一步发展学生的数感、符号感. 2.通过引导使学生初步感悟代数思想,提高学生的数学抽象概括能力.
图 2-1-1
解: (1)∵客厅的面积为 6x, 厨房的面积为 2×(6-3)=6, 卫生间的面积为 2y, 卧室的面积为 3×(2+2)=12. ∴总面积为(6x+2y+18)m2. (2)当 x=4,y=1.5 时, 总面积为 6x+2y+18=6×4+2×1.5+18=45, ∴铺地砖的总费用为 45×80=3 600(元).
购买质量x/kg 1 2 3 4 5 表1 售价c/元 4+0.2 8+0.4 12+0.6 16+0.8 20+1
携带质量m/kg
收费标准
0<m≤20 20<m≤100 m>100
不收费 共100元 超过100 kg的部分2元/kg
人教版七年级上册2.1.1用字母表示数优秀教学案例
![人教版七年级上册2.1.1用字母表示数优秀教学案例](https://img.taocdn.com/s3/m/31421bfa50e79b89680203d8ce2f0066f53364c6.png)
在讲授新知环节,我会从以下几个方面展开:
1.字母表示数的意义:解释为什么需要用字母表示数,强调字母可以代表任意的数,从而增强数学表达的一般性和普遍性。
2.代数式的书写规则:介绍代数式的书写方法,如字母的大小写、字母与数字的位置关系等,确保学生能够正确书写代数式。
3.字母表示数的运算:通过具体的例子,讲解字母在加减乘除运算中的使用方法,让学生掌握字母运算的基本规则。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,让他们在学习过程中感受到数学的魅力,激发他们的求知欲和探索精神。
2.培养学生严谨、细致的学习态度,让他们认识到数学的精确性和逻辑性,养成良好的学习习惯。
3.鼓励学生勇于面对困难,敢于挑战自我,培养他们克服困难的勇气和毅力。
4.通过数学教学,引导学生认识到数学在科技发展和社会进步中的重要作用,树立正确的价值观。
二、教学目标
(一)知识与技能
1.理解用字母表示数的意义,掌握代数式的书写规则,能够正确书写代数式。
2.学会用字母表示数进行简单的计算,如字母的加减、乘除等运算,并能够解决实际问题。
3.能够根据已知条件,列出相应的代数式,并运用代数式进行问题的分析和解决。
4.通过对代数式的学习,培养学生的抽象思维能力和逻辑推理能力,为后续学习方程、不等式等知识打下基础。
三、教学策略
(一)情景创设
为了让学生更好地理解用字母表示数的概念,我将创设贴近学生生活的教学情景。例如,可以设置一个关于购物的问题:小明去超市购物,买了3本书和2个笔记本,书的价格是a元,笔记本的价格是b元,请用代数式表示小明购物的总价。通过这样的情景,让学生感受到数学与生活的紧密联系,激发他们的学习兴趣。
在教学过程中,教师将结合教材内容,以实际问题为切入点,引导学生观察、思考、总结,逐步认识到用字母表示数的优越性和必要性。通过小组合作、师生互动等方式,让学生在轻松愉快的氛围中掌握知识,感受数学的魅力。同时,注重培养学生的实际应用能力,使他们在解决实际问题时能够灵活运用所学知识,从而达到学以致用的教学目标。
七年级数学人教版(上册)【知识讲解】第1课时用字母表示数
![七年级数学人教版(上册)【知识讲解】第1课时用字母表示数](https://img.taocdn.com/s3/m/b9d8034953d380eb6294dd88d0d233d4b04e3f5c.png)
米,宽为 (10-x) 米.
(2)菜地的面积为
(18-2x)(10-x)
平方米.
16.(2021·石家庄长安区期末)小明跟同学在某餐厅吃饭,下图 为此餐厅的菜单:
套餐一:一份重庆小面 套餐二:一份重庆小面加一杯饮料 套餐三:一份重庆小面加一杯饮料和一份沙拉 若他们一共点了 10 份重庆小面、x 杯饮料、y 份沙拉,则他们 点了 (10-x) 份套餐一.
(2)若把 n 张这样的餐桌拼接起来,四周可坐多少人? 解:(2)n 张餐桌按上述方式拼接,四周可坐(4n+2)人.
51 解:(1)2a-3b. (2)x 与 4 的商的平方.
x 解:(2)(4)2.
1 12.用字母表示“x 的 2 倍与 y 的差的平方的3”,正确的是( D )
1 A.(2x2-y)·3
1 B.2x-3y2
1 C.(2x-3y)2
1 D.3(2x-y)2
6 13.某件夏装的原价是 a 元,因过季打折,以(10a-20)元出售.下 列说法中,能正确表述该夏装出售价格的是( A ) A.原价打六折后再降低 20 元 B.原价打四折后再降低 20 元 C.原价降低 20 元后再打六折 D.原价降低 20 元后再打四折
知识点 3 用含字母的式子表示实际问题中的数量关系
5.已知苹果每千克 m 元,则 2 千克苹果共
元( D )
A.m-2
B.m+2
m C. 2
D.2m
6.一列火车从甲站出发,5 h 后行驶了 m km,则这列火车的平 m
均速度是 5 km/h.
7.小何买了 4 本笔记本,10 支圆珠笔,设笔记本的单价为 a 元,
C.5 个 a 的和
D.5 个 a 的积
3.用式子表示“a 的 2 倍与 3 的和”正确的是( B )
人教版七年级数学上册课件:第2章 2.1 第1课时 用字母表示数
![人教版七年级数学上册课件:第2章 2.1 第1课时 用字母表示数](https://img.taocdn.com/s3/m/7425ca245acfa1c7aa00ccc2.png)
第二章 整式的加减
2.1式子的书写及意义
同步考点手册 P15
1.下列含有字母的式子,符合书写规范要求的是( C )
A.-1a
B.512b
C.0.5xy
D.(x+y)÷z
2.式子x-2 y的意义为( B ) A.x 与 y 的一半的差
C.x 减去 y 除以 2 的差
商品重量 x(kg)
售价 y(元)
1
8+1.2+0.2
2
16+2.4+0.2
3
24+3.6+0.2
4
32+4.8+0.2
…
…
(1)试用含 x 的式子表示 y; 解:y=8x+1.2x+0.2. (2)若李敏购买了 2.5kg 该商品,则她应付给商店多少钱? 解:当 x=2.5 时,y=8×2.5+1.2×2.5+0.2=23+0.2=23.2,所以 她应付给商店 23.2 元.
B.x 与 y 的差的一半 D.x 与 y 的12的差
3.下面用字母表示的式子中不正确的是( C ) A.温度由 t℃下降 5℃后是(t-5)℃ B.今年小华 m 岁,去年是(m-1)岁,10 年后是(m+10)岁 C.小强用 10 秒走 n 米,他的速度是 10n 米/秒 D.a 的 25%加 30 可表示为 25%a+30
用含字母的式子表示数量关系
同步考点手册 P15
4.长方形的周长为 10,它的长是 a,那么它的宽是( C )
A.10-2a
B.10-a
C.5-a
D.5-2a
5.小华的存款为 x 元,小林的存款比小华的一半多 2 元,则小林的存
款是( A )
A.(12x+2)元
B.12(x+2)元
C.(12x-2)元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
字母表示数
一、选择题
1、苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()
A. (a+b)元
B. (3a+2b)元
C. (2a+3b)元
D. 5(a+b)元
2、小明买了2支钢笔,3支圆珠笔,若每支圆珠笔a元,每支钢笔b元,则小明一共花了()
A. (3a+2b)元
B. (2a+3b)元
C. (2a+2b)元
D. (3a+3b)元
3、某养殖场去年年底的生猪出栏价格是每千克a元. 受市场影响,今年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()
A. (1−15%)(1+20%)a元
B. (1−15%)(1−20%)a元
C. (1+15%)(1−20%)a元
D. (1+15%)(1+20%)a元
4、某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()
A. (1−10%)(1+15%)a万元
B. (1−10%)(1−15%)a万元
C. (1+10%)(1−15%)a万元
D. (1+10%)(1+15%)a万元
5、一个两位数,个位数字为a,十位数字为b,则这个两位数为()
A. ab
B. ba
C. 10a+b
D. 10b+a
6、甲、乙两家商店出售同一种商品,定价相同. 甲商店规定,若一次买两件,则其中一件可享受七折优惠;乙商店规定,若一次买两件,则两件都可享受八折优惠. 当买两件该商品时,下列判断正确的是()
A. 甲店比乙店优惠
B. 乙店比甲店优惠
C. 甲乙两店收费相同
D. 以上都有可能
7、某商场举办促销活动,促销的方法是将原价x元的商品以0.6(x−10)元出售,则下列描述中,能正确表达该商场促销方法的是()
A. 原价减去10元之后再打六折
B. 原价打六折之后再降价10元
C. 原价减去10元之后再打四折
D. 原价打四折之后再降价10元
8、甲、乙、丙三家超市均出售一种定价为m元的商品,它们的促销方式各不相同:甲超市连续两次降价20%;乙超市一次性降价40%;丙超市先降价30%,接头又降价10%. 这时候实际售价最便宜的超市是()
A. 甲
B. 乙
C. 丙
D. 三家都可以
9、一个运算程序输入x后,得到的结果是2x2−1,则这个运算程序的操作是()
A. 先乘2,再平方,然后减1
B. 先平方,再乘2,然后减1
C. 先减1,再平方,然后乘2
D. 先平方,再减1,然后乘2
10、已知长方形的长为(2b−a),宽比长少b,则这个长方形的周长为()
A. 6b−4a
B. 3b+2a
C. 3b−2a
D. 6b+4a
二、填空题
11、长方形的长为m,宽为n,则长方形的面积为().
12、若一个数比x的2倍小3,则这个数可以表示为().
13、“x的2倍与5的和”用代数式表示为().
14、用代数式表示“a的平方与1的差”:().
15、某企业去年的年产值为a万元,今年比去年增长10%,则今年的年产值是()万元.
16、一台电视机的原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要()元.
17、小明同学到文具店为学校美术小组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,一共需要()元.
三、解答题
18、设n表示任意一个整数,用含n的式子表示:
(1)任意一个偶数;(2)任意一个奇数.
19、用单项式表示下列各量,并说出它的系数和次数:
(1)原产量n吨,增产25%之后的产量;
(2)x的平方与y的积31
2倍;
(3)底面积为S cm2,高为ℎ cm的圆锥的体积.
20、用整式表示下列问题,并指出单项式的系数和次数,以及多项式的项和次数.
(1)连续三个奇数,中间一个是2n+1,写出第一个与第三个奇数;
(2)写出底面半径为r,高为ℎ的圆锥的体积;
(3)某市出租车收费标准:起步价10元,3千米后每千米加价1.8元. 写出某人乘坐出租车x(x>3)千米的费用;
(4)某商场实行7.5折优惠销售,写出售价为y元的商品的原价.
一、选择题
1-5、CAAAD
6-10、BABBA
二、填空题
11、mn
12、2x−3
13、2x+5
14、a2−1
15、1.1a
16、2000a
17、60m+90n
三、解答题
18、(1)2n(2)2n+1.
19、(1)1.25n,系数是1.25,次数是1;
(2)7
2
x2y,系数是
7
2,次数是3;
(3)1
3
Sℎ,系数是
1
3,次数是2.
20、(1)第一个:2n−1;项:2n和−1;次数:1;第三个:2n+3;项:2n和3;次数:1;
(2)1
3
πr2ℎ;系数:
1
3
π;次数:3;
(3)10+1.8(x−3)=1.8x+4.6;项:1.8x和4.6;次数:1;
(4)y÷75%=4
3
y;系数:
4
3;次数:1.。