精品高数课后题答案及详解

合集下载

高等数学课后习题答案

高等数学课后习题答案

高等数学课后习题答案【篇一:上海交大版高等数学课后习题解答】txt>第一章函数1.设f(x)?x2?1,求f(x2)、?f(x)?。

解答:f(x2)?(x2)2?1?x4?1,?f(x)??[x2?1]2?x4?2x2?1。

所属章节:第一章第一节难度:一级aex?be?x2.设f(x)?,求f(x)?f(?x)。

a?baex?be?xae?x?be?(?x)ae?x?bex?解答:f(x)?,f(?x)?, a?ba?ba?baex?be?xae?x?be?(?x)f(x)?f(?x)???ex?e?x。

a?ba?b22所属章节:第一章第一节难度:一级?2x ?1?x?0,1?3.设?(x)??20?x?1,求?(3),?(2),?(0),?(?)。

2?x?1 1?x?3,?1解答:?(3)?2,?(2)?1,?(0)?1,?()?。

2所属章节:第一章第一节难度:一级4.求下列函数的定义域:(1)y?2x11?xy?log;(2),(a?0,a?1); a2x?3x?221?x(3)y?3?2x1;(4)y?arcsin. 5lg(1?x)解答:(1)由x2?3x?2?0解得定义域为???,1??1,2??2,???;(2)由1?x?0,1?x?0解得定义域为??1,1?; 1?x(3)由2?x?0,1?x?0,1?x?1解得定义域为??2,0?(4)由3?x?0,3?2x?1解得定义域为[?1,3]。

5?0,1?;所属章节:第一章第一节难度:一级5.下列各题中,函数f (x)与g (x)是否相同?x(1)f(x)?lgx2, g(x)?2lg;(2)f(x)?x,g(x)(3)f(x)?elnx, g(x)?x.解答:(1)f(x)中的x可为一切实数,g(x)中的x要求大于零,即定义域不同,故函数不同;(2)f(x)将负数对应负数,而g(x)把负数对应正数,对应法则不同,故函数不同;(3)f(x)中的x要求大于零,g(x)中的x可为一切实数,即定义域不同,故函数不同。

(WORD)-高等数学课后习题(完整版)及答案

(WORD)-高等数学课后习题(完整版)及答案

高等数学课后习题(完整版)及答案高等数学课后答案习题1 11设A ( 5) (5 ) B [10 3)写出A BA B A\B及A\(A\B)的表达式解 A B ( 3) (5 )A B [105)A\B ( 10) (5 )A\(A\B) [105)2设A、B是任意两个集合证明对偶律 (A B)C AC BC 证明因为x (A B)C x A B x A或x B x AC或x BC x ACBC所以 (A B)C AC BC3设映射f X Y A X B X 证明(1)f(A B) f(A) f(B)(2)f(A B) f(A) f(B)证明因为y f(A B) x A B使f(x) y(因为x A或x B) y f(A)或y f(B)y f(A) f(B)所以 f(A B) f(A) f(B)(2)因为y f(A B) x A B使f(x) y (因为x A且x B) y f(A)且y f(B) y f(A) f(B)所以 f(A B) f(A) f(B)4设映射f X Y若存在一个映射g Y X使g f IXf g IY其中IX、IY分别是X、Y上的恒等映射即对于每一个x X有IX x x 对于每一个y Y有IY y y证明 f是双射且g是f的逆映射 g f 1证明因为对于任意的y Y有x g(y) X且f(x) f[g(y)] Iy y y即Y中任意元素都是X中某元素的像所以f为X到Y的满射又因为对于任意的x1 x2必有f(x1) f(x2)否则若f(x1) f(x2) g[ f(x1)] g[f(x2)] x1 x2因此f既是单射又是满射即f是双射对于映射g Y X因为对每个y Y有g(y) x X且满足f(x) f[g(y)] Iy y y按逆映射的定义 g是f的逆映射5设映射f X Y A X 证明(1)f 1(f(A)) A(2)当f是单射时有f 1(f(A)) A证明 (1)因为x A f(x) y f(A) f 1(y) x f 1(f(A))所以 f 1(f(A)) A(2)由(1)知f 1(f(A)) A另一方面对于任意的x f 1(f(A)) 存在y f(A)使f1(y) x f(x) y 因为y f(A)且f是单射所以x A这就证明了f 1(f(A)) A因此f 1(f(A)) A6求下列函数的自然定义域(1)y x233 解由3x2 0得x 2函数的定义域为[2, )(2)y 1 1x2解由1x2 0得x 1函数的定义域为( 1) (11) (1 )(3)y 1x x2解由x 0且1x2 0得函数的定义域D [1 0) (0 1](4)y 14x2解由4x2 0得 |x| 2函数的定义域为(2 2)(5)y sinx解由x 0得函数的定义D [0 )(6) y tan(x1)2 解由x1 (k 0 1 2 )得函数的定义域为x k 1 (k 0 1 2 2)(7) y arcsin(x3)解由|x3| 1得函数的定义域D [2 4](8)y x1 x解由3x 0且x 0得函数的定义域D ( 0) (0 3)(9) y ln(x1)解由x1 0得函数的定义域D (1 )(10)y ex解由x 0得函数的定义域D ( 0) (0 )7下列各题中函数f(x)和g(x)是否相同?为什么?(1)f(x) lg x2 g(x) 2lg x(2) f(x) x g(x) x2(3)f(x) x4x3g(x) xx1(4)f(x) 1 g(x) sec2x tan2x解 (1)不同因为定义域不同(2)不同因为对应法则不同 x 0时 g(x) x(3)相同因为定义域、对应法则均相相同(4)不同因为定义域不同8 |sinx| |x|3设 (x) |x| 0 3 求 ( ) ( ) ( ) (2)并作出函数y (x)644的图形) |sin | 解 ( ) |sin | 1 (446622) |sin( )| (442 (2) 09试证下列函数在指定区间内的单调性(1)y x ( 1) 1x(2)y x ln x (0 )证明 (1)对于任意的x1 x2 ( 1)有1x1 0 1x2 0因为当x1 x2时y1y2 xxx x 0 1x11x2(1x1)(1x2) 所以函数y x在区间( 1)内是单调增加的 1x(2)对于任意的x1 x2 (0 )当x1 x2时有y1y2 (x1lnx1)(x2lnx2) (x1x2)lnx 0 x2所以函数y x ln x在区间(0 )内是单调增加的10设 f(x)为定义在(l l)内的奇函数若f(x)在(0 l)内单调增加证明f(x)在(l 0)内也单调增加证明对于x1 x2 (l 0)且x1 x2有x1x2 (0 l)且x1 x2因为f(x)在(0 l)内单调增加且为奇函数所以f(x2) f(x1)f(x2) f(x1) f(x2) f(x1)这就证明了对于x1 x2 (l 0)有f(x1) f(x2)所以f(x)在(l 0)内也单调增加11设下面所考虑的函数都是定义在对称区间(l l)上的证明(1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明 (1)设F(x) f(x)g(x)如果f(x)和g(x)都是偶函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为偶函数即两个偶函数的和是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为奇函数即两个奇函数的和是奇函数(2)设F(x) f(x) g(x)如果f(x)和g(x)都是偶函数则F(x) f(x) g(x) f(x) g(x) F(x)所以F(x)为偶函数即两个偶函数的积是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x) g(x) [f(x)][g(x)] f(x) g(x) F(x)所以F(x)为偶函数即两个奇函数的积是偶函数如果f(x)是偶函数而g(x)是奇函数则F(x) f(x) g(x) f(x)[g(x)] f(x) g(x) F(x)所以F(x)为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数?(1)y x2(1x2)(2)y 3x2x3(3)y 1x2 1x2(4)y x(x1)(x1)(5)y sin x cos x1(6)y ax a x2解 (1)因为f(x) (x)2[1(x)2] x2(1x2) f(x)所以f(x)是偶函数(2)由f(x) 3(x)2(x)3 3x2x3可见f(x)既非奇函数又非偶函数(3)因为1(x)21x2f(x) f(x) 221x1x所以f(x)是偶函数(4)因为f(x) (x)(x1)(x1) x(x1)(x1) f(x)所以f(x)是奇函数(5)由f(x) sin(x)cos(x)1 sin x cos x1可见f(x)既非奇函数又非偶函数(6)因为(x)(x)xxa aa af(x) f(x) 22所以f(x)是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期(1)y cos(x2)解是周期函数周期为l 2(2)y cos 4x解是周期函数周期为l 2(3)y 1sin x解是周期函数周期为l 2(4)y xcos x解不是周期函数(5)y sin2x解是周期函数周期为l14求下列函数的反函数(1)y x1解由y x1得x y31所以y x1的反函数为y x31(2)y 1x 1x解由y 1x得x 1y所以y 1x的反函数为y 1x1x1y1x1x(3)y ax b(ad bc 0) cx d解由y ax b得x dy b所以y ax b的反函数为y dx b cx dcy acx dcx a(4) y 2sin3xyarcsin所以y 2sin3x的反函数为y 1arcsinx解由y 2sin 3x 得x 13232(5) y 1ln(x2)x2(6)y 2 1 解由y 1ln(x2)得x ey12所以y 1ln(x2)的反函数为y ex122xx y 所以的反函数为y log2211x 解 y2xy x log由得21y2 115设函数f(x)在数集X上有定义试证 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f(x)在X上有界则存在正数M使|f(x)| M即M f(x) M这就证明了f(x)在X上有下界M和上界M再证充分性设函数f(x)在X上有下界K1和上界K2即K1 f(x) K2 取M max{|K1| |K2|}则M K1 f(x)K2 M即 |f(x)| M这就证明了f(x)在X上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x1和x2的函数值(1) y u2 u sin x解 y sin2x x1 6x2 33y1 sin2 12 1y2 sin2 ()2 324624x1 x2 84 (2) y sin u u 2x解 y sin2x(3)y解 y1 sin(2 ) sin y2 sin(2 sin 1 842422u 1x x1 1 x2 2 y x2 y1 12 y2 22(4) y eu u x2 x1 0 x2 1解 y ex2 y1 e0 1 y2 e1 e 22(5) y u2 u ex x1 1 x2 1解 y e2x y1 e2 1 e2 y2 e2 (1) e217设f(x)的定义域D [0 1]求下列各函数的定义域(1) f(x2)解由0 x2 1得|x| 1所以函数f(x2)的定义域为[1 1](2) f(sinx)解由0 sin x 1得2n x (2n1) (n 0 1 2 )所以函数f(sin x)的定义域为[2n (2n1) ] (n 0 1 2 )(3) f(x a)(a>0)解由0 x a 1得a x 1a所以函数f(x a)的定义域为[a 1a](4) f(x a)f(x a)(a 0)22 解由0 x a 1且0 x a 1得 当0 a 1时 a x 1a 当a 1时无解因此当0 a 1时函数的定义域为[a 1a]当a 1时函数无意义2218设的图形解 |x| 1 1 x f(x) 0 |x| 1 g(x) e |x| 1 1 求f[g(x)]和g[f(x)]并作出这两个函数 1 |ex| 1 f[g(x)] 0|ex| 11 |ex| 1 即 1 x 0 f[g(x)] 0 x 0 1 x 0e1 |x| 1 g[f(x)] ef(x) e0 |x| 1e 1 |x| 1 e |x| 1 |x| 1即g[f(x)] 11 |x| 1 e19已知水渠的横断面为等腰梯形斜角 40 (图137)当过水断面ABCD的面积为定值S0周L(L AB BC CD)与水的函数关系式并指明其图137解 AB DC hsin40 0cot40 h所以又从1h[BC(BC2cot40 h)] S0得BC Sh时求湿深h之间定义域 2S2cos40L h hsin40自变量h的取值范围应由不等式组h 0确定定义域为0 h 0cot40S0 cot40 h 0 h20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元(1)将每台的实际售价p表示为订购量x的函数(2)将厂方所获的利润P表示成订购量x的函数(3)某一商行订购了1000台厂方可获利润多少?解 (1)当0 x 100时 p 90令001(x0100) 9075得x0 1600因此当x 1600时p 75当100 x 1600时p 90(x100) 001 910 01x综合上述结果得到0 x 100 90 p 910.01x 100 x 1600 75 x 1600 30x 0 x 1002100 x 1600 (2)P (p60)x 31x0.01x 15x x 1600(3) P 31 1000001 10002 21000(元)习题1 21观察一般项xn如下的数列{xn}的变化趋势写出它们的极限 (1)xn 1 2n解当n 时(2)xn (1)n1 n1 0 0 xn 1limn 22 解当n 时(3)xn 2 12 nxn (1)n1 0 lim(1)n1 0 n nn解当n 时(4)xn n1 n1xn 21 2 lim(21) 2 n nn2解当n 时(5) xn n(1)n xn n1 12 0 limn1 1n n1n1n 1解当n 时 xn n(1)n没有极限2 cos设数列{xn}的一般项xn nx ? 求出N使当n N时 xn问nlim n与其极限之差的绝对值小于正数 当 0001时求出数N解limx 0n n要使|x n0| 只要1 也就是n 1取n|cos|1 0 |xn0| nnN [1]则n N有|xn0|当 0001时 N [1] 10003根据数列极限的定义证明1 0 (1)nlim 2n分析要使|120| 12 只须n2 1即nnn1nn证明因为 0N [3n1 3 (2)nlim1]1 0当n N时有|120| 所以nlim 2分析2n12n13| 1 1要使|3 2n122(2n1)4n4只须证明因为 0N [1]当n N (3)nlim 分析 n2a2 1 n1 即n 14 4n3n1 3时有|3n13| 所以nlim 2n122n12只须2an222222a a naa要使|1| 22nnn a n)n2aN []证明因为 022n alim 1 n n当n N时有|n2a21|n所以(4)nlim0. 999 9 1n个分析要使|099 91|110n 1只须1 10即n 1lg1证明因为 0N [1lg1]当n N时有|099 91| 所以n n个lim0.999 9 1|u| |a|并举例说明 如果数列{|xn|}有极限但数证明nlimn4limu an n列{xn}未必有极限u a所以 0N N当n N时有|un a| 从而证明因为nlim n||un||a|| |un a||un| |a|这就证明了nlim|(1)n| 1但lim(1)n 数列{|xn|}有极限但数列{xn}未必有极限例如nlimn不存在y 0证明 5设数列{xn}有界又nlim nn limxnyn 0证明因为数列{xn}有界所以存在M使n Z有|xn| Myn 0所以 0N N当n N时有|yn| 从而当n N时又nlim M有xy 0所以nlim nn|xnyn0| |xnyn| M|yn| M M6对于数列{xn}若x2k1 a(k ) x2k a(k )证明 xn a(n )证明因为x2k1 a(k ) x2k a(k )所以 0K1当2k1 2K11时有| x2k1a| K2当2k 2K2时有|x2k a| 取N max{2K11 2K2}只要n N就有|xn a| 因此xn a (n )习题1 31根据函数极限的定义证明(3x1) 8 (1)limx 3分析因为|(3x1)8| |3x9| 3|x3|所以要使|(3x1)8| 只须|x3| 1 3 证明因为 0 1 当0 |x3| 时有 3|(3x1)8|(3x1) 8所以limx 3(5x2) 12 (2)limx 2分析因为|(5x2)12| |5x10| 5|x2|所以要使|(5x2)12| 只须|x2| 1 5 证明因为 0 1 当0 |x2| 时有 5|(5x2)12|(5x2) 12所以limx 22x4 4(3)xlim 2x 2分析因为x24(4) x24x4 |x2| |x(2)| x2x 2所以要使x24(4) x2只须|x(2)| 证明因为 0 当0 |x(2)| 时有x24(4) x2x24 4lim所以x 2x2314x(4)lim 2 2x1x分析因为所以要使14x32 |12x2| 2|x(1)| 2x1214x32 2x1只须|x(1)| 1 2222 证明因为 0 1 当0 |x(1)| 时有 14x32 2x1 314x所以lim 2 2x1x 22根据函数极限的定义证明1x (1)xlim 1 22x3分析因为所以要使1x31 1x3x3 1 2x322x32|x|3 1x312x2只须1 2|x|即|x| 1证明因为 0X 1当|x| X时有 1x312x3231x 1所以xlim3 2x2sinx 0 (2)xlim x 分析因为所以要使证明sinx0 |sinx| 1 xxxsinx0 只须1 即x 12x x因为 0X 1当x X时有 2sinx0 xsinx 0所以xlim x 3当x 2时 y x2 4问 等于多少使当|x2|< 时 |y4|<0001?解由于当x 2时 |x2| 0故可设|x2| 1即1 x 3要使|x24| |x2||x2| 5|x2| 0001只要|x2| 0.001 0.0002 5取 00002则当0 |x2| 时就有|x24| 0 0014当x 时解要使y x21 1 x32问X等于多少使当|x| X时|y1| 001? 只要|x| 43 0.01x211 4 0.01x23x23故X5证明函数f(x) |x|当x 0时极限为零证明因为|f(x)0| ||x|0| |x| |x0|所以要使|f(x)0| 只须|x|因为对 0 使当0 |x0| 时有|f(x)0| ||x|0||x| 0所以limx 06求f(x) x, x (x) |x|当xx 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为lim f(x) lim x lim1 1x 0x 0xx 0lim f(x) lim x lim1 1 x 0x 0xx 0x 0limf(x) lim f(x) x 0f(x)存在所以极限limx 0因为|x| lim x 1 x 0x 0xx 0x|x|x 1lim (x) lim limx 0x 0xx 0xlim (x) limx 0 lim (x) lim (x) x 0(x)不存在所以极限limx 07证明 若x 及x 时函数f(x)的极限都存在且都等于Af(x) A则xlimf(x) A证明因为xlim x limf(x) A所以 >0X1 0使当x X1时有|f(x)A|X2 0使当x X2时有|f(x)A|f(x) A取X max{X1 X2}则当|x| X时有|f(x)A| 即xlim8根据极限的定义证明 函数f(x)当x x0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f(x) A(x x0)则 >0 0使当0<|x x0|< 时有|f(x)A|<因此当x0 <x<x0和x0<x<x0 时都有|f(x)A|<这说明f(x)当x x0时左右极限都存在并且都等于A再证明充分性设f(x00) f(x00) A则 >01>0使当x0 1<x<x0时有| f(x)A<2>0使当x0<x<x0+ 2时有| f(x)A|<取 min{ 1 2}则当0<|x x0|< 时有x0 1<x<x0及x0<x<x0+ 2 从而有| f(x)A|<即f(x) A(x x0)9试给出x 时函数极限的局部有界性的定理并加以证明解 x 时函数极限的局部有界性的定理 如果f(x)当x 时的极限存在则存在X 0及M 0使当|x| X时 |f(x)| M证明设f(x) A(x )则对于 1X 0当|x| X时有|f(x)A| 1所以|f(x)| |f(x)A A| |f(x)A||A| 1|A|这就是说存在X 0及M 0使当|x| X时 |f(x)| M其中M 1|A|习题1 41两个无穷小的商是否一定是无穷小?举例说明之解不一定(x)2 例如当x 0时 (x) 2x (x) 3x都是无穷小但limx 0(x)3 (x)不 (x)是无穷小2根据定义证明2x9(1)y x当x 3时为无穷小; 3(2)y xsin1当x 0时为无穷小x2x9 |x3|时|y| x 3 证明 (1)当x 3有因为 0当0 |x3| 时2|y| x9 |x3| x 32x9所以当x 3时y x为无穷小 3(2)当x 0时|y| |x||sin1| |x0|因为 0 x|y| |x||sin1| |x0| x所以当x 0时y xsin1为无穷小 x当0 |x0| 时有3根据定义证明 函数y 12x为当x 0时的无穷大问x应满足什x么条件能使|y| 104?证明分析|y||x| 1 M212x 21 12 xx|x|2 M即要使|y| M只须|1x|证明因为M 0所以当取1使当0 |x0| 时有12x M xM2x 0时函数y 12x是无穷大 xM 104则 41当0 |x0| 41时|y| 104 10210 2 4求下列极限并说明理由2x1; (1)limx x21x(2)limx 01xxxxx1x2 1所以lim x 01x2x1 2解 (1)因为2x1 21而当x 时1是无穷小所以limx x (2)因为11x2 1x(x 1)而当x 0时x为无穷小5根据函数极限或无穷大定义填写下表解6函数y xcos x在( )内是否有界?这个函数是否为当x 时的无穷大?为什么?解函数y xcos x在( )内无界这是因为M 0在( )内总能找到这样的x使得|y(x)| M例如y(2k ) 2k cos2k 2k (k 0 1 2 )当k充分大时就有| y(2k )| M当x 时函数y xcos x不是无穷大这是因为M 0找不到这样一个时刻N使对一切大于N的x都有|y(x)| M例如y(2k (2k )cos(2k ) 0(k 0 1 2 ) 2222 对任何大的N当k充分大时总有x 2k N但|y(x)| 0 M7证明 函数y 1sin1在区间(0 1]上无界但这函数不是当x 0+时xx的无穷大证明函数y 1sin1在区间(0 1]上无界这是因为 xx M 0在(0 1]中总可以找到点xk使y(xk) M例如当xk2k 1(k 0 1 2 )2时有y(xk) 2k2当k充分大时 y(xk) M当x 0+ 时函数y 1sin1不是无穷大这是因为 xxM 0对所有的 0总可以找到这样的点xk使0 xk但y(xk) M例如可取xk 12k(k 0 1 2 )当k充分大时 xk 但y(xk) 2k sin2k 0 M习题1 51计算下列极限2xlim5 (1)x 2x3x25 225 9lim解 x 2x3232x(2)3 x x 1解 2()23x3 0 2x x1() 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x2 14x32x2xlim(4)x 02 3x2x3224x2x x4x2x1 1 lim解lim x 03x2xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx xxx2x1(7)xlim 2x2x 1 解 1 121 limlimx 1 2x 2x x1x 22xx2(8)xlim解或 x2x 42x3x12xx 0lim42(分子次数低于分母次数x x3x1112x lim23 0lim4x2 x x3x1x 1xx2极限为零) x6x8 (9)limx 4x5x 4解 2(x2)(x4)limx26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 n n 2421 2n 解 123 (n1) (12)nlim(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2nn(n1)(n2)(n3)(13)nlim5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 3n n 5nnn55n(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1x3x 1(1x)(x 1(1x)(1x x2)1x x2) limx 21 x 11x x2计算下列极限32x2x(1)x lim 2(x2)2解 (x2)20lim 0因为x 2x2x162x所以limx 22x2 (x2)23 x (2)xlim 2x 1解 2xlim x 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctanx (2)xlim xarctanx lim1 arctanx 0(当x 时 1是无穷小解xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题1 51计算下列极限2xlim5 (1)x 2x322x52lim 5 9解 x 2x32 3 2x(2)23 x x 1解 2()23x3 0 x x21()2 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x 1 324x2x x(4)limx 03x22x4x32x2x lim4x22x1 1解 limx 03x22xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx x2xx2(7)xlim解x21 22x x1112x1lim2 lim 1x 2x x1x 222xx x2x x x43x212x x 0解xlim(分子次数低于分母次数 x3x1(8)lim极限为零)或112x lim 0lim4x2 x x3x1x 21124xx2 x6x8 (9)limx 42x5x 4解 2(x2)(x4)xlim26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 nn n 2421 2n 解 123 (n1) (12)nlim 2(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2n2n2(n1)(n2)(n3)(13)nlim3 5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 n 5n nnn55n3(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1xx 1(1x)(x 1(1x)(1x x)1x x) limx 22 1 x 11x x2计算下列极限 32x2xlim(1)x 2(x2)2解 (x2)20lim3 0因为x 2x2x21632x2x 所以limx 2(x2)2 x2lim(2)x 2x1 x2 解 xlim 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctan x (2)xlim xarctanx lim1 arctanx 0(当x 时1是无穷小解 xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题 171当x 0时 2x x2 与x2x3相比哪一个是高阶无穷小?解232x xx x lim 0因为limx 02x xx 02x所以当x 0时 x2x3是高阶无穷小即x2x3 o(2x x2)2当x 1时无穷小1x和(1)1x3 (2)1(1x2)是否同阶?是否等2价?解 3(1x)(1x x2)1x lim lim(1x x2) 3 (1)因为limx 11xx 1x 11x所以当x 1时 1x和1x3是同阶的无穷小但不是等价无穷小1(1x2) 1lim(1x) 1 (2)因为limx 11x2x 1所以当x 1时 1x和1(1x2)是同阶的无穷小而且是等价无穷小 23证明 当x 0时有(1) arctan x~x2x(2)secx1~2arctanx lim 证明 (1)因为limx 0y 0xy 1(提示 tany令y arctan x则当x 0时y 0)所以当x 0时 arctanx~x2sin2x2sinxsecx1 2lim1cosx lim lim(2 1 (2)因为limx 02x 0x2cosxx 0x 0x2x2222xsecx1~ 2 所以当x 0时4利用等价无穷小的性质求下列极限tan3x (1)limx 02xsin(xn)(2)limx 0(sinx)m(n m为正整数)tanx sinx (3)limx 0sinx(4)limx 0sinx tanx 2(x1sinx1)tan3x lim3x 3解 (1)limx 0x 02x2x21 n mn sin(xn)x 0 n m lim(2)limx 0(sinx)mx 0xm n m1x2sinx(11)tanx sinx lim lim1cosx lim2 1(3)lim332x 0x 0x 0cosxsinxx 0xcosx2sinxsinx(4)因为sinx tanx tanx(cosx1) 2tanxsin2x~2x x)2 1x3(x 0) 222所以x21 x21x2(x 0) ~1x2)2x213sinx~sinx~x(x 0) sinx1sinx1 1x3sinx tanxlim lim 3x 0(x21sinx1)x 02x x35证明无穷小的等价关系具有下列性质(1) ~ (自反性)(2) 若 ~ 则 ~ (对称性)(3)若 ~ ~ 则 ~ (传递性)证明 (1)lim 1所以 ~1从而lim 1因此 ~ (2) 若 ~ 则lim(3) 若 ~ ~习题18 lim lim lim 1 因此 ~1研究下列函数的连续性并画出函数的图形(1) x2 0 x 1 f(x) 2x 1 x 2解已知多项式函数是连续函数所以函数f(x)在[0 1)和(1 2]内是连续的在x 1处因为f(1) 1并且x 12f(x) lim(2x) 1 limf(x) limx 1lim x 1x 1x 1f(x) 1从而函数f(x)在x 1处是连续的所以limx 1综上所述,函数f(x)在[0 2]上是连续函数x 1 x 1 (2)f(x) 1 |x| 1解只需考察函数在x 1和x 1处的连续性在x 1处因为f(1) 1并且x 1limf(x) lim1 1 f(1) x 1x 1 x 1limf(x) lim x 1 f(1)所以函数在x 1处间断但右连续在x 1处因为f(1) 1并且x 1limf(x) lim x 1 f(1) limf(x) lim1 1 f(1) x 1x 1x 1所以函数在x 1处连续综合上述讨论函数在( 1)和(1 )内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续2x(1)y 21 x 1 x 2 x3x 2解 2(x1)(x1)xy 21 x3x2(x2)(x1)因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点2xlimy lim21 因为x 2x 2x3x2所以x 2是函数的第二类间断点(x1)y lim 2所以x 1是函数的第一类间断点并且是可去因为limx 1x 1(x2)间断点在x 1处令y 2则函数在x 1处成为连续的(2)y x x k x k tanx2(k 0 1 2 )2 解函数在点x k (k Z)和x k (k Z)处无定义因而这些点都是函数的间断点因xlim k x (k 0) tanxx 1 tanxlimx k 故x k (k 0)是第二类间断点2 因为limx 0x 0(k Z) tanx所以x 0和x k (k Z) 是第一2类间断点且是可去间断点令y|x 0 1则函数在x 0处成为连续的令x k 时 y 0则函数在x k 处成为连续的2(3)y cos21 x 0 x2xx 解因为函数y cos21在x 0处无定义所以x 0是函数y cos21的间断点又因为limcos21不存在所以x 0是函数的第二类间断点x 0xx 1 x 1 (4)y 3 x x 1 x 1解因为xlim1f(x) lim(x1) 0limf(x) lim(3x) 2x 1x 1x 1所以x 1是函数的第一类不可去间断点 3讨论函数解2n1xf(x) limx的连续性 n 1x2n若有间断点判别其类型x |x| 12n 1xf(x) limx 0 |x| 1 n 1x2nx |x| 1f(x) lim(x) 1 lim f(x) lim x 1x 1x 1x 1lim 在分段点x 1处因为x1所以x 1为函数的第一类不可去间断点在分段点x 1处因为xlim 1f(x) lim x 1 limf(x) lim(x) 1x 1x 1x 1所以x 1为函数的第一类不可去间断点4证明 若函数f(x)在点x0连续且f(x0) 0则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 0证明不妨设f(x0)>0因为f(x)在x0连续所以xlimx的局部保号性定理存在x0的某一去心邻域U(x0)f(x) f(x0) 0由极限f(x)>0使当x U(x0)时从而当x U(x0)时 f(x)>0这就是说则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 05试分别举出具有以下性质的函数f(x)的例子 (1)x 0 12无穷间断点1 n 1 是2nf(x)的所有间断点且它们都是解函数f(x) csc( x)csc 在点x 0 1 2 x 1 n 1 处是间断2n的且这些点是函数的无穷间断点(2)f(x)在R上处处不连续但|f(x)|在R上处处连续1 x Q 解函数f(x) 1 x Q在R上处处不连续但|f(x)| 1在R上处处连续(3)f(x)在R上处处有定义但仅在一点连续x x Q 解函数f(x) 在R上处处有定义它只在x 0处连续x x Q习题191求函数f(x) xlimf(x) x 233x2x3的连续区间 2x x6f(x)并求极限limx 0x 3limf(x)及33x2x3 (x3)(x1)(x1)f(x) x(x3)(x2)x x 6 解函数在( )内除点x 2和x 3外是连续的所以函数f(x)的连续区间为( 3)、(3 2)、(2 )在函数的连续点x 0处 limf(x) f(0) 1 x 02在函数的间断点x 2和x 3处limf(x) limx 2(x1)(x1)(x3)(x1)(x1) 8limf(x) limx 3x 3x 2x25(x3)(x2) 2设函数f(x)与g(x)在点x0连续证明函数(x) max{f(x) g(x)} (x) min{f(x) g(x)} 在点x0也连续证明已知xlim x可以验证(x) 1[f(x)g(x)|f(x)g(x)| ]因此2 (x) 1[f(x)g(x)|f(x)g(x)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ] 20f(x) f(x0)limg(x) g(x0) x x0因为lim (x) lim1[f(x)g(x)|f(x)g(x)| ]x x0x x02 1[limf(x)limg(x)|limf(x)limg(x)| ]x x0x x0x x02x x01[f(x0)g(x0)|f(x0)g(x0)| ] (x0) 2所以 (x)在点x0也连续同理可证明 (x)在点x0也连续3求下列极限(1)limx 0x 4x22x5 (sin2x)3 (2)limln(2cos2x) (3)limx 6(4)limx 0x11 xx4x (5)limx 1x 1(6)xlimsinx sina ax a(7)xlim(x2x x2x)解 (1)因为函数f(x) x 0x22x5是初等函数f(x)在点x 0有定义所以 limx22x5 f(0) 22 054 (2)因为函数f(x) (sin 2x)3是初等函数 f(x)在点x 有定义所以lim(sin2x)3 f( (sin2 3 1 44x 46 (3)因为函数f(x) ln(2cos2x)是初等函数 f(x)在点x 有定义所以limln(2cos2x) f( ) ln(2cos2 0 66x(4)limx 0x11 lim(x11)(x11) limxx 0x 0x(x11xx(x11) )11 111112 limx 0(5)limx 1x4x lim(x4xx4x)x 1x1(x1x4x) lim444x4 lim 2x 1x4xx 1(x1x4x) 142cosx asinx alimsinx sina lim(6)x ax ax ax asinx a cosa a 1 cosalimcosx a limx a2x a2222(x2x x2x)(x2x x2x)(x x x x) lim(7)xlim 22 x (x x x x)lim2x2 lim 1 x (x2x x2x)x (11)xx4求下列极限(1)xlim(2)limlnsinx x 0x1ex(11)2 (3)xlim x2x(13tan2x)cotx (4)limx 0x13x( (5)xlim 6x(6)limx 0tanx sinxx sin2x xlime e1lim1x 解 (1) (2) (3) x e0 1 limlnsinx ln(limsinx) ln1 0x 0x 0xxx1lim(1 2x x limx 11x2(1)x e 12(4)lim(13tan2x)cotx limx 02x 0 1(13tan2x)3tan2x3 e3x13x 3 (5)(6x) (16x)36x2因为3(1)3 e lim3 x1 3 xlim x 6x26x23x2 e2所以xlim 6x(tanx sinx)(sin2x1)tanx sinx lim(6)lim22x 0x 0x sinx xx(sinx1)(tanx sinx)2xtanx 2sin(ta nx sinx sinx1) lim limx 0xsin2x(tanx sinx)x 0xsinx22x (x21 limx 02x应当如何选择数a使得f(x)成为在( 5设函数 ex x 0f(x) a x x 0)内的连续函数?解要使函数f(x)在( )内连续只须f(x)在x 0处连续即只须 x 0limf(x) limf(x) f(0) a x 0x 0 x 0f(x) limex 1因为xlim 0x 0limf(x) lim(a x) a所以只须取a 1习题1101证明方程x53x 1至少有一个根介于1和2之间证明设f(x) x53x1则f(x)是闭区间[1 2]上的连续函数因为f(1) 3 f(2) 25 f(1)f(2) 0所以由零点定理在(1 2)内至少有一点(1 2)使f( ) 0即x 是方程x53x 1的介于1和2之间的根因此方程x53x 1至少有一个根介于1和2之间2证明方程x asinx b其中a 0 b 0至少有一个正根并且它不超过a b证明设f(x) asin x b x则f(x)是[0 a b]上的连续函数f(0) b f(a b) a sin (a b)b(a b) a[sin(a b)1] 0若f(a b) 0则说明x a b就是方程x asinx b的一个不超过a b的根若f(a b) 0则f(0)f(a b) 0由零点定理至少存在一点(0 a b)使f( ) 0这说明x 也是方程x=asinx b的一个不超过a b的根总之方程x asinx b至少有一个正根并且它不超过a b 3设函数f(x)对于闭区间[a b]上的任意两点x、y恒有|f(x)f(y)| L|x y|其中L为正常数且f(a) f(b) 0证明 至少有一点 (a b)使得f( ) 0证明设x0为(a b)内任意一点因为所以 0 lim|f(x)f(x0)| limL|x x0| 0 x x0x x0x x0 lim|f(x)f(x0)| 0即 x x0limf(x) f(x0)因此f(x)在(a b)内连续同理可证f(x)在点a处左连续在点b处右连续所以f(x)在[a b]上连续因为f(x)在[a b]上连续且f(a) f(b) 0由零点定理至少有一点 (a b)使得f( ) 04若f(x)在[a b]上连续 a x1 x2 xn b则在[x1 xn]上至少有一点 使f( ) f(x1)f(x2) f(xn) n证明显然f(x)在[x1 xn]上也连续设M和m分别是f(x)在[x1 xn]上的最大值和最小值因为xi [x1 xn](1 i n)所以有m f(xi) M从而有n m f(x1)f(x2) f(xn) n M m f(x1)f(x2)f(xn) Mn由介值定理推论在[x1 xn]上至少有一点 使f( ) f(x)f(x) f(x) nf(x)存在则f(x)必在( 5证明 若f(x)在( )内连续且xlim)内有界f(x) A则对于给定的 0存在X 0只要|x| X就有证明令xlim|f(x)A| 即A f(x) A又由于f(x)在闭区间[X X]上连续根据有界性定理存在M 0使|f(x)| M x [X X]取N max{M |A | |A |}则|f(x)| N x ()即f(x)在( )内有界6在什么条件下 (a b)内的连续函数f(x)为一致连续?总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内(1)数列{xn}有界是数列{xn}收敛的________条件数列{xn}收敛是数列{xn}有界的________的条件(2)f(x)在x0的某一去心邻域内有界是xlim xx x00f(x)存在的________条件 limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件0 (3) f(x)在x0的某一去心邻域内无界是xlim xx x0f(x) 的________条件 limf(x) 是f(x)在x0的某一去心邻域内无界的________条件(4)f(x)当x x0时的右极限f(x0)及左极限f(x0)都存在且相等是x x0limf(x)存在的________条件解 (1) 必要充分(2) 必要充分(3) 必要充分(4) 充分必要2选择以下题中给出的四个结论中一个正确的结论设f(x) 2x3x2则当x 0时有( )(A)f(x)与x是等价无穷小 (B)f(x)与x同阶但非等价无穷小(C)f(x)是比x高阶的无穷小 (D)f(x)是比x低阶的无穷小解xxxxf(x)232213 lim lim lim 1 因为limx 0xx 0x 0xx 0xxxxt ln3limu ln2ln3 ln2lim(令21 t 31 u)t 0ln(1t)u 0ln(1u)所以f(x)与x同阶但非等价无穷小故应选B3设f(x)的定义域是[0 1]求下列函数的定义域(1) f(ex)(2) f(ln x)(3) f(arctan x)(4) f(cos x)解 (1)由0 ex 1得x 0即函数f(ex)的定义域为( 0](2) 由0 ln x 1得1 x e 即函数f(ln x)的定义域为[1 e](3) 由0 arctan x 1得0 x tan 1即函数f(arctan x)的定义域为[0 tan 1](4) 由0 cos x 1得2n x 2n (n 0 1 2) 22即函数f(cos x)的定义域为[2n , n ] (n 0 12 ) 224设x 0 0 0 x 0 f(x) g(x) 2x x 0x x 0求f[f(x)] g[g(x)] f[g(x)] g[f(x)]0 x 0 解因为f(x) 0所以f[f(x)] f(x) x x 0因为g(x) 0所以g[g(x)] 0因为g(x) 0所以f[g(x)] 00 x 0 因为f(x) 0所以g[f(x)] f 2(x) 2 x x 05利用y sin x的图形作出下列函数的图形(1)y |sin x|(2)y sin|x|(3)y 2sinx 26把半径为R的一圆形铁片自中心处剪去中心角为 的一扇形后围成一无底圆锥试将这圆锥的体积表为 的函数解设围成的圆锥的底半径为r高为h依题意有R(2 ) 2 r222r R(2 ) 22R2(2 )24 h R r R R2 4 2圆锥的体积为V 13 R2(2 )2 24 R2R324 2(2 )2 4 a2 (0 2 )7根据函数极限的定义证明limx2x 6x 3x3 5证明对于任意给定的 0要使|x2x 6x35| 只需|x3| 取当0 |x3| 时就有|x3| 即|x2x65| 所以limx2x 6x3x 3x3 58求下列极限(1)limx2x 1x 1(x1)2(2)xlim x(x21x)(3)3xlim (2x2x1x1(4)limtanx sinxx 0x3(5)limxxx 0(a b cx3)(a 0 b 0 c 0)(6)lim(sinx)tanx x 2解 (1)因为lim(x1)2所以limx2x 1x 1x2x1 0 x 1(x1)(2)xlim x(x21x) x(x21x)(x21x)xlim (x21 x) x1xlim x21x xlim 1112x2x322x1x1() lim(1 lim(1)22(3)xlim 2x1x x 2x12x 1222(1)(1 2 xlim 2x12x 122(1) lim(1) e xlim x 2x12x 1sinx(11)sinx(1cosx)tanx sinx lim lim(4)limx 0x 0x 0x3x3x3cosxsinx 2sin2x2x (x)2lim 1 limx 0x 02x3cosxx3(提示 用等价无穷小换)(a (5)limx 0x b3x cx)x lim(1a b c。

高等数学课后习题及解答

高等数学课后习题及解答

高等数学课后习题及解答1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM故MB .AB AM MB MC DM DC .即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形.3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点 A 连接.试以AB=c, BC=a 表向量证如图8-2 ,根据题意知1 D1A,1D2A, D3A, D A.41D3 D4BD11a,5a, D1D2 a,5 51D2D3a,5故D1 A=- (AB BD1)=- a- c5D 2 A =- ( ABD A =- ( AB BD 2BD )=-)=-2a- c5 3a- c3=- ( AB 3BD 4)=- 5 4a- c. 54. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示向量 M 1M 2 及-2 M 1M 2 .解M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) .-2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4).5. 求平行于向量 a =(6, 7, -6)的单位向量 .a解 向量 a 的单位向量 为,故平行向量 a 的单位向量为aa 1=( 6,7, -6)=6 ,7 , 6,a1111 11 11其 中 a 6272( 6)211.6. 在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B ( 2, 3,-4),C (2,-3,-4),D (-2,-3, 1).解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 .7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A ( 3, 4, 0),B ( 0, 4,3),C ( 3,0,0),D ( 0,D A4-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x0,y0,0),xOz 面上的点的坐标为(x0,0,z0),y Oz 面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x0,0,0),y 轴上的点的坐标为(0,y0,0),z 轴上的点的坐标为(0,0,z0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy 面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x 轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z 轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0 x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F 为点P0 关于xOz 面的垂线,垂足 F 坐标为(x0,0,z0);P0D 为点P0关于xOy 面的垂线,垂足 D 坐标为( x0,y0,0);P0E 为点P0 关于yOz 面的垂线,垂足E坐标为(0,y0,z o ) .P0A 为点P0 关于x 轴的垂线,垂足 A 坐标为( x o,0,0);P0B 为点P0关于y 轴的垂线,垂足B 坐标为(0, y0 ,0) ;P0C为点P0关于z 轴的垂线,垂足 C 坐标为(0,0, z0 ) .10.过点P(0 x0,y0,z0)分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0 且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0 且平行于xOy 面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11. 一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.2解如图8-5,已知AB=a,故OA=OB= a ,于是各顶点的坐2标分别为A(2a,0,0) ,B((0,22 2a,0)),C(- a,0,0),D2 2(0,-2a ,0),E(22a ,0,a ),F(0,22a ,a ),G(-22 a,20,a ),H(0,-2a ,a ). 212. 求点M(4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d1=( 3) 25234 ,点M 到y 轴的距离为d2= 42 5241 ,点M 到z 轴的距离为d3= 42( 3) 225 5.13.在yOz 面上,求与三点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P(0,y,z),点P 与三点A,B,C等距离,PA32 ( y1)2(z 2)2 ,PB 42( y 2)2(z 2)2 ,PC ( y 5)2( z 1)2 .由 PAPBPC 知,32( y 1)2( z 2)242( y 2) 2( z 2)2( y 5) 2 ( z 1) 2 ,即解上述方程组,得 y=1, z =-2.故所求点坐标为( 0,1, -2).14.试证明以三点 A (4, 1, 9), B (10,-1,6),C ( 2, 4,3)为顶点的三角形是等腰直角三角形 .证 由AB(104)2( 1 1)2(6 9)27,AC(2BC(2 4)2 10)2(4 1) 2 (4 1)2(3 9)27,(3 6)298 7 2知 AB2AC 及 BC2AB AC 2.故△ ABC 为等腰直角三角形.15. 设已知两点为 M 1(4, 2 ,1),M 2(3,0,2),计算向量的模、方向余弦和方向角 .M 1M 2解 向量M 1M 2=(3-4, 0-2 , 2-1) =(-1,- 2 , -1),其模M 1M 2( -1)2( - 2)2124 2 .其方向余弦分9 ( y 1) 2 ( z 2) 2 16 ( y 2) 2 ( z 2)2, 9 ( y 1) 2( z 2) 2( y 5) 2( z 1)2.别为 cos =- 1 , c os =-22 1,cos = .22方向角分别为2 ,3 , .3 4316. 设向量的方向余弦分别满足( 1)cos =0;(2)cos =1;( 3)cos =cos=0,问这些向量与坐标轴或坐标面的关系如何?解 (1)由 cos =0 得知 ,故向量与 x 轴垂直,平行于2yOz 面.(2) 由 cos =1 得知=0,故向量与 y 轴同向,垂直于 xOz 面.(3) 由 cos =cos =0 知,故向量垂直于 x 轴和 y 轴,2即与 z 轴平行,垂直于 xOy 面.17. 设向量 r 的模是 4,它与 u 轴的夹角为,求 r 在 u 轴上的投影 .31解 已知|r |=4 ,则 Prj u r=| r |cos=4?cos 3=4× 2=2.18. 一向量的终点在点 B (2,-1,7),它在 x 轴、y 轴和 z 轴上的投影依次为 4, -4 和 7,求这向量的起点 A 的坐标.解 设 A 点坐标为( x ,y , z ),则AB =( 2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故 x=-2,y=3,z=0,因此 A 点坐标为( -2, -3, 0).19. 设 m =3i +4j +8k ,n =2i -4j -7k 和 p =5i +j -4k . 求向量 a =4m +3n -p 在 x 轴上的投影及在y 轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a 在x 轴上的投影为13,在y 轴上的分向量为7j.21. 设a3i j 2k,b i 2 j k ,求(1) a 余弦.b 及a b ;(2)( - 2a )3b 及a 2b ;(3) a ,b 的夹角的解 ( 1) ab (3,- 1,- 2)(1,2,- 1)3ij k1 ( - 1)2 ( - 2)( - 1) 3,a b 31 122 =(5,1,7) . 1(2) (2a) 3b 6(a b) 6 3 18a 2b 2(a b) 2(5,1,7) a b (10,2,14)3(3 cos(a,b)a b3 32( 31)2( 2)21222( 1)214 62 212. 设 a, b ,c 为单位向量,满足a b c 0,求a b b c c a.解 已知 ab c 1, a b c 0,故( ab c )( a b c ) 0 .2 2即 abc2a b 2b c 2c a0.因此a b b c c a1 22 ( a b 22 3 c ) - 23.已知 M 1( 1,-1,2),M 2( 3,3,1)M 3( 3,1,3).求与同时垂直的单位向量 .M 1M 2 , M 2 M 3解M 1M 2 =( 3-1,3-(-1),1-2) =(2,4, -1)M 2 M 3=(3-3,1-3,3-1)=(0,-2,2)由于M 1M 2取为M2M3与M 1M 2, M 2M 3 同时垂直,故所求向量可a (M 1M 2M 2M 3),M 1M 2M 2M 3由M 1M 2iM 2M 3= 2j k4 1 =(6,-4,-4),2 2M1M 2知a M 2 M 3 61(6, 4, 4)( 4)2 ((3,4)22,682).2 172 17 17 17 174.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m,重力方向为z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J).5.在杠杆上支点O的一侧与点O的距离为x1 的点P1 处,有一与OP1成角1的力F1 作用着;在O的另一侧与点O的距离为x2 的点P2 处,有一与OP2成角 2 的力F2 作用着(图8-6 ),问 1 ,2 ,x1,x2,F1 , F2符合怎样的条件才能使杠杆保持平衡?解如图8-6 ,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为2F1即F1x1sin 1x1sin 1F2 x2F2 x2sinsin20 ,2.6.求向量a(4,- 3,4)在向量b (2,2,1)上的投影.a b ( 4, 3,4) (2,2,1) 6 解Pr j b ab 2 .22 22 12 37.设a(3,5, 2),b (2,1,4) ,问与有怎样的关系,能使a b与z 轴垂直?解 a b = (3,5 ,-2 )+ (2,1,4 )=(3 2 ,5 , 2 4 ).要 a b与z 轴垂直,即要( a b )(0,0,1 ),即( a b)?(0,0,1 )=0,亦即(3 2 ,5 , 2 4 )?(0,0,1 )=0,故( 2 4 )=0,因此 2 时能使 a b与z 轴垂直. 8.试用向量证明直径所对的圆周角是直角.证如图8-7 ,设AB是圆O的直径,C点在圆周上,要证∠ACB= ,2 只要证明AC BC 0 即可. 由AC BC =( AO OC) ( BO OC)= AOBO AO OC 2OC BO OC2=AO AO OC AO OC 2OC0 .故 ACBC , ∠ACB 为直角.9.已知向量 a 2i 3 j k, b ij 3k 和c i 2 j ,计算:(1) (ab)c (a c)b (2)(a b) (b c)(3)(ab) c解 (1)(a b)c (a c)b 8(1, 2,0) 8(1, 1,3) (0, 8, 24)8i 24k .(2) ab =(2,-3,1 )+(1,-1,3 )=(3,-4,4 ),b c =( 1, -1,3 ) +( 1, -2,0 ) =( 2, -3,3 ),ij k(a b) (b c) 34 4 (0, 1, 1) j k .23 3ab (2, 3,1) (1, 1,3) 8,a c (2, 3,1) (1, 2,0) 8,(3)(a b) c 211312132.10. 已知OA i 3k,OB j 3k ,求△OAB的面积.解由向量积的几何意义知S△OAB=12OA OB ,OA OB ( 3) 2( 3)2 1 19 S △OAB 19 211. 已知a( a x , a y , a z ), b(b x ,b y , b z ), c(c x , c y ,c z ) ,试利用行列式的性质证明:(a b) c (b c) a (c a) b证因为(a b) c a xb xc xa yb yc ya zb z , (bc zc) ab xc xa xb yc ya yb zc za z(c a) b c xa xb xc ya yb yc za z ,b zi j kOA OB 1 0 3 ( 3, 3,1) ,0 1 3而由行列式的性质知aabb2 2 a x a y a z b x b y b z c x c yc zb x b yc xc ya x a yb zc x c z = a x a z b xc yc z a y a z , 故b yb z(a b) c (b c) a (c a) b .12. 试用向量证明不等式:2 2 2 2 123123a 1b 1 a 2b2a 3b 3 ,其中 a 1, a 2 ,a 3 , b 1, b 2 ,b 3 为任意实数 . 并指出等号成立的条件.证 设向量 a ( a 1 , a 2 , a 3 ), b ( b 1, b 2 ,b 3 ). 由ab a b cos(a,b) a b ,从而a 1b 1 a 2b 2 a 3b 3 22a 1a 2a 1 222 a 3b 1b 2a 2 a 32b 3 ,当 a 1, a 2 , a 3与 b 1, b 2 ,b 3 成比例,即b 1b 2时,上述等式成立.b 3ab1. 求过点( 3,0,-1)且与平面 3x 7 y 程.解所求平面与已知平面3x 7 y 5z 125z 12 0 平行的平面方0 平行.因此所求平面的法向量可取为 n=(3,-7,5),设所求平面为3x 7 y 5z D 0.将点( 3,0, -1)代入上式得 D=-4.故所求平面方程为3x 7 y 5z 4 0 .2. 求过点 M 0( 2,9, -6)且与连接坐标原点及点 M 0 的线段 OM 0 垂直的平面方程 .解OM 0(2,9, 6).所求平面与 OM 0 垂直,可取 n= OM 0 ,设所求平面方程为2x 9 y6z D 0.将点 M 0( 2,9, -6)代入上式得 D=-121.故所求平面方程为2x 9 y 6z 121 0.3. 求过( 1,1, -1),(-2, -2, 2)和( 1,-1,2)三点的平面方程 .x 1y 1 z 10 ,得 x 3 y 2z 0 ,即为所求平面方程 .注 设 M ( x ,y,z )为平面上任意一点, M i( x i , y i , z i )(i1,2,3) 为平面上已知点 .由M 1M(M 1M 2 M 1M 3) 0, 即解 由2 1 2 1 2 11 11 12 1x x 1 x 2 x 1 x 3 x 1 y y 1 y 2 y 1 y 3 y 1 z z 1z 2 z 1 0, z 3 z 1它就表示过已知三点 M i ( i =1,2,3)的平面方程 . 4. 指出下列各平面的特殊位置,并画出各平面: (1)x=0; (2) 3y-1=0; (3)2x-3y-6=0; (4) x -3y=0;(5)y+z=1; ( 6)x-2z=0;(7)6x+5y-z=0.解 ( 1)—( 7)的平面分别如图 8— 8(a )—( g ) . (1)x=0 表示 yOz 坐标面.(2)3y-1=0 表示过点( 0, 1,0)且与 y 轴垂直的平面 .3(3)2x-3y-6=0 表示与 z 轴平行的平面 . (4)x-3y=0 表示过 z 轴的平面 .(5)y+z=1表示平行于 x 轴的平面 . (6)x-2z=0 表示过 y 轴的平面 . (7)6x+5y-z=0表示过原点的平面 .5. 求平面2x 2y z 5 0与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1, 2 , 3 .则根据平面的方向余弦知cos cos n k (2, 2,1) (0,0,1) 1 ,n k 22( 2)212 1 3cos 2cos n i ( 2,n i2,1)3(1,0,0) 2,1 3cos 3cos n j ( 2,n j2,1)3( 0,1,0) 2.1 36. 一平面过点(1,0,-1)且平行于向量a试求这个平面方程.(2,1,1) 和b (1, 1,0) ,解所求平面平行于向量 a 和b,可取平面的法向量i j kn a b 2 1 1 (1,1, 3) .1 1 01故所求平面为1 ( x 1) 1 ( y 0) 3( z 1) 0,即x y 3z 4 0 .7. 求三平面x 3y交点.z 1,2x y z 0, x 2 y 2z 3的解联立三平面方程x 3y 2x y x 2y z 1,z 0,2z 3.解此方程组得x 1, y 1, z 3.故所求交点为(1,-1,3). 8. 分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1 )所求平面平行于xOz 面,故设所求平面方程为By D 0.将点(2,-5,3)代入,得5B D 0,即D 5B.因此所求平面方程为By 5B 0,即y 5 0.(2)所求平面过z 轴,故设所求平面为Ax By 0 .将点(-3,1,-2)代入,得3A B 0,即B 3A.因此所求平面方程为Ax 3Ay 0 ,即x 3y 0.(3)所求平面平行于x 轴,故设所求平面方程为By Cz D 0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D 0 及C D, B2B 7CD 0.9D .2因此,所求平面方程为9 Dy 2 Dz D 0 ,2即9 y z 2 0.9. 求点(1,2,1)到平面x 2 y 2z 10 0 的距离.解利用点的距离公式M 0 ( x0 , y o , z o ) 到平面Ax By Cz D 0dAx0By0Cz0 DA2 B 2 C 21 2 2 2 1 10 3 1.12 22 22 3x 3 y1. 求过点(4,-1,3)且平行于直线2 1 z 1的直线方程. 5解所求直线与已知直线平行,故所求直线的方向向量s (2,1,5),直线方程即为x 4 y 1 z 3.2 1 52. 求过两点M 1(3, 2,1) 和M 2 ( 1,0,2) 的直线方程.解取所求直线的方向向量s M 1M 2( 1 3,0 ( 2),2 1) ( 4,2,1) ,因此所求直线方程为x 3 y 2 z 1.4 2 13. 用对称式方程及参数方程表示直线x y 2 x y z 1, z 4.解根据题意可知已知直线的方向向量i j ks 1 1 1 ( 2,1,3).2 1 1取x=0,代入直线方程得y z 1,y z 4.3 5解得y3, z25.这2样就得到直线经过的一点(0, ,2 ).因此直线的对称式方程为2参数方程为3 5 x 0 y 2 z 22 1 3x 2t ,y3t ,2z 53t.2注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4. 求过点(2,0,-3)且与直线x 2 y 3x 5 y 4z 7 0, 2z 1 0垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j n s 1 23 5 k4 ( 16,14,11), 2故所求平面方程为16( x16x 2)14y 14( y 0)11z 6511(z 3)0.0.即5 x 5. 求直线3x 3y 3z 92 y z 10, 2 x 2 y与直线0 3x 8 yz 23 0,z 18 0的夹角的余弦..解 两已知直线的方向向量分别为i s 15 3j k3 3 (3,4, 2 11), s 2 i j k 2 2 1 3 81(10,5,10),因此,两直线的夹角的余弦cos(cos s 1 , s 2 )s 1 s 2 s 1 s 23 1045 1 100.32x 2 y 42( 1) 2 102( z 7, 3x 5)21026 y 3z 8, 6. 证明直线2x y 与直线z 7平2x y z 0行.证 已知直线的方向向量分别是i j s 11 22 1ki 1 (3,1,5), s 2 3 12j k 6 3 ( 119, 3,15),由 s 23s 1知两直线互相平行 .7. 求过点(0,2,4)且与两平面 x 方程.2 z 1和 y 3z 2平行的直线解 所求直线与已知的两个平面平行, 因此所求直线的方向向量可取i j ks n1n2 1 0 2 ( 2,3,1),0 1 3故所求直线方程为x 0 2 y 2 z 4.3 1注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x 2z a,y 3z b.将点(0,2,4)代入上式,得 a 8, b10.故所求直线为x 2z 8,y 3z8. 求过点(3,1,-2)且通过直线解利用平面束方程,过直线的平面方程. 的平面束方程为x 4 y 3 5 2 (y 3z) 0, 2将点(3,1,-2)代入上式得11 .因此所求平面方程为20x 4 y 3 5 2 11(y 3z) 0, 20 210.x 4 y 3 z5x 4 y231z5 2 1即9. 求直线8x 9yx y 3z22z 59 0.0,与平面x y z 1 0的夹角. x y z 0i解已知直线的方向向量s 11 j k1 3 ( 2,4,1 12), 平面的法向量n(1, 1, 1).设直线与平面的夹角为, 则sin cos(n, s) s n 2 1 4 ( 1) ( 2) ( 1)0,即0.s n 2242 ( 2)2 12( 1)2 ( 1)2 10. 试确定下列各组中的直线和平面间的关系;x 3 y 4 (1)2 7x y z z和4x 2 y32z 3 ;(2)3和3x 2y2 77z 8;(3)x 23 y 2 z13和x4y z 3.解设直线的方向向量为s,平面的法向量为n ,直线与平面的夹角为, 且sin cos(n, s) s n. s n(1)s ( 2, 7,3), n(4, 2, 2),sin(( 2) 22) 4 ( 7)( 7)2 32( 2)423 ( 2)( 2)2 (0,2)2则0.故直线平行于平面或在平面上,现将直线上的点A(-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)s(3, 2,7), n(3, 2,7), 由于s n 或sin332 (3 ( 2)2)2 72( 2)327 71,( 2)2 72知,故直线与平面垂直.2(3)s(3,1, 4), n (1,1,1), 由于s n 0或sin 3 1 1 1 ( 4) 1 0,32 12 ( 4)212 12 12知0, 将直线上的点A(2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线x 2 y x yz 1 0,和z 1 02 x yx yz 0,z 0平行的平面的方程.解两直线的方向向量为i s1 11 j k2 1 (1,1 1i2, 3), s2 21j k1 1 (0, 1,1 11),i 取n s1s2 1 j k2 3 (1,1, 1),0 1 1则过点(1,2,1),以n 为法向量的平面方程为1 ( x 即1) 1 ( y 2)x y z 0.1 ( z 1) 0,12.求点(-1,2,0)在平面x 2y z 1 0上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x 2y z 1 0垂直的直线为x 1 y 2 1 2 z 0,1将它化为参数方程x 1t , y 22t, z t ,代入平面方程得1 t 2(2 2t )( t ) 1 0,2整理得t .从而所求点(-1,2,0)在平面x 2y3z 1 0 上的投影为(5,2,2).3 3 3x y z 1 0,13.求点P(3,-1,2)到直线2x y z 4 0的距离.i 解直线的方向向量s 12 j k1 1 (0, 3,1 13).在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t ,z3t. (1)又,过点P(3,-1,2),以s (0, 3, 3) 为法向量的平面方程为3( y 1) 3( z 2) 0,即y z 1 0. (2)1将式(1)代入式(2)得t ,于是直线与平面的交点为(1,2 1,3),2 2故所求距离为d (3 1)2( 1 1)22(23)223 2.214. 设M0 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s,试证:点M0到直线L 的距离M 0M sd .s证如图8-9,点M0 到直线L 的距离为 d.由向量积的几何意义知M 0M s 表示以M 0M ,s为邻边的平行四边形的面积.而M 0Ms s表示以s 为边长的该平面四边形的高,即为点M 0 到直线L的距离.于是M 0M sd .s15. 求直线2 x 4 y z3x y 2z0,在平面4x9 0y z 1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x 4 y z3x y 2z0,的平面束方程为9 02x 4y z (3x y 2z 9) 0,经整理得(2由(2 313 3 )x ( 4) 4 ( 4) y (1 2 ) z 9 0.) ( 1) (1 2 ) 1 0,得.代入平面束方程,得1117x 因此所求投影直线的方程为17x 31y31y37z37z117 0.117 0,4x y z 1.16. 画出下列各平面所围成的立体的图形.(1)x 0, y 0, z 0, x 2, y 1,3x 4 y 2z 12 0;(2)x0, z 0, x 1, y 2, z y .4解(1)如图8-10(a);(2)如图8-10(b).221.一球面过原点及 A ( 4,0, 0), B ( 1,3, 0)和 C (0,0, -4)三点,求球面的方程及球心的坐标和半径 .解 设所求球面的方程为( x a) 2 ( y b) 2 ( z c) 2R ,将已知点的坐标代入上式,得a2b2 c2R 2 ,(1)(a 4)2( a 1) 2b2c2(b 3) 2R 2 , c 2R 2 ,(2)(3)(3)a2b2( 4 c) 2R ,(4)联立( 1)( 2)得a2, 联立( 1)(4)得 c 2, 将a 2代入(2)( 3)并联立得 b=1,故 R=3.因此所求球面方程为( x 2)2 ( y 1) 2 ( z 2) 29,其中球心坐标为(2,1, 2), 半径为 3.2. 建立以点( 1,3, -2)为球心,且通过坐标原点的球面方程 .解 设以点( 1,3, -2)为球心, R 为半径的球面方程为( x 球面经过原点,故R2从而所求球面方程为1) 2(0 ( x ( y 3) 2 ( z 2) 2 R 2,3. 方 程x2y2z22 x 4 y 2 z 0表示什么曲面?解 将已知方程整理成( x 1)2 ( y 2)2 ( z 1) 2 ( 6) 2,1)2 ( 0 3) 2 (0 2) 214, 1) 2 ( y 3) 2 ( z 2) 2 14.所以此方程表示以(1,-2,-1)为球心,以 6 为半径的球面. 4. 求与坐标原点O 及点(2,3,4)的距离之比为1:2 的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x, y, z),根据题意有1,2( x 2)2 ( y 32 4 1)2( z4)232(229)2 .3它表示以(, 1,3)为球心,以29为半径的球面.3 325. 将xOz坐标面上的抛物线转曲面的方程.z 5x绕x 轴旋转一周,求所生成的旋解以y2 z2 代替抛物线方程z25x中的z,得( y2z2 ) 2 5x,即y2z25x.注xOz 面上的曲线F ( x, z) 0 绕x 轴旋转一周所生成的旋转曲面方程为F ( x, y2 z2 ) 0.6. 将xOz坐标面上的圆转曲面的方程.x2 z2 9 绕z 轴旋转一周,求所生成的旋解以x2 y2 代替圆方程x2 z2 9 中的x ,得( 即x2 x2y2 )2z29, y2 z2 9.( x 0)2( y 0)2( z 0)2化简整理得( x 2)2( y 3)2( z 4)2x z 7. 将 xOy 坐标面上的双曲线4x29 y236分别绕 x 轴及 y 轴旋转一周,求所生成的旋转曲面的方程 .解 以y2z2代替双曲线方程4x 29 y 236中的 y ,得该双曲线绕 x 轴旋转一周而生成的旋转曲面方程为4 x 2即4 x2229(9( y2y2z 2 z 2 )2)236.236, 以x z 代替双曲线方程 4x9 y36 中的 x ,得该双曲线绕 y 轴旋转一周而生成的旋转曲面方程为4(即4( x2x2z 2 ) z 2 )29 y29 y 236. 36,8. 画出下列各方程所表示的曲面:(1) ( x a ) 2 y 2 ( a ) 2;(2)x 2y 21;(3) 2 2 21; 2(4)y2 z 0;49( 5) z2 x 2 .9 4解 (1)如图 8-11(a ); (2)如图 8-11( b ); ( 3)如图 8-11(c );(4)如图 8-11(d ); ( 5)如图 8-11( e ).22229. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形: (1) x2;( 2) yx 1;(3) x2y24;( 4) x y1.解 ( 1) x2 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与 yOz 面平行的平面 .(2) yx 1在平面解析几何中表示斜率为1, y 轴截距也为 1 的一条直线,在空间解析几何中表示平行于 z 轴的平面 .(3) x2y24在平面解析几何中表示圆心在原点,半径为2 的圆,在空间解析几何中表示母线平行于 z 轴,准线为的圆柱面.x 2 y 2 4, z 0(4) xy1在平面解析几何中表示以 x 轴为实轴, y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z 轴,准线为y 12y z 2x2y2z 01,的双曲柱面 .10. 说明下列旋转曲面是怎样形成的:(1)x4221; 99( 2) 2x2z21;4(3) x2y2z 2 1; ( 4) ( z a) 2x 2 y 2.x 2y 2z 2x 2y2解( 1)1表示 xOy 面上的椭圆 1绕 x499 49x 2z2轴旋转一周而生成的旋转曲面,或表示 xOz 面的椭圆绕 49x 轴旋转一周而生成的旋转曲面 .(2) x2yz241表示 xOy 面上的双曲线 2y2x4y 21绕 y 轴 旋转一周而生成的旋转曲面, 或表示 yOz 面的双曲线绕 y 轴旋转一周而生成的旋转曲面 .z214(3) xy2z21表示 xOy 面上的双曲线 x2y 21绕 x 轴旋转一周而生成的旋转曲面,或表示 xOz 面的双曲线x 轴旋转一周而生成的旋转曲面 .x2z21绕(4) ( za) 2x 2y 表示 xOz 面上的直线 z x a 或zx a 绕 z 轴旋转一周而生成的旋转曲面,或表示 yOz 面的直线zy a 或 zy a 绕 z 轴旋转一周而生成的旋转曲面.11. 画出下列方程所表示的曲面:222(1) 4x2y2z24;(2) x 2y 2 4 z 24;z x2y2(3).34 9解 (1)如图 8-12(a ); (2)如图 8-12( b ); ( 3)如图 8-12(c );12. 画出下列各曲面所围立体的图形:(1) z卦限内); 0, z 3, x y 0, x 3y 0, x2y21(在第一(2)x 限内) .0, y 0, z 0, x 2 y 2R 2, y 2 z 2R (在第一卦解 ( 1)如图 8-13 所示;( 2)如图 8-14 所示.2 1. 画出下列曲线在第一卦限内的图形;(1)x 1, y 2;z(2)x 4 x 2 y 0;y 2,x 2 ( 3)x2y 2a 2, z2a 2.解 ( 1)如图 8-15( a );( 2)如图 8-15( b );( 3)如图 8-15( c ) .2. 指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:y5x 1,x2y21,(1)y 2 x 3;y 5x 1, ( 2)4 9 y 3.解 ( 1)y 2 x 3在平面解析几何中表示两直线的交点 .在空间解析几何中表示两平面的交线,即空间直线.x2(2) 4y 1,9在平面解析几何中表示椭圆x2y2与 y 34 9其切线y 3 的交点,即切点.在空间解析几何中表示椭圆柱面x2y21与其切平面 y 3的交线,即空间直线.4 913. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 2x2x2y2 z2z2 y216,2x2解在x2y2 z2z2 y216,中消去x,得3 y2z216,即为母线平行于x 轴且通过已知曲线的柱面方程.2x2在x2y 2 z2z2 y216,中消去y,得3x2 2 z216,即为母线平行于y 轴且通过已知曲线多的柱面方程.4. 求球面x2y2 z2 9 与平面x z1的交线在xOy 面上的投影的方程.解在x2 y2 z2x z 1 9,中消去z,得x2 y2 (1 x) 29, 即2 x2x y28,它表示母线平行于z 轴的柱面,故交线在xOy 面上的投影的方程. 2x22x y2z 08,表示已知5. 将下列曲线的一般方程化为参数方程:x2 y2 (1)y x; z2 9,(2)( xz1) 20.y2( z 1)24,2解(1)将y x代入x2y2 z2 9, 得2x2z29,3取x cos t, 则z23sint,从而可得该曲线的参数方程x 3cost , 2y 3cost, (02t 2 )z 3sin t(2)将z=0 代入( x1) 2y2( z 1) 24,得( x 1)2y23,取x 1 3 c ost, 则y 3 s in t, 从而可得该曲线的参数方程x 1 3cost,y 3 sint,z 0(0 t 2 )6. 求螺旋线方程. x acosy asinz b,, 在三个坐标面上的投影曲线的直角坐标解由x acos , y asin 得x2 y2a2, 故该螺旋线在xOy 面上的投影曲线的直角坐标方程为x2 y2z 0a2,由y asin , z b 得y asin z,故该螺旋线在yOz面上b的投影曲线的直角坐标方程为y a sinz,b x 0由x acos , z b 得x a cos z,故故该螺旋线在yOz 面b上的投影曲线的直角坐标方程为x acosz,b y 0.7. 求上半球0 z a2 x2 y2与圆柱体x2y2ax(a >0 )的公共部分在xOy 面和xOz面上的投影.解如图8-16.所求立体在xOy 面上的投影即为x2y2ax ,而由z a2 x2x2 y2 axy2 ,得z a2 ax. 故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线z a2ax 所围成的区域.8. 求旋转抛物面z x2y2( 0 z 4) 在三坐标面上的投影22 2解联立面上的投影为z x2z 4x2 y2y,得x24,y2 4.故旋转抛物面在xOy如图8-17.z 0.联立z xx 0 y2,得z y2 , 故旋转抛物面在yOz 面上的投影为z y 及z4所围成的区域.z x2同理,联立y 0 y2 ,得z x2, 故旋转抛物面在xOz面上的投影为z x 及z4所围成的区域.2。

高等数学教材课后习题答案

高等数学教材课后习题答案

高等数学教材课后习题答案第一章:函数与极限1.1 函数的概念与性质1. a) 题目: 求函数f(x) = 3x^2 - 2x + 1的定义域。

解答: 由于这是一个二次函数,定义域为全体实数R。

1. b) 题目: 求函数f(x) = \sqrt{x + 2}的定义域。

解答: 根据平方根的定义,要使得函数有意义,必须有x + 2 >= 0,即x >= -2,所以定义域为[-2, +∞)。

1.2 一元函数的极限2. a) 题目: 计算极限lim(x->2) (x^2 - 4) / (x - 2)。

解答: 这是一个常见的极限形式,可以通过因式分解或利用(x - a)的性质进行简化,得到lim(x->2) (x + 2) = 4。

2. b) 题目: 判断极限lim(x->0) (3x^2 - 2x) / (5x^2 - 4x)是否存在。

解答: 分子和分母的最高次项都是x^2,可以利用最高次项的系数求极限的方法进行计算。

结果为lim(x->0) (3x^2 - 2x) / (5x^2 - 4x) = 3/5。

1.3 连续性与导数3. a) 题目: 判断函数y = |x - 2| + x在点x = 2处是否连续。

解答: 在x = 2的左右两侧函数取值不同,所以函数y = |x - 2| + x在点x = 2处不连续。

3. b) 题目: 求函数y = sin(2x)的导数。

解答: 根据常见的导数公式,导数为dy/dx = 2cos(2x)。

第二章:导数与微分2.1 导数的概念与性质1. a) 题目: 求函数y = x^3 - 2x^2 + x的导数。

解答: 根据幂函数的求导规则,导数为dy/dx = 3x^2 - 4x + 1。

1. b) 题目: 求函数y = e^x的导数。

解答: 根据指数函数的求导规则,导数为dy/dx = e^x。

2.2 高阶导数与隐函数求导法2. a) 题目: 求函数y = sin(x) + cos(x)的二阶导数。

高等数学第七版教材答案详解

高等数学第七版教材答案详解

高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。

为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。

如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。

首先,我将给出每章节的课后习题答案。

在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。

你可以根据自己的需要,选择性地查看想要解答的习题。

接下来是课后思考题答案的解析。

这些思考题往往比较有挑战性,需要一定的思考和推导。

我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。

最后,我将给出课后习题的详细解析。

在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。

通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。

总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。

高数课后题答案及详解 高数课后习题答案解析

高数课后题答案及详解 高数课后习题答案解析

高数课后题答案及详解一、求下列极限1、sin ()lim x x x →−−22111;解一:()()12sin 1cos 1lim 02x x x x→−−==原式解二:()()11sin 1sin 1lim lim11x x x x x x →→−−==−+原式2、lim sin x x x →2203解一:00021311lim lim lim 6sin3cos39sin3cos39x x x x x x x x x →→→==⋅=原式解二:sin 3~30021limlim 6sin 3cos 39cos 39x xx x x x x xx x →→===原式3、20tan 2lim 3sin x x xx →解:()2tan 2~2,sin3~3222lim93x x x xx xx →=原式=4、0lim ln(1)x x x →+解一:()001lim lim 1111x x x x→→==+=+原式解二:()1011lim1ln ln 1x xex →===+原式5、2lim xx x x →∞−⎛⎞⎜⎟⎝⎠解一:()2222lim 1xx ex −⋅−−→∞⎛⎞=−=⎜⎟⎝⎠原式解二:()1211ln 2ln 22limlim ln2lim22lim x x x x xx x x x xx xx x x eeeee−−→∞→∞→∞−−−−−−→∞−−−=====原式6、()111lim 32x x x −→−解一:()()112220lim 12t x tt t e=−−−−→=−=令原式解二:1(2)221122221lim[1(22)]{lim[1(22)]}xx x x x x e−−→−−−→=+−=+−=i 原式7、30sin lim x x x x →−解:2001cos sin 1lim lim 366x x x x x x →→−===原式8、111lim ln 1x x x →⎛⎞−⎜⎟−⎝⎠解:111111ln 11lim lim lim 1(1)ln ln 1ln 11lim ln 112x x x x x x x x x x x x x x x xx →→→→−−+−===−−+−+−==−++原式9、12lim 22n n n n →∞+++⎛⎞−⎜⎟+⎝⎠⋯解:()()221122lim lim22221lim 422n n n n n n n n n n n n n n →∞→∞→∞⎛⎞+⎜⎟+−−=−=⎜⎟++⎜⎟⎝⎠−==−+原式10、329sin limx x t dtx →∫解:26686003sin 1sin 1lim lim 933x x x x x x x →→===原式11、arctan limx x tdt →+∞。

高数课后题答案及详解

高数课后题答案及详解

高等数学习题及答案一、填空题(每小题3分,共21分)1.设b a by ax y x f ,,),(其中+=为常数,则=)),(,(y x f xy f .y b abx axy 2++2.函数22y x z +=在点)2,1(处,沿从点)2,1(到点)32,2(+的方向的方向导数是 .321+3.设有向量场k xz j xy i y A ++=2,则=A div . x 24.二重积分⎰⎰21),(x dy y x f dx 交换积分次序后为 .⎰⎰11),(ydx y x f dy5.幂级数∑∞=-13)3(n nnn x 的收敛域为 . [0,6) 6.已知yx e z 2-=,而3,sin t y t x ==,则=dtdz3sin 22(cos 6)t t e t t -- 7.三重积分=⎰⎰⎰Ωdv 3 ,其中Ω是由3,0,1,0,1,0======z z y y x x 所围成的立体.二、计算题(一)(每小题7分,共21分)1.设b a b a 与,5,2==的夹角为π32,向量b a n b a m -=+=317与λ相互垂直,求λ.解:由251732cos 52)51(1217)51(3022⋅-⋅⋅⋅-+=-⋅-+=⋅=πλλλλb b a a n m得.40=λ2.求过点)1,2,1(-且与直线⎩⎨⎧=--+=-+-04230532z y x z y x 垂直的平面方程.解:直线的方向向量为{}11,7,5213132=--=kj is取平面的法向量为s n=,则平面方程为0)1(11)2(7)1(5=++-+-z y x 即.081175=-++z y x3.曲面32=xyz 上哪一点处的法线平行于向量}1,8,2{=S?并求出此法线方程.解:设曲面在点),,(z y x M 处的法线平行于s,令32-=xyz F 则在点),,(z y x M 处曲面的法向量为.182,}.,,{},,{xyxz yz s n xy xz yz F F F n z y x ====故有由于由此解得 y z y x 8,4==,代入曲面方程,解得),,(z y x M 的坐标为)8,1,4(,用点向式即得所求法线方程为188124-=-=-z y x三、计算题(二)(每小题7分,共21分)1.设)(x yxF xy z +=,其中)(u F 为可导函数,求.yz y x z x∂∂+∂∂ 解:),()(u F xyu F y x z '-+=∂∂ )(u F x y z '+=∂∂ xy z xF xy yzy x z x+=+=∂∂+∂∂2 2.将函数⎪⎪⎭⎫⎝⎛-=x e dx d x f x 1)(展成x 的幂级数,并求∑∞=+1)!1(n n n 的和. 解:⋅⋅⋅++⋅⋅⋅++=--1!1!2111n x x n x x e并在),(+∞-∞内收敛。

高等数学教材习题答案详解

高等数学教材习题答案详解

高等数学教材习题答案详解1. 一元函数与极限题目:计算极限 $\lim \limits_{x \to 0} \frac{e^x - 1 - x}{x^2}$。

解析:首先将分式分离为两个部分,得到:$\lim \limits_{x \to 0} \left( \frac{e^x - 1}{x} \cdot \frac{1}{x} -\frac{1}{x} \right)$。

根据极限的性质,我们将分别计算两个部分的极限。

先计算 $\lim \limits_{x \to 0} \frac{e^x - 1}{x}$。

将分子展开为泰勒级数:$e^x = 1 + x + \frac{x^2}{2!} +\frac{x^3}{3!} + \dots$。

代入式中,得到:$\lim \limits_{x \to 0} \left( \frac{1 + x + \frac{x^2}{2!} +\frac{x^3}{3!} + \dots - 1}{x} \right)$。

简化后得到:$\lim \limits_{x \to 0} \left( 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots \right) = 1$。

再计算 $\lim \limits_{x \to 0} \frac{1}{x}$。

由于分子为常数1,不随x变化,分母趋于0时,极限不存在。

将两个计算结果代入原式中,得到最终结果:$\lim \limits_{x \to 0} \frac{e^x - 1 - x}{x^2} = 1 - \lim \limits_{x \to 0} \frac{1}{x} = 1 - \infty = -\infty$。

2. 一元函数的导数与微分题目:求函数 $y = \sqrt{1 + x^2}$ 的导数。

解析:对于 $y = \sqrt{1 + x^2}$,可以通过链式法则求导。

令 $u = 1 + x^2$,则 $y = \sqrt{u}$。

高数(第三版)课后习题七详细答案

高数(第三版)课后习题七详细答案

习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149z=153154即所求点为M (0,0,149). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB = c ,BC = a 表示向量1D A ,2D A ,3D A 和4D A .解:1115D A BA BD =-=-- c a2225D A BA BD =-=-- c a3335D A BA BD =-=-- c a444.5D A BA BD =-=-- c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos 604 2.2u OM OM =︒=⨯=12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----155解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模; (3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP ==12Pr j 2.z z a PP ==-(2) 12PP ==(3) 12cos x aPP α==12cos y a PP β==12cos zaPP γ==.(4) 12012PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c156, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有c o s (1,1)3x a ia a i a iπ⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则22cos 42a b a b π⋅=⇒=⋅ 则214y a =求得12y a =±又1,a = 则2221x y z a a a ++=从而求得11{,,}222a =± 或11{,,}222-±18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM的坐标.解:设向径OM={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩157故OM ={111,,344-}.19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=15822. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB在向量CD上的投影.解:AB={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ① (a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b159π2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||3⨯==±--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯ .证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =--{2,0,3}BC =-16022222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y zi j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y xa b a b i a b a b j a b a b k()()() 则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()xy z xy z xyza a ab b b C C C = 若 ,,C a b共面,则有 a b ⨯ 后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z xy za a a ab b b b C C C ⨯⋅=() a xy z xy z xy z bb b b C C C C a a a ⨯⋅= () b xy z xy z xy zCC C C a a a a b b b ⨯⋅= () 由行列式性质可得:xy z x y z x y z xy z x y z x y zxyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a a b b C C a ⨯⋅=⨯⋅=⨯⋅ ()()()16131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积12S =32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13B C D V S h =⋅⋅ , 而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB = ,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥ ,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).162解:(1)两点所确立的一个向量为 s ={3-1,1+2,-1-1}={2,3,-2} 故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3} 故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=163得b =2.故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2) (2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4) (4) x –y =0表示过z 轴的平面(如图7-5) (5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=016416546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角: (1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}166由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程: (1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2} 故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z==-和3x -2y +7z =8;167(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0168得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.169解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=;(3)22194x z +=; (4)20y z -=;(5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-1217059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=;(3)222149y z x --=; (4)2221149y z x +-=;(5)22209z x y +-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.171解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-.解:(1)直线的参数方程为334624x ty t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.172解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧+=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.故曲线在xOy平面上的投影方程为2215()24x yz⎧-+=⎪⎨⎪=⎩173。

高数课后题答案及详解

高数课后题答案及详解

第一章 函数与极限习 题 1-11.求下列函数的自然定义域:(1)211y x =- 解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅. (3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<. (4)312x x y -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞. (6)1arctan y x=解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且. 2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-;当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+;当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅. 3.设21()1,f x x ⎛⎫=- ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4.设1||1,()0||1,()21|| 1.xx f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证. 6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么? (1)))()ln ,()ln 3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x ==; 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞. 解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x-=-是单调递减的.8. 判定下列函数的奇偶性.(1)lg(y x =+;解:因为1()lg(lg(lg(()f x x x x f x --=-+==-+=-, 所以lg(y x =+是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数. (3)22cos sin 1y x x x =++-;解:因为2()2cos sin 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22cos sin 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数.9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证. 10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界.证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =;周期函数,周期为π. (2)1sin πy x =+;周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1y x y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax b y ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dx f x ad bc cx a--=≠-.(3)(lg y x =;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭.解:依题意,arccos32yx =,所以反函数1arccos 3(),[0,3]2x f x x -=∈. 13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πVh V r H r=∈. 15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+L ,(1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=.(2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n >取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-<成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=. 解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使221|2nε=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有|1|ε<, 则1n →∞=. 3.若lim n n x a →∞=,证明lim ||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0, 由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim ||||n n x a →∞=. 同理可证0a <时, lim ||||n n x a →∞=成立. 反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =, 显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=. 证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N>时,|0|n y ε-<, 因为对上述N , 当n N>时,|0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=. 5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞. 解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理, 0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时, ||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<, 只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim 31x x x →∞+=-; (3)224lim42x x x →--=-+;(4)lim 0x =. 证明:(1) 由于|(21)5|2|3|x x --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-. (3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+. (4) 由于0|-=,任给0ε>,要使0|ε-<,只要ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有0|ε-<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=; (3)lim ()x a f x b +→=; (4)3lim ()8x f x -→=-.解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=. 证明: 由于00lim ||lim 0x x x x ++→→==, 00lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=. 6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则lim ()x f x A →∞=. 证明: 由于lim ()x f x A→+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A→-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M>时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x=为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故 211lim 01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x xx x -=≤,取1M ε=, 则当||x M >时,总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x→∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M xx x +=+>->,所以013limx xx→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的.M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞,πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y xx=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-; (2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦L ; (3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭L ; (4)1132lim 32n nn n n ++→∞+-; (5)2211lim 54x x x x →--+; (6)3221lim 53x x x x →+-+; (7)lim x →+∞-;(8)2221lim 53x x x x →∞+++; (9)330()limh x h x h→+-;(10)2121lim 11x x x →⎛⎫- ⎪--⎝⎭; (11)23lim 531x x xx x →∞+-+; (12)x → (13)3lim 21x x x →∞+; (14)3lim(236)x x x →∞-+.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦L = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦L = 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭L =21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅. (5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) lim x →+∞=limx=lim x111lim 2x -=.(8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)limh x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=. (10) 2121lim 11x x x →⎛⎫- ⎪--⎝⎭=212(1)lim 1x x x →-+⎛⎫⎪-⎝⎭=1(1)lim (1)(1)x x x x →--+ =111lim 12x x →=+. (11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=1x →.(13) 3lim 21x x x →∞+=2lim12x x x→∞=+∞+. (14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞. 2.设e ,0,()2,0.x x f x x a x ⎧<=⎨+≥⎩ 问当a 为何值时,极限0lim ()x f x →存在. 解:因为lim ()lim e 1,lim ()lim(2)x x x x x f x f x x a a --++→→→→===+=,所以,当00lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数1211e 1x x x ---的极限.解:因为11211111lim e lim(1)e 0,1x x x x x x x ----→→-=+=- 11211111lim e lim(1)e ,1x x x x x x x ++--→→-=+=+∞- 所以12111lim e 1x x x x -→--不存在。

高数课后习题九详细答案

高数课后习题九详细答案

第9章课后习题详解 重积分课后习题全解习题9-1★1.设有一平面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布着面密度为),(y x μμ=的电荷,且),(y x μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解:将D 任意分割成n 个小区域{}i σ∆,在第i 个小区域上任取一点),(i i ηξ,由于),(y x μ在D 上连续和i σ∆很小,所以用),(i i ηξμ作为i σ∆上各点函数值的近似值,则i σ∆上的电荷i i i i Q σηξμ∆≈∆),(从而该板上的全部电荷⎰⎰∑=∆==→Dni i i i d y x Q σμσηξμλ),(),(lim 1其中λ是各i σ∆中的最大直径。

★★2.利用二重积分定义证明:(1)σσ=⎰⎰Dd (σ为区域D 的面积);(2)⎰⎰⎰⎰=DDd y x f k d y x kf σσ),(),((其中k 为常数);(3)⎰⎰⎰⎰⎰⎰+=21),(),(),(D D Dd y x f d y x f d y x f σσσ,其中21D D D=, 21,D D 为两个无公共内点的闭区域。

证明:(1)这里,被积函数1),(≡y x f ,由二重积分的定义,对任意分割和取点法,=∙⎰⎰Dd σ1∑∑=→=→∆∙=∆n i i ni iiif 111lim ),(lim σσηξλλ∑=→∆=ni i 1lim σλσσλ==→0lim ,∴σσ=⎰⎰Dd ,其中λ是各iσ∆中的最大直径。

(2)=⎰⎰Dd y x kf σ),(∑∑=→=→∆=∆ni i i i ni iiif k kf 101),(lim ),(lim σηξσηξλλ∑=→∆=ni i i i f k 1),(lim σηξλ⎰⎰=Dd y x f k σ),((3)将1D 任意分割成1n 个小区域{}1i σ∆,1λ是其各小区域的最大直径,将2D 任意分割成2n 个小区域{}2i σ∆,2λ有类似的意义。

高数课后习题答案及其解析

高数课后习题答案及其解析

第一章习题 习题1.11.判断下列函数是否相同: ①定义域不同;②定义域对应法则相同同;2.解 25.125.01)5.0(,2)5.0(=+=-=f f5.解 ① 10,1,1222≤≤-±=-=y y x y x② +∞<<-∞+=+=-=-=y be b c x e c bx c bx e c bx e ay ay a y a y ,,,),ln(ln 6.解 ① x v v u u y sin ,3,ln 2=+== ② 52,arctan 3+==x u u y 习题1.24.解:① 无穷大 ② 无穷小 ③ 负无穷大 ④ 负无穷大 ⑤ 无穷小 ⑥ 无穷小5.求极限:⑴ 21lim 2lim 3)123(lim 13131=+-=+-→→→x x x x x x x⑵ 51)12(lim )3(lim 123lim 22222=+-=+-→→→x x x x x x x⑶ 0tan lim=∞→xxa x⑷-∞=∞--=------=----=+--→→→→32)1)(4(1lim )1)(4()1(2lim )1)(4(122lim 4532lim 11121x x x x x x x x x x x x x x x⑸ 4123lim )2)(2()2)(3(lim 465lim 22222-=+-=-+--=-+-→→→x x x x x x x x x x x x ⑹ )11)(11()11(lim 11lim22220220x x x x x x x x +++-++=+-→→2)11(lim )11(lim 202220-=++-=-++=→→x xx x x x ⑺ 311311lim 131lim 22=++=+++∞→+∞→xx x x x x⑻2132543232lim 25342332lim =⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅+=⋅+⋅⋅+⋅+∞→+∞→x xx x x x x x ⑼ 133)1)(1()2)(1(lim 12lim 1311lim 2132131-=-=+-+-+=+-+=⎪⎭⎫ ⎝⎛+-+-→-→-→x x x x x x x x x x x x x ⑽011lim )1()1)(1(lim)1(lim =++=++++-+=-+∞→∞→∞→nn n n n n n n n n n n n⑾ 1lim 1231lim 22222==⎪⎭⎫ ⎝⎛-+++∞→∞→n n n n n n x x ⑿221121211lim2121211lim 2=-⋅-=⎪⎭⎫ ⎝⎛+++∞→∞→n n n n 6.求极限 ⑴ 414tan lim0=→x x x⑵ 111sinlim1sin lim ==∞→∞→xx x x x x⑶ 2sin 2lim sin sin 2lim sin 2cos 1lim0200===-→→→xxx x x x x x x x x ⑷ x x n nn =⋅∞→2sin 2lim⑸ 21sin lim 212arcsin lim00==→→y y x x y x ⑹111sinlim1sin lim 1sinlim 22222-=-=-=-∞→-∞→-∞→x x x x x x x x x ⑺ k k xx k xx xkx e x x x x ----→---→-→=--=-=-])1()1[(lim )1(lim )1(lim2)(12)(120⑻ 22211lim 1lim e x x x x x xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⋅∞→∞→⑼ 313tan 311cot 0])tan 31()tan 31[(lim )tan 31(lim e x x x xx x x =++=+→+→⑽ =⎪⎭⎫ ⎝⎛-+∞→32321lim x x x 343)34(23])321()321[(lim ---∞→=-⋅-e xx xx ⑾ []1)31(lim )31(lim )31(lim 03133311==+=+=+⋅-+∞→⋅⋅-+∞→-+∞→--e xx x x x x x x x x xxx⑿ 1333111lim 1111lim 1lim -+∞→+∞→+∞→==⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e ex x x x x x x x x x习题1.31、⑴ 因为函数在x=1点处无定义,)2)(1()1)(1()(--+-=x x x x x f ,但是2)(lim 1-=→x f x ,x=1点是函数的第一类间断点(可去)。

高等数学课后答案-第六章-习题详细解答

高等数学课后答案-第六章-习题详细解答

习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。

高数上册课后习题答案

高数上册课后习题答案

高数上册课后习题答案高数上册课后习题答案高等数学作为大学本科教育中的一门重要课程,对于培养学生的数学思维能力和解决实际问题的能力起着至关重要的作用。

然而,由于高数上册课程的难度较大,学生们往往会在课后习题上遇到一些困难。

为了帮助大家更好地理解和掌握高数上册的知识,本文将提供一些常见习题的答案和解析。

第一章:极限与连续1. 计算极限 $\lim_{x \to \infty} \frac{x^2 - 3x + 2}{x^3 + 2x^2 - 5}$。

解析:将分子和分母同时除以$x^3$,得到 $\lim_{x \to \infty} \frac{\frac{1}{x} - \frac{3}{x^2} + \frac{2}{x^3}}{1 + \frac{2}{x} - \frac{5}{x^3}}$。

当$x$趋向于无穷大时,分子的前两项趋近于0,分母的后两项趋近于0,所以原式等于$\frac{0}{1+0-0}=0$。

2. 计算极限 $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$。

解析:将分子展开,得到 $\lim_{x \to 0}\frac{(1+x+\frac{x^2}{2}+\frac{x^3}{6}+...)-1-x}{x^2}$。

化简后得到 $\lim_{x \to 0} \frac{\frac{x^2}{2}+\frac{x^3}{6}+...}{x^2}$。

当$x$趋向于0时,分子的每一项都趋近于0,所以原式等于 $\frac{0}{1}=0$。

第二章:导数与微分1. 求函数 $y = x^3 - 4x^2 + 3x + 2$ 在点 $x = 2$ 处的导数。

解析:对函数进行求导,得到 $y' = 3x^2 - 8x + 3$。

将$x$的值代入,得到$y'(2) = 3(2)^2 - 8(2) + 3 = 4$。

所以函数在点 $x = 2$ 处的导数为4。

高等数学(同济第七版)课后答案解析

高等数学(同济第七版)课后答案解析
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.

/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答

高等数学(同济第七版下)课后习题及解答高等数学(同济第七版下)课后习题及解答一、函数与极限1. 已知函数 f(x) = x^2 + 3x - 2, 求以下极限:(1) lim(x→2) f(x)(2) lim(x→-1) f(x)解答:(1) 当x → 2 时,f(x) = x^2 + 3x - 2 = 2^2 + 3(2) - 2 = 12所以,lim(x→2) f(x) = 12(2) 当x → -1 时,f(x) = (-1)^2 + 3(-1) - 2 = -2所以,lim(x→-1) f(x) = -22. 求以下极限:(1) lim(x→0) (sin3x)/(sin4x)(2) lim(x→∞) (x^2 - 2x)/(x - 1)解答:(1) 利用极限的性质,lim(x→0) (sin3x)/(sin4x)= lim(x→0) (3x)/(4x) = 3/4(2) 利用极限的性质,lim(x→∞) (x^2 - 2x)/(x - 1)= lim(x→∞) x(x - 2)/(x - 1) = ∞二、导数与微分1. 求以下函数的导数:(1) y = x^3 + 2x^2 - 3x + 1(2) y = sin(2x) + cos(3x)(3) y = e^x/(1 + e^x)解答:(1) y' = 3x^2 + 4x - 3(2) y' = 2cos(2x) - 3sin(3x)(3) 利用商链规则和指数函数的导数性质,y' = e^x/(1 + e^x) - e^x*e^x/(1 + e^x)^2= e^x/(1 + e^x) - (e^x)^2/(1 + e^x)^2= e^x(1 - e^x)/(1 + e^x)^22. 求以下函数的微分:(1) y = 3x^2 + 4x - 2(2) y = sin(3x) + cos(2x)(3) y = ln(x) + e^x解答:(1) dy = (6x + 4)dx(2) dy = 3cos(3x)dx - 2sin(2x)dx(3) 利用对数函数和指数函数的微分性质,dy = (1/x)dx + e^xdx三、定积分与不定积分1. 求以下定积分:(1) ∫[0,1] (x^2 + 2x)dx(2) ∫[π/4,π/2] sinx dx解答:(1) ∫[0,1] (x^2 + 2x)dx = (1/3)x^3 + x^2 |[0,1]= (1/3)(1)^3 + (1)^2 - (1/3)(0)^3 - (0)^2= 4/3(2) 利用不定积分的基本公式,∫ sinx dx = -cosx∫[π/4,π/2] sinx dx = [-cosx] |[π/4,π/2] = -cos(π/2) - (-cos(π/4)) = -1 + √2/2 = √2/2 - 12. 求以下不定积分:(1) ∫(x^2 + 2x)dx(2) ∫sinx dx解答:(1) ∫(x^2 + 2x)dx = (1/3)x^3 + x^2 + C(2) ∫sinx dx = -cosx + C四、级数1. 判断以下级数的敛散性:(1) ∑(n=1,∞) (1/n)(2) ∑(n=1,∞) (1/2)^n解答:(1) 这是调和级数,已知调和级数∑(n=1,∞) (1/n) 发散。

高数课后题答案及详解

高数课后题答案及详解

高等数学课后习题及解答1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM故MB .AB AM MB MC DM DC .即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形.3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点 A 连接.试以AB=c, BC=a 表向量证如图8-2 ,根据题意知1 D1 A,1D2 A, D3 A, D A.41D3 D4BD11a,5a, D1D2 a,5 51D2D3 a,5故D1 A=- (AB BD1)=- a- c5D 2 A =- (AB D A =- (ABBD 2BD)=- )=-2 a- c 53 a- c 3=- (AB3BD 4)=-5 4a- c. 54. 已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量M 1M 2 及-2 M 1M 2 .解M 1M 2=(1-0,-1-1,0-2)=(1,-2,-2).-2 M 1M 2 =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a=(6,7,-6)的单位向量.a解向量 a 的单位向量为,故平行向量 a 的单位向量为aa 1=(6,7,-6)=6 ,7 , 6 ,a1111 11 11其中a6272( 6)211.6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解 A 点在第四卦限, B 点在第五卦限,C 点在第八卦限,D 点在第三卦限. 7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,D A 4-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x0,y0,0),xOz 面上的点的坐标为(x0,0,z0),yOz 面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x0,0,0),y 轴上的点的坐标为(0,y0,0),z 轴上的点的坐标为(0,0,z0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy 面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x 轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z 轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0 x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F 为点P0 关于xOz 面的垂线,垂足 F 坐标为(x0,0,z0);P0D 为点P0关于xOy 面的垂线,垂足 D 坐标为( x0,y0,0);P0E 为点P0 关于yOz 面的垂线,垂足E坐标为(0,y0,z o ) .P0A 为点P0 关于x 轴的垂线,垂足 A 坐标为( x o,0,0);P0B 为点P0关于y 轴的垂线,垂足B 坐标为(0, y0 ,0) ;P0C为点P0关于z 轴的垂线,垂足 C 坐标为(0,0, z0 ) .10.过点P(0 x0,y0,z0)分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0 且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0 且平行于xOy 面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11. 一边长为 a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.2解如图8-5,已知AB=a,故OA=OB= a ,于是各顶点的坐2标分别为A(2a,0,0) ,B((0,22 2a,0)),C(- a,0,0),D2 2(0,-2a ,0),E(22a ,0,a ),F(0,22a ,a ),G(-22a ,20,a ),H(0,-2a ,a ). 212. 求点M(4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d1=( 3) 25234 ,点M 到y 轴的距离为d2= 42 5241 ,点M 到z 轴的距离为d3= 42( 3) 225 5.13.在yOz 面上,求与三点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P(0,y,z),点P 与三点A,B,C等距离,PA32 ( y1)2(z 2)2 ,PB 42( y 2)2(z 2)2 ,PC ( y 5)2( z 1)2 .由PAPBPC 知,32( y 1)2( z 2)242( y 2)2( z 2)2( y 5)2( z 1)2,即解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由AB (10 4)2( 1 1)2(6 9)27, AC (2 BC(2 4)210)2(4 1)2(4 1)2(3 9)27,(3 6)298 7 2知AB2AC 及BC2ABAC 2.故△ ABC 为等腰直角三角形.15. 设已知两点为M 1(4,2 ,1),M 2(3,0,2),计算向量的模、方向余弦和方向角.M 1M 2解向量M 1M 2=(3-4,0-2 ,2-1)=(-1,- 2 ,-1),其模M 1M 2(-1)2(- 2)2124 2 .其方向余弦分9 ( y 1) 2( z 2) 216 ( y 2) 2( z 2)2,9 ( y 1)2( z 2)2( y 5)2( z 1)2.别为cos =- 1 ,cos =-22 1,cos = .22方向角分别为2 ,3 ,.34316. 设向量的方向余弦分别满足(1)cos=0;(2)cos=1;(3)cos =cos=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos=0 得知,故向量与x 轴垂直,平行于2yOz 面.(2)由cos=1 得知=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos =cos =0 知,故向量垂直于x 轴和y 轴,2即与z 轴平行,垂直于xOy 面.17. 设向量r 的模是4,它与u 轴的夹角为,求r 在u 轴上的投影.31解已知|r |=4 ,则Prj u r=| r |cos=4?cos3=4×2=2.18. 一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4 和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此 A 点坐标为(-2,-3,0).19. 设m=3i+4j+8k ,n=2i-4j-7k 和p=5i+j-4k. 求向量a=4m+3n-p 在x 轴上的投影及在y 轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a 在x 轴上的投影为13,在y 轴上的分向量为7j.21. 设a 3i j 2k,b i 2 j k ,求(1)a 余弦.b 及a b ;(2)(-2a )3b 及a 2b ;(3)a,b 的夹角的解(1)ab (3,- 1,- 2)(1,2,- 1)3 i j k1 (- 1)2 (- 2)(- 1)3,a b3 1 122 =(5,1,7).1(2)( 2a) 3b 6(a b) 6 3 18a 2b 2(a b)2(5,1,7) a b (10,2,14)3(3 cos(a,b)a b3 32( 31)2( 2)21222( 1)214 62 212. 设a, b,c 为单位向量,满足a b c0,求a b b c c a.解已知a b c 1, a b c 0,故(ab c )(a bc )0 .22即abc2a b 2b c 2c a 0.因此a b b c c a1 2 2 (a b 2 2 3c )- 2 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与同时垂直的单位向量.M 1M 2 , M 2 M 3解M 1M 2 =(3-1,3-(-1),1-2)=(2,4,-1)M 2 M 3=(3-3,1-3,3-1)=(0,-2,2)由于M 1M 2取为M 2 M 3与M 1M 2, M 2M 3 同时垂直,故所求向量可a (M 1M 2M 2M 3),M 1M 2M 2M 3由M 1M 2iM 2M 3= 2j k4 1 =(6,-4,-4),2 2M1M 2知a M 2 M 3 61(6, 4, 4)( 4)2 ((3,4)22,682).2 172 17 17 17 174.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m,重力方向为z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J).5.在杠杆上支点O的一侧与点O的距离为x1 的点P1 处,有一与OP1成角1的力F1 作用着;在O的另一侧与点O的距离为x2 的点P2 处,有一与OP2成角 2 的力F2 作用着(图8-6 ),问 1 , 2 ,x1,x2,F1 , F2符合怎样的条件才能使杠杆保持平衡?解如图8-6 ,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为2F1即F1x1sin 1x1sin 1F2 x2F2 x2sinsin20 ,2.6.求向量a(4,- 3,4)在向量b (2,2,1)上的投影.a b ( 4, 3,4) (2,2,1) 6 解Pr j b ab 2 .22 22 12 37.设a(3,5, 2),b (2,1,4) ,问与有怎样的关系,能使a b与z 轴垂直?解 a b = (3,5 ,-2 )+ (2,1,4 )=(3 2 ,5 , 2 4 ).要 a b与z 轴垂直,即要( a b )(0,0,1 ),即( a b)?(0,0,1 )=0,亦即(3 2 ,5 , 2 4 )?(0,0,1 )=0,故( 2 4 )=0,因此 2 时能使 a b与z 轴垂直. 8.试用向量证明直径所对的圆周角是直角.证如图8-7 ,设AB是圆O的直径,C点在圆周上,要证∠ACB= ,2 只要证明AC BC 0 即可. 由AC BC =( AO OC) ( BO OC)= AO BOAO OC 2OC BO OC2=AO AO OCAO OC2OC0 .故AC BC , ∠ACB 为直角.9.已知向量a2i 3 j k, bij 3k 和c i 2 j ,计算:(1)(a b)c (a c)b(2)(ab) (b c)(3)(ab) c解(1)(a b)c (a c)b 8(1, 2,0) 8(1, 1,3) (0, 8, 24)8i 24k .(2)a b =(2,-3,1 )+(1,-1,3 )=(3,-4,4 ),b c =(1,-1,3)+(1,-2,0 )=(2,-3,3 ),ij k(a b) (b c)3 4 4 (0, 1, 1) j k .23 3a b (2, 3,1) (1, 1,3) 8,a c (2, 3,1) (1, 2,0) 8,(3)(ab) c 2113 1 2 1 3 02.10. 已知OA i 3k,OB j 3k ,求△OAB 的面积.解由向量积的几何意义知S △OAB =1 2OA OB ,OA OB( 3)2( 3)21 19S△OAB 19211. 已知a( a x , a y , a z ), b (b x ,b y , b z ), c(c x , c y ,c z ) ,试利用行列式的性质证明:(a b) c (b c) a (c a) b证因为(ab ) ca xb xc xa yb yc ya zb z , (bc zc) a b x c x a xb yc y a yb zc z a z(c a) bc xa xb xc y a y b yc z a z ,b zijkOA OB 1 0 3 ( 3, 3,1) ,0 1 3而由行列式的性质知a ab b22 a x a y a z b x b y b z c xc yc zb x b yc x c y a xa yb zc x c z = a xa zb xc y c z a y a z ,故b yb z(a b) c (b c) a (c a) b .12. 试用向量证明不等式:2222123123a 1b 1a 2b2a 3b 3,其中a 1, a 2 ,a 3 ,b 1, b 2 ,b 3 为任意实数. 并指出等号成立的条件.证设向量a(a 1 , a 2 , a 3 ),b (b 1, b 2 ,b 3 ).由a b a b cos(a,b)a b ,从而a 1b 1a 2b 2a 3b 322a 1a 2a 1 222a 3b 1b 2a 2 a 32b 3,当a 1, a 2 , a 3与b 1, b 2 ,b 3 成比例,即b 1b 2时,上述等式成立.b 3a b1. 求过点(3,0,-1)且与平面3x 7 y 程.解所求平面与已知平面3x 7 y 5z 12 5z 12 0 平行的平面方0 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为3x 7 y 5z D0.将点(3,0,-1)代入上式得D=-4.故所求平面方程为3x 7 y 5z 4 0 .2. 求过点M 0(2,9,-6)且与连接坐标原点及点M 0 的线段OM 0 垂直的平面方程.解OM 0(2,9, 6).所求平面与OM 0垂直,可取n= OM 0 ,设所求平面方程为2x 9 y 6z D0.将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为2x 9 y 6z 121 0.3. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.x 1y 1 z 10 ,得x 3 y 2z 0 ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,M i( x i , y i , z i )(i1,2,3) 为平面上已知点.由M 1M (M 1M 2M 1M 3)0, 即解由2 1 2 1 2 1 1 11 12 1x x 1x 2x 1x 3x 1y y 1y 2y 1y 3y 1z z 1z 2z 10,z 3z 1它就表示过已知三点M i (i=1,2,3)的平面方程.4. 指出下列各平面的特殊位置,并画出各平面:(1)x=0; (2)3y-1=0; (3)2x-3y-6=0; (4)x-3y=0;(5)y+z=1; (6)x-2z=0;(7)6x+5y-z=0. 解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0 表示yOz 坐标面. (2)3y-1=0 表示过点(0, 1,0)且与y 轴垂直的平面.3(3)2x-3y-6=0 表示与z 轴平行的平面.(4)x-3y=0 表示过z 轴的平面. (5)y+z=1表示平行于x 轴的平面.(6)x-2z=0 表示过y 轴的平面. (7)6x+5y-z=0表示过原点的平面.5. 求平面2x 2y z 5 0与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1, 2 , 3 .则根据平面的方向余弦知cos cos n k (2, 2,1) (0,0,1) 1 ,n k 22( 2)212 1 3cos 2cos n i ( 2,n i2,1)3(1,0,0) 2,1 3cos 3cos n j ( 2,n j2,1)3( 0,1,0) 2.1 36. 一平面过点(1,0,-1)且平行于向量a试求这个平面方程.(2,1,1) 和b (1, 1,0) ,解所求平面平行于向量 a 和b,可取平面的法向量i j kn a b 2 1 1 (1,1, 3) .1 1 01故所求平面为 1 ( x 1) 1 ( y 0) 3( z 1) 0,即x y 3z 4 0 .7. 求三平面x 3y交点.z 1,2x y z 0, x 2 y 2z 3的解联立三平面方程x 3y 2x y x 2y z 1,z 0,2z 3.解此方程组得x 1, y 1, z 3.故所求交点为(1,-1,3). 8. 分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1 )所求平面平行于xOz 面,故设所求平面方程为By D 0.将点(2,-5,3)代入,得5B D 0,即D 5B.因此所求平面方程为By 5B 0,即y 5 0.(2)所求平面过z 轴,故设所求平面为Ax By 0 .将点(-3,1,-2)代入,得3A B 0,即B 3A.因此所求平面方程为Ax 3Ay 0 ,即x 3y 0.(3)所求平面平行于x 轴,故设所求平面方程为By Cz D 0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D 0 及C D, B2B 7CD 0.9D .2因此,所求平面方程为9 Dy 2 Dz D 0 ,2即9 y z 2 0.9. 求点(1,2,1)到平面x 2 y 2z 10 0 的距离.解利用点的距离公式M 0 ( x0 , y o , z o ) 到平面Ax By Cz D 0dAx0By0Cz0 DA2 B 2 C 21 2 2 2 1 10 31.12 22 22 3x 3 y1. 求过点(4,-1,3)且平行于直线2 1 z 1的直线方程. 5解所求直线与已知直线平行,故所求直线的方向向量s (2,1,5),直线方程即为x 4 y 1 z 3.2 1 52. 求过两点M 1(3, 2,1) 和M 2 ( 1,0,2) 的直线方程.解取所求直线的方向向量s M 1M 2( 1 3,0 ( 2),2 1) ( 4,2,1) ,因此所求直线方程为x 3 y 2 z 1.4 2 13. 用对称式方程及参数方程表示直线x y 2 x y z 1, z 4.解根据题意可知已知直线的方向向量i j ks 1 1 1 ( 2,1,3).2 1 1取x=0,代入直线方程得y z 1,y z 4.3 5解得y3, z25.这2样就得到直线经过的一点(0, ,2 ).因此直线的对称式方程为2参数方程为3 5 x 0 y 2 z 22 1 3x 2t ,y3t ,2z 53t.2注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4. 求过点(2,0,-3)且与直线x 2 y 3x 5 y 4z 7 0, 2z 1 0垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j n s 1 23 5 k4 ( 16,14,11), 2故所求平面方程为16( x16x 2)14y 14( y 0)11z 6511(z 3)0.0.即5 x 5. 求直线3x 3y 3z 92 y z 10, 2 x 2 y与直线0 3x 8 yz 23 0,z 18 0的夹角的余弦..解两已知直线的方向向量分别为i s 15 3j k3 3 (3,4, 2 11), s 2i j k2 2 13 81(10, 5,10), 因此,两直线的夹角的余弦cos(cos s 1, s 2 )s 1s 2s 1 s 23 1045 1 10 0.32x 2 y 42( 1)2102( z 7, 3x 5)21026 y 3z 8, 6. 证明直线2xy 与直线z 7平2xy z 0行.证已知直线的方向向量分别是i j s 1122 1k i1 (3,1,5), s 23 12j k 6 3 ( 119, 3, 15),由s 23s 1知两直线互相平行.7. 求过点(0,2,4)且与两平面x 方程.2 z 1和y 3z 2平行的直线解所求直线与已知的两个平面平行,因此所求直线的方向向量可取i j ks n1n2 1 0 2 ( 2,3,1),0 1 3故所求直线方程为x 0 2 y 2 z 4.3 1注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x 2z a,y 3z b.将点(0,2,4)代入上式,得 a 8, b10.故所求直线为x 2z 8,y 3z8. 求过点(3,1,-2)且通过直线解利用平面束方程,过直线的平面方程. 的平面束方程为x 4 y 3 5 2 (y 3z) 0, 2将点(3,1,-2)代入上式得11.因此所求平面方程为20x 4 y 3 5 2 11(y 3z) 0, 20 210.x 4 y 3 z5x 4 y231z5 2 1即9. 求直线8x 9yx y 3z22z 59 0.0,与平面x y z 1 0的夹角. x y z 0i解已知直线的方向向量s 11 j k1 3 ( 2,4,1 12), 平面的法向量n(1, 1, 1).设直线与平面的夹角为, 则sin cos(n, s) s n 2 1 4 ( 1) ( 2) ( 1)0,即0.s n 2242 ( 2)2 12( 1)2 ( 1)2 10. 试确定下列各组中的直线和平面间的关系;x 3 y 4 (1)2 7x y z z和4x 2 y32z 3 ;(2)3和3x 2y2 77z 8;(3)x 23 y 2 z13和x4y z 3.解设直线的方向向量为s,平面的法向量为n ,直线与平面的夹角为, 且sin cos(n, s) s n. s n(1)s ( 2, 7,3), n(4, 2, 2),sin(( 2) 22) 4 ( 7)( 7)2 32( 2)423 ( 2)( 2)2 (0,2)2则0.故直线平行于平面或在平面上,现将直线上的点A(-3,-4,0)代入平面方程,方程不成立.故点 A 不在平面上,因此直线不在平面上,直线与平面平行.(2)s(3, 2,7), n(3, 2,7), 由于s n 或sin332 (3 ( 2)2)2 72( 2)327 71,( 2)2 72知,故直线与平面垂直.2(3)s(3,1, 4), n (1,1,1), 由于s n 0或sin 3 1 1 1 ( 4) 1 0,32 12 ( 4)212 12 12知0, 将直线上的点A(2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线x 2 y x yz 1 0,和z 1 02 x yx yz 0,z 0平行的平面的方程.解两直线的方向向量为i s1 11 j k2 1 (1,1 1i2, 3), s2 21j k1 1 (0, 1,1 11),i 取n s1s2 1 j k2 3 (1,1, 1),0 1 1则过点(1,2,1),以n 为法向量的平面方程为1 ( x 即1) 1 ( y 2)x y z 0.1 ( z 1) 0,12.求点(-1,2,0)在平面x 2y z 1 0上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x 2y z 1 0垂直的直线为x 1 y 2 1 2 z 0,1将它化为参数方程x 1t , y 22t, z t ,代入平面方程得1 t 2(2 2t )( t ) 1 0,2整理得t .从而所求点(-1,2,0)在平面x 2y3z 1 0 上的投影为(5,2,2).3 3 3x y z 1 0,13.求点P(3,-1,2)到直线2x y z 4 0的距离.i 解直线的方向向量s 12 j k1 1 (0, 3,1 13).在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t ,z3t. (1)又,过点P(3,-1,2),以s (0, 3, 3) 为法向量的平面方程为3( y 1) 3( z 2) 0,即y z 1 0. (2)1将式(1)代入式(2)得t ,于是直线与平面的交点为(1,2 1,3),2 2故所求距离为d (3 1)2( 1 1)22(23)223 2.214. 设M0 是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s,试证:点M0到直线L 的距离M 0M sd .s证如图8-9,点M0 到直线L 的距离为 d.由向量积的几何意义知M 0M s 表示以M 0M ,s为邻边的平行四边形的面积.而M 0Ms s表示以s 为边长的该平面四边形的高,即为点M 0 到直线L的距离.于是M 0M sd .s15. 求直线2 x 4 y z3x y 2z0,在平面4x9 0y z 1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x 4 y z3x y 2z0,的平面束方程为9 02x 4y z (3x y 2z 9) 0,经整理得(2由(2 313 3 )x ( 4) 4 ( 4) y (1 2 ) z 9 0.) ( 1) (1 2 ) 1 0,得.代入平面束方程,得1117x 因此所求投影直线的方程为17x 31y31y37z37z117 0.117 0,4x y z 1.16. 画出下列各平面所围成的立体的图形.(1)x 0, y 0, z 0, x 2, y 1,3x 4 y 2z 12 0;(2)x0, z 0, x 1, y 2, z y .4解(1)如图8-10(a);(2)如图8-10(b).221.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为( x a)2( y b)2( z c)2R,将已知点的坐标代入上式,得a2b2 c2 R 2, (1)(a 4)2( a 1) 2b 2c2(b 3) 2R 2, c2 R 2,(2)(3)(3)a2b2( 4c)2R,(4)联立(1)(2)得a 2, 联立(1)(4)得c 2, 将a 2代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为( x 2)2( y 1)2( z 2)29,其中球心坐标为(2,1, 2), 半径为3.2. 建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为( x 球面经过原点,故R2从而所求球面方程为1)2(0 ( x( y 3)2( z 2)2R 2,3. 方程x2y2z22 x4 y 2 z0表示什么曲面?解将已知方程整理成( x 1)2( y 2)2( z 1)2( 6) 2,1)2( 03) 2(0 2) 214, 1) 2( y3)2( z2)214.所以此方程表示以(1,-2,-1)为球心,以 6 为半径的球面.4. 求与坐标原点O 及点(2,3,4)的距离之比为1:2 的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x, y, z),根据题意有1,2( x 2)2 ( y 32 4 1)2( z4)232(229)2 .3它表示以(, 1,3)为球心,以29为半径的球面.3 325. 将xOz坐标面上的抛物线转曲面的方程.z 5x绕x 轴旋转一周,求所生成的旋解以y2 z2 代替抛物线方程z25x中的z,得( y2z2 ) 2 5x,即y2z25x.注xOz 面上的曲线 F ( x, z) 0 绕x 轴旋转一周所生成的旋转曲面方程为 F ( x, y2 z2 ) 0.6. 将xOz坐标面上的圆转曲面的方程.x2 z2 9 绕z 轴旋转一周,求所生成的旋解以x2 y2 代替圆方程x2 z2 9 中的x ,得( 即x2 x2y2 )2z29, y2 z2 9.( x 0)2( y 0)2( z 0)2化简整理得( x 2)2( y 3)2( z 4)2xz7. 将xOy 坐标面上的双曲线4x29 y236分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以y2z2代替双曲线方程4x29 y236中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为4 x2即4 x2229( 9( y2y2 z 2 z 2)2)236. 236,以x z 代替双曲线方程4x9 y36 中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为4(即4( x2x2 z 2)z 2 )29 y29 y 236.36,8. 画出下列各方程所表示的曲面:(1)( xa) 2y2( a ) 2; (2)x2y21;(3)2221;2(4)y2z 0;49(5)z2 x2.94解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).22229. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x 2;(2)yx 1;(3)x2y24;(4)x y1.解(1)x 2 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)y x 1在平面解析几何中表示斜率为1,y 轴截距也为 1 的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)x2y24在平面解析几何中表示圆心在原点,半径为2 的圆,在空间解析几何中表示母线平行于z 轴,准线为的圆柱面. x2y24,z 0(4)x y1在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z 轴,准线为y12yz2x2y2z 01,的双曲柱面.10. 说明下列旋转曲面是怎样形成的:(1)x4221;99(2)2x2z21;4 (3)x2y2z21;(4)( za)2x2y 2.x 2 y2z2x 2y2解(1)1表示xOy 面上的椭圆1绕x4 9 94 9 x2z2轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆绕49x 轴旋转一周而生成的旋转曲面.(2)x2yz241表示xOy 面上的双曲线2y2x4y 2 1绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线绕y 轴旋转一周而生成的旋转曲面.z214(3)xy2z21表示xOy 面上的双曲线x2y 21绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线x 轴旋转一周而生成的旋转曲面.x2z21绕(4)( z a)2x2y表示xOz 面上的直线zx a 或zx a 绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线zy a 或z y a 绕z 轴旋转一周而生成的旋转曲面.11. 画出下列方程所表示的曲面:222(1)4x2y2z24;(2)x2y24 z24;zx2y2(3).34 9解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12. 画出下列各曲面所围立体的图形:(1)z卦限内);0, z 3, xy0, x 3y 0, x2y21(在第一(2)x 限内).0, y 0, z 0, x2y2R 2, y2z2R (在第一卦解(1)如图8-13 所示;(2)如图8-14 所示.21. 画出下列曲线在第一卦限内的图形;(1)x 1, y2;z(2)x 4 x 2y0;y 2,x 2 (3)x2y 2a 2, z2a 2.解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2. 指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:y 5x 1,x2y21,(1)y 2 x 3; y 5x 1,(2)4 9y 3.解(1)y 2 x3在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.x2(2)4y1,9在平面解析几何中表示椭圆x2y2与y 34 9其切线y 3 的交点,即切点.在空间解析几何中表示椭圆柱面x2y21与其切平面y 3的交线,即空间直线.4 913. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 2x2x2y2 z2z2 y216,2x2解在x2y2 z2z2 y216,中消去x,得3 y2z216,即为母线平行于x 轴且通过已知曲线的柱面方程.2x2在x2y 2 z2z2 y216,中消去y,得3x2 2 z216,即为母线平行于y 轴且通过已知曲线多的柱面方程.4. 求球面x2y2 z2 9 与平面xz1的交线在xOy 面上的投影的方程.解在x2 y2 z2x z 1 9,中消去z,得x2 y2 (1 x) 29, 即2 x2x y28,它表示母线平行于z 轴的柱面,故交线在xOy 面上的投影的方程. 2x22x y2z 08,表示已知5. 将下列曲线的一般方程化为参数方程:x2 y2 (1)y x; z2 9,(2)( xz1) 20.y2( z 1)24,2解(1)将y x代入x2y2 z2 9, 得2x2z29,3取x cos t, 则z23sint,从而可得该曲线的参数方程x 3cost , 2y 3cost, (02t ?2 )z 3sin t(2)将z=0 代入( x1) 2y2( z 1) 24,得( x 1)2y23,取x 1 3 cost, 则y 3 sin t, 从而可得该曲线的参数方程x 1 3cost,y 3 sint,z 0(0 t ?2 )6. 求螺旋线方程. x acosy asinz b,, 在三个坐标面上的投影曲线的直角坐标解由x acos , y asin 得x2 y2a2, 故该螺旋线在xOy 面上的投影曲线的直角坐标方程为x2 y2z 0a2,由y asin , z b 得y asin z,故该螺旋线在yOz面上b的投影曲线的直角坐标方程为y a sinz,b x 0由x acos , z b 得x a cos z, 故故该螺旋线在yOz 面b上的投影曲线的直角坐标方程为x acosz,b y 0.7. 求上半球0 z a2 x2 y2与圆柱体x2y2ax(a >0 )的公共部分在xOy 面和xOz面上的投影.解如图8-16.所求立体在xOy 面上的投影即为x2y2ax ,而由z a2 x2x2 y2 axy2 ,得z a2 ax. 故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线z a2ax 所围成的区域.8. 求旋转抛物面z x2y2( 0 z 4) 在三坐标面上的投影22 2解联立面上的投影为z x2z 4x2 y2y,得x24,y2 4.故旋转抛物面在xOy如图8-17.z 0.联立z xx 0 y2,得z y2 , 故旋转抛物面在yOz 面上的投影为z y 及z4所围成的区域.z x2同理,联立y 0 y2 ,得z x2, 故旋转抛物面在xOz面上的投影为z x 及z4所围成的区域.2。

高数课后题及答案10

高数课后题及答案10
故 an 单调减少且有下界, bn 单调增加且有上界,由单调 有界准则知 lim a n 、lim bn 存在,在 a n 1
n nn
a n bn 两边取极限 2
并整理得 lim a n = lim bn .
n nn
题目二: 证明数列 a , a a , a a a ,… a 0 收 敛,并求它的极限. 解题思路: 利用单调有界准则.
证明 lim a n 、 lim bn 存在且相等.
n n
解题思路: 利用单调有界准则及 ab 解答: 由于 an 0, bn 0 , a n bn
n 1,2, ;因此
1 an bn ,故 bn1 an1 , 2 1 a b . 2
a n 1
又 xn 1 ,因此 a 1 ,这样 a 由
0 xn a 1
xn1 xn1 a a 1 1 xn1 1 a 1 xn1 1 a
n 1
1 1 xn1 a 4 4
即得 lim x n
n
试证 xn 极限存在. 解题思路: 利用单调有界准则.
解答: 不 妨 设 a b , 即 x0 x1 , 由 x 2
1 x0 x1 得 2
x0 x2 x1 ,由 x3
1 x1 x 2 得 x2 x3 x1 ,于是有 2
a x0 x2 x2n x2n1 x3 x1 ,
n n n
因此 lim x 2 n 1 lim x 2 n , lim x n lim x 2 n 1 lim x 2 n , xn 故 即
n n n n n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学习题及答案
一、填空题(每小题3分,共21分)
1.设b a by ax y x f ,,),(其中+=为常数,则=)),(,(y x f xy f .y b abx axy 2
++
2.函数2
2y x z +=在点)2,1(处,沿从点)2,1(到点)32,2(+的方向的
方向导数是 .321+
3.设有向量场k xz j xy i y A ρρρρ++=2
,则=A div ρ . x 2
4.二重积分⎰⎰2
1
),(x dy y x f dx 交换积分次序后为 .⎰⎰1
1
),(y
dx y x f dy
5.幂级数∑∞
=-1
3)3(n n
n
n x 的收敛域为 . [0,6) 6.已知y
x e z 2-=,而3
,sin t y t x ==,则
=dt
dz
3sin 22(cos 6)t t e t t -- 7.三重积分
=⎰⎰⎰Ω
dv 3 ,
其中Ω是由3,0,1,0,1,0======z z y y x x 所围成的立体.
二、计算题(一)(每小题7分,共21分)
1.设b a b a ρρρρ与,5,2==的夹角为π3
2
,向量b a n b a m ρρρρρρ-=+=317与λ相互垂直,求λ.
解:由25173
2
cos 52)51(1217)51(3022⋅-⋅⋅⋅-+=-⋅-+=⋅=πλλλλb b a a n m ρρρρρρ
得.40=λ
2.求过点)1,2,1(-且与直线⎩⎨
⎧=--+=-+-0
4230
532z y x z y x 垂直的平面方程.
解:直线的方向向量为{}11,7,52
13132
=--=k
j i
s ρρρρ
取平面的法向量为s n ρ
ρ=,则平面方程为0)1(11)2(7)1(5=++-+-z y x 即.081175=-++z y x
3.曲面32=xyz 上哪一点处的法线平行于向量}1,8,2{=S ρ
?并求出此法线方程.
解:设曲面在点),,(z y x M 处的法线平行于s ρ
,令32-=xyz F 则在点),,(z y x M 处曲面的法向量为.1
82,}.,,{},,{xy
xz yz s n xy xz yz F F F n z y x ====故有
由于ρ
ρρ由此解得 y z y x 8,4==,代入曲面方程,解得),,(z y x M 的坐标为)8,1,4(,用点向式即得所求法线
方程为1
8
8124-=
-=-z y x
三、计算题(二)(每小题7分,共21分)
1.设)(x y
xF xy z +=,其中)(u F 为可导函数,求.y
z y x z x
∂∂+∂∂ 解:
),()(u F x
y
u F y x z '-+=∂∂ )(u F x y z '+=∂∂ xy z xF xy y
z
y x z x
+=+=∂∂+∂∂2 2.将函数⎪⎪⎭

⎝⎛-=x e dx d x f x 1)(展成x 的幂级数,并求∑∞
=+1)!1(n n n 的和. 解:⋅⋅⋅++⋅⋅⋅++=--1!
1
!2111n x x n x x e
并在),(+∞-∞内收敛。

),(,)!
1(!1!32!21)(112+∞-∞∈+=⋅⋅⋅+-+⋅⋅⋅++=∑∞
=--x x n n x n n x x f n n n
11)1()!1(1
1='

⎪⎭
⎫ ⎝⎛-==+=∞
=∑x x n x e f n n
3.求微分方程dx
dy
y y y =
''+='',)(12
的通解. 解:令p y p y '=''='则,,原方程化为
⎰++-=+=⇒+=⇒=+⇒
+='2
1112
2)cos(ln )tan()tan(11c c x dx c x y c x p dx p dp
p p
四、计算题(三)(每小题8分,共24分)
1.求曲线积分⎰
-+=
L
dy x x dx y I )3(3
3的值,其中)0(222>=+R R y x L 为的正向. 解:记L 所围成的区域为D ,利用格林公式得
⎰⎰⎰⎰⎰-=--=-+=R
D
L
d d dxdy y x dy x x dx y I 0
220
2
2
3
3
)1(3)333()3(ρρρθπ
)2
11(32
2R R -

2.求微分方程x
xe y y 4=-''的通解.
解:对应的齐次方程为0=-''y y ,它的特征方程为012
=-r ,其根为1,121-==r r ,该
齐次方程的通为x
x e
C e C Y -+=21。

因1=λ是特征方程的单根,所以设原方程的一个特为x
e b ax x y )(+=•
代入原方程得1,1-==b a ,于是,求得x
e x x y )1(-=•
原方程的通解为x x
x e x x e C e C y )1(21-++=-
3.计算曲面积分⎰⎰

+=dxdy y x e I z 2
2,其中∑为锥面2
2y x z +=与平面2,1==z z 所
围立体表面的外侧.
解:记1:,:,2:32221=∑+=∑=∑z y x z z
则.422
2
20
222211
e d e d dxdy y x e dxdy y x e I xy
D z z πρρρ
θπ==+=
+=

⎰⎰⎰
⎰⎰

).(222
1
20
2
22
222
22
e e d e d dxdy y x e
dxdy y x e I xy
D y x z --==+-=+=⎰
⎰⎰⎰
⎰⎰
+∑πρρρ
θρ
π
.21
20
2
2
33
e d e
d dxdy y
x e I z πρρρ
θπ
-=-=+=⎰
⎰⎰⎰

故.22
321e I I I I π=++=
五、应用题(共7分)
设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及柱体体积.
解:设矩形的两边长分别为.,y x 由题设1=+y x ,不妨设矩形绕长度为y 的一边旋转,则圆柱体体积为.2
y x V π=
作拉氏函数)1(),(2
-++=y x y x y x F λπ
解方程组⎪
⎩⎪⎨⎧=-+==+==+=0
100
22
y x F x F xy F y x λλπλπ,得驻点).31,32(
所以最大圆柱柱体体积为.27
431)3
2(2
ππ=⋅对应的矩形面积为.92
六、证明题(共6分)
设{}n n a a ,0>单调减少趋于零,证明:级数
∑∞
=+-⋅-1
11
)
1(n n n n a a 收敛.
证明:因{}n n a a ,0>单调减少,所以1+⋅n n a a 也单调减少
又02
lim ,201
11=++≤
⋅<
+∞→++n n n n n n n a a a a a a 所以0lim
1=⋅+∞
→n n n a a ,则交错级数判别法知∑∞
=+-⋅-1
11)1(n n n n a a 收敛。

相关文档
最新文档