结构动力学4-1
结构动力学
第2章 单自由度系统
§2.4 简谐荷载的强迫振动
2.4.1 无阻尼系统
1、运动方程
mx kx F0 sin t
2、解的形式
x x x
设:
x A sin t
(m 2 k ) A F0
第2章 单自由度系统
解得:
A
A
(m 2 k )
F0 k xst (1 2 2 ) (1 2 )
已知
结构
荷载
响应
荷载
已知或未知
结构
已知
第1章 绪论
§1.2 研究对象
1、结构——弹性恢复力 fk(x) 2、外力——时变特性 fp(t)
§1.3 研究内容
1、结构动力特性——固有频率、振型、阻尼 2、结构响应——位移、速度、加速度
第1章 绪论
§1.4 研究方法
1、时域法——解析法、逐步积分法 2、频域法——谱分析法
k m
①简支梁问题
m l
第2章 单自由度系统
1 k
l3 48 EI
k
48EI l3
48EI ml 3
第2章 单自由度系统
②悬臂梁问题 弯曲变形
x
l 3EI
3
m
k
3EI l3
k
剪切变形
l3 12EI
k
12EI l3
弯曲变形 剪切变形
第2章 单自由度系统
2 i i ,max m xi ki xi2,maxi
第2章 单自由度系统
m x
i 2 i i ,max
2 2 J max m2 xmax
1 2 2 m1l 2 max m2l 2 max 3 1 2 m1l 2 m2l 2 max 3
结构动力学ch4-1
T [ S ] [ A][S ],而其中每一次分 实现所想达到的最终旋转
步旋转则是通过正交矩阵 [ S ] 所实现。
9
i
§4.1 矩阵特征值问题及解法
若[A]经过i-1次分布旋转后,已成为矩阵 [ A]i ,设其绝对值最 大的非对角线元素为A pq ,则 [ S ]i 可取为
[M ] [ L][L]T
4
§4.1 矩阵特征值问题及解法
[M ] [ L][L]
T
[L] 为对角元素不为零的下三角矩阵。
[k ]{} 2[M ]{}
([ A] [ I ]){x} 0
广义特征值问题
标准特征值问题
([ A] [ I ]){x} 0 1 T T [ A] [ L] [ K ][L] , {} [ L] {x},
2
[K]是对称的,矩阵[A]也具有对称性。 所有对称矩阵特征值问题的算法均可以得到利用。 如果矩阵[K]是正定的,也可将其进行Cholesky分解,得到类似 5 于方程的标准特征值问题。
§4.1 矩阵特征值问题及解法
Cholesky分解:
l11 l l 22 21 [ L] l n1 l n 2 v11 v v 22 21 T [ L] v nl v n 2 l nn v nn
6
§4.1 矩阵特征值问题及解法
3、标准特征值问题解法
特征值问题: 一是求解它的全部特征值问题,即所有的特征值和对应的特征 向量;
另一是求解它的部分特征值问题,即部分(通常是最小或最大 的一部分)特征值和对应的特征向量。
结构动力学
§1.3 体系振动的自由度
象静力计算一样,在动力计算时,首先需要选取一个 合理的计算简图。但由于需要考虑惯性力,因此在动力计 算的简图中,多了一项关于质量分布的处理问题。当体系 振动时,它的惯性力与质量的运动情况有关,所以确定质 量在运动中的位置具有重要的意义。 振动的自由度:我们把确定体系上全部质量位置所需 的独立几何参变数的数目,称为该体系的振动自由度。 例1.1 如图(a)所示跨中置一质量为m电动机的简支梁,当 梁自身的质量远小于电动机的质量时,梁的质量可忽略不 计。其计算简图如图(b)所示。
Fp
如:具有偏心质量的回旋机器它所传递 给结构上的横向力就是时间 t 的函数。
t
这类荷载称为动力荷载
图(a)
显然,结构在动力荷载作用下的计 算与静力荷载作用下的计算将有很大的 的区别,而且要复杂的多。
Fpsin t
图(b)
这是因为,在进行动力计算时,除了需要考虑惯 性力外,还需取时间作为自变量。在动力问题中,内 力与荷载不能构成静力平衡,但根据达朗伯原理,可 以将动力问题转化为静力问题,方法是任一时刻在结 构上加入假想的惯性力作为外力。即结构在形式上处 于“平衡状态”,这样,就可以应用静力学的有关原 理和方法计算在给定时刻的内力和位移等。 在实际工程中,大多数荷载都是随时间的改变而 变化的,但有一些荷载使结构产生很小的振动,以至 于其上的惯性力可以忽略不计,此时为了简化计算, 可将其视为静力荷载。仅将那些随时间变化,且使结 构产生较大的振动的荷载才作为动力荷载来考虑。
dmy Fp t dt
1 2
t m y 1 3
当质量m不随时间变化时,有 Fp
0 即:Fp t m y
因此,如果把惯性力(-mÿ)加到原来受力的质量上,则动 力学问题就可以按静力平衡来处理,这种列运动方程的 方法常称为动静法。这种方法较为方便,因此得到广泛 应用。 (2)拉格朗日(Lagrange)方程 应用虚位移原理,作用在任意质量mi上的所有力 (包括惯性力),对任意的虚位移所作的虚功总和应 等于零,得
结构动力学4-1
(−ω 2 [M ] + [K ]){φ }sin(ωt + θ ) = {0}
因为sin(ωt + θ)为任意的,可以消去,因此,
([K ] − ω [M ]){φ } = {0}
2
上式是关于{φ}的N阶齐次线性方程组,表征了振型和自 振频率的关系 ,称为运动方程的特征方程。 由特征方程可解得自振频率ω和振型{φ}。
1
k22=1800
k23=-600
(c)
(d)
1 多自由度体系的自振振型和自振频率
算例1 结构的质量阵、刚度阵:
1.0 u 1=1 u3 600 1.5 1200 2.0 1800 (a) (b) u1 1 k11=3000 k12=-1200 k13=0 u2 k21=-1200 k31=0 k 32=-600 1 k 33=600 u2=1 u3=1
1 多自由度体系的自振振型和自振频率
算例1 运动方程的特征方程:
0⎤ ⎡ 2. 0 0 ⎢ 0 1. 5 0 ⎥ [M ] = ⎢ ⎥ ⎢0 0 1 .0 ⎥ ⎦ ⎣ 0 ⎤ ⎡ 3000 − 1200 ⎢− 1200 1800 − 600⎥ [K ] = ⎢ ⎥ ⎢ 0 − 600 600 ⎥ ⎦ ⎣
算例1 如图(a)所示三层框架结构,各楼层的质量和层间 刚度示于图中,确定结构的自振频率和振型。 结构模型及各刚度元素:
1.0 600 1.5 1200 2.0 1800 (a) (b) u1 1 k11=3000 k12=-1200 k13=0 u2 k21=-1200 u 1=1 u3 k31=0 k 32=-600 1 k 33=600 u2=1 u3=1
结构动力学4
4.2 有阻尼体系的简谐振动
通解uc对应于有阻尼自由振动反应:
u c (t ) = e
−ζω n t
( A cos ω D t + B sin ω D t )
特解up可以设为如下形式 :
u p (t ) = C sin ωt + D cos ωt
p0 && & u + 2ζω n u + ω n u = sin ωt m
1 − (ω / ω n ) 2 C = u st [1 − (ω / ω n ) 2 ]2 + [2ζ (ω / ω n )]2 − 2ζω / ω n D = u st [1 − (ω / ω n ) 2 ]2 + [2ζ (ω / ω n )]2
运动方程的全解:u(t)=uc+up :
u(t ) = e
u (t ) = C sin ωt + D cos ωt = u 0 sin(ωt − ϕ )
u0 —稳态振动的振幅 φ —相角,反映体系振动位移与简谐荷载的相位关系
D 2 2 −1 u 0 = C + D , ϕ = tan (− ) C
u 0 = u st 1 [1 − (ω / ω n ) 2 ] 2 + [ 2ζ (ω / ω n )] 2
uc (t ) = A cos ωn t + B sin ωn t
ωn = k / m
c - complementary
4.1 无阻尼体系的简谐振动
&& mu + ku = p 0 sin ωt
特解—满足运动方程的解,记为up(t) ,是由动 荷载p0sinωt直接引起的振动解。 设特解为:u p (t ) = C sin ωt + D cos ωt
结构动力学课件PPT
地震作用
200 0 -200
t(sec)
0 5 10 15 20 25 30 35 40 45 50
结构在确定性荷载作用下的响应分析通 常称为结构振动分析。 结构在随机荷载作用下的响应分析, 被称为结构的随机振动分析。 本课程主要学习确定性荷载作用下的结 构振动分析。
§1-3 动力问题的基本特性
§2-5 广义单自由度体系:刚体集合
刚体的集合(弹性变形局限于局部弹性
元件中) 分布弹性(弹性变形在整个结构或某些 元件上连续形成) 只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
A
x
x p( x,t ) = p a ( t )
1
令:
5l FE (t ) q(t ) 8
y FE (t )
FE(t) 定义为体系的等效动荷载或等效干扰力。其通用表达式
P FE (t )
含义:等效动荷载直接作用在质量自由度上产生的动位移与
实际动荷载产生的位移相等!
已经知道柔度和刚度k 之间的关系为: k 表达式成为:
简支梁: 比较: 刚架: 基本质量弹簧体系:
大型桥梁结构 的有限元模型
§1-5 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。 建立运动方程是求解结构振动问题的重要基础。 常用方法:直接平衡法、虚功法、变分法。
(2-3)
刚度法: 取每一运动质量为隔离体,通过分析所受 的全部外力,建立质量各自由度的瞬时力平衡方 程,得到体系的运动方程。
结构动力学哈工大版课后习题解答
.. .
..
第一章 单自由度系统
1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守 恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;
(2) 利用牛顿第二定律 m x F ,得到系统的运动微分方程;
0
bi
2 T
T
F (t ) sin(it )dt
0
因为 F (t) H sin 2 (0t) 是偶函数,所以 bi 0 。
于是
F (t )
H 2
H 2
c os (2 0 t )
而
x(t)
H 2k
A s in(2 0 t
a
/
2)
;
式中
H
A
2m
;
( n 2 402 ) 16n202
1 2
K A A2 K B B 2
1 2
K
A
KB
rA 2 rB 2
A2 ;
系统的机械能为
图 1-36
c
)
T
U
1 4
m
A
mB rA2 A2
1 2
K
A
KB
rA 2 rB 2
A2
C;
由 d T U 0 得系统运动微分方程
dt
1 2
m A
mB rA2A
K
A
KB
rA 2 rB 2
48EIl3
;
m
48EI k1l 3 m
(b)此系统相当于两个弹簧并联, 等效刚度为:
结构动力学(PDF)
机械振动系统,师汉民,华中科技大学出版社cos sin i t e t i t ωωω=+Ch1 单自由度线性系统自由振动1.3 无阻尼自由振动()()0mxt kx t += 解()()22002()cos sin cos cos n n n n nnv v x t x t t x t A t ωωωϕωϕωω=+=++=-振幅和相位由初始条件确定。
确定自然频率的方法: 1、 静变形法:kx mg =,n g xω=2、 能量法:无阻尼弹性振动能量守恒,因此取动能Tmax=势能Vmax 。
1.4 有阻尼自由振动22()()()020n n mx t cx t kx t s s ξωω++=⇒++= ,通解wt Ae通常自然频率可以很容易的通过实验测定,但阻尼比ξ的计算或辨识则比较困难,需要利用自由振动衰减曲线计算。
在间隔1个振动周期T 的自由振动减幅振动曲线上,取两个峰值A1和A2,A1/A2=EXP(ξωn T)Ch2 单自由度线性系统的受迫振动 2.1 谐波激励()()()cos cos mxt cx t kx t F t kA t ωω++= →22()2()()cos n n n x t x t x t A t ξωωωω++= ,设通解cos()X t ωϕ-,ϕ表响应对激励的滞后通解X1为:()20020002cos n t n n d dd v x v x xe t ξωξωξωωωω-+⎛⎫++- ⎪⎝⎭,瞬态响应,逐步衰减。
特解X2为:()()i t H Ae ωϕω-,稳态响应,实际上的激励和响应仅取实部,响应的频率是激励的频率!222222222222cos arctan cos arctan 112112n n n n n n n n AA t t i ωωξξωωωωωωωωωωξξωωωωωω⎛⎫⎛⎫⎪⎪ ⎪ ⎪-=- ⎪⎪⎛⎫⎛⎫--+- ⎪ ⎪-+ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭幅频特性221()12n n X H Ai ωωωξωω==-+,相频特性222()arctan1n nωξωϕωωω=-若激励表示为i t Ae ω,响应表示为i t Xe ω,可表述()()()x t H f t ω=,则()()()i t x t H Ae ωϕω-=共振频率212r n ωωξ=-,有阻尼自然频率21d n ωωξ=-,因此,对共振的研究应考虑阻尼比ξ=0.707的特殊点。
结构动力学
(14-22)
(14-23)
即
A 1
2
式中
1 2
2
F11 yst
(14-24)
yst F11 代表将振动荷载的最大值F作为静力荷载作用于结构上
时所引起的静力位移,而
1 1Байду номын сангаас
2
2
A yst
(14-25)
为最大的动力位移与静力位移之比,称为位移动力系数。 2. 考虑阻尼的纯受迫振动 取式(14-21)的第三项,整理后有
y
2 0
2 y0
2
(14-4)
y0 tan y0
则有
(14-5)
y a sin(t )
(14-7) y a cos(t )
(14-6)
(4)自振频率的计算
k11 1 g g m m11 mg11 st
自振周期:T=2π/ω。 其中:
本章基本要求: 掌握动力自由度的判别方法。 掌握单自由度、多自由度体系运动方程的建立方法。 熟练掌握单自由度体系、两个自由度体系动力特性的计算。 熟练掌握单自由度体系、两个自由度体系在简谐荷载作用下 动内力、动位移的计算。 掌握阻尼对振动的影响。 了解自振频率的近似计算方法。
§14-1 概 述
1. 结构动力计算的特点 (1) 荷载、约束力、内力、位移等随时间变化,都是时间的函数。 (2) 建立平衡方程时要考虑质量的惯性力。
(14-8)
柔度系数 11 表示在质点上沿振动方向加单位荷载时,使质点 沿振动方向所产生的位移。 刚度系数 k11 表示使质点沿振动方向发生单位位移时,须在 质点上沿振动方向施加的力。 Δst=W 11 表示在质点上沿振动方向加数值为W=mg的力时质点 沿振动方向所产生的位移。
结构动力学(课用ppt)
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
结构动力学
一、 结构动力学是研究什么的?包含什么内容?结构离散化有什么方法、特点?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和方法的一门理论和技术学科。
目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
结构动力分析的目的:确定动力荷载作用下结构的内力和变形;通过动力分析确定结构的动力特性。
离散化方法:把无限自由度问题转化为有限自由度的过程。
1、 集中质量法:是结构动力分析最常见的处理方法,它把连续分布的质量集中为几个质量,这样就把一个原为无限(动力)自由度的问题转化为有限自由度。
特点:采用了真实的物理量,具有直接、直观的优点。
2、 广义坐标法:能决定体系几何位置的彼此独立的量。
特点:采用形函数的概念,在全部体系上插值。
虽然广义坐标表示了形函数的大小,如果形函数是位移量,则广义坐标具有位移的量纲,但只有n 项叠加后才是真实的位移物理量。
因而广义坐标实际上并不是真实的物理量。
3、 有限元法:将整个结构离散化为有限个单元,它们在有限个节点上连接,通过选用适当的形函数,对各个单元进行近似的力学分析处理,建立起单元的节点位移和相应节点之间的关系,然后按照在连接点上的力平衡条件与变形连续条件,把单元拼接成原结构。
特点:综合了集中质量法和广义坐标法的特点:1与广义坐标法相似,采用了形函数的概念,但为分片的插值,形函数的表达式相对简单;2与集中质量法相同,也采用了真实的物理量,具有直观、直接的优点。
3.每一分段所选择的位移函数可以是相同的,故计算得以简化。
4、每个节点位移仅影响其邻近的单元,所以这个方法所导得的方程大部分是非藕合的,因此解方程式的过程大大地简化。
(不作要求,仅供参考)动力荷载的类型:简谐荷载、非荷载周期荷载、冲击荷载、一般任意荷载。
(不作要求,仅供参考)结构动力计算的特点:1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。
结构动力学 ppt课件
i (0) i (l ) 0
--基函数(或形状函数) 课件 i ( x)PPT
9
ai ---广义坐标
3) 有限元法 和静力问题一样,可通过将实 际结构离散化为有限个单元的集合, 将无限自由度问题化为有限自由度 来解决。
m
三. 自由度的确定
集中质量法:独立质量位移数即为自由度数; 广义坐标法:广义坐标个数即为自由度个数; 有限元法:独立结点位移数即为自由度数;
第三类问题:荷载识别。
PPT课件
5
第四类问题:控制问题
输入 (动力荷载) 结构 (系统) 控制系统 (装置、能量) 输出 (动力反应)
本课程主要介绍结构的反应分析 任务 讨论结构在动力荷载作用下反应的分析的方法。寻找 结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
PPT课件
10
例. 自由度的确定
1) 平面上的一个质点 3) 计轴向变形时 W=2 不计轴向变形时 W=1 W=2 为减少动力自由度,梁与 刚架一般可不计轴向变形。
y2
y1
W=2
2)Βιβλιοθήκη 弹性支座不减少动力自由度PPT课件
11
4)
y1
W=1
5) W=2
6)
EI
W=1
PPT课件
12
§1.4
体系的运动方程
形式上的平衡方程,实质上的运动方程
PPT课件
13
一、柔度法
P(t )
l
EI
m m (t ) y y(t )
=1
11
(t )] 11[ P(t ) m y
高等结构动力学4_连续体1_杆和梁
(2)弦的横向振动 (3)轴的扭转振动
2 2 y 1 2 y a0 2 p( x, t ) 2 t x
2 2 1 2 a p ( x, t ) 0 2 2 t x I p
虽然它们在运动表现形式上并不相同,但它们的运动微 分方程是类同的,都属于一维波动方程
假定振动过程中各横截面仍保持为平面
( x, t ) :杆上距离原点 x 处的截面在时
刻 t 的角位移 截面处扭矩 T
2 I p dx 2 t
达朗贝尔 惯性力偶
I p dx :微段绕轴线的转动惯量
连续系统的振动 / 一维波动方程
达朗贝尔原理: 2 T dx ) T pdx I p dx 2 (T
2 l 2l
( x) c1 sin
x
a0
c2 cos
x
a0
u ( x, t ) ( x )q (t )
连续系统的振动 / 杆的纵向振动
左端自由,右端固定 特征:固定端位移为零 自由端轴向力为零 边界条件 : u (l , t ) 0
0
x l
(l ) 0
c1 0
x
dx l
x
u ( x, t )
杆上距原点 x 处截面 在时刻 t 的纵向位移
横截面上的内力: F ES ES 达朗贝尔原理:
u x 2u F Sdx 2 ( F dx) F p( x, t )dx x t 2u u S 2 ( ES ) p( x, t ) x x t
连续系统的振动 / 杆的纵向振动
2 2u 2 u a0 2 x 2 t
u ( x , t ) ( x ) q (t )
《结构动力学》课件
欢迎来到《结构动力学》PPT课件。本课程将带领您深入了解结构动力学的理 论和应用,探索建筑在外力作用下的响应和行为。让我们一起开启这个精彩 的学习之旅吧!
引言
1 研究对象及内容
探索结构动力学的研究范围,包括结构振动、动态响应等。
2 相关概念解释
解释与结构动力学相关的术语和概念,如动力学基础知识、振动分析方法等。
1 常见结构材料
列举常用的结构材料,如 钢材、混凝土、木材等。
2 材料特性与选用原则
介绍结构材料的特性和选 用原则,以保证结构的安 全和可靠性。
3 材料处理与加工
讨论结构材料的处理和加 工过程,如焊接、锻造等。
结构的实验及检测
1 实验设备及方法
介绍用于结构实验的设备和方法,如振动台、应变测量等。
2 实验数据分析
2 振动分析方法
介绍结构振动分析的常用 方法,包括自由振动和强 迫振动的分析。
3 动态响应分析方法
研究结构在外力作用下的 响应规律,包括频率响应 和时程分析等方法。
结构的稳定性分析
1 基础概念
介绍结构稳定性分析的基本概念,如失稳、临界荷载等。
2 总体稳定分析
分析结构整体的稳定性,探讨各种失稳模式的产生和防范。
介绍与结构安全管理相关 的法规和规范,保证结构 的安全性和可靠性。
结论
1 结构动力学研究的未来发展趋势
展望结构动力学领域的未来发展方向和研究 重点。
2 结构动力学在现代工程实践中的应
用价值
总结结构动力学在工程实践中的应用价值和 意义,如地震工程、桥梁设计等。
参考文献
整理了一份涵盖结构动力学领域相关文献的参考书目,供读者深入研究和进 一步学习。
(完整版)结构动力学基础
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
x a
作用时间: 恒载 活载 作用位置: 固定荷载 移动荷载 对结构产生的动力效应: 静荷载 动荷载
静荷载: 动荷载:
大小、方向和作用点不随时间变 化或变化很缓慢的荷载。
大小、方向或作用点随时间变化 很快的荷载。
快慢标准: 是否会使结构产生显著的加速度
显著标准: 质量运动加速度所引起的惯性力 与荷载相比是否可以忽略
FP (t ) FI FD FS1 FS2 0
其中各力的大小:
惯性力: FI my 弹性力Fs=Fs1+Fs2: 位移法:柱子一端产生单位平移时的杆端剪力
1
12i
l2
柱端发生平移 y 时产生的梁-柱间剪力:
EI
12 EI FS1 l13 y
12EI
FS 2
l
3 2
y
l
等效粘滞阻尼力: FD cy
大型桥梁结构 的有限元模型
第二章 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。
▪ 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。
▪ 建立运动方程是求解结构振动问题的重要基础。 ▪ 常用方法:直接平衡法、虚功法、变分法。
8
比较:
c k
高等结构动力学1-4
图2.6-1 单盘转子示意图图2.6-2 圆盘的瞬时位置及力设有一转子如图2.6-1所示,其中Oxyz是固定坐标系,无质量的弹性轴的弯曲刚度为EJ,在跨中安装有质量为m的刚性薄盘。
由于材料、工艺等因素使圆盘的质心偏离轴线,偏心距为e。
当转子以等角速度ω自转时,偏心引起的离心惯性力将使轴弯曲,产生动挠度,并随之带动圆盘公转。
⎭⎬⎫-=-=ky F kx F y x 由材料力学可知,对于图2.6-3所示的模型348l EJ k =图2.6-3(2-1)(2-2)设圆盘在瞬时t 的状态如图2.6-2所示,这时弹性轴因有动挠度而对圆盘的作用力为,它在坐标轴上的投影分别为r F⎭⎬⎫-=-=y c R x c R y x 根据质心运动定理,可得⎭⎬⎫+=+=y y c x x c F R ym F R x m 由图2.6-4的几何关系知⎭⎬⎫+=+=t e y y t e x x c c ωωsin cos 对上式求两次导数,可得⎭⎬⎫-=-=t e y y t e x x c c ωωωωsin cos 22 设圆盘在运动中受到粘性阻尼力的作用,它的两个分量为图2.6-4(2-3)(2-4)(2-5)(2-6)把(2-6)代入(2-4),得到转子模型的运动微分方程⎭⎬⎫=++=++t me ky y c y m t me kx x c x m ωωωωsin cos 22 可改写为⎭⎬⎫=++=++t e y y yt e x x x n n n n ωωωζωωωωζωsin 2cos 22222 式中348ml EJ m k n ==ωkm c2=ζ(2-8)把(2-8)式与有阻尼单自由度系统的受迫振动运动方程作一比较,显然两者在数学形式上是完全相同的。
(2-7)()⎭⎬⎫-=-=φωφωt Y y t X x sin )cos(把(2-9)代入(2-8)中,得到()()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫-=+-=+-=-22122222222222tan 22ωωζωφωζωωωωωζωωωωn n nn n n e Y e X 由此可见,O'点绕固定坐标系的Oz 轴在作圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 3 N
n( n=1, 2, …, N )即为多自由度体系的自振频率。
其中量值最小的频率 1 称为 基本频率 ( 相应的周期 T1=2/1叫基本周期)。 从以上分析可知,多自由度体系在做自由振动时,只 能按一些特定的频率,即按自振频率进行振动。 当结构按某一自振频率振动时,结构将保持一固定的 形状,称为自振振型,或简称振型。 13/70
K
2 n
M n 0
{}n={1n, 2n , …, Nn }T—体系的n阶振型。 ● 由于特征方程的齐次性(线性方程组是线性相关的),振 型向量是不定的,只有人为给定向量中的某一值,例 如令1n=1,才能确定其余的值。 ● 实际求解时就是令振型向量中的某一分量取定值后才 能求解。虽然令不同的分量等于不同的量,得到的振 型在量值上会不一样,但其比例关系是不变的。 ● 所谓振型就是结构不同点(自由度)变化时的比例关系14/70 。
因为sin(t+ )为任意的,可以消去,因此,
(K 2 M ) 0
(t ) 2 sin(t ) u
9/70
上式是关于{} 的N阶齐次线性方程组,表征了振型和自 振频率的关系,称为运动方程的特征方程。 由特征方程可解得自振频率和振型{}。
1 多自由度体系的自振频率和振型
算例 1 如图 (a)所示三层框架结构,各楼层的质量和层间 刚度示于图中,确定结构的自振频率和振型。
1.0 u3 1.5 600 u2 1200 u1 1800 (a) (b) 1 k11=3000 k12=- 1200 k13=0 k21=-1200 k31=0 1 k 32=- 600 u 1=1 u2=1 1 u3=1 k 33=600
1.0 u 1=1 u3 1.5 600 u2 1200 u1 1800 (a) (b) 1 k11=3000 k12=- 1200 k13=0 k21=-1200 k31=0 k 32=- 600 1 u2=1 1 u3=1 k 33=600
1 多自由度体系的自振频率和振型
算例1 运动方程的特征方程:
1 多自由度体系的自振频率和振型
在结构动力分析中,有时需要按某一标准将振型归一 化,或称标准化,给出标准振型 或归一化振型 ,通常 有三种方法: (1) 特定坐标的归一化方法。指定振型向量中的某一坐标 值为1,其它元素值按比例确定。 (2) 最大位移值的归一化方法,将振型向量中各元素除以 最大值。 (3) 正交归一化。
(t ) K u (t ) 0 M u
u (t ) sin(t )
{}—表示体系位移形状向量,它仅与坐标位置有关, 不随时间变化,称为振型。 —简谐振动的频率, —相位角。 上式对时间求两次导数可得:
( 2 M K ) sin(t ) 0
2
M 0
0
2.0
0 0 1.5 0 0 1.0
K 1200
0
3000
1200 0 1800 600 600 600
0 2. 0 0 M 0 1 . 5 0 0 1. 0 0
k11 m11
2
k12 m12
2
k1N m1N
2
k 21 m21
2
k 22 m22
2
k 2 N 2 m2 n
2
k N1 mN1
2
2
0
aN ( 2 ) N aN 1 ( 2 ) N 1 a1 2 a0 0
3/70
4.1 两自由度体系的振动分析
4/70
1 多自由度体系的自振频率和振型
4.2 多自由度体系的无阻尼 自由振动
在多自由度体系动力反应分析中,最常用的是振型叠加 法。 振型:结构体系自由振动时的位移形态。N个自由度体系 有N个不同的振型。 自振频率:当结构按某一振型振动时的频率。对N个自由 度体系,一般情况下有个N个自振频率。 结构的自振频率与振型是相互对应的。 多自由度结构的振型和自振频率是结构的固有特性,和 单自由度一样是反映结构动力特性的主要量。因此在 介绍结构动力特性时,首先提及的就是结构的自振频 率和振型。 6/70
1 多自由度体系的自振频率和振型
根据单自由度体系自由振动的经验,设多自由度体系在 进行自由振动时也是在作简谐振动,多自由度体系的 振动形式可写为:
1 多自由度体系的自振频率和振型
将位移向量 {u} 和加速度向量 {ü} 代入无阻尼自由振动方 程:u (t ) 2 sin(t ) u (t ) sin(t )
结构的刚度阵:
k22=1800
k23= -600
2.0
3000 2 2 1200 ( K M ) 1200 1800 1.5 2 600 0
1 0 600 2 600 2 3
特征方程存在非零解的充分必要条件是系数行列式等于 零:
K M
2
0
是一关于的多项式,称为频率方程。 将刚度阵和质量阵代入得频率方程的具体形式:
k N 1 2 mN 1 k N 2 2 mN 2 k NN 2 m NN
对于N个自由度的体系,频率方程是关于2的N次方程,
1/70 2/70
第4章 多自由度体系
采用等效单自由度方法可以将多自由度体系化为等效 的单自由度问题求解。例如多层结构抗震设计时采用的 简化分析方法—基底剪力法。 对于均匀多层结构或烟囱,也可以采用如下形函数,
( z ) 1 cos
2H
z
将结构的位移表示为 u(x,t)=(z)q(t),使问题化为一个单 自由度问题。如果形函数取得好,而外荷载又按某一 简单形式分布,则用等效单自由度方法也可以得到相 当好的近似解。 但是,当结构体系复杂 或外荷载变化复杂时,用等效的 单自由度方法得到的解可能会导致相当大的误差。这 时就必须直接采用多自由度体系分析方法解决问题, 即必须采用更多自由度来描述体系的运动状态。
k22=1800
k23= -600
2.0
0
0
N
其中,n— n阶自振频率,{}n— n阶振型。 [Φ]和[Ω]也分别称为振型矩阵和谱矩阵。
17/70
(c)
(d)
结构模型
各刚度元素
18/70
3
1 多自由度体系的自振频率和振型
算例1 结构的质量阵:
5/70
1
1 多自由度体系的自振频率和振型 结构的自振频率和振型,可通过分析结构的无阻 尼自由振动方程获得。 多自由度体系无阻尼自由振动的方程为:
1 多自由度体系的自振频率和振型
(t ) K u (t ) 0 M u
m11 m 21 M mN 1 m12 m22 mN 2 m1N m2 N mNN k11 k 21 K kN1 k12 k22 kN 2 k1N k2 N k NN
(t ) K u (t ) 0 M u
[M]、[K]——N×N阶的矩阵质量和刚度矩阵, {u(t)}、{ü(t)}——N阶位移向量和加速度向量, {0}——N阶零向量。 上式是体系作自由振动时必须满足的控制方程。
7/70
1 (t ) u 0 u (t ) 0 (t ) 2 0 u ( ) u t 0 N 下面分析当{u(t)}是什么形式时可以满足以上运动方程。 8/70 u1 (t ) u (t ) 2 u (t ) u N (t )
对于稳定结构体系,其质量阵与刚度阵具有实对称性和 正定性,所以相应的频率方程的根都是正实根。由此 可以解得N个根:12< 22< 32…< N2 。
k N 2 m N 2 k NN mNN
11/70
12/70
2
1 多自由度体系的自振频率和振型体系的自振频率和振型
结构动力学
多自由度体系
前面讨论了单自由度体系,它的运动仅需一个 运动方程来描述,求解这个运动方程,就可以得 到单自由度体系的位移、速度和加速度以及能量 等。 工程中所涉及的结构一般都是多自由度的,例 如单层的空间结构、多层框架结构、大跨桥梁结 构、空间网架结构、大坝、核电站等等。 为合理反映振动过程中惯性力的影响,需要采 用更多的自由度描述结构体系的质量分布并确定 体系的变形。
n
n
Mn , Mn n Mn , n 1, 2, , N
T
以后讲到振型正交性时可以发现按(3)定义的振型满足关 于质量矩阵[M]的内积为1的条件,即振型质量等于1。
15/70
多自由度体系的振型矩阵和谱矩阵
得到体系的N个自振频率和振型后,可以把振型和自振频 率分别写成矩阵的形式, 11 12 1N 22 2 N 21 1 2 N N 1 N 2 NN 1 0 0 0 0 2
20/70
1 多自由度体系的自振频率和振型
算例1 由频率方程
B 3 5 . 5 B 2 7 .5 B 2 0
1 多自由度体系的自振频率和振型
算例1 根据运动方程的特征方程求振型:
得到三个根 : B1 0.3515, B2 1.6066, B3 3.5420 设3n=1 利用关系式
(c)
(d)
k11 K k 21 k 31
k12 k 22 k 32
k13 3000 1200 0 1200 1800 600 k 23 k 33 0 600 600