最新北师大版九年级下册数学练习题
2022-2023学年北师大版九年级数学下册《3-6直线和圆的位置关系关系》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《3.6直线和圆的位置关系关系》同步练习题(附答案)一.选择题1.下列说法正确的是()A.三点确定一个圆B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等D.正多边形一定是中心对称图形2.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M 是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分面积为()A.1+B.1+C.2sin20°+D.3.如图,△ABC中,∠A=90°,AC=3,AB=4,半圆的圆心O在BC上,半圆与AB、AC分别相切于点D、E,则半圆的半径为()A.B.C.D.4.在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是()A.5B.2C.5或2D.2或﹣1 5.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH =30°时,PE+PF的值是()A.4B.2C.4D.值不确定6.如图,P A,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠P AO=∠PBO=90°B.OP平分∠APBC.P A=PB D.∠AOB=7.如图,在Rt△ABC中,AC⊥BC,过C作CD⊥AB,垂足为D,若AD=3,BC=2,则△ABC的内切圆的面积为()A.πB.(4﹣2)πC.()πD.2π8.已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是()A.①②④B.③④C.①②③D.①②③④9.如图将△ABC沿着直线DE折叠,点A恰好与△ABC的内心I重合,若∠DIB+∠EIC=195°,则∠BAC的大小是()A.40°B.50°C.60°D.70°10.如图:P A切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中错误的是()A.∠APO=∠BPO B.P A=PBC.AB⊥OP D.C是PO的中点二.填空题11.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为.12.如图,正方形ABCD的边长为4,M为AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作圆P,当圆P与正方形ABCD的边相切时,CP的长为.13.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB =4,BC=6,则△PDC的面积的最小值是.14.已知正方形ABCD边长为2,DE与以AB的中点为圆心的圆相切交BC于点E,求三角形DEC的面积.15.平面直角坐标系xOy中,以O为圆心,1为半径画圆,平面内任意点P(m,n2﹣9),且实数m,n满足m﹣n2+5=0,过点P作⊙O的切线,切点为A,当P A长最小时,点P 到原点O的距离为.16.如图,I为△ABC的内心,有一直线经过点I且分别与AB、AC相交于点D、点E.若AD=DE=5,AE=6,则点I到BC的距离为.三.解答题17.如图,在四边形ABCD中,AB=AD,CB=CD,圆心在四边形对角线AC上的⊙O与CD边相切于点E.(1)求证:BC是ʘO的切线;(2)若O是AC的中点,点E是CD的中点,∠CAD=30°,⊙O的半径R=3,求CD 的长.18.已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED 与AB的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,BF=2,求△ABC外接圆的半径.19.如图,△ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作DG∥BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,∠A=∠D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分∠ACB,BD=12,求DE的长.20.△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O 的切线DF,交AB的延长线于F.(1)求证:DF∥BC;(2)连接OF,若tan∠BAC=,BD=,DF=8,求OF的长.21.如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB 相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是⊙O的切线;(2)若AC=3,BC=4,⊙O的半径为1.求线段EN与线段AE的长.22.如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.23.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.参考答案一.选择题1.解:A.不在同一条直线上的三个点确定一个圆,故A不符合题意;B.任何三角形有且只有一个内切圆,故B符合题意;C.在同圆或等圆中,相等的圆心角所对的弧相等,故C不符合题意;D.正多边形一定是轴对称图形,不一定是中心对称图形,故D不符合题意;故选:B.2.解:连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠TOC=180°﹣2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足为H,则CH=OC=1,S阴影=S△AOC+S扇形OCB=+=1+,故选:A.3.解:连接OE,OD,∵圆O切AC于E,圆O切AB于D,∴∠OEA=∠ODA=90°,∵∠A=90°,∴∠A=∠ODA=∠OEA=90°,∵OE=OD,∴四边形ADOE是正方形,∴AD=AE=OD=OE,设OE=AD=AE=OD=R,∵∠A=90°,∠OEC=90°,∴OE∥AB,∴△CEO∽△CAB,同理△BDO∽△BAC,∴△CEO∽△ODB,∴=,即=,解得:R=,故选:A.4.解:设直角三角形ABC内切圆的圆心为点I,半径为r,三边上的切点分别为D、E、F,连接ID、IE、IF,得正方形,则正方形的边长即为r,如图所示:当BC为直角边时,AC==10,根据切线长定理,得AD=AF=AB﹣BD=6﹣r,CE=CF=BC﹣BE=8﹣r,∴AF+FC=AC=10,即6﹣r+8﹣r=10,解得r=2;当BC为斜边时,AC==2,根据切线长定理,得BD=BF=6﹣r,CE=CF=2﹣r,∴BC=BF+CF=6﹣r+2﹣r=8,解得r=﹣1.答:这个三角形的内切圆的半径是2或﹣1.故选:D.5.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.6.解:∵P A,PB分别与⊙O相切于点A,B,∴∠P AO=∠PBO=90°,OP平分∠APB,P A=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.7.解:∵在Rt△ABC中,AC⊥BC,过C作CD⊥AB ∴△ADC∽△CDB∴CD2=AD•DB∴CD2=3DBRt△CDB中,CB2=CD2+DB2∴4=3DB+DB2解得DB=1或DB=﹣4(舍去)∴CB=2∴AC=2设△ABC内切圆半径为r,内心为O,连OA、OB、OC由面积法可知S△ABC=S△AOC+S△BOC+S△AOB∴∴r==∴内切圆半径为π()2=(4﹣2)π故选:B.8.解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直径,∴CD⊥AB,∴①正确;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切线,∴②正确;假设OD∥GF,则∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知没有给出∠B=30°,∴③错误;∵AB是直径,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正确.故选:A.9.解:∵I是△ABC的内心,∴∠IBC=∠ABC,∠ICB=∠BCA,∵∠DIB+∠EIC=195°,∴∠DIE+∠BIC=165°,由折叠过程知∠BAC=∠DIE,∴∠BAC+∠BIC=165°∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠BAC,∴∠IBC+∠ICB=90°﹣∠BAC,又∵∠BIC+(∠IBC+∠ICB)=180°,∠BIC+(90°﹣∠BAC)=180°,∴∠BIC=90°+∠BAC,∴∠BAC+90°+∠BAC=165°,∴∠BAC=50°故选:B.10.解:∵P A、PB是⊙O的切线,切点是A、B,∴P A=PB,∠BPO=∠APO,∴选项A、B错误;∵P A=PB,∠BPO=∠APO,∴OP⊥AB,∴选项C错误;根据已知不能得出C是PO的中点,故选项D正确;故选:D.二.填空题11.解:∵P A、PB是⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,∵∠APB=60°,∴△P AB是等边三角形,AB=2AC,PO⊥AB,∴∠P AB=60°,∴∠OAC=∠P AO﹣∠P AB=90°﹣60°=30°,∴AO=2OC,∵OC=1,∴AO=2,∴AC=,∴AB=2AC=2,∴△P AB的周长=6.故答案为:6.12.解:如图1中,当⊙P与直线CD相切时,设PC=PM=x.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=22+(4﹣x)2,∴x=2.5,∴CP=2.5;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC 是矩形.∴PM=PK=CD=2BM,∴BM=2,PM=4,在Rt△PBM中,PB==2,∴CP=BC﹣PB=4﹣2.综上所述,CP的长为2.5或4﹣2.故答案是:2.5或4﹣2.13.解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P 作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且=,∴=,∴PQ=1.6,∴S△PCD=PQ•CD=×1.6×5=4,故答案为:4.14.解:设∴DE与圆O相切于点F,∵四边形ABCD是正方形,∴∠OAD=∠OBC=∠C=90°,AB=BC=AD=CD=2,∵OA、OB是圆O的半径,∴DA与圆O相切于点A,EB与圆O相切于点B,∵DE与圆O相切于点F,∴DA=DF=2,EB=EF,设EB=EF=x,则EC=BC﹣EB=2﹣x,DE=DF+EF=2+x,在Rt△DEC中,DC2+CE2=DE2,∴22+(2﹣x)2=(2+x)2,解得:x=,∴EC=BC﹣EB=2﹣x=,∴三角形DEC的面积=EC•DC=××2=1.5,故答案为:1.5.15.解:如图,连接OA,∵m﹣n2+5=0,∴n2=m+5,∴n2﹣9=m+5﹣9=m﹣4,∴点P的坐标为(m,m﹣4),即点P在直线y=x﹣4上,当x=0时,y=﹣4,当y=0时,x=4,∴OB=OC=4,∴BC=4,∵P A与⊙O相切于点A,∴OA⊥AP,∵OA=1,∴当OP最小时,P A最小,当OP⊥BC时,OP最小,此时OP=BC=2,答:当P A长最小时,点P到原点O的距离为2.故答案为:2.16.解:根据题意点I在DE上,连接AI,作IG⊥AB于点G,IJ⊥BC于点J,作IH⊥AC 于点H,作DF⊥AE于点F,如右图所示:∵AD=DE=5,AE=6,DF⊥AE,∴AF=3,∠AFD=90°,∴DF===4,设IH=x,∵I为△ABC的内心,∴IG=IJ=IH=x,∵S△ADE=S△ADI+S△AEI,∴=+,解得x=,∴IJ=,即I点到BC的距离是.故答案为:.三.解答题17.(1)证明:连接OE,过点O作OF⊥BC,垂足为F,∵CD与⊙O相切于点E,∴OE⊥CD,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∴OF=OE,∵OE是⊙O的半径,∴BC是ʘO的切线;(2)解:∵O是AC的中点,点E是CD的中点,∴OE是△ACD的中位线,∴OE∥AD,∴∠COE=∠CAD=30°,在Rt△OCE中,OE=3,∴CE=OE tan30°=3×=,∴CD=2CE=2.18.(1)证明:连接OD,∵AB⊥AC,∴∠CAB=90°,∴∠CAD+∠DAO=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵点E是AC的中点,∴EA=ED=AC,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∴∠EDA+∠ODA=90°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:∵∠F=30°,BF=2,∠ODF=90°,∴OF=2OD,∴OB+2=2OD,∵OD=OB,∴OD=OB=2,∵∠DOF=90°﹣∠F=60°,∴△DOB是等边三角形,∴∠OBD=60°,在Rt△ABC中,AB=2OB=4,∴BC===8,∵△ABC外接圆的半径=BC=4,∴△ABC外接圆的半径为:4.19.(1)证明:如图1,延长DB至H,∵DG∥BC,∴∠CBH=∠D,∵∠A=∠D,∴∠A=∠CBH,∵AB是⊙O的直径∴∠ACB=90°,∴∠A+∠ABC=90°,∴∠CBH+∠ABC=90°,∴∠ABD=90°,∴BD与⊙O相切;(2)解:解法一:如图2,连接OF,∵CF平分∠ACB,∴∠ACF=∠BCF,∴,∴OF⊥AB,∵BD⊥AB,∴OF∥BD,∴△EFO∽△EDB,∴,∵AE=OE,∴,∴=,∴OF=4,∴BE=OE+OB=2+4=6,∴DE===6.解法二:如图2,连接OF,∵AE=OE,∴OA=OF=2OE,Rt△OEF中,tan∠OEF==2,Rt△BED中,tan∠OEF===2,∴BE=6,由勾股定理得:DE===6.20.(1)证明:连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴OD⊥BC,∴DF∥BC;(2)解:连接OB,∵,∴∠BOD=∠BAC,由(1)知OD⊥BC,∴tan∠BOD=,∵tan∠BAC=2,∴,设ON=x,BN=2x,由勾股定理得:OB=3x,∴OD=3x,∴DN=3x﹣x=2x,Rt△BDN中,BN2+DN2=BD2,∴,x=2或﹣2(舍),∴OB=OD=3x=6,Rt△OFD中,由勾股定理得:OF===10.21.解:(1)证明:如图,连接OE,∵NM是BE的垂直平分线,BN=EN,∴∠B=∠NEB,∵OA=OE∴∠A=∠OEA,∵∠C=90°,∴∠A+∠B=90°,∴∠OEN=90°,即OE⊥EN,∵OE是半径,∴EN是⊙O的切线;(2)如图,连接ON,设EN长为x,则BN=EN=x∵AC=3,BC=4,⊙O的半径为1,∴CN=4﹣x,OC=AC﹣OA=3﹣1=2,∴OE2+EN2=OC2+CN2,∴12+x2=22+(4﹣x)2,解得x=,∴EN=.连接ED,DB,设AE=y,∵AC=3,BC=4,∴AB=5,∵⊙O的半径为1.∴AD=2,则DE2=AD2﹣AE2=22﹣y2,∵CD=AC﹣AD=3﹣2=1,∴DB2=CD2+BC2=17,∵AD为直径,∴∠AED=∠DEB=90°,∴DE2+EB2=DB2,即22﹣y2+(5﹣y)2=17,解得y=,∴EN=,AE=.22.(1)证明:连接OC,∵P A是半⊙O的切线,A为切点,∴∠OAP=90°,∵OD⊥AC,OD经过圆心O,∴CD=AD,∴OP是AC的垂直平分线,∴PC=P A,∵OC=OA,OP=OP,∴△OCP≌△OAP(SSS),∴∠OCP=∠OAP=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵AB是⊙O的直径,AB=6,∴OA=OB=3,∵∠ADO=90°,∠CAB=30°,∴OD=OA=,∴AC=2AD=,∴S△AOC=AC•OD=,∵∠CAB=30°,∴∠COB=2∠CAB=60°,∴∠AOC=180°﹣60°=120°,∴S扇形AOC=,∴S=S扇形AOC﹣S△AOC=.23.(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DF A=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.。
2022-2023学年北师大版九年级数学下册《3-4圆周角与圆心角的关系》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《3.4圆周角与圆心角的关系》同步练习题(附答案)一.选择题1.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°2.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°3.如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB =60°,则点C的纵坐标为()A.+B.2+C.4D.2+24.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°5.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°6.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD7.如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°8.已知⊙O的半径为3,AB、AC是⊙O的两条弦,AB=3,AC=3,则∠BAC的度数是()A.75°或105°B.15°或105°C.15°或75°D.30°或90°二.填空题9.如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC=.10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4,CD=8,则AB =.11.如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为.12.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是.13.如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE =.14.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.15.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.16.已知:如图,等腰三角形ABC中,AB=AC=4,若以AB为直径的⊙O与BC相交于点D,DE∥AB,DE与AC相交于点E,则DE=.三.解答题17.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.18.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.19.如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.20.已知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O 于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.21.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.22.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GEF.参考答案一.选择题1.解:连接BC,延长ED交⊙O于N,连接OD,并延长交⊙O于M,∵∠AOC=80°,∴的度数是80°,∵点D为弦AC的中点,OA=OC,∴∠AOD=∠COD,∴=,即M为的中点,∴和的度数都是80°=40°,∵>,∴40°<的度数<80°,∴20°<∠CED<40°,∴选项C符合题意;选项A、选项B、选项D都不符合题意;故选:C.2.解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.3.解:连接P A,PB,PC,过P作PD⊥AB于D,PE⊥OC于E,∵∠ACB=60°,∴∠APB=120°,∵P A=PB,∴∠P AB=∠PBA=30°,∵A(﹣5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=,P A=PB=PC=2,∵PD⊥AB,PE⊥OC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=,PE=OD=2,∴CE===2,∴OC=CE+OE=2+,∴点C的纵坐标为2+,故选:B.4.解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选:C.5.解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选:B.6.解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.7.解:连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°﹣∠A=20°,∴∠DOE=2∠ACD=40°,故选:C.8.解:分为两种情况:①当圆心O在∠BAC的内部时,如图所示,过O作OE⊥AB于E,OD⊥AC于D,连接OA,∵OE⊥AB,OE过圆心O,AB=3,∴AE=BE=,由勾股定理得:OE===,即OE=AE,∴∠BAO=45°,∵OD⊥AB,OD过圆心O,AC=3,∴AD=CD=,∵OA=3,∴AD=OA,∴∠AOD=30°,∴∠CAO=60°,∴∠BAC=∠BAO+∠CAO=45°+60°=105°;②当O在∠BAC的外部时,由①得:∠CAO=60°,∠BAO=45°,所以∠BAC=∠CAO﹣∠BAO=60°﹣45°=15°;故选:B.二.填空题9.解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°,故答案为:15°10.解:∵AB是⊙O的直径,弦CD⊥AB,CD=8,∴CP=4,根据相交弦定理得,16=AP×4AP,解得AP=2,∴AB=10.11.解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°12.解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.13.解:∵∠BOD=120°,∴∠A=∠BOD=60°.∵四边形ABCD是圆内接四边形,∴∠DCE=∠A=60°.故答案为:60°.14.解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.15.解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.16.解:连接AD,∵AB为直径,∴∠ADB=90°,又∵AB=AC,∴D为BC的中点,又∵DE∥AB,∴DE为△ABC的中位线,∴DE=AB=×4=2.三.解答题17.解:(1)△ABC为等腰三角形.理由如下:连接AE,如图,∵=,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90°,∴AE⊥BC,∴△ABC为等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=BC=×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE==8,∵AB为直径,∴∠ADB=90°,∴AE•BC=BD•AC,∴BD==,在Rt△ABD中,∵AB=10,BD=,∴AD==,∴sin∠ABD===.18.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.19.证明:(1)如图,∵∠A与∠B是对的圆周角,∴∠A=∠B,又∵∠1=∠2,∴△ADE∽△BCE;(2)如图,∵AD2=AE•AC,∴,又∵∠A=∠A,∴△ADE∽△ACD,∴∠AED=∠ADC,又∵AC是⊙O的直径,∴∠ADC=90°,即∠AED=90°,∴直径AC⊥BD,∴=,∴CD=CB.20.(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠ABD+∠EDB=90°,∴∠ADE=∠ABD=∠DAP,∴PD=P A,∵∠DF A+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,∴∠PDF=∠PFD,∴PD=PF,∴P A=PF,即:P是AF的中点;(3)解:∵∠DAF=∠DBA,∠ADB=∠FDA=90°,∴△FDA∽△ADB,∴=,由题意可知圆的半径为5,∴AB=10,∴===,∴在Rt△ABD中,tan∠ABD==,即:tan∠ABF=.21.(1)证明:∵AE=EB,AD=DF,∴ED是△ABF的中位线,∴ED∥BF,∴∠CEB=∠ABF,又∵∠C=∠A,∴△CBE∽△AFB.(2)解:由(1)知,△CBE∽△AFB,∴,又AF=2AD,∴.22.证明一:(1)连接DF,∵∠ACB=90°,D是AB的中点,∴BD=DC=AB,∵DC是⊙O的直径,∴DF⊥BC,∴BF=FC,即F是BC的中点;(2)∵D,F分别是AB,BC的中点,∴DF∥AC,∴∠A=∠BDF,∵∠BDF=∠GEF(圆周角定理),∴∠A=∠GEF.证明二:(1)连接DF,DE,∵DC是⊙O直径,∴∠DEC=∠DFC=90°.∵∠ECF=90°,∴四边形DECF是矩形.∴EF=CD,DF=EC.∵D是AB的中点,∠ACB=90°,∴EF=CD=BD=AB.∴△DBF≌△EFC.∴BF=FC,即F是BC的中点.(2)∵△DBF≌△EFC,∴∠BDF=∠FEC,∠B=∠EFC.∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),∴∠A=∠FEC.∵∠FEG=∠BDF(同弧所对的圆周角相等),∴∠A=∠GEF.(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)。
2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《1.4解直角三角形》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.2.在△ABC中,∠A和∠C都是锐角,且sin A=,tan C=,则△ABC是()A.直角三角形B.钝角三角形C.等边三角形D.不能确定3.在平面直角坐标系xOy中,已知点P(1,3)与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么cosα的值是()A.3B.C.D.4.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.25.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.等腰三角形底边与底边上的高的比是2:,则它的顶角为()A.30°B.45°C.60°D.120°7.阅读理解:为计算tan15°三角函数值,我们可以构建Rt△ACB(如图),使得∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,可得到∠D=15°,所以tan15°====2﹣.类比这种方法,请你计算tan22.5°的值为()A.+1B.﹣1C.D.8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=,E为边AC的中点,则cos∠ADE的值为()A.B.C.D.9.如图,在△ABC中,AB=AC=10,BC=12,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于()A.B.C.D.10.如图,在△ABC中,∠BAC=120°,AC=8,AB=4,则BC的长是()A.B.C.6D.8二.填空题11.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.12.已知等腰三角形两条边的长分别是4,6,底角为α,则cosα=.13.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为.14.如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x轴正半轴所夹的锐角为α,当n=2时,则tanα=;当tanα的值最大时,n的值为.15.如图,在△ABC中,AD⊥BC于D,点E在AC上,∠ABE=45°,tan∠CBE=,若AD=BC,AC=2,则线段BC的长是.三.解答题16.根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=8,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=3,b=9.17.如图,在平面直角坐标系中,OB=4,sin∠AOB=,点A的坐标为(,0).(1)求点B的坐标;(2)求sin∠OAB的值.18.如图,点C在线段AB上,点D,E在直线AB的同侧,∠A=∠DCE=∠CBE=90°,∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值.19.如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,过B作BE⊥CD,交CD的延长线于点E,AC=30,sin B=,求:(1)线段CD的长.(2)cos∠BDE的值.20.如图(1),在Rt△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,以下是某同学推理证明的过程:证明:∵sin A=,sin B=∴c=,c=∴根据你掌握的三角函数知识,请在图(2)中的锐角△ABC中,求证:.参考答案一.选择题1.解:如图,在Rt△ABC中,∠C=90°,BC=2,∴sin A===,∴AB=3,∴AC===.故选:A.2.解:∵sin A=,∴∠A=60°,∵tan C=,∴∠C=60°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣60°=60°.∴△ABC是等边三角形.故选:C.3.解:如图,过P点作P A⊥x轴于A,则∠POA=α,∵点P的坐标为(1,3),∴OA=1,P A=3,∴tan∠POA===3,即tanα=3.故选:D.4.解:∵∠C=90°,sin A==,BC=,∴AB=BC=×=2,∴AC====.故选:C.5.解:如图:在Rt△ABC中,AC==.故选:D.6.解:如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.7.解:如图:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,∴∠BAD=∠D=22.5°,设AC=BC=1,则AB=BD=AC=,∴CD=BC+BD=1+,在Rt△ADC中,tan22.5°===﹣1,故选:B.8.解:∵AD⊥BC,BD=9,cos B=,∴AB==15,AD==12,∵DC=5,∴AC==13,∵E为边AC的中点,∴ED=,∴∠EDA=∠DAE,∴cos∠EDA=cos∠DAE=,故选:D.9.解:连接AD,∵△ABC中,AB=AC=10,BC=12,D为BC中点,∴AD⊥BC,BD=BC=6,∴AD=,∴tan∠BAD=.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=,故选:C.10.解:如图,过点C作CE⊥BA交BA的延长线于E.∵∠BAC=120°,∴∠CAE=180°﹣120°=60°,∴AE=AC•cos60°=4,EC=AC•sin60°=4,∵AB=4,∴BE=AB+AE=8,∴BC===4,故选:B.二.填空题11.解:∵∠C=90°,AC=4,cos A=,∴AB=5,∴BC===3,∵∠DBC=∠A.∴cos∠DBC=cos∠A==,∴BD=3×=,故答案为:.12.解:分两种情况:当等腰三角形的腰长为4,底边长为6时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=4,AD⊥BC,∴BD=DC=BC=3,在Rt△ABD中,cos B==,当等腰三角形的腰长为6,底边长为4时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=6,AD⊥BC,∴BD=DC=BC=2,在Rt△ABD中,cos B===,综上所述:cosα=或,故答案为:或.13.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故答案为:2.14.解:过点A作AM⊥y轴于点M,作AN⊥BG于点N,如图所示:则∠AMC=90°,∠ANB=90°,∵直线y=﹣2与x轴平行,∴∠ABN=α,∠CGB=90°,∵AC⊥BC,∴∠ACB=90°,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∵∠AMC=∠CGB=90°,∴△AMC∽△CGB,∴,设BG=m,∵点A坐标为(4,3),点C坐标为(0,n),∴AM=4,GC=n+2,CM=3﹣n,∴=,当n=2时,可得,解得m=1,∴GB=1,BN=3,∴tanα==;∵tanα=,当BN最小,即BG最大时,tanα最大,∵=,∴m=﹣(n﹣3)(n+2)=﹣(n﹣)2+,∵﹣<0,∴当n=时,m取得最大值,即tanα最大,故答案为:,.15.解:如图,过点A作AF⊥BE于点F,设AD与BF交于点G,∵∠ABE=45°,∴△ABF是等腰直角三角形,∴AF=BF,∵∠GDB=∠AFG=90°,∠BGD=∠AGE,∴∠GBD=∠F AG,∴tan∠GBD=tan∠F AG,∴==,设DG=x,则BD=2x,∴BG==x,设FG=a,则AF=2a,∴BF=AF=2a,AG==a,∴BG=BF﹣FG=a,∴a=x,∴AD=AG+DG=a+x=6x,∵DC=BC﹣BD=AD﹣BD=a+x﹣2x=a﹣x=4x,在Rt△ADC中,根据勾股定理得AD2+DC2=AC2,∴(6x)2+(4x)2=(2)2,∴x=1(负值舍去),∴BC=AD=6x=6.故答案为:6.三.解答题16.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∴a=b=12,∴∠B=30°,b=4,a=12;(2)在Rt△ABC中,∠C=90°,a=3,b=9,∴tan A===,∴∠A=30°,∴∠B=90°﹣∠A=60°,c=2a=6,∴∠A=30°,∠B=60°,c=6.17.解:(1)过点B作BC⊥OA于点C,在Rt△BOC中,OB=4,sin∠AOB=,∴BC=OB•sin∠AOB=4×=3,∴,∴点B的坐标为(,3);(2)∵点A的坐标为(,0),∴OA=,∴AC=OA﹣OC==,∵∠ACB=90°,∴,∴,∴sin∠OAB的值为.18.解:如图,设CE交BD于G.∵∠A=∠A=90°,∠ADC=∠ABD,∴△ADC∽△ABD,∴,,解得AD=5,∴DC==,DB==,∵∠A=∠ECD=∠CBE=90°,∴∠ACD+∠ECB=90°,∠ACD+∠ADC=90°,∴∠ADC=∠ECB,设∠DBA=∠CDA=α,则∠ECB=α,∴∠GCB=∠GBC=α,∴CG=GB,设CG=GB=x,∴DG=﹣x,∴()2+x2=(﹣x)2,解得x=,∴tan∠CDB==.19.解:(1)∵∠ACB=90°,AC=30,sin B==,∴AB=50,∵D为直角三角形ABC斜边上的中点,∴CD=AB=25;(2)∵AB=50,D为AB的中点,∴AD=BD=25,∵BE⊥CD,∴∠E=90°,由勾股定理得:BC===40,由勾股定理得:BE2=BD2﹣DE2=BC2﹣CE2,即252﹣DE2=402﹣(25+DE)2,解得:DE=7,∴cos∠BDE==.20.解:过C点作CD⊥AB于D,过B点作BE⊥AC于E,∴sin A=,sin B=,∴CD=b sin∠A=a sin B,∴,同理,∴.。
北师大版九年级数学下册全册同步练习含答案最新版
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( ) A. sin A= B.cos A=C.sin A= D.tan A=2.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A. B. C. D.3.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=,AB=4,则AD的长为 ( )A.3 B.C. D.二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案1.C[提示:sinA=.]2.D[提示:过A点作垂线交底部于C点,则△ACB为直角三角形,∴BC==8(m),∴tan a==.故选D.]3.B[提示:∠ADE和∠EDC互余,∴cos a=sin∠EDC=,sin∠EDC=∴EC=.由勾股定理,得DE=.在Rt△AED中,cos a=,∴AD=.故选B.]4.4[提示:在Rt△BCA中,AC=3米,cos∠BAC=,所以AB=4米,即梯子的长度为4米.]5.48°[提示:∵sin2a+cos2 a=l,∴a=48°.]6.提示:sin A=,cos A=,tan A=.7.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A=,tan A=. 8.解:(1)如图l-27所示,作BH⊥OA,垂足为H.在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴点B的坐标为(4,3). (2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .9.解:(1)根据题意画出图形,如图1-28所示,∵AB=AC,AD⊥BC,AD=BC,∴BD=B C= AD,即AD=2BD,∴AB=BD,∴tan∠ABC==2,sin∠ABC== (2)作BE⊥AC于E,在Rt△BEC中,sinC=sin∠ABC=.又∵sin C=∴故BE=(米).1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC中,∠A,∠B都是锐角,且 sin A=,cos B=,则△ABC三个角的大小关系是()A.∠C>∠A>∠B B.∠B>∠C>∠AC.∠A>∠B>∠C D.∠C>∠B>∠A2.若0°<<90°,且|sin-|+,则tan的值等于()A. B. C. D.3.如图1—37所示,在△ABC中,∠A=30°,tan B=,AC=,则AB的长是 ( ) A.3+ B.2+C. 5 D.4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( ) A.a B.a C.a D.a或a二、选择题5.在Rt△ACB中,∠C=90°,AC=,AB=2,则tan= .6.若a为锐角,且sin a=,则cos a= .7.在Rt△ACB中,若∠C=90°,sin A=,b+c=6,则b= .8.(1)在△ABC中,∠C=90°,sin A=,则 cos B=________;(2)已知为锐角,且cos(90°-)=,则=________;(3)若,则锐角=________.三、计算与解答9.计算(1)sin 60°·cos 30°-.(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD =1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
2022-2023学年北师大版九年级数学下册《1-5三角函数的应用》题型分类练习题(附答案)
2022-2023学年北师大版九年级数学下册《1.5三角函数的应用》题型分类练习题(附答案)一.测量计算物体高度问题1.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)2.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部?3.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)6.“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)7.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)8.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)9.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).10.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.(1)若∠θ=37°50′,则AB的长约为cm;(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)(2)若FG=30cm,∠θ=60°,求CF的长.11.汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)12.如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)二.实际问题数学抽象13.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?14.日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C 处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?15.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)16.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.三.三角函数的应用17.如图1是某中学教学楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)18.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)19.随着我国科学技术的不断发展,科学幻想变为现实.如图1是我国自主研发的某型号隐形战斗机模型,全动型后掠翼垂尾是这款战斗机亮点之一.图2是垂尾模型的轴切面,并通过垂尾模型的外围测得如下数据,BC=8,CD=2,∠D=135°,∠C=60°,且AB∥CD,求出垂尾模型ABCD的面积.(结果保留整数,参考数据:≈1.414,≈1.732)20.如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)参考答案一.测量计算物体高度问题1.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10≈3.2(cm).2.解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m,∵∠BFH=∠α=30°,在Rt△BFH中,BH=,FC=30﹣17.32=12.68,再用12.68÷3≈4.23,所以在四层的上面,即第五层,答:此刻B楼的影子落在A楼的第5层;(2)连接BC,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.3.解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5米,BH=5≈8.65(米),∴DH=15(米),在Rt△ADH中,AH=≈=20(米),∴AB=AH﹣BH=20﹣8.65≈11.4(米).答:AB的长度约为11.4米.4.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=(米),在Rt△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.32(米),∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=(米),∴AB=AN+BN=12.32+1.5≈13.8(米).5.解:方法一:如图1,过点D作DM⊥EF于M,过点D作DN⊥BA交BA延长线于N,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),∵∠F=90°,∠DMF=90°,∴DM∥FN,∴∠MDB=∠ABC=60°,在Rt△BDN中,sin∠DBN=sin60°=,∴DN=×100=50(cm),∵∠F=90°,∠N=90°,∠DMF=90°,∴四边形MFND是矩形,∴DN=MF=50,∵∠BDE=75°,∠MDB=60°,∴∠EDM=∠BDE﹣∠MDB=75°﹣60°=15°,∵DE=70(cm),∴ME=DE•sin∠EDM=70×sin15°≈18.2(cm),∴EF=ME+MF=50+18.2≈104.8≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.方法二:如图2,过点D作DH⊥BA交BA延长线于H,过点E作EG⊥HD延长线于G,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),同方法一得,DH=BD•sin60°=50(cm),∵在Rt△BDH中,∠DBH=60°,∴∠BDH=30°,∵∠BDE=75°,∴∠EDG=180°﹣∠BDH﹣∠BDE=180°﹣75°﹣30°=75°,∴∠DEG=90°﹣75°=15°,∴DG=DE•sin15°≈18.2(cm),∴GH=DG+DH=18.2+50≈104.8≈105(cm),∵∠F=90°,∠H=90°,∠G=90°,∴EF=GH≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.6.解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.7.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.8.解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x米,则EQ=2x米,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2(米),EQ=MF=4(米),∵MN=3米,∴FQ=EM=1(米),在Rt△PFM中,PF=FM•tan60°=4(米),∴PQ=PF+FQ=(4+1)米.9.解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=AC sin30°=50×=25(cm),∵GD=50﹣30=20(cm),∴CD=CG+GD=25+20=45(cm),连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90(cm),∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290(cm),在Rt△EFH中,EF=EH•tan30°=290×=(cm),答:支撑角钢CD和EF的长度各是45cm,cm.10.解:(1)如图,作EP⊥BC于点P,作DQ⊥EP于点Q,则CD=PQ=10,∠2+∠3=90°,∵∠1+∠θ=90°,且∠1=∠2,∴∠3=∠θ=37°50′,则EQ=DE sin∠3=120×sin37°50′,∴AB=EP=EQ+PQ=120sin37°50′+10=83.2(cm),故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知∠θ=∠3=∠K=60°,在Rt△CDK中,CK==(cm),在Rt△KGF中,KF===(cm),则CF=KF﹣KC=﹣==(cm).11.解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH=30×30=900,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=9米,∴AB=9,∴BG=BH﹣HG=7米,∵斜坡EF的坡度i=1:,∴FG=9米,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=100(81﹣45)立方米.12.解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.二.实际问题数学抽象13.解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.14.解:(1)在Rt△EFH中,∵∠H=90°,∴tan∠EFH=i=1:0.75==,设EH=4xm,则FH=3xm,∴EF==5xm,∵EF=15m,∴5x=15m,x=3,∴FH=3x=9m.即山坡EF的水平宽度FH为9m;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H1=0.9,∴日照间距系数=L:(H﹣H1)==,∵该楼的日照间距系数不低于1.25,∴≥1.25,∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.15.解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.16.解:∵BH=0.6米,sinα=,∴AB==1米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,BF=AB,∴△EFK∽△FBJ∽△ABH,△FBJ≌△ABH,∴,BJ=BH=0.6米,即,解得,EK=1.28,∴BJ+EK=0.6+1.28=1.88<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.三.三角函数的应用17.解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,∠A=35°,AB=1,∴BE=AB•sin A=1×sin35°≈0.6,∴AE=AB•cos A=1×cos35°≈0.8,在Rt△CDF中,∠D=45°,CD=1,∴CF=CD•sin D=1×sin45°≈0.7,∴DF=CD•cos D=1×cos45°≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC是平行四边形,∴BC=EM,在Rt△MEF中,FM=CF+CM=1.3,EF=AD﹣AE﹣FD=0.5,∴EM==≈1.4,答:B与C之间的距离约为1.4米.18.解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.19.解:如图,过点A作CD的垂线,交CD的延长线于F,过点C作AB的垂线,交AB 的延长线于E,∵AB∥CD,∴四边形AECF是矩形,∵∠BCD=60°,∴∠BCE=90°﹣60°=30°,在Rt△BCE中,∠BCE=30°,BC=8,∴BE=BC=4,CE=BC=4,∵∠ADC=135°,∴∠ADF=180°﹣135°=45°,∴△ADF是等腰直角三角形,∴DF=AF=CE=4,由于FC=AE,即4+2=AB+4,∴AB=4﹣2,∴S梯形ABCD=(2+4﹣2)×4=24,答:垂尾模型ABCD的面积为24.20.解:(1)∵AE=EF=AF=1m,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=(m),∴FK==(m),∴FM=2FK=(m),∴BC=4FM=4≈6.92≈6.9(m),答:∠AFE的度数为60°,棚宽BC的长约为6.9m;(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80(m),∴FM=2FK=1.60(m),∴BC=4FM=6.40(m)<6.92(m),6.92﹣6.40=0.52≈0.5(m),答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.21.解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.。
2024年北师大版九年级数学下册阶段测试试卷795
2024年北师大版九年级数学下册阶段测试试卷795考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、下列说法错误的是()A. 两个等边三角形一定相似B. 两个正方形一定相似C. 两个菱形一定相似D. 两个全等三角形一定相似2、从11-19这九个自然数中任取一个,是3的倍数的概率是()A.B.C.D.3、下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC相似的个数有()A. 1个。
B. 2个。
C. 3个。
D. 4个。
4、如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C 的极坐标应记为()A. (60°,4)B. (45°,4)C. (60°,)D. (50°,)5、随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A.B.C.D.6、计算2×(−3)−(−4)的结果为()A. −10B. −2C. 2D. 107、(2009•随州)如图是某体育馆内的颁奖台;其左视图是()A.B.C.D.8、(a-b)2加上如下哪一个后得(a+b)2()A. 0B. 4abC. 3abD. 2ab9、(2016•河南)如图;已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A. (1,﹣1)B. (﹣1,﹣1)C. ( 0)D. (0,﹣)评卷人得分二、填空题(共8题,共16分)10、若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是____.11、已知3是关于x的方程x2-5x+c=0的一个根,则c的值为____.12、如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是____.13、已知等腰梯形ABCD的中位线EF的长为5,腰AD的长为4,则这个等腰梯形的周长为____;函数中,自变量x的取值范围是____.14、请写出一个只含有想x,y两个字母的三次四项式____.15、一个圆锥形零件的母线长为4,底面半径为1.则这个圆锥形零件的全面积是 ____.16、在等腰梯形ABCD中,AD∥BC,AB=DC,对角线AC垂直于腰AB,上底AD与腰的长都为1,则底角∠ABC=____°,对角线AC=____.17、如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为评卷人得分三、判断题(共5题,共10分)18、扇形的周长等于它的弧长.(____)19、某班A、B、C、D、E共5名班干部,现任意派出一名干部参加学校执勤,派出任何一名干部的可能性相同____(判断对错)20、(-2)+(+2)=4____(判断对错)21、一条直线的平行线只有1条.____.22、因为的平方根是±,所以=±____评卷人得分四、其他(共2题,共20分)23、最近感染甲型H1N1流感的人越来越多,卫生部门要求市民做好自己防护,假设有一人患了甲型H1N1流感,如果经过两轮传染后共有81人患了甲型N1H1流感,那么每轮传染中平均一个人传染了几个人?24、一群同学去公园玩,男同学都戴蓝色运动帽,女同学都戴红色运动帽,其中一位男同学说:“我看见的蓝色运动帽和红色运动帽数目相等”.一位女同学却说:“依我看,蓝色运动帽数目是红色运动帽数目的平方”.这一群同学中共有几位男同学,几位女同学?评卷人得分五、作图题(共3题,共21分)25、如图;正方形网格中的每个小正方形=边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图甲中;画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个正方形,使其面积为5.26、(2012秋•乐山期中)如图;△ABC在平面直角坐标系中,点A(3,-2),B(4,3),C(1,0)解答问题:(1)请按要求对△ABC作如下变换①将△ABC绕点O逆时针旋转90°得到△A1B1C1;②以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△A2B2C2.(2)写出点A1,B1的坐标:____,____;(3)写出点A2,B2的坐标:____,____.27、图片如图;P;Q分别是正方形ABCD的边AB、AD上一点,AP=AQ.(1)作Q关于直线BD的对称点R(不写作法;保留作图痕迹);(2)连接DP、BR,证明BRDP是平行四边形.评卷人得分六、综合题(共3题,共6分)28、如图;在△ABC中,∠A=90°,AB=AC,点D;E分别在边AB、AC上(点D不与点A、B重合),且AD=AE,连结DE.问题原型:将图①中△ADE绕点A顺时针旋转α(0°<α<90°).如图②;求证:△ABD≌△ACE.初步探究:在问题原型的条件下;延长BD交直线AC于点G,交直线CE于点F,请利用图③探究BF⊥CE是否成立,并说明理由.简单应用:在问题原型的条件下,当AB=,AD=1时,若AD∥CE,则CF的长为____.29、如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(-3,2),B(0,-2),其对称轴为直线x=,C(0,)为y轴上一点;直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E;使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F;使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.30、如图,在直角坐标系中,直线l是绕着定点A(0,2)旋转的动直线,且与经过点C(0,1)的抛物线y=交于不同的两点P和Q(即直线l在旋转过程中;不与y轴平行).(1)求h的值;(2)通过观察;分析;直接求出△PQO面积的最小值(不必说明理由);(3)过点P、C作直线,与x轴交于点B,请你通过观察、分析,并猜想:直线l在旋转的过程中,四边形AOBQ是哪些特殊四边形?并证明你的猜想.参考答案一、选择题(共9题,共18分)1、C【分析】【分析】利用相似图形的定义:对应角相等,对应边成比例进行判断即可.【解析】【解答】解:A;两个等边三角形一定相似;正确;B;两个正方形一定相似;正确;C;两个菱形的对应边成比例;但对应角不一定相等,故不一定相似;D;两个全等三角形一定相似;正确;故选C.2、A【分析】【分析】先从1~9这九个自然数中找出是3的倍数的有3、6、9共3个,然后根据概率公式求解即可.【解析】【解答】解:11~19这九个自然数中;是3的倍数的数有:12;15、18,共3个;∴从11~19这九个自然数中任取一个,是3的倍数的概率是:3÷9= .故选A.3、B【分析】观察可以发现AC= BC=2 AB=故该三角形中必须有一条边与邻边的比值为2,且为直角三角三角形;第1个图形中;有两边为2,4,且为直角三角三角形;第2;3图形中,两边不具备2倍关系,不可能相似;第4个图形中,有两边为 2且为直角三角三角形;∴只有第1;4个图形与左图中的△ABC相似.故选:B.【解析】【答案】可利用正方形的边把对应的线段表示出来;利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.4、A【分析】试题分析:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C 的极坐标应记为(60°,4).故选A.考点:1.正多边形和圆;2.坐标确定位置;3.新定义.【解析】【答案】A.5、B【分析】【解答】解:抛一枚均匀硬币出现正面和反面的概率是相等的,都是.故选B.【分析】抛一枚均匀硬币出现正面和反面的概率是相等的,都是.6、B【分析】解;2×(−3)−(−4)=(−6)+4=−2故选:B.根据有理数的乘法和减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.【解析】B7、D【分析】从左边看去是上下两个矩形;下面的比较高.故选D.【解析】【答案】找到从左面看所得到的图形即可.8、B【分析】【分析】完全平方公式是(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,根据以上公式得出即可.【解析】【解答】解:(a-b)2+4ab=(a+b)2;故选B.9、B【分析】【解答】解:菱形OABC的顶点O(0;0),B(2,2),得。
北师大版九年级数学下册第一章《解直角三角形》课时练习题(含答案)
北师大版九年级数学下册第一章《4.解直角三角形》课时练习题(含答案)一、单选题1.在△ABC中,∠B=45°,∠C=75°,AC=6,则AB的长是()A.2(31)+ +B.3(31)+C.4(31)+D.5(31)2.如图,△AOB中,OA=4,OB=6,AB=27,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.(23,﹣4)或(﹣23,4)C.(﹣23,2)或(23,﹣2)D.(2,﹣23)或(﹣2,23)3.△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为()A.123B.12 C.243D.4834.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,如果tan∠DBA=1,那么AD的长为()5A.1 B.2 C.2D.225.如图,Rt△ABC中,∠ACB = 90°,AB = 5,AC= 3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C' ,则四边形ABC'A'的面积是()A.15 B.18 C.20 D.226.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60︒方向,且与他相距200m ,则图书馆A 到公路的距离AB 为( )A .100mB .1002mC .1003mD .2003m 3 7.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .22,22⎛⎫- ⎪ ⎪⎝⎭B .(1,0)C .22,22⎛⎫-- ⎪ ⎪⎝⎭D .(0,1)-8.如图,在BAC 中,90BAC ∠=︒,2AB AC =,将BAC 绕点A 顺时针旋转至DAE ,点D 刚好落在BC 直线上,则BDE △的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB二、填空题9.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M的位置变化时,DF 长的最大值为________.10.如图,在Rt ABC 中,∠C =90°,sinA =35,AB =10,D 是AC 的中点,则BD =______.11.如图,已知四边形ABCD ,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,14tan ,23BO ACB OD ∠==,则ABDCBD S S =___.12.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β,则tan β的值是______.13.如图,在矩形ABCD 中,AB =4,BC =43P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为____.14.如图,在矩形ABCD 中,AB=4,BC=3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为_____,线段DH 长度的最小值为_____.三、解答题15.如图,菱形ABCD 中,120D ∠=︒,F 是AD 中点,连接BF ,BE DC ⊥,垂足是E .(1)求证:BF BE =;(2)若23BF =BEDF 的面积.16.如图,在△ABC 中,∠B =45°,AC =5,cosC =35,AD 是BC 边上的高线. (1)求AD 的长;(2)求△ABC 的面积.17.如图,在ABC 中,390,tan ,3C A ABC ∠==∠的平分线BD 交AC 于点.3D CD =.求AB 的长?18.如图,一艘海轮位于灯塔P 的南偏东30°方向,距离灯塔120海里的A 处,它计划沿正北方向航行,去往位于灯塔P 的北偏东45°方向上的B 处.(1)问B 处距离灯塔P 有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB 上,距离灯塔150海里的点O 处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.①请判断海轮到达B 处是否有触礁的危险?并说明理由.②如果海轮从B 处继续向正北方向航行,是否有触礁的危险?直接写出结论,不用说明理由.2 1.4≈3 1.7≈)参考答案1.B2.C3.A4.B5.A6.A7.A8.A 9.33633-10.21311.3 3212.1931513.214.3213﹣215.(1)证明:连接BD∵四边形ABCD是菱形,∠ADC=120°,∴AB=CB=CD=AD,∠A=∠C=60°,∵F是AD中点,BE⊥DC,∴△ABD、△CBD是等边三角形,∵F是AD中点,BE⊥DC,∴BF⊥AD,∴∠AFB=∠CEB =90°,∵∠A=∠C,AB=CB,∴△ABF≌△CBE(AAS),∴BF=BE;(2)由(1)得△ABF是直角三角形,∠A=60°,∵BF=3sin60°3∴AB=CB=CD=AD=4,AF=12AB=2,∴ABCD =234S菱形=83ABF CEB1S=S=2232⨯⨯△△=23∴四边形BEDF 的面积=ABF CEB ABCD S S S --△△菱形16.解:(1)∵AD ⊥BC ,∴∠ADC =∠ADB =90°.在Rt △ACD 中,AC =5,cosC =35, ∴CD =AC•cosC =3,∴AD4.(2)∵∠B =45°,∠ADB =90°, ∴∠BAD =90°﹣∠B =45°, ∴∠B =∠BAD ,∴BD =AD =4,∴S △ABC =12AD•BC =12×4×(4+3)=14.17.解:在Rt ABC 中,90,C tanA ∠== 30,60,A ABC ∴∠=∠= BD 是ABC ∠的平分线,30,CBD ABD ∴∠=∠=︒ 又3,CD =330CD BC tan ∴==, 在Rt ABC 中,90,30∠=︒∠=︒C A , 630BC AB sin ∴==︒. 故答案为:6.18.(1)解:过点P 作PD AB ⊥交于点D . 由题意可知,120PA =海里,903060APD ∠=︒-︒=︒,45BPD ∠=︒. 906030A ∴∠=︒-︒=︒.1602PD PA ∴==(海里), 在Rt PBD 中,45BPD ∠=︒,PBD ∴∆是等腰直角三角形, 2602PB PD ∴==(海里)84.8≈(海里). 答:B 处距离灯塔P 约84海里. (2)解:①海轮到达B 处没有触礁的危险,理由如下: 由题意知:150OP =海里,602PB =海里, (150602)OB OP PB ∴=-=-海里65≈海里50>海里, ∴海轮到达B 处没有触礁的危险. ②过点O 作OE AB ⊥交于E ,交AB 延长线于点E ,则90OEB ∠=︒, 45OBE PBD ∠=∠=︒, sin OE OB OBE ∴=∠ 2(150602)=-752604650=≈<, ∴海轮从B 处继续向正北方向航行,有触礁的危险.。
新版北师大初中数学九年级(下册)第一章直角三角形的边角关系练习题【含答案】
北师大版初中数学 九(下) 第一章直角三角形的边角关系 分节练习(带答案)第1节 锐角三角函数1、【基础题】在Rt △ABC 中,∠C =90°,BC =3,tan A =125,求AC . ★ 1.1、【基础题】在Rt △ABC 中,∠C =90°,sin A =54,BC =20,求△ABC 的周长和面积. ★ 1.2、【基础题】在Rt △ABC 中,∠C =90°,sin A 和cos B 有什么关系?2、【综合Ⅰ】在等腰三角形ABC 中,AB =AC =5,BC =6,求sin B ,cos B ,tan B . ★2.1【综合Ⅰ】已知∠A 是锐角,cos A =53,求sin A 和tan A . 2.2、【综合Ⅰ】在Rt △ABC 中,∠BCA =90°,CD 是中线,BC =8,CD =5,求sin ∠ACD ,cos ∠ACD 和tan ∠ACD .2.3【综合Ⅰ】如图,点P 是∠α的边OA 上一点,且点P 的坐标为(4,3),则sin α和cos α的值分别是( )A. 34,35B. 54,53C. 53,54D. 34,432.4、【综合Ⅲ】如右图,在Rt △ABC 中,∠BCA =90°,CD ⊥AB ,垂足为D ,AD =8,BD =4,求tan A 的值. ☆第2、3节 30°,45°,60°角的三角函数值 & 三角函数的计算3、【基础题】计算:(1)sin 30°+cos 45°; (2)2sin 60°+2cos 60°-tan 45°.3.1、【综合Ⅱ】 化简2)130(tan - = ( ) A. 331- B. 13- C. 133- D. 13-3.2、【综合Ⅱ】 △ABC 中,∠A ,∠B 均为锐角,且有2|tan 2sin 0B A +=(,则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形4、【基础题】用计算器求下列锐角的三角函数值(结果保留4个有效数字)(1)sin 72°; (2)cos 36.43°; (3)tan 38° 24'25".4.1、【基础题】如左下图,河岸AD 、BC 互相平行,桥AB 垂直于两岸,桥AB 长12 m ,在C 处看桥两端A 、B ,夹角∠BCA =60°,求B 、C 间的距离(结果精确到1 m ).4.2、【基础题】如右图,AB =20 m ,∠CAB =50°,∠DAB =56°,求避雷针CD 的长度(结果精确到0.01 m )5、【基础题】根据下列条件利用计算器求∠A 的度数(用度、分、秒表示).(1)cos A =0.6753; (2)sin A =0.4553; (3)tan A =87.545.1、【基础题】一梯子斜靠在墙上,已知梯长4 m ,梯子位于地面上的一端离墙2.5 m ,求梯子与地面所成的锐角.第4节 解直角三角形6、【基础题】在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,根据下列条件求出直角三角形的其他元素. ★(1)5=a ,25=c ; (2)34=c ,∠A =60°第5节 三角函数的应用7、【综合Ⅱ】如左下图,小李想测量塔CD 的高度,他在A 处仰望塔顶,测得仰角是30°,再往塔的方向前进50 m至B 处,测得仰角是60°,那么该塔有多高?(小李的身高忽略不计,结果精确到1 m ) ★7.1、【综合Ⅱ】如右上图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30º,朝物体AB 方向前进20米,到达点C ,再次测得A 点的仰角为60º,则物体AB 的高度为( ) ★B.10米7.2【综合Ⅱ】(2012年陕西数学中考20题)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A B C 、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin 250.4226cos 250.9063tan 250.4663sin 650.9063︒≈︒≈︒≈︒≈,,,,cos 650.4226tan 65 2.1445︒≈︒≈,)8、【综合Ⅱ】如左下图,大楼AD 高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及大楼与塔之间的距离AC (结果精确到0.01 m ).8.1【基础题】如图,线段AB 、DC 分别表示甲、乙两建筑物的高,某初三课外兴趣活动小组为了测量两建筑物的 高,用自制测角仪在B 处测得D 点的仰角为α,在A 处测得D 点的仰角为β. 已知甲、乙两建筑物之间的 距离BC 为m . 请你通过计算用含α、β、m 的式子分别表示出甲、乙两建筑物的高度.2,则AB的长是_________. ☆9、【综合Ⅲ】如左下图,在△ABC中,∠A=30°,∠B=45°,AC=39.1、【综合Ⅲ】如右上图,在四边形ABCD中,AD=30 m,DC=50 m,CB=20 m,AB=50 m,∠A=60°,m)∠C=60°,求此四边形ABCD的面积(结果精确到0.01 210、【综合Ⅰ】一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港. 求(1)A、C两港之间的距离(结果精确到0.1 km);(2)确定C港在A港的什么方向.10.1、【综合Ⅲ】如图,一艘船以每小时36海里的速度向正北航行到A处,发现它的东北方向有灯塔B,船继续向北航行2小时到达C处,发现灯塔B此时在它的北偏东75°方向,求此时船与灯塔的距离(结果保留根号).第6节利用三角函数测高11、【综合Ⅱ】如图,∠MCE=α,∠MDE=β,AC=BD=a,AB=b,那么物体MN的高度如何表示?九(下) 第一章直角三角形的边角关系 分节练习答案1、【答案】 AC =536 1.1、【答案】 周长60,面积150. 1.2、【答案】 相等 2、【答案】 sin B =54,cos B =53,tan B =34. 2.1【答案】 sin A =54,tan A =34. 2.2、【答案】 sin ∠ACD =54,cos ∠ACD =53,tan ∠ACD =34. 2.3【答案】 选C 2.4、【答案】 tan A =22 3、【答案】(1)221+; (2)0. 3.1、【答案】选A 3.2、【答案】选D 4、【答案】(1)sin 72°≈0.9511; (2)cos 36.43°≈0.8046; (3)tan 38° 24'25"≈0.79284.1、【答案】 BC =34≈7(m ) 4.2、【答案】 CD ≈5.82 m5、【答案】 (1)∠A ≈47° 31'21"; (2)∠A ≈27° 5'3"; (3)∠A ≈89° 20'44".5.1【答案】 梯子与地面所成的锐角是51° 19'4"6、【答案】 (1)5=b ,∠A =∠B =45°; (2)∠B =30°,6=a ,32=b .7、【答案】 CD ≈43 m 7.1、【答案】 选A 7.2【答案】 207米8、【答案】 用方程来解,设AC =x ,则DE =x , 可列方程 tan 60°·x -tan 30°·x =30,解得x =153≈25.98, BC =153×tan 60°=45.008.1【答案】 CD =BC ·tan α=m ·tan α, AB =m ·(tan α-tan β). 9、【答案】 33+9.1【答案】四边形ABCD 的面积是1082.53 2m 10、【答案】(1)14.1 km ; (2)北偏东15°方向. 10.1、【答案】11、【答案】 MN =a b +-αββαtan tan tan tan。
北师大版九年级数学下册全册同步练习含答案
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( )A. sin A=53B.cos A=23C.sin A=23D.tan A=522.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A.35B.45C.43D.343.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=35,AB=4,则AD的长为 ( )A.3 B.16 3C. 203D.165二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=34,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =163,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=35.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案 1.C[提示:sinA=BCAB.] 2.D[提示:过A 点作垂线交底部于C 点,则△ACB 为直角三角形,∴BC =2222106AB AC -=-=8(m),∴tan a =68=34.故选D .]3.B[提示:∠ADE 和∠EDC 互余,∴cos a =sin ∠EDC =35,sin ∠EDC =3,45EC EC DC ==∴EC =125.由勾股定理,得DE =165.在Rt △AED 中,cos a =16355DE AD AD ==,∴AD=163.故选B .] 4.4[提示:在Rt △BCA 中,AC =3米,cos ∠BAC =34AC AB =,所以AB =4米,即梯子的长度为4米.]5.48°[提示:∵sin 2a +cos 2a =l ,∴a =48°.] 6.提示:sin A =13,cos A =223,tan A =24.7.解:∵∠ACB =90°,CD ⊥AB ,∴△ACD ∽△CBD ,∴CD 2=AD ·DB =16,∴CD =4,∴AC =22203AD CD +=.∴sin A ==35CD AC =,cos A =45AD AC =,tan A =34CD AD =. 8.解:(1)如图l -27所示,作BH ⊥OA , 垂足为H .在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =3,∴OH =4,∴点B 的坐标为(4,3). (2)∵OA =10,OH =4,∴AH =6.在Rt △AHB 中,∵BH =3,∴AB =22223635BH AH +=+=,∴cos ∠BAO=635AH AB == 255. 9.解:(1)根据题意画出图形,如图1-28所示,∵AB =AC ,AD ⊥BC ,AD =BC ,∴BD =12B C = 12AD ,即AD =2BD ,∴AB =225BD AD +=BD ,∴tan ∠ABC=ADBD=2,sin ∠ABC=AD AB =255 (2)作BE ⊥AC 于E ,在Rt △BEC 中,sinC=sin ∠ABC=255.又∵sin C=,BEBC.5BE故BE=.1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC 中,∠A ,∠B 都是锐角,且 sin A =21,cos B =22,则△ABC 三个角的大小关系是( )A .∠C >∠A >∠B B .∠B >∠C >∠A C .∠A >∠B >∠CD .∠C >∠B >∠A2.若0°<<90°,且|sin -41|+223cos ⎪⎪⎭⎫ ⎝⎛-θ,则tan 的值等于( )A .3B .33 C .21 D .233.如图1—37所示,在△ABC 中,∠A =30°,tan B =32,AC =23,则AB 的长是 ( ) A .3+3 B .2+23 C. 5 D .924.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( ) A .32a B .a C.12a D .12a 或32a 二、选择题5.在Rt △ACB 中,∠C =90°,AC =3,AB =2,则tan2B= . 6.若a 为锐角,且sin a =22,则cos a = . 7.在Rt △ACB 中,若∠C =90°,sin A =32,b +c =6,则b = . 8.(1)在△ABC 中,∠C =90°,sin A =21,则 cos B =________; (2)已知为锐角,且cos(90°-)=21,则 =________;(3)若1)10(tan 3=︒+α,则锐角 =________.三、计算与解答9.计算(1)sin 60°·cos 30°-12.(2) 2 cos 230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt △ACB 中,∠BCA =90°,CD 是斜边上的高,∠ACD =30°,AD =1,求AC ,CD ,BC ,BD ,AB 的长.11.如图1—39所示,在相距100米的A ,B 两处观测工厂C ,测得∠BAC =60°,∠ABC =45°,则A ,B 两处到工厂C 的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=53,若关于x的方程(53+b)x2+2ax+(53-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案 1. D ; 2 。
2022-2023学年北师大版九年级数学下册3
3.9 弧长及扇形的面积(练习题)-北师大版九年级下册一.选择题1.如图,以等边三角形ABC的一边AB为直径的半圆O交AC边于点D,交BC边于点E.若AB=4()A.2B.2πC.D.4π2.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为3,则勒洛三角形的周长为()A.B.3πC.D.3.在△ABC中,已知∠ABC=90°,∠BAC=30°,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.4.如图,在⊙O中,AO=,则的长度为()A.6πB.9πC.2πD.3π5.如图,在半径为2,圆心角为90°的扇形内,交弦AB于点D,则图中阴影部分的面积是()A.π﹣1B.π﹣2C.π﹣1D.π+16.如图,AB是半圆O的直径,C、D是半圆上两点,BC=2,则的长为()A.B.C.D.7.已知扇形A与扇形B的面积相等,且扇形A的半径是扇形B的半径的2倍,那么扇形A 的圆心角是扇形B的圆心角的()A.4倍B.2倍C.D.8.如图,菱形OABC的三个顶点A,B,C在⊙O上,OB交于点D,若⊙O的半径是2()A.2πB.6πC.πD.π9.如图,AB是⊙O的直径,弦CD⊥AB,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.10.【阅读理解】在求阴影部分面积时,常常会把原图形的一部分割下来补在图形中的另一部分,使其成为基本规则图形,这种方法称为割补法.如图1,C是半圆O的中点,只需把弓形BC割下来,补在弓形AC处阴影=S△ACD.【拓展应用】如图2,以AB为直径作半圆O,C为,连接BC,以OB为直径作半圆P,则图中阴影部分的面积为()A.π+2B.π+1C.2π﹣1D.2π+1二.填空题11.如图,在扇形OAB中,∠AOB=90°,则阴影部分的面积是.12.若一个扇形的半径是3cm,所对圆心角为90°,则这个扇形的面积是cm2.13.如图,用一个半径为10cm的定滑轮带动重物上升,滑轮上一点P旋转了36°(粗细不计)与滑轮之间没有滑动,则重物上升了.14.一个扇形的半径为6厘米,圆心角为60°,那么扇形的弧长为厘米.15.如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间.掷铁饼者张开的双臂与肩宽可以近似看成一张拉满弦的弓米,“弓”所在的圆的半径约0.75米,则“弓”所对的圆心角为度.三.解答题16.弯制管道时,先按中心计算“展直长度”再下料,试计算图中所示管道的展直长度.(π≈3.14,单位:cm,精确到1cm,弯制管道的粗细不计)17.一个圆被分成三个扇形,其中一个扇形的圆心角为120°,另外两个扇形的圆心角度数的比为3:5.(1)求另外两个扇形的圆心角;(2)若圆的半径是5cm,求圆心角为120°的扇形的面积(结果保留π).18.如图,直角坐标系中,有一条圆心角为90°的圆弧(0,4),B(﹣4,4),C(﹣6,2).(1)该圆弧所在圆的圆心M坐标为.(2)求扇形AMC的面积.19.如图,AB为⊙O的直径,弦CD⊥AB于点E,BC,BD,且OF=1.(1)求BD的长;(2)当∠D=30°时,求圆中弧AC的长和阴影部分的面积.20.如图,在△ABC中,AB=AC=18,分别交BC、AC于点D、E.(1)若,求弧BE的长;(2)连接DE,求证:BD=DE.。
北师大版九年级数学下册第一章训练题1.5 三角函数的应用
5. 三角函数的应用1.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 km B.()2+2 km C .2 2 km D.()4-2 km2. 如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为 45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是___ _ (结果保留根号)3.如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)4.为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港,某日在观测点A 处发现在其北偏西36.9°的C 处有一艘渔船正在作业,同时监测到在渔船的正西B 处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D 处进行躲避.已知避风港D 在观测点A 的正北方向,台风中心B 在观测点A 的北偏西67.5°的方向,渔船C 与观测点A 相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(参考数据:sin 36.9°≈0.6,tan 36.9°≈0.75,sin 67.5°≈0.92,tan 67.5°≈2.4)5.如图,小明从点A 处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B ,sin α=513,然后又沿着坡度为i =1∶4的斜坡向上走了1千米到点C.问小明从点A 到点C 上升的高度CD 是多少千米?(结果保留根号)参考答案【知识管理】 1.2.仰角 俯角 【归类探究】【例1】 从B 处到达C 岛需要1小时.【例2】 (1)两建筑物底部之间的水平距离BD 的长度为60 m .(2)建筑物CD 的高度为(60-203) m .【当堂测评】 1.C 2.16 【分层作业】1.B 2.(9+33) 3.渔船从B 点开始行驶3-34小时离观测点A 距离最近.4.解:由题意可知∠BAD =67.5°,∠CAD =36.9°,AC =350海里.在Rt △ADC 中,∵∠ADC =90°,∠DAC =36.9°,AC =350海里,∴CD =AC •sin ∠DAC ≈350×0.6=210(海里),AD =AC 2-CD 2≈280(海里).∴渔船到达避风港D 处所用时间:210÷18=1123(小时).在Rt △ADB 中,∵∠ADB =90°,∠BAD =67.5°,∴BD =AD •tan ∠BAD ≈280×2.4=672(海里),∴BC =BD -CD ≈672-210=462(海里).设强台风移动到渔船C 后面200海里时所需时间为x 小时.根据题意得(40-18)x =462-200,解得x =111011.∵1123<111011,∴渔船能顺利躲避本次台风的影响.5.解:如答图所示,过点B 作BF ⊥AD 于点F ,过点B 作BE ⊥CD 于点E .由题意得AB =0.65千米,BC =1千米,∴sin α=513=BF AB =BF 0.65,∴BF =0.65×513=0.25(千米).∵斜坡BC 的坡度为1∶4,∴CE ∶BE =1∶4.设CE =x 千米,则BE =4x 千米.由勾股定理得x 2+(4x )2=12,解得x =1717,∴CD =CE +DE =CE +BF =14+1717(千米).即小明从点A 到点C 上升的高度CD 是⎝⎛⎭⎫14+1717千米.。
北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案
北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案1.如图,在Rt ABC △中,AC=4,BC=3,90C ∠=︒则sin A 的值为( )A.34B.53C.43D.352.在Rt ABC △中90C ∠=︒ 3cos 5A =,AB=10,则BC 的( ) A.3 B.4 C.6 D.83.在Rt ABC △中,各边的长度都扩大4倍,那么锐角A 的余弦值( )A.扩大4倍B.保持不变C.缩小4倍D.扩大2倍4.如图,在Rt ABC △中,CD 是斜边AB 上的高,则下列正确的是( )A.3tan 4DCB ∠=B.5tan 3DCB ∠=C.4cos 5DCB ∠=D.4sin 5DCB ∠= 5.已知A B ∠∠=︒+90,且3cos 5A =,则tanB 的值为( ). A.45 B.35 C.34 D.43 6.ABC △中,A ∠和B ∠,C ∠的对边分别为a ,b ,c .已知6810a b c ===,,,则cos A ∠的值为( )A.35B.34C.45D.43 7.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则cos BAC ∠的值是( )A.55B.105C.255D.458.如图,的顶点分别在单位长度为1的正方形网格的格点上,则sin BAC∠的值为( ) A. B.55C. D.2539.已知ABC△中,90C∠=︒和3cos5A=,AC=6,那么AB的长是___________.10.在等腰三角形ABC中10AB AC==,BC=12,则tan B=_____________.11.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC△的顶点均是格点,则sin∠的值为_____.12.如图,在ACD中90C∠=︒,15A∠=︒点B在边AC上,且2AB BD==,则BC= _______________,tan CAD∠=_______________.ABC△51213.如图,在四边形ABCD 中90ABC ∠=︒ 45C ∠=︒ 2CD 3BD =.(1)求sin CBD ∠的值;(2)若3AB =,求AD 的长.14.如图,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内5BO = 3sin 5BOA ∠=求:(1)点B 的坐标;(2)cos BAO ∠的值.参考答案及解析1.答案:D解析:=4AC =3BC 90C ∠=︒∴2222345AB AC BC =++= ∴3sin 5BC A AB ==; 故选:D.2.答案:D解析:如图在Rt ABC △中 3cos 5AC A AB ==10AB =6AC ∴=在Rt ABC △中 22221068BC AB AC =-=-=. 故选:D.3.答案:B解析:在Rt ABC △中,各边的长度都扩大4倍 ∴各角的大小不变,即A ∠大小不变.一个角的锐角三角函数值只与角的大小有关∴锐角A 的余弦值保持不变.故选:B.4.答案:D解析:Rt ABC △中,CD 是斜边AB 上的高,AC=3,CB=4 5AB ∴= DCB DBC DBC A ∠+∠=∠+∠DCB A ∴∠=∠4tan tan 3DCB CAD ∴∠=∠=,故A 选项不正确; 4tan 3DCB ∴∠=,故B 选项不正确;3cos 5DCB ∴∠,故C 选项不正确; 4sin 5DCB ∴∠=,故D 选项正确 故选:D.5.答案:C解析:如图A B ∠∠=︒+90∴90C ∠=︒3cos5A =∴设3AC x = 5AB x =∴224BC AB AC x =-=∴33tan 44xB x ==故选:C.6.答案:C解析:在ABC △中6a = 8b = 10c =2222683664100a b ∴+=+=+=2100c = 222a b c ∴+=ABC ∴△是直角三角形84cos 105b A c ∴===.故选:C.7.答案:C解析:过点C 作AB 的垂线交AB 于一点D ,如图所示∵每个小正方形的边长为1∵5AC = 10= 5AB =设AD x =,则5BD x =-在Rt ACD △中 222DC AC AD =-在Rt BCD △中 222DC BC BD =-∵2210(5)5x x --=-解得2x =∵25cos 55AD BAC AC ∠=== 故选:C.8.答案:B解析:如图,过B 作BD AC ⊥于点D根据勾股定理得:22345AB =+= 223635AC =+=11111546313463,22222ABC S AC BD ∴=⋅=⨯-⨯⨯-⨯⨯-⨯⨯=△ 5BD ∴=5sin 5BD CAB AB ∴∠== 故选:B.9.答案:10解析:在Rt ABC △中3cos 5AC A AB == 6AC = 10AB ∴=故答案为:10.10.答案:43解析:本题易因忽略求tan B 的前提是将B ∠放在一个直角三角形中而出错. 11.答案:55解析:延长AC 到D ,连接BD ,如图:220AD = 25BD = 225AB = 222AD BD AB ∴+=90ADB ∴∠=︒55sin 525BD BAC AB ∴∠===. 故答案为:55. 12.答案:323/32解析:2AB BD ==∴15A ADB ∠=∠=︒∴30DBC A ADB ∠=∠+∠=︒ 90C ∠=︒∴112CD BD ==在Rt DBC △中,由勾股定理得:2222213BC BD CD =--= ∴23AC AB BC =+= ∴tan 2323CD CAD AC ∠===-+ 故答案为:3 3.13.答案:(1)1sin 3CBD ∠= (2)23AD =解析:(1)如图,过点D 作DE BC ⊥于点E .在Rt CED △中45C ︒∠= 2CD = 1CE DE ∴==.在Rt BDE △中1sin 3DE CBD BD ∠==. (2)如图,过点D 作DF AB ⊥于点F ,则90BFD BED ABC ∠=∠=∠=︒. ∴四边形BEDF 为矩形.1BF DE ∴==.2AF AB BF ∴=-= 2222DF BD BF =-=2223AD AF DF ∴=+.14.答案:(1)(4,3)B (2)2cos 55BAO ∠= 解析:(1)如图,过点B 作BC OA ⊥于点C . 3sin 5BCBOA BO ∠==.22534OC ∴=-=. .(2)易知10OA =.4OC = . 226335AB ∴=+5BO =3BC ∴=(4,3)B ∴6AC ∴=2cos 5535AC BAO AB ∴∠===。
2025年北师大版九年级下册数学第1章测素质 解直角三角形
返回
测素质
8. [2024 深圳一模]如图,在四边形 ACBD 中,对角线 AB, CD 相交于点 O,∠ACB=90°,BD=CD,若∠DAB= 2∠ABC,则AADB的值为____12____.
则 sin A=( C )
4
3
4
3
A. 3
B. 4
C. 5
D. 5
ห้องสมุดไป่ตู้返回
测素质
4. [2024南阳期末]如图,在△ABC中,∠ABC=90°,tan A =2,直尺的一边与BC重合,另一边分别交AB,AC于 点D,E.点B,C,D,E处的读数分别为15 cm,12 cm, 0 cm,1 cm,则直尺宽BD的长为( ) A. 1 cm B. 1.5 cm C. 2 cm D. 2.5 cm
AT=BH,
∴△ATK≌△BHK(AAS).
∴AK=BK.∴AB=2AK=2AD.∴AADB=12.
返回
测素质
9. 无动力帆船是借助风力航行的. 如图是帆船借助风力航 行的平面示意图,已知帆船航行方向与风向所在直线的 夹角∠PDA为70°,帆与航行方向的夹角∠PDQ为30°, 风对帆的作用力F为400 N.
测素质
∠DAT=∠TAK, 在△ ADT 和△ AKT 中,AT=AT,
∠ATD=∠ATK, ∴△ADT≌△AKT(ASA).∴AD=AK. ∵BD=CD,DH⊥BC,∴BH=CH.
测素质
∵DH⊥BC,DH⊥AE,∠ACB=90°,
∴易得四边形 ACHT 为矩形.∴AT=CH=BH.
∠TAK=∠KBH, 在△ ATK 和△ BHK 中,∠AKT=∠BKH,
2025年北师大版九年级下册数学第1章特色题型专练一
1 47.25 m 2 3 4
温馨提示:点击 进入讲评 答案呈现
1. [2024陕西师大附中八模]为了测古树AB的 高度.如图,先把长为1.8 m的标杆EF垂直 立于地面上的点F处,当树的最高点A,标 杆顶端E与地面上的点C在同一直线上时, FC=1 m,接着沿斜坡从点C走到点D处, 此时测得树的最高点A处的仰角α=45°,D 到地面BC的距离DM为9 m,CM为12 m, 则古树AB的高度为__4_7_.2_5__m_.
∴10 7÷40= 47(小时). ∴救援船到达 C 处所用的时间为 47小时.
返回
4. [2024陕西工大附中七模]小明和小刚决定测量风筝到地面的距
离,如图,已知小明在B处看风筝的仰角为37°,小刚所站位 置D处看风筝的视线恰好被大树FG挡住(即点E,F,C三点共 线),通过测量,此时小刚距离大树底部的距离GD为8 m,小 明与小刚之间的距离BD为115 m,大树的高度FG为4.9 m,两 人的眼睛距地面的高度均为1.7 m,请根据以上数据,求出此 时风筝到地面的距离.(参考数据:sin 37°≈0.6,cos 37°≈0.8, tan 37°≈0.75,风筝的宽度忽略不计)
∵CD⊥FB,AB⊥FB,∴∠CDF=∠ABF=90°. 又∵∠CFD=∠AFB,∴△CDF∽△ABF.∴CADB =DBFF. ∴1A.B8=2x.4.∴AB=34x m. ∴43x≈0.5x+1.6,解得 x≈6.4. ∴AB≈4.8 m.∴该景观灯的高 AB 约为 4.8 m.
返回
3. [2024 西安铁一中一模]如图,我国某海域上有 A,B 两 个小岛,B 在 A 的正东方向.有一艘渔船在点 C 处捕 鱼,在 A 岛测得渔船在东北方向上,在 B 北偏西 60° 的方向上,且测得 B,C 两处的距离为 20 2海里.
北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)
北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)一、解答题1.(1)sin230°+2sin60°+tan45°−tan60°+cos230°;(2)√1−2tan60°+tan260°−tan60°.2.计算tan1°•tan2°•tan3°•…•tan88°•tan89°的值.3.(1)计算:2sin230°−6tan260°⋅4cos2150°2tan845°+4sin245°⋅3tan230°2sin120°⋅6tan230°;(参考公式:sinα=sin(180°−α))(2)已知a、b是一元二次方程x2+2x−3=0的两个实根,求2√2bcos260°−√2的S值.4.如图,在▱ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,BD与AE,AF分别相交于点G H AG=AH.(1)求证:四边形ABCD是菱形;(2)若AG=2EG=1.①求sin∠BAE;②求▱ABCD的面积.5.如图在Rt△ABC中∠ACB=90°D是BC上一点过点C作CE⊥AD垂足为E.连接BE并延长交AC于点F.(1)求证:CD2=ED⋅AD;(2)若D为BC的中点ACBC =23求sin∠CEF的值.6.如图一座古塔坐落在小山上(塔顶记作点A其正下方水平面上的点记作点B) 小李站在附近的水平地面上他想知道自己到古塔的水平距离便利用无人机进行测量但由于某些原因无人机无法直接飞到塔顶进行测量因此他先控制无人机从脚底(记为点C)出发向右上方(与地面成45°点A B C O在同一平面)的方向匀速飞行4秒到达空中O点处再调整飞行方向继续匀速飞行8秒到达塔顶已知无人机的速度为5米/秒∠AOC=75°求小李到古塔的水平距离即BC的长.7.在综合实践课中小明同学利用无人机测量小山AB的高度.如图CD是小明同学无人机飞到小山AB的右上方时测得山顶A的俯角为37°,AP=10米测得小明同学头顶C的俯角为53.5°,PC=80米.已知小明的身高CD为1.8米求小山AB的高度.(已知AB,CD分别与水平线BD垂直且在同一平面内参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75sin53.5°≈0.80cos53.5°≈0.59tan53.5°≈1.35)8.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间小刚站在雕像前自C处测得雕像顶A的仰角为53°小强站凤栖堂门前的台阶上自D处测得雕像顶A的仰角为45°此时两人的水平距离EC为0.45m已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45cos53°≈35tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.9.如图甲、乙两艘货轮同时从A港出发分别向B D两港运送物资最后到达A港正东方向的C港装运新的物资甲货轮沿A港的东北方向航行40海里到达D港再沿东南方向航行一定距离到达C港.乙货轮沿A港的南偏东60°方向航行后到达B港再沿北偏西15°方向航行一定距离到达C港.(参考数据:√2≈1.41√3≈1.73√6≈2.45)(1)求B C两港之间的距离;(2)若甲货轮的速度为20海里/小时乙货轮的速度为30海里/小时(停靠B D两港的时间相同)哪艘货轮先到达C港?请通过计算说明.10.冬季是滑雪的最佳时节亚布力滑雪场有初、中、高级各类滑雪道.如图其中的两条初级滑雪道的线路为:①A→B→C→D;②A→E→D.点A是雪道起点点D是雪道终点点B、C、E是三个休息区.经勘测点B在点A的南偏东30°方向1800米处点C 在点B的正南方向2000米处点D在C的西南方向点E在点A的西南方向1300米处点E在点D的正北方向.(参考数据:√2≈1.414√3≈1.732)(1)求CD的长度;(精确到1米)(2)小外一家周末去亚布力滑雪小外沿滑雪道线路①全程以5米/秒的速度滑雪且在途经的每个休息区都各休息了5分钟;小外的爸爸比小外晚出发2分钟以3米/秒的速度沿滑雪道线路②滑完全程且中途没有休息.请计算说明小外和爸爸谁先到达终点D.11.某数学兴趣小组自制测角仪到公园进行实地测量活动过程如下:(1)探究原理:制作测角仪时将细线一端固定在量角器圆心O处另一端系小重物G测量时使支杆OM、量角器90∘刻度线ON与铅垂线OG相互重合(如图①)绕点O转动量角器使观测目标P与直径两端点A、B共线(如图②)此时目标P的仰角是图②中的∠_____.目标P的仰角与图②中的∠_____相等请写出这两个角相等的证明过程.(2)拓展应用:公园高台上有一凉亭为测量凉亭顶端P距地面的高度PH(如图④)同学们经过讨论决定先在水平地面上选取观测点E、F E、F、H在同一直线上分别测得点P的仰角a=45∘、β=30∘测得E、F间的距离2米点O1、O2到地面的距离O1E、O2F均为1.5米.求PH的长(结果保留根号)12.如图Rt△ABO中∠ABO=90°AB=2反比例函数y=−8x的图象经过点A.(1)求点A的坐标.(2)直线CD垂直平分AO交AO于点C交y轴于点D交x轴于点E求线段OE的长.13.随着南海局势的升级中国政府决定在黄岩岛填海造陆修建机场设立雷达塔.某日在雷达塔A 处侦测到东北方向上的点B 处有一艘菲律宾渔船进入我方侦测区域且以30 海里/时的速度往正南方向航行我方与其进行多次无线电沟通无果后这艘渔船行驶了1 小时10 分到达点A 南偏东53°方向的C 处与此同时我方立即通知(通知时间忽略不计)与A 、C 在一条直线上的中国海警船往正西方向对该渔船进行侦测拦截其中海警船位于与A 相距100 海里的D 处.(1)求AC的距离和点D 到直线BC的距离;(2)若海警船航行速度为40 海里/时可侦测半径为25 海里当海警船航行1 小时时是否可以侦测到菲律宾渔船为什么?(参考数据:sin53°≈45cos53°≈35tan53°≈43)14.综合实践活动中某小组利用直角尺和皮尺测量建筑物AB和CD的高因为这两栋建筑物高度相同于是这个小组设计出一种简捷的方案如图所示:(1)把直角尺的顶点E放在两栋建筑物之间的地面上调整位置使直角尺的两边EM EN所在直线分别经过建筑物外立面的的顶部A和C;(2)用皮尺度量BE和DE的长度;(3)通过计算得到建筑物的高度.若示意图中点A B C D E M N均在同一平面内.测得BE=9m DE=36m.请求出这两栋建筑的高度.15.图1所示是屹立在于都县纪念广场的中央红军长征出发纪念碑它是由呈双帆造型的碑身与方形底座两部分组成的底座下方是台阶台阶的横截面如图2所示.已知台阶的坡面DE的坡度i=1:√3坡面DE的长为2.4m.(1)计算坡面DE的铅直高度;(2)如图3 为了测量纪念碑的高度亮亮站在纪念碑正前方广场上的点G处用高1.64m的测角仪GH测得纪念碑碑身顶端A的仰角是35°继续向纪念碑前进8.1m到达点K处此时测得纪念碑顶端45°求纪念碑的实际高度AC.(结果精确到0.01参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)16.如图1是超市的手推车如图2是其侧面示意图已知前后车轮半径均为5cm两个车轮的圆心的连线AB与地面平行测得支架AC=BC=60cm AC、CD所在直线与地面的夹角分别为30°、60°CD=50cm.(1)求扶手前端D 到地面的距离;(2)手推车内装有简易宝宝椅 EF 为小坐板 打开后 椅子的支点H 到点C 的距离为10cm DF =20cm EF∥AB ∠EHD =45° 求坐板EF 的宽度.(本题答案均保留根号) 17.千厮门大桥是重庆最具特色的斜拉桥之一 也是重庆的“网红打卡地”之一 某校数学兴趣小组的同学们欲测量千厮门大桥桥塔的高度 如图2 他们在桥下水平地面上架设测角仪CM (测角仪垂直于地面放置) 此时测得桥塔最高点A 的∠ACE =30∘ 然后将测角仪沿MB 向前水平移动132米达到点N 处 并测得桥塔最高点A 的∠ADE =45∘ 测角仪高度CM =DN =1.6米.(点M N B 在同一水平线上 AB ⊥BM )(结果保留整数 参考数据:√2≈1.41 √3≈1.73)(1)求桥塔的高度AB 约为多少米?(2)如图3 在(1)的条件下 小语同学在洪崖洞的某地Q 处测得千厮门大桥桥塔最高点A 的∠AQG =30∘ 最低点B 的∠BQG =60∘ 则小语同学所在地Q 与AB 的水平距离约为多少米? 18.嘉嘉在某次作业中得到如下结果: sin 27°+sin 283°≈0.122+0.992=0.9945 sin 222°+sin 268°≈0.372+0.932=1.0018 sin29°+sin 261°≈0.482+0.872=0.9873 sin37°+sin 253°≈0.602+0.802=1.0000 sin 245°+sin 245=(√22)2+(√22)2=1.据此 嘉嘉猜想:对于任意锐角α β 若α+β=90° 均有sin 2α+sin 2β=1.(1)当α=30°β=60°时验证sin2α+sin2β=1是否成立?(2)嘉嘉的猜想是否成立?若成立请结合如图所示Rt△ABC给予证明其中∠A所对的边为a∠B所对的边为b斜边为c;若不成立请举出一个反例;(3)利用上面的证明方法直接写出tanα与sinαcosα之间的关系.19.阅读与思考阅读下列材料并解决后面的问题.在锐角△ABC中∠A∠B∠C的对边分别是a b c过C作CE⊥AB于E(如图1)则sinB=CEa sinA=CEb即CE=asinB CE=bsinA于是asinB=bsinA即bsinB=asinA.同理有csinC =asinAcsinC=bsinB所以asinA=bsinB=csinC.即:在一个锐角三角形中各边和它所对角的正弦的比相等.运用上述结论和有关定理在锐角三角形中已知三个元素(至少有一条边)就可以求出其余三个未知元素.根据上述材料完成下列各题:(1)如图1 在△ABC中∠A=60°∠C=45°BC=30则AB=______;(2)如图2 一艘轮船位于灯塔P的南偏东60°方向距离灯塔50海里的A处它沿正北方向航行一段时间后到达位于灯塔北偏东45°方向上的B处此时B处与灯塔的距离为______海里;(结果保留根号)(3)在(2)的条件下试求75°的正弦值.(结果保留根号)20.如图1 正方形ABCD中P是边AD上任意一点Q是对角线AC上的点且满足∠PBQ=45°.(1)①求证:△PDB∽△QCB;②DPCQ=;(2)如图2 矩形ABCD中AB=12AD=5P、Q分别是边AD和对角线AC上的点∠PBQ=∠ACB DP=3求CQ的长;(3)如图3 菱形ABCD中DH⊥BA交BA的延长线于点H.若DC=5对角线AC=6P、Q分别是线段DH和AC上的点tan∠PBQ=34PH=85求CQ的长.参考答案:1.解:(1)sin230°+2sin60°+tan45°−tan60°+cos230°=(sin230°+cos230°)+2sin60°+tan45°−tan60°=1+2×√32+1−√3=2+√3−√3=2;(2)√1−2tan60°+tan260°−tan60°=√(1−tan60°)2−√3=√(1−√3)2−√3=√3−1−√3=−1.2.解:tan1°•tan2°•tan3°•…•tan88°•tan89°=(tan1°•tan89°)(tan2°•tan88°)…(tan44°•tan46°)•tan45°=1.3.(1)解:2sin230°−6tan260°⋅4cos2150°2tan845°+4sin245°⋅3tan230°2sin120°⋅6tan230°=2sin230°−6tan260°⋅4×(1−sin2150°)2tan845°+4sin245°⋅12sin60°⋅2=2sin230°−6tan260°⋅4×(1−sin230°)2tan845°+4sin245°⋅12sin60°⋅2 =2×(12)2−6×(√3)2×4×[1−(12)2]2×1+4×(√22)214×√32=−107√348;(2)解:∵a、b是一元二次方程x2+2x−3=0的两个实根∴(x+3)(x−1)=0解得a=−3b=1或b=−3a=1当a=−3b=1时则2√2bcos260°−√2=12×(−3)+√2 14×1−√2=−26+20√231;当b=−3a=1时则2√2bcos260°−√2=12×1+√2 14×(−3)−√2=−26+4√223;4.(1)证明:∠AE⊥BC AF⊥CD∠∠AEB=∠AFD=90°∠∠BAG=90°−∠ABE∠DAH=90°−∠ADF ∠四边形ABCD是平行四边形∠∠ABE=∠ADF∠∠BAG=∠DAH∠AG=AH∠∠AGH=∠AHG∠∠AGB=∠AHD∠在△ABG 和△ADH 中{∠AGB =∠AHD∠BAG =∠DAH AG =AH∠△ABG≌△ADH∠AB =AD∠▱ABCD 是菱形;(2)①解:∠AD∥BC∠△ADG ∽△EBG∠AD BE =AG EG∠AG =2,GE =1∠AD BE =AG EG =2∠在菱形ABCD 中 AB =AD∠BE AB =12 ∠AE ⊥BC∠sin∠BAE =BE AB =12; ②∠sin∠BAE =12∠∠BAE =30°∠cos∠BAE =cos30°=AE AB =√32∠AB =2√3=BC∠S ▱ABCD =BC ×AE =2√3×3=6√3.5.(1)证明:∵ CE ⊥AD ∠ACB =90°∴∠CED =∠ACB =90°∵∠CDE +∠DCE =90°,∠DCE +∠ACE =90°∴∠ACE =∠CDE∴△CDE∽△ADC∴CD AD =DE CD∴ CD 2=ED ⋅AD ;(2)解:∵D为BC的中点∴BD=CD∵CD2=ED⋅AD∴BD2=ED⋅AD∴BDAD =DEBD∵∠ADB=∠ADB∴△ABD∽△BED∴∠ABD=∠BED∴∠AEF=∠BED=∠ABD ∵∠AEF+∠CEF=90°∴sin∠CEF=cos∠ABD∵∠ACB=90°ACBC =23设AC=2k,BC=3k∴AB=√AC2+BC2=√13k∴cos∠ABD=BCAB =√13k=3√1313∴sin∠CEF=3√1313.6.解:过点O作OD⊥BC交BC的延长线于点D过点O作OE⊥AB垂足为E如图所示:由题意得:AO=8×5=40米OC=4×5=20米OE=BD OE∥BD∴∠EOC=∠OCD=45°∵∠AOC=75°∴∠AOE=∠AOC−∠EOC=30°在Rt△OCD中CD=OC⋅cos45°=20×√22=10√2米在Rt△AOE中OE=AO⋅cos30°=40×√32=20√3米∴OE=BD=20√3米∴BC=BD−CD=20√3−10√2米∴小李到古塔的水平距离即BC的长为20√3−10√2米.7.解:如图过点C作CE⊥AB于点E过点P作PF⊥CE于点F过点A作AG⊥PF于点G则四边形BECD和四边形AEFG都是矩形∴AE=FG BE=CD.在Rt△APG中由题意知∠PAG=37°,AP=10米∠PG=sin∠PAG⋅AP=sin37°×10≈0.60×10=6(米)在Rt△PCF中由题意知∠PCF=53.5°,PC=80米∠PF=sin∠PCF⋅PC=sin53.5°×80≈0.80×80=64(米)∴AB=AE+BE=FG+CD=PF−PG+CD=64−6+1.8=59.8(米).答:小山AB的高度约为59.8米.8.(1)解:∠凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∠DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∠由题意得四边形NFDE是矩形∠FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∠FD=MF=(x−0.15)m∠NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∠tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.9.(1)解:过点C作CM⊥AB于点M∠甲货轮沿A港的东北方向航行40海里到达D港再沿东南方向航行一定距离到达C港∠∠ADC=90°∠DAC=∠DCA=45°AD=40海里∠AD=CD=40海里∠AC=√AD2+DC2=40√2海里∠乙货轮沿A港的南偏东60°方向航行后到达B港再沿北偏西15°方向航行一定距离到达C港.∠∠CAM=∠ABN=30°∠CBN=90°−15°=75°∠∠ABC=∠CBN−∠ABN=45°在Rt△ACM中∠CAM=30°∴CM=12AC=40√2×12=20√2(海里)AM=AC⋅cos30°=20√6(海里)在Rt△BCM中∠ABC=45°∴CB=CMsin45°=40(海里)BM=CM=20√2海里∴B C两港之间的距离约为40海里;(2)解:乙货轮先到达C港理由如下:∠甲货轮航行的路程=AD+DC=40+40=80(海里)∠甲货轮航行的时间=8020=4(小时)∠乙货轮航行的路程=AB+BC=20√6+20√2+40(海里)∠乙货轮航行的时间=20√6+20√2+4030=2√6+2√2+43≈3.91(小时)∵3.91<4∴乙货轮先到达C港.10.(1)解:过B作BL⊥DE于L交AN于N过作EK⊥AN于K过C作CM⊥DE于M∵点E在点A的西南方向∴∠EAK=45°∴△AEK是等腰直角三角形∴EK=AK=√22AE=√22×1300≈919.38(米)∵∠BAN=30°∠ANB=90°∴BN=12AB=12×1800=900(米)∵DE∥BC CM⊥DE BL⊥DE EK⊥AN NL⊥DE ∴四边形ELNK BCML是矩形∴BC=BL NL=EK EL=KN ML=BC∵BL=NB+NL=900+919.38=1819.38(米)∴MC=1819.38米∵∠MCD=45°∴△MCD是等腰直角三角形∴CD=√2MC≈2573(米);(2)解:滑雪道线路①全程=AB+BC+CD=1800+2000+2572.6=6372.6(米)∴小外滑行的时间是6572.6÷5≈1274.5(秒)≈21.2(分钟)∵小外途经的每个休息区都各休息了5分钟∴小外在滑雪道线路①共用时21.2+5×2=31.2(分钟)∵AN=√3NB≈1558.8(米)∴NK=AN−AK=1558.8−919.38=639.42(米)∴EL=KN=639.42米∴ME=ML+EL=2000+639.42=2639.42(米)∵△CDM是等腰直角三角形∴MD=MC=1819.9米∴滑雪道线路②全程=AE+ME+MD=1300+2639.42+1819.9=5759.32(米)∴小外的爸爸滑行的时间是5759.32÷3≈1919.8(秒)≈32.0(分钟)∵小外的把爸爸比小外又晚出发2分钟∴小外先到达终点D.11.解:(1)目标P的仰角是图②中的∠POC目标P的仰角与图②中的∠NOG相等证明∵∠COG=90∘∠AON=90∘∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON;(2)解:由题意可得O1O2=2O1E=O2F=DH=1.5米由图可得tanβ=PDO2D tanα=PDO1D∴O2D=PDtanβO1D=PDtanα∵O1O2=O2D−O1D=2∴2=PDtanβ−PDtanα∴PD=2tanαtanβtanα−tanβ∴PH=PD+DH=2tan45∘tan30∘tan45∘−tan30∘+1.5=(52+√3)米.故PH的值为(52+√3)米.12.(1)解:∵AB=2∴点A的横坐标为−2∵A点在反比例函数y=−8x的图象上∴y=−8−2=4∴A(−2,4).(2)解:∵A(−2,4)∠AB=2BO=4∠AO=√22+42=2√5∠CD垂直平分AO∠OC=12AO=√5CD⊥AO∠∠DOE=90°∠∠1+∠3=90°=∠2+∠3∠∠1=∠2∠sin∠1=sin∠2∠OC OE =ABOA即:√5OE=2√5解得:OE=5.13.(1)解:作DE⊥BC于E AF⊥BC于F=35设AF=x海里由题意得BC=30×76∠∠BAF=45°,∠ACF=53°x∠BF=AF=x,FC=AF÷tan53°=34x=35∠x+34解得x=20x=15∠34∠AC=√AF2+CF2=25∠CD=AD−AC=75∠DE=CD⋅sin∠ECD=CD⋅sin53°=60答:AC的距离为25海里点D到直线BC的距离为60海里;(2)能理由如下:设1小时后海警船到达点G菲律宾渔船到达点H则DG=40CH=30由(1)知CE=CD⋅cos53°=45∠HE=CE−CH=15GE=DE−DG=20由勾股定理得:GH=√HE2+GE2=25故可以侦测到菲律宾渔船.14.解:如图由题意得AB⊥BD CD⊥BD∴∠BEA+∠BAE=90°∠ECD+∠DEC=90°∵∠MEN=90°∴∠BEA+∠DEC=90°∴∠BAE=∠DEC∴tan∠BAE=tan∠DEC即BEAB =CDED设AB=CD=x可得9x =x36解得x=18经检验x=18是原方程的解答:两栋楼的高度为18m.15.(1)解:如图所示:过点D作DH⊥FE于点H∠i=DHEH =√3∠设DH=xm EH=√3xm∠∠DHE=90°,DE=2.4m∠DH2+HE2=DE2∠x2+(√3x)2=2.42解得:x=±1.2(负值舍去)∠CF=DH=1.2m∠坡面DE的铅直高度为1.2m;(2)设AM=ym∠∠AMI=90°,∠AIM=45°∠∠MAI=45°∠∠MAI=∠AIM∠MI=AM=ym∠∠AHM=35°,∠AMH=90°∠tan35°=AMMH≈0.700∠yMH∠MH≈y0.7∠MH−MI=8.1−y=8.1∠y0.7∠y=18.9∠AM=18.9m∠AF=AM+MF=18.9+1.64=20.54(m)∠AC=AF−CF=20.54−1.2=19.34(m).∠纪念碑的实际高度AC为19.34m.16.(1)解:如图2 过C作CM⊥AB垂足为M又过D作DN⊥AB垂足为N过C作CG⊥DN垂足为G则∠DCG=60°.则四边形CMNG为矩形CM=NG∵AC=BC=60cm AC、CD所在直线与地面的夹角分别为30°、60°∴∠A=∠B=30°AC=30cm.则在Rt△AMC中CM=12∵在Rt△CGD中sin∠DCG=DGCD=50cmCD=25√3(cm).∴DG=CD⋅sin∠DCG=50⋅sin60°=50×√32又GN=CM=30cm前后车轮半径均为5cm∴扶手前端D到地面的距离为DG+GN+5=25√3+30+5=(35+25√3)(cm);(2)解:∵EF∥CG∥AB∴∠EFH=∠DCG=60°∵CD=50cm椅子的支点H到点C的距离为10cm DF=20cm∴FH=20cm如图2 过E作EQ⊥FH垂足为Q设FQ=x在Rt△EQF中∠EFH=60°∴EF=2FQ=2x EQ=√3x在Rt△EQH中∠EHD=45°∴HQ=EQ=√3x∵HQ+FQ=FH=20cm∴√3x+x=20解得x=10√3−10.∴EF=2(10√3−10)=20√3−20(cm).答:坐板EF的宽度为(20√3−20)cm.17.(1)解:如图所示延长CD交AB于点F由题意得:CD=MN=132DF=BN∠AFD=90°CM=DN=BF=1.6设DF=x则CF=x+132在Rt△ADF中∠ADF=45°∴AF=x在Rt△ACF中∠ACE=30°tan30°=AFCF =xx+132≈0.58∴x≈182经检验x≈182是原方程的解且符合题意∴AB=AF+BF=182+1.6≈184米∴桥塔的高度约为184米(2)解:延长QG交AB于点M由题意可知QM⊥AB AB=184∵∠AQG=30°∠BQG=60°∠A=60°∠B=30°设AM=y则BM=184−ytan∠A=tan60°=QMAM≈1.73tan∠B=tan30°=QMBM≈0.58tan30°tan60°=AMBM=y184−y=0.581.73解得:y≈46.2∴QM=AM·tan60°=46.2×√3=80故Q处与AB的水平距离约为80米18.(1)解:∠sin30°=12sin60°=√32∠sin2α+sin2β=(12)2+(√32)2=1结论成立;(2)解:成立.理由如下:在Rt△ABC中sinα=ac sinβ=bc且a2+b2=c2∠sin2α+sin2β=(ac )2+(bc)2=a2+b2c2=c2c2=1故结论成立;(3)解:tanα=sinαcosα理由如下:在Rt△ABC中sinα=ac cosα=bctanα=ab∠tanα=acbc=sinαcosα∠tanα=sinαcosα.19.(1)解:由题意可知:asinA =bsinB=csinC∠∠A=60°∠C=45°BC=30∠BC sin60°=ABsin45°即√32=√22∠AB=10√6故答案为:10√6.(2)解:如图:由题意可知∠APE=60°,∠BPF=45°AB∥EF AP=50海里asinA =bsinB=csinC∠∠A=∠APE=60°,∠B=∠BPF=45°∠BP sin60°=APsin45°即√32=√22∠BP=25√6∠B处与灯塔的距离为25√6海里故答案为:25√6.(3)解:如图:由题可知PA=50海里PC⊥AB∠∠EPC=∠FPC=90°∠∠APE=60°∠BPF=45°∠∠APC=30°∠bPC=45°∠∠APB=∠APC+∠BPC=75°在Rt△APC中AC=12PA=25海里PC=√32PA=25√3海里在Rt△BPC中BC=PC=25√3海里∠AB=AC+BC=(25+25√3)海里由前面定理可知:ABsin∠APB =PAsin∠B则25+25√3sin75°=50sin45°∠sin75°=25+25√350×√22=√2+√64∠75°的正弦值√2+√64.20.(1)解:①∵四边形ABCD为正方形BD AC是对角线∴∠PDB=∠QCB=∠DBC=45°∴∠QBC+∠DBQ=45°∵∠PBQ=45°∴∠PBD+∠DBQ=45°∴∠QBC=∠PBD∴△PDB∽△QCB;②∵四边形ABCD为正方形∴BC=DC∠BCD=90°∴BD=√BC2+DC2=√2BC∵△PDB∽△QCB∴DPCQ =BDBC=√2BCBC=√2;故答案为:√2;(2)解:连接BD交AC于点O∵四边形ABCD为矩形∴AD∥BC OA=OD∠DAB=90°∴∠ACB=∠OAD=∠ODA=∠OBC∵∠PBQ=∠ACB∴∠PBQ=∠OBC∴∠PBD+∠DBQ=∠QBC+∠DBQ∴∠PBD=∠QBC ∴△PDB∽△QCB∴QCPD =BCBD∵AB=12AD=5∴BD=√AB2+AD2=13∵BC=AD=5DP=3∴QC3=513∴QC=1513;(3)解:连接BD交AC于点O∵四边形ABCD为菱形AC BD是对角线∴AC⊥BD∴AO=OC=12AC=3∴BO=√BC2−OC2=√52−32=4∴tan∠DBC=OCOB =34∵tan∠PBQ=34∴∠DBC=∠PBQ∴∠DBQ+∠PBD=∠DBQ+∠QBC ∴∠PBD=∠QBC∵DH⊥BH AC⊥BD∴∠DBC+∠ACB=90°∵四边形ABCD为菱形BD是对角线∴∠ABD=∠CBD∴∠HDB=∠ACB∴△PDB∽△QCB∴QCPD =BCBD∵AC=6∴OC=OA=12AC=3∵AB=BC=DC=5∴OB=OD=4即BD=8∵12AC⋅BD=AB⋅DH∴5DH=12×6×8∴DH=245∵PH=85∴DP=DH−PH=245−85=165∴165QC=85∴QC=2.。
北师大版九年级数学下册第二章《二次函数》练习题(含答案)
北师大版九年级数学下册第二章《二次函数》练习题(含答案)(满分:100分 时间:100分钟)一、选择题(本大题共10小题;每小题3分;共30分) 1.下列函数中;不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .12(x -1)(x +4) D .y =(x -2)2-x 2答案:D2.抛物线y =x 2+3与y 轴的交点坐标为( )A .(3;0)B .(0;3)C .(0;3)D .(3;0)答案:B3.把二次函数y =-14x 2-x +3用配方法化成y =a (x -h )2+k 的形式( )A .y =-14(x -2)2+2B .y =14(x -2)2+4C .y =-14(x +2)2+4D .y =21122x ⎛⎫- ⎪⎝⎭+3答案:C4.将抛物线y =3x 2向左平移2个单位;再向下平移1个单位;所得抛物线为( ) A .y =3(x -2)2-1 B .y =3(x -2)2+1 C .y =3(x +2)2-1 D .y =3(x +2)2+1 答案:C5.对抛物线y =-x 2+2x -3而言;下列结论正确的是( ) A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1;-2) 答案:D6.二次函数y =2x 2+mx +8的图象如图所示;则m 的值是( ) A .-8 B .8 C .±8 D .6 答案:B6题图 8题图 9题图7.点P 1(﹣1;y 1);P 2(3;y 2);P 3(5;y 3)均在二次函数y =﹣x 2+2x +c 的图象上;则y 1;y 2;y 3的大小关系是( )A .y 1=y 2>y 3B .y 1>y 2>y 3C .y 3>y 2>y 1D .y 3>y 1=y 2答案:A8.已知二次函数y =ax 2+bx +c (a <0)的图象如图所示;当-5≤x ≤0时;下列说法正确的是( )A .有最小值-5、最大值0B .有最小值-3、最大值6C .有最小值0、最大值6D .有最小值2、最大值6 答案:B9.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示;下列结论正确的是( )A .a <0B .b 2-4ac <0C .当-1<x <3时;y >0D .-b2a=1答案:D10.在同一平面直角坐标系内;一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A B C D答案:C二、填空题(本大题共8小题;每小题3分;共24分)11.若函数y =(m -3)2213m m x +-是二次函数;则m =______. 答案:-512.抛物线y =2x 2-bx +3的对称轴是直线x =1;则b 的值为________. 答案:413.如果抛物线y =(m +1)2x 2+x +m 2﹣1经过原点;那么m 的值等于 . 答案:114.已知抛物线y =x 2﹣6x +m 与x 轴仅有一个公共点;则m 的值为 . 答案:915.二次函数的部分图象如图所示;则使y >0的x 的取值范围是 . 答案:﹣1<x <315题图 16提图 17题图 18题图16.如图所示;已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0);B (3,0)两点;与y 轴交于点C (0,3);则二次函数的图象的顶点坐标是________.答案:(2;-1)17.如图;在平面直角坐标系中;抛物线y =﹣23(x ﹣3)2+k 经过坐标原点O ;与x 轴的另一个交点为A .过抛物线的顶点B 分别作BC ⊥x 轴于C 、BD ⊥y 轴于D ;则图中阴影部分图形的面积和为 . 答案:1818.如图;在正方形ABCD 中;E 为BC 边上的点;F 为CD 边上的点;且AE =AF ;AB =4;设EC =x ;△AEF 的面积为y ;则y 与x 之间的函数关系式是__________.答案:y =-12x 2+4x三、解答题(本大题共5小题;共46分)19.求经过A (1,4);B (-2,1)两点;对称轴为x =-1的抛物线的解析式. 解:∵对称轴为x =-1;∴设其解析式为y =a (x +1)2+k (a ≠0). ∵抛物线过A (1,4);B (-2,1);∴⎩⎪⎨⎪⎧4=a 1+12+k ;1=a -2+12+k.解得⎩⎪⎨⎪⎧a =1;k =0.∴y =(x +1)2=x 2+2x +1.20.已知;在同一平面直角坐标系中;反比例函数y =5x与二次函数y =-x 2+2x +c 的图象交于点A (-1;m ).(1)求m ;c 的值;(2)求二次函数图象的对称轴和顶点坐标.解:(1)∵点A 在函数y =5x的图象上;∴m =5-1=-5.∴点A 坐标为(-1;-5). ∵点A 在二次函数图象上; ∴-1-2+c =-5;即c =-2.(2)∵二次函数的解析式为y =-x 2+2x -2; ∴y =-x 2+2x -2=-(x -1)2-1.∴对称轴为直线x =1;顶点坐标为(1;-1).21.下图是一座拱桥的截面图;拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m ;拱桥的跨度为10cm .桥洞与水面的最大距离是5m .桥洞两侧壁上各有一盏距离水面4m 的景观灯.现把拱桥的截面图放在平面直角坐标系中; (1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.解:(1)抛物线的顶点坐标为(5;5);与y 轴交点坐标是(0;1); 设抛物线的解析式是y =a (x ﹣5)2+5; 把(0;1)代入y =a (x ﹣5)2+5;得a =﹣425; ∴y =﹣425(x ﹣5)2+5(0≤x ≤10);(2)由已知得两景观灯的纵坐标都是4;∴4=﹣425(x﹣5)2+5;∴425(x﹣5)2=1;∴x1=152;x2=52;∴两景观灯间的距离为152﹣52=5(米).22.元旦期间;某宾馆有50个房间供游客居住;当每个房间每天的定价为180元时;房间会全部住满;当每个房间每天的定价每增加10元时;就会有一个房间空闲.如果游客居住房间;宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时;求宾馆每天的利润;(2)房价定为多少时;宾馆每天的利润最大?最大利润是多少?解:(1)若房价定为200元时;宾馆每天的利润为:(200﹣20)×(50﹣2)=8640(元);答:宾馆每天的利润为8640;(2)设总利润为y元;则y=(50﹣18010x)(x﹣20)=﹣110x2+70x+1360=﹣110(x﹣350)2+10890故房价定为350时;宾馆每天的利润最大;最大利润是10890元.23.如图;已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧);与y轴交于点B;且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上;点P位于第二象限;过P作PQ⊥AB;垂足为Q.已知PQ=;求点P的坐标.解:(1)∵二次函数y=﹣x2+bx+3的图象与y轴交于点B;且OA=OB;∴点B的坐标为(0;3);∴OB=OA=3;∴点A的坐标为(﹣3;0);∴0=﹣(﹣3)2+b×(﹣3)+3;解得;b=﹣2;∴y=﹣x2﹣2x+3=﹣(x+3)(x﹣1);∴当y=0时;x1=﹣3;x2=1;∴点C的坐标为(1;0);∴AC=1﹣(﹣3)=4;即线段AC的长是4;(2)∵点A(﹣3;0);点B(3;0);∴直线AB的函数解析式为y=x+3;过点P作PD∥y轴交直线AB于点D;设点P的坐标为(m;﹣m2﹣2m+3);则点D的坐标为(m;m+3);∴PD=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m;∵PD∥y轴;∠ABO=45°;∴∠PDQ=∠ABO=45°;又∵PQ⊥AB;PQ=2;∴△PDQ是等腰直角三角形;∴PD=2sin4522PQ=︒=2;∴﹣m2﹣3m=2;解得;m1=﹣1;m2=﹣2;当m=﹣1时;﹣m2﹣2m+3=4;当m=﹣2时;﹣m2﹣2m+3=3;∴点P的坐标为(﹣2;3)或(﹣1;4).24.如图;在平面直角坐标系中;顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A 和x轴上的点B;AO=OB=2;∠AOB=120°.(1)求该抛物线的表达式;(2)联结AM;求S△AOM;(3)将抛物线C1向上平移得到抛物线C2;抛物线C2与x轴分别交于点E、F(点E在点F 的左侧);如果△MBF与△AOM相似;求所有符合条件的抛物线C2的表达式.解:(1)∵抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B;AO=OB=2;∠AOB =120°;∴点B (2;0);点A (﹣1;﹣);∴220223(1)(1)a b a b ⎧=⨯+⨯⎪⎨-=⨯-+⨯-⎪⎩;得333a b ⎧=⎪⎪⎨⎪=⎪⎩;∴该抛物线的解析式为y =2232333(1)3333x x x -+=--+; (2)连接MO ;AM ;AM 与y 轴交于点D ; ∵y =22323331)3333x x x -+=--+; ∴点M 的坐标为(1;33); 设过点A (﹣13;M (1;33)的直线解析式为y =mx +n ;333m n m n ⎧-+=-⎪⎨+=⎪⎩;得2333m n ⎧=⎪⎪⎨⎪=-⎪⎩;∴直线AM 的函数解析式为y 23x 3当x =0时;y 3∴点D 的坐标为(0;﹣33);∴OD =33; ∴S △AOM =S △AOD +S △MOD =33;(3)①当△AOM ∽△FBM 时;OM OABM BF=; ∵OA =2;点O (0;0);点M (13;点B (2;0); ∴OM =233;BM =233;∴OM =BM ;解得;BF =OA =2;∴点F 的坐标为(4;0); 设抛物线C 2的函数解析式为:y =23(1)3x --+c ; ∵点F (4;0)在抛物线C 2上;∴c =33 ∴抛物线C 2的函数解析式为:y =23(1)333x --+; ②当△AOM ∽△MBF 时;OM OABF BM=; ∵OA =2;点O (0;0);点M (1;33);点B (2;0); ∴OM =233;BM =233;∴BF =23; ∴点F 的坐标为(83;0); 设抛物线C 2的函数解析式为:y =23(1)3x --+d ; ∵点F (83;0)在抛物线C 2上;∴d 253;∴抛物线C 2的函数解析式为:y =231)x -253.。
新版北师大初三数学九年级(下册)第三章圆练习题(分节练习)【含答案】
新版北师大初中数学九〔下〕第三章圆分节练习第1节圆01、【基础题】已知⊙O的面积为25 . 〔1〕假设PO=5.5,则点P在_____;〔2〕假设PO=4,则点P在_____;〔3〕假设PO=_____,则点P在⊙O上.01.1【综合Ⅰ】如左以下图,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以点C为圆心,5cm为半径作圆,则A、B、C、M四点在圆外的有_______,在圆上的有_______,在圆内的有_______.01.2、【综合Ⅲ】如右上图,菱形ABCD的对角线AC和BD相交于点O,点E、F、G、H分别为AB、BC、CD、DA的中点,那么E、F、G、H是否在同一个圆上?说明理由.01.3、【综合Ⅲ】假设⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),则点P的位置是〔〕A、在⊙A内B、在⊙A上C、在⊙A外D、不能确定02、【综合Ⅰ】设AB=3 cm,作图说明满足以下要求的图形:〔1〕到点A和点B的距离都等于2 cm的所有点组成的图形;〔2〕到点A和点B的距离都小于2 cm的所有点组成的图形;〔3〕到点A的距离小于2 cm,且到点B的距离大于2 cm的所有点组成的图形.03、【提高】海军部队在某灯塔A的周围进行爆破作业,A的周围3 km的水域为危险水域,有一渔船误入离灯塔A有2 km远的B处,为了尽快驶离危险区域,该船应往哪个方向航行?请给予证明.03.1【提高】已知点P不在⊙O上,且点P到⊙O上的点的最小距离是5,最大距离是7,求⊙O的半径.第2节圆的对称性04、【基础题】如左以下图,在⊙O中,⌒AC =⌒BD ,∠1=30°,那么∠2=_____.04.1、【基础题】如右上图,在⊙O中,弧AB等于弧AC,∠A=30°,则∠B=_____.05、【综合Ⅰ】如左以下图,点A、B、C、D是⊙O上的四点,AB=DC,那么△ABC与△DCB全等吗?为什么?05.2【基础】如左以下图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且⌒AD =⌒CE,那么BE 和CE 的大小有什么关系?为什么?05.3【综合Ⅰ】 如右上图,AB 是⊙O 的直径,OD ∥AC ,那么⌒CD 与⌒BD的大小有什么关系?为什么? 06、【综合Ⅰ】如左以下图,A 、B 是⊙O 上两点,∠AOB =120°,C 是⌒AB的中点,试确定四边形OACB 的形状.06.1、【综合Ⅱ】如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD =______.* 第3节 垂径定理07、【基础题】如左以下图,已知⊙O 中,OC ⊥弦AB 于C ,AB =8,OC =3,则⊙O 的半径等于______.07.1、【基础题】如右上图,已知⊙O 的半径为30 mm ,弦AB =36 mm ,求点O 到AB 的距离及∠OAB 的余弦值.08、【综合Ⅱ】如左以下图,有一圆弧形拱桥,拱的跨度AB=16 m ,拱高CD=4 m ,那么拱形的半径是____m.08.1、【综合Ⅱ】“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材埋在壁中,不知大小,以D C BA09、【综合Ⅰ】如右图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.〔1〕如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?〔2〕如果OE =OF ,那么AB 与CD 的大小有什么关系?为什么?10、【综合Ⅰ】 已知⊙O 的半径为5 cm ,弦AB ∥弦CD ,AB =6 cm ,CD =8 cm ,试求AB 与CD 间的距离.10.1、【综合Ⅱ】 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?11、【综合Ⅲ】如右图,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,假设AC =2 cm ,则⊙O 的半径为______ cm .第4节 圆周角和圆心角的关系〔包括圆内接四边形〕12、【基础题】如左以下图,在⊙O 中,已知∠BOC =100°,则∠BAC 的度数是_____°12.1、【基础题】如右上图,在⊙O 中,∠BAC =25°,则∠BOC =_____°12.2、【综合Ⅰ】 如图,∠A 是⊙O 的圆周角,∠A =40°,求∠OBC 的度数.13、【基础题】如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD 〔弧BCD 所对的圆心角〕和∠BAD 的大小.C B A OD C B A O 13.1、【基础题】左以下图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是_____.13.2【基础题】如右上图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,假设∠BAD =105°,则∠DCE 是_____°.13.3【综合Ⅰ】在圆内接四边形ABCD 中,对角∠A 与∠C 的度数之比是4:5,求∠C 的度数.13.4、【综合Ⅱ】如左以下图,圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且∠E =40°,∠F =60°,求∠A 的度数.14、【基础题】如右上图,⊙O 的直径AB =10 cm ,C 为⊙O 上的一点,∠B =30°,求AC 的长.14.1、【基础题】如左以下图,AB 是⊙O 的直径,∠C =15°,求∠BAD 的度数.14.2、【综合Ⅰ】如右上图,⊙O 的弦AB =16,点C 在⊙O 上,且sin C =54,求⊙O 的半径的长.14.3、【中考题】A 、B 是⊙O 上的两个定点,P 是⊙O 上的动点〔P 不与A 、B 重合〕,我们称∠APB 是⊙O 上关于点A 、B 的滑动角.〔1〕假设AB 是⊙O 的直径,则∠APB 是多少度?〔2〕假设⊙O 的半径是1,AB =2,则∠APB 是多少度?15、【基础题】平行四边形的四个顶点在同一圆上,则该平行四边形一定是〔 〕16、【提高题】如右图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 的长是一元二次方程01272=+-x x 的两根,求tan ∠DPB.第5节 确定圆的条件17、【基础题】分别作出下面三个三角形的外接圆,并指出它们外心的位置有什么特点17.1、【基础题】如左以下图,MN 所在的直线垂直平分线段AB ,利用这样的工具,最少使用多少次,就可以找到圆形工件的圆心?为什么?17.2、【基础题】如右上图,A 、B 、C 三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置〔尺规作图,不写作法,保留作图痕迹〕.18、【综合Ⅰ】 在△ABC 中,AC =10,BC =8,AB =6,求△ABC 外接圆的半径18.1、【综合Ⅰ】 等边三角形的边长为a ,求这个三角形外接圆的面积.第6节 直线和圆的位置关系19、【基础题】 如右图,已知Rt △ABC 的斜边AB =8 cm ,AC =4 cm.〔1〕以点C 为圆心作圆,当半径为多长时,AB 与⊙C 相切?〔2〕以点C 为圆心,分别以2 cm 和4 cm 的长为半径作两个圆,这两个圆与AB 分别有怎样的位置关系?19.1【基础题】直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,求r 的取值范围.19.2、【综合Ⅰ】在Rt △ABC 中,∠C =90°,∠B =30°,O 是AB 上一点,OA =m ,⊙O 的半径为r ,当r 与m 满足怎样的关系时, 〔1〕AC 与⊙O 相交? 〔2〕AC 与⊙O 相切? 〔3〕AC 与⊙O 相离?20、【基础题】如左以下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,假设∠A=25°,则∠D=______.20.1【基础题】如右上图,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.20.2、【综合Ⅰ】如左以下图,P A、PB分别与⊙O相切于点A、B,∠P=70°,则∠C=( )A.70°B.55°C.110°D.140°20.3、【综合Ⅱ】如右上图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.〔1〕求证:CA=CD;〔2〕求⊙O的半径.20.4【综合Ⅱ】如右图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC,求证:AD·BC=OB·BD.21、【中考题,2014陕西23题】〔此题总分值8分〕如右以下图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1) 求证:AD平分∠BAC(2) 求AC的长22、【基础题】如左以下图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,那么直线AB是⊙O的切线吗?为什么?22.1、【中考题,2013年孝感市23题,10分】如右上图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.〔1〕求证:PA是⊙O的切线;〔2〕假设PD=,求⊙O的直径.23、【基础题】如图,已知锐角三角形、直角三角形和钝角三角形,分别作出它们的内切圆. 请问,三角形的内心是否都在三角形的内部?23.1、【基础题】等边三角形的边长为a,求这个三角形内切圆的面积.23.2、【综合Ⅰ】已知在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=__ _ .24、【综合Ⅰ】如左以下图,在△ABC中,∠A=68°,点I是内心,求∠I的度数.24.1、【综合Ⅰ】如右上图,在四边形ABCD中,∠B=60°,∠DCB=80°,∠D=100°,假设P、Q两点分别为三角形ABC和三角形ACD的内心,那么∠PAQ的度数是多少?24.2、【综合Ⅲ】在Rt△ABC中,∠C=90°,AC=8 cm,BC=6 cm,求其内心和外心之间的距离.*第7节切线长定理25、【基础题】如图,PA、PB是⊙O的两条切线,A、B是切点. 求证:PA=PB25.1、【基础题】已知⊙O的半径为3 cm,点P和圆心O的距离为6 cm,过点P画⊙O的两条切线,求这两条切线的切线长.25.2、【综合Ⅰ】如左以下图,PA和PB是⊙O的两条切线,A、B是切点,C是弧AB上任意一点,过点C画⊙O的切线,分别交PA和PB于D、E两点. 已知PA=PB=5 cm,求△PDE的周长.25.3、【综合Ⅲ】如右上图,PA和PB是⊙O的两条切线,A、B为切点,∠P=40°,点D在AB上,点E和点F分别在PB和PA上,且AD=BE,BD=AF,求∠EDF的度数.26、【综合Ⅰ】如左以下图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O是△ABC的内切圆,切点分别为D、E、F,求⊙O的半径. 〔利用切线长定理来解题〕26.1、【综合Ⅲ】如右上图,⊙O是△ABC的内切圆,D、E、F为切点,且AB=9 cm,BC=14 cm,CA=13 cm,求AF、BD、CE的长.26.2、【综合Ⅲ】如图,在四边形ABCD中,AB=AD=6 cm,CB=CD=8 cm,且∠B=90°,该四边形存在内切圆吗?如果存在,请计算内切圆的半径.第8节圆内接正多边形27、【基础题】如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.27.1、【综合Ⅱ】有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为______.27.2、【综合Ⅱ】如右图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE,求这个正六边形的面积.27.3、【基础题】请求出半径为6的圆内接正三角形的边长和边心距.28、【基础题】已知正方形的边长是a,其内切圆的半径为r,外接圆的半径为R,则r∶R∶a=______. 28.1、【基础题】请利用尺规作一个已知圆的内接正四边形.28.2、【综合Ⅰ】请利用尺规作一个已知圆的内接正八边形.29、【综合Ⅲ】如图,点M、N分别是⊙O的内接正三角形ABC、内接正方形ABCD、内接正五边形ABCDE、……、内接正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的大小是______,在图3中,∠MON的大小是______;〔3〕根据图n,请说明∠MON的度数与正n边形的边数n之间的关系〔直接写出答案〕.第9节弧长及扇形的面积〔含圆锥侧面积题目〕30、【中考题,2014年云南省第7题3分】已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为〔〕A、B.2πC.3πD.12π30.1、【中考题,2014四川自贡第8题4分】一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为〔〕30.2、【基础题】已知圆上一段弧长为4 cm,它所对的圆心角为100°,则该圆的半径是_____.cm.31、【中考题,2014成都,3分】在圆心角为120°的扇形AOB中,半径OA=6 cm,则扇形AOB的面积是________2 31.1、【中考题,2014山东东营第5题3分】如左以下图,已知扇形的圆心角为60°,半径为3,则图中弓形〔阴影〕面积是_________.31.2、【中考题,2014·浙江金华第10题4分】如右上图,一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,两个正方形的边长都为1,则扇形纸板和圆形纸板的面积比是〔〕A.5:4B.5:2C.5:2D.5:2cm.32、【中考题,2014杭州第2题3分】左以下图,已知一个圆锥体的三视图如下图,则这个圆锥的侧面积为______233、【综合Ⅲ】如右上图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是________. 33.1、【中考题,2014山东泰安第19题3分】如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OBcm.为直径作半圆,则图中阴影部分的面积为________233.2、【中考题,2014福建泉州第17题4分】如右图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:〔1〕AB的长为_____ 米;〔2〕用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______ 米.新版北师大初中数学九〔下〕第三章圆分节练习答案第1节答案01、【答案】〔1〕圆外;〔2〕圆内;〔3〕501.1、【答案】在圆外的有点B,在圆上的有点M,在圆内的有点A和点C.01.2【答案】E、F、G、H四个点共圆.证明:连接OE、OF、OG、OH∵四边形ABCD是菱形∴AB=BC=CD=DA,DB⊥AC∵E、F、G、H分别是各边的中点∴1111,,,2222OE AB OF BC OG CD OH AD====〔直角三角形斜边上的中线等于斜边的一半〕∴OE OF OG OH===∴E、F、G、H四个点都在以O为圆心、OE长为半径的圆上.01.3【答案】选A02、【答案】〔1〕如图1,所求图形即P、Q两点;〔2〕如图2,所求图形为阴影部分〔不包括阴影的边界〕;〔3〕如图3,所求图形为阴影部分〔不包括阴影的边界〕.03、【答案】往射线AB方向航行【证明】如图,设航线AB交⊙A于点C,在⊙A上任取一点D〔不包括C关于A的对称点〕连接AD、BD;在△ABD中,∵AB+BD>AD,AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.答:应沿AB的方向航行.03.1【答案】当点P在圆外时,半径是1;当点P在圆内时,半径是6.第2节答案04、【答案】30°04.1【答案】75°05、【答案】全等,可先证AC=DB.05.1、【提示】证弧CD和弧AB相等.05.2【答案】相等.【提示】先证弧BE和弧AD相等.05.3、【答案】相等【提示】连接OC06、【答案】四边形OACB是菱形【证明】连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形06.1、【答案】120°【提示】连接OC、OD,可证△BOC和△COD都是等边三角形.* 第3节答案07、【答案】半径等于5.【提示】如右图,利用垂径定理和勾股定理来算半径.07.1、【答案】点O到AB的距离是24 mm,∠OAB的余弦值是0.608、【答案】10 m.【提示】 在如图的圆弧形中,CD 是拱高,根据圆的对称性可知CD 垂直平分AB ,则CD 所在直线过圆心,延长CD ,作圆心O ,并且连接OB.设拱形的半径OB 为r ,则OD 为〔r -4〕,根据勾股定理可得24)-(r +28=2r ,解得r =10 m. 【总结】求圆的直径或半径常常过圆心作弦的垂线或连接圆心和弦的端点构造直角三角形,再根据勾股定理来求出半径. 有些题目不能直接求出半径则需列方程来解决.08.1【答案】 直径CD 是26寸.【解析】09、【提示】〔1〕用HL 证明Rt △AOE 与Rt △COF 全等;〔2〕用HL 证明Rt △AOE 与Rt △COF 全等.10、【答案】 AB 与CD 间的距离为7 cm 或1 cm.【提示】 如图,假设AB 和CD 在圆心两侧,则可求出OE =3,OF =4,则AB 、CD 距离是7 cm ;假设AB 和CD 在圆心同侧,则距离是1 cm.10.1、【答案】 相等.【解析】如图示,过圆心O 作垂直于弦的直径EF ,由垂径定理得:弧AF=弧BF ,弧CF=弧DF ,用等量减等量差相等原理,弧AF-弧CF=弧BF-弧DF ,即弧AC=弧BD ,故结论成立.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.11、【答案】2【解析】第4节答案12、【答案】∠BAC的度数是50°.12.1、【答案】∠BOC=50°12.2、【答案】∠OBC=50°13、【答案】∠BOD=160°,∠BAD=80°13.1【答案】∠CBD 的度数是70°13.2【答案】∠DCE=105°13.3【答案】∠C=100°13.4【答案】∠A=40°14、【答案】AC=5 cm14.1、【答案】∠BAD的度数是75°14.2【答案】半径的长为10.【提示】连接AO,延长AO交⊙O于D,连接BD.14.3、【答案与解析】15、【答案】选C716、【答案】tan∠DPB=3【解析】第5节答案17、【答案】锐角三角形的外心在内部;直角三角形的外心在斜边中点;钝角三角形的外心在外部.17.1、【答案】最少使用两次17.2、【提示】连接AB、AC,分别作线段AB和AC的垂直平分线,两条垂直平分线的交点即为供水站的位置.18、【答案】 △ABC 外接圆的半径是5.18.1、【答案】 π312a 第6节 答案19、【答案】 〔1〕当半径长为32 cm 时,AB 与⊙C 相切.〔2〕当半径为2 cm 时,⊙C 与AB 相离;当半径为4 cm 时,⊙C 与AB 相交.19.1【答案】 5>r19.2【答案】 〔1〕m r 23> 〔2〕m r 23= 〔3〕m r 23<20、【答案】 40°20.1【答案】 PA =420.2、【答案】 选B20.3【答案】 〔1〕提示:证∠A =∠D =30°〔2〕半径是10.20.4【提示】 证明Rt △CBO ∽ Rt △BDA21、【答案】证明:〔1〕连接OD∵BD 是⊙O 的切线,D 为切点∴BC OD ⊥∵BD AC ⊥∴OD ∥AC∴∠ODA=∠CAD又∵OD=OA∴∠BAD=∠CAD∴AD 平分∠ABC(2)解:∵OD ∥AC , ∴ΔBOD ∽ΔBAC , ∴=, ∴=, ∴ AC =320 22、【提示】 连接OC ,证明OC ⊥AB22.1、【答案与解析】〔1〕证明:连接OA ,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC ,∴∠OAC=∠OCA=30°,又∵AP=AC ,∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°,∴OA ⊥PA , ∴PA 是⊙O 的切线.〔2〕在Rt △OAP 中,∵∠P=30°,∴PO=2OA=OD+PD ,又∵OA=OD ,∴PD=OA ,∵, ∴. ∴⊙O 的直径为.23、【答案】 都在内部23.1、【答案】 1212a23.2、【答案】 r =2.24、【答案】 ∠I =124°24.1、【答案】 ∠PAQ 的度数是60°24.2、【答案】 5 cm【解析】*第7节 答案25、【解析】3cm25.1、【答案】325.2、【答案】△PDE的周长是10 cm.25.3、【答案】∠EDF=70°26、【答案】⊙O的半径是426.1、【答案】AF=4 cm,BD=5 cm,CE=9 cm.【提示】设AE=AF=x,BF=BD=y,CE=CD=z2426.2、【答案】存在内切圆,内切圆半径是7第8节答案2.27、【答案】中心角是60°,边长是4,边心距是327.1、【答案】外接圆的半径为4627.2、【答案】正六边形的面积是36,边心距是3.27.3、【答案】边长是328、【答案】1∶2∶228.1、【提示】用直尺和圆规作两条互相垂直的直径,在圆周上得到四个点,依次连接这四个点,就得到圆的内接正四边形.28.2、【提示】如图,先作出两条互相垂直的直径,再作出两条直径所形成的直角的角平分线,即可在圆周上得到圆内接正八边形的顶点29、【答案】第9节答案30、【答案】根据弧长公式:l==3π,故选C.30.1、【答案】选B30.2、【答案】7.2 cm.31、【答案】12π2cm31.1、【答案】4332-π31.2【答案】选A 【解析】32、【答案】 π15 2cm33、【答案】 33π-【解析】33.1、【答案】 〔﹣1〕 cm 2 【解析】分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P ,Q 面积相等.连接AB ,OD ,根据两半圆的直径相等可知∠AOD =∠BOD =45°,故可得出绿色部分的面积=S △AOD ,利用阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色,故可得出结论.解:∵扇形OAB 的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π〔cm 2〕,半圆面积为:×π×12=〔cm 2〕,∴S Q +S M =S M +S P =〔cm 2〕, ∴S Q =S P ,连接AB ,OD ,∵两半圆的直径相等,∴∠AOD =∠BOD =45°,∴S 绿色=S △AOD =×2×1=1〔cm 2〕,∴阴影部分Q 的面积为:S 扇形AOB ﹣S 半圆﹣S 绿色=π﹣﹣1=﹣1〔cm 2〕.33.2、【答案】 〔1〕1 米; 〔2〕41 米. 【解析】分析: 〔1〕根据圆周角定理由∠BAC =90°得BC 为⊙O 的直径,即BC =,根据等腰直角三角形的性质得AB =1;〔2〕由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr =,然后解方程即可.解答: 解:〔1〕∵∠BAC =90°,∴BC 为⊙O 的直径,即BC =,∴AB =BC =1; 〔2〕设所得圆锥的底面圆的半径为r ,根据题意得2πr =, 解得r =.故答案为1,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3确定二次函数的表达式(1)
一、选择题:
1.已知抛物线过A(-1,0),B(3,0)两点,与y轴交于C点,且BC=32,则这条抛物线的解析式为 ( )
A.y=-x2+2x+3 B.y=x2-2x-3
C.y=x2+2x―3或y=-x2+2x+3 D.y=-x2+2x+3或y=x2-2x-3
2.如果点(-2,-3)和(5,-3)都是抛物线y=ax2+bx+c上的点,那么抛物线的对称轴是 ( )
A.x=3 B.x=-3 C.x=3
2
D.x=-
3
2
3.二次函数y=ax2+bx+c,b2=ac,且x=0时y=-4则()
A.y
最大=-4 B.y
最小
=-4 C.y
最大
=-3 D.y
最小
=3
4.(2014•舟山,第10题3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()
A ﹣2
B 或
C 2或
D 2或﹣或
5.平时我们在跳绳时,绳摇到最高点处的形状可近似地看做抛物线,如图2 - 78所示.正在摇绳的甲、乙两名同学拿绳的手间距为4 m,距地高均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处.绳子在摇到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为 ( ) A.1.5 m B.1.625 m C.1.66 m D.1.67 m
二、填空题:
6.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是________.
7.(锦州市)已知二次函数的图象开口向上,且顶点在y轴的负半轴上,请你
写出一个满足条件的二次函数的表达式________.
8.(长春市)函数y=x2+bx-c的图象经过点(1,2),则b-c的值为______.9.如图2 - 79所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点p的横坐标是4,图象与x轴交于点A(m,0)和点B,且点A在点B的左侧,那么线段AB的长是.(用含字母m的代数式表示)
5.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为.
三、解答题:
10.用配方法把二次函数y=l+2x-x2化为y=a(x-h)2+k的形式,作出它的草图,回答下列问题.
(1)求抛物线的顶点坐标和它与x轴的交点坐标;
(2)当x取何值时,y随x的增大而增大?
(3)当x取何值时,y的值大于0?
11.已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,•其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.
12.―抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标.
13.如图2 - 81所示,矩形A′BC′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的.点O′在x轴的正半轴上,点B的坐标为(1,3).
(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点,且图象顶点M的纵坐标为-l,求这个二次函数的解析式;
(2)在(1)中求出的二次函数图象对称轴的右侧,是否存在点P,使
得△POM为直角三角形?若存在,求出点P的坐标和△POM的面积;若不
存在,请说明理由;
(3)求边C′O′所在直线的解析式.
参考答案
1.D[提示:注意由条件不能确定抛物线的开口方向,所以此题不要漏解.]
2C
3.C [提示:点(-2,-3)与(5,-3)关于直线x =
3
2
对称.] 4.B[提示:建立如图2-82所示的平面直角坐标系,由图象可知三点坐标(-
1,1),(0,1.5),(3,1),则抛物线的解析式为y =-16x 2+13x +3
2,又当x
=1.5时,代入求出y =1.625.故选B .]
5.B
6.分析:根据平移的规律,上加下减,可以得到答案是:y=(x+4)2-2 (y=x 2+8x+14)
7.答案不唯一,符合要求即可.如:y=x 2-2
8.分析:把点(1.2)代入可以得到b-c 的值为1,所以答案是:1
9.8-2m[提示:点A 到抛物线对称轴的距离为4-m ,所以线段AB 的长为2(4-m)=8-2m .]
10.解:y=-(x -1)2+2,图略.(1)顶点坐标为(1,2),与x 轴的两个交点坐标分别为(1-2,0),(1+2,0). (2)当x <1时,y 随x 的增大而增大. (3)当l -2<x <1+2时,y 的值大于0. 11、 (1)y=-12x 2+32x+2,顶点坐标(32,25
8
) (2)略,(3)当-1<x<4时,y>0.
12.解:(1)设这个抛物线的解析式为y=ax 2+bx +c .将A(-2,0),B(1,0),
C(2,8)三点代入,得420,0,428,a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩解这个方程组,得2,
2,4,a b c =⎧⎪
=⎨⎪=-⎩
∴所求抛物线的
解析式为y =2x 2+2x -4. (2)∵y=2x 2+2x -4=2(x 2
+x -2)=2(x +12)2-92
,∴该抛物线的顶点坐标为(-
12,-9
2
). 13.解:(1)如图2-83所示,连接BO ,BO ′,则BO=BO ′.∵BA ⊥OO ′,∴AO =AO ′.∵B(1,3),∴O ′(2,0),M(1,-1),∴
420,1,0,a b c a b c c ++=⎧⎪++=-⎨⎪=⎩解得1,
2,0,a b c =⎧⎪=-⎨⎪=⎩
∴所求二次函数的解析式为y =x 2
-2x . (2)假设存在满足题设条件的点P(x ,y).连接OM ,PM ,OP ,过P 作PN ⊥x 轴于N ,则∠POM =90°.∵M(1,-1),A(1,0),AM=OA ,∴∠NOA =45°,∴∠PON=45°,∴ON=NP ,即x =y .∵P(x ,y)在二次函数y=x 2-2x 的图象上,∴x =x 2-2x ,解得x =0或x =3.∵P(x ,y)在对称轴的右侧,∴x >1,∴x=3,y=3,即P(3,3)是所求的点.连接MO ′,显然△OMO ′为等腰直角三角形,∴点O ′(2,0)也是满足条件的点,∴满足条件的点是P(2,0)或P(3,3),∴O P=32,OM=2,∴S △POM =
12OP ·OM=3或S △POM =1
2
OM ·O ′M=1. (3)设AB 与C ′O ′的交点为D(1,y),显然Rt △DAO ′≌Rt △DC ′B .在Rt △DAO ′中,AO ′2+AD 2=O ′D 2,即1+y 2=(3-y)2,解得y=
43,∴D(1,4
3
).设边C ′O ′所在直线的解析式为y =kx +b ,则4,320,k b k b ⎧+=⎪⎨⎪+=⎩解得4,3
8,3k b ⎧=-⎪⎪⎨
⎪=⎪⎩
∴所求直线的解析式为y=48
.33x -+。