大跨度连续梁、连续刚构桥常见病害及防治对策
浅析大跨预应力混凝土连续刚构常见病害
浅析大跨预应力混凝土连续刚构常见病害摘要从设计和施工以及材料方面,简要分析大跨预应力混凝土连续刚构的一些常见病害及其原因。
关键词连续刚构;病害;主跨下挠;裂缝预应力混凝土梁式桥是公路桥梁中最常用的桥型。
其跨径大小是技术水平的重要指标,一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。
随着我国桥梁建设技术的不断发展,建造大跨径梁式桥已成必然趋势。
但是,这些大跨径的梁式桥建成之后,难免会出现挠度,包括弹性挠度、徐变挠度,以及预应力损失、松弛引起的下挠。
一旦挠度过大,特别是下挠与开裂同时出现时,病害就产生了。
跨度越大,病害就越多。
跨径80~100m以下梁桥,病害较少;跨径100~160m的桥梁病害多些;跨径160m以上的梁桥,病害严重。
预应力混凝土土梁式桥,主要是指连续梁、连续刚构和刚构—连续组合体系桥梁。
自20世纪初80年代末以来,我国梁式桥的发展迅速,形势喜人。
虎门大桥辅航道桥连续刚构主跨270m,于1997年建成通车,曾居世界首位达一年半之久。
我国在预应力混凝土连续刚构桥梁的建设中,已步入了世界先进行列。
在肯定成绩的同时,也应当看到有一部分梁式桥存在一些缺陷,甚至可以说问题不少,在建成后不长时间即损坏,甚至成为危桥。
当前运营中的大跨连续刚构桥梁存在的两大缺陷:一是跨中下挠,二是梁上裂缝。
对于后者,主要为斜裂缝和纵向裂缝,也涉及垂直裂缝和底板保护层裂缝。
1常见病害及原因分析1.1主跨中下挠主跨跨中下挠在大跨预应力混凝土连续刚构中普遍存在。
国内已建的众多大跨预应力混凝土连续刚构均存在不同程度的跨中下挠现象(见表1)。
主跨270m 的虎门大桥辅航道桥,至2003年,已下挠22cm。
该桥立模高程的确定,没有逐节段地计入混凝土收缩徐变的影响,而是参照了洛溪大桥建成后3年下挠6cm的实测数据,预留了10cm的徐变预拱度。
大跨预应力混凝土连续刚构主跨下挠的主要原因有:1)对混凝土收缩徐变的影响程度及长期性估计不足。
高墩大跨连续刚构桥的病害及其对策措施
高墩大跨连续刚构桥的病害及其对策措施摘要:本文将针对这些出现的常见问题进行阐述分析,并对造成的桥体危害提出相应的对策措施。
关键词:连续刚构桥;危害;对策措施Abstract: This article described these common problem and point out some countermeasures for bridge and caused harm.Key words: continuous rigid frame bridge; hazards; countermeasures中图分类号:U448.23 文献标识码:A文章编号:连续刚构桥的常见问题产生的原因及其病害目前,国内连续刚构桥的发展迅速,相关技术也比较成熟。
在桥梁工程领域广泛应用预应力计算体系,使得桥梁在性能、造价成本、安全系数等各方面都相对优于其他桥梁体系。
但在实际使用中仍出现诸多显著的病害。
(一)桥体跨中下挠。
1.对混凝土的收缩认识不到位。
很多桥梁在施工完成后,主梁的混凝土收缩造成桥体跨中下挠。
但现役的连续刚构桥出现,正常下挠后,再出现严重的下挠。
在桥梁建设前期,没有充分认识到混凝土的徐变性具有极大的随机性,造成混凝土预应力的损失使得桥梁的刚度下降。
从而桥梁出现桥体下挠的病害。
在连续刚构桥的设计之初,设计者一般为了减轻主桥梁的自重,都会在桥梁施工时使用高强度的薄板作为主梁。
而其实,在实际的数据中可以知道,加载的时间限制对桥梁混凝土的徐变度也有非常大的影响,桥梁的主梁一般在3天后就开始桥体预应力的加载,形成桥梁的整体。
于是由于浇筑凝固期时间缩短的缘故,使得混凝土的徐变的量增大,桥体的主梁下挠严重。
2.桥梁在前期设计中,计算的模型不够完善。
对桥梁在不同部位温差的考虑也是影响预应力的损失的因素。
目前国内在温差模型上采用三角模型,而该模型在理论值和实际测量值存在较大差距。
经一些国外桥梁专家分析:桥梁的温度分布呈现出非线性的分布,箱梁出现顶板的温度高于底板的温度现象。
大跨径连续梁桥病害成因分析及加固设计探讨
大跨径连续梁桥病害成因分析及加固设计探讨摘要:随着我国经济的飞速发展,我国的桥梁事业也得到发展,桥梁作为我国重要的交通枢纽之一,越来越被人们所重视。
连续梁桥技术因其具有的受力均匀、整体性好、节省材料,安全度高等优点广泛应用于我国中跨径和大跨径的桥梁建设项目中。
本文分析了大跨径连续梁桥的一些常见病害及其加固措施。
关键词:连续梁;病害分析;桥梁加固一、常见病害1、主跨跨中下挠预应力混凝土连续梁式桥运营阶段所产生的持续下挠是一个较普遍的现象,尤其是大跨径梁式桥,如表l所示。
这主要是由预应力损失和混凝土收缩徐变估计不足引起的,严重时甚至会发生跨桥。
如科罗.巴岛桥是一座跨中带铰的3跨连续预应力混凝土刚架桥,其跨径组合为72m+24lm+72m,是当时世界上同类桥梁中跨径最大者。
1978年建成通车,通车后不久就产生了较大的挠度,到1990年,其挠度达到1.2m。
后来采用体外索施加预应力,使主跨中央挠度减小。
1996年7月加固结束,加固处理后不到3个月就发生了倒塌事故。
表1国内外典型连续钢构桥长期变形表2、梁体开裂预应力混凝土连续梁式桥的梁体开裂也是一个很严重的问题,主要表现在施工过程中的裂缝及运营阶段产生的裂缝,两者机理稍有差别。
在施工过程中,裂缝的产生主要是由于混凝土收缩或构造不合理产生,一般有两种情况:不同龄期混凝土收缩裂缝以及预应力布置不合理或者施工偏差造成的裂缝。
由于各个构件混凝土浇注时间不同,早期浇注的混凝土将对新浇注混凝土的收缩产生约束从而引起裂缝。
这类裂缝一般有以下几种:①墩身与承台交界处的竖向裂缝;②1号块与0号块之间接缝附近的纵桥向裂缝(主要在顶底板);③腹板分层浇筑接合面处竖向接缝;④人孔附近等。
预应力布置不合理或者施工偏差造成的裂缝主要有:①顶板横向裂缝;②预应力锚头附近的裂缝;③曲线底板的分层劈裂等。
运营阶段所产生的裂缝主要有顶板纵向裂缝、腹板斜向裂缝、底板横向裂缝和底板纵向裂缝等。
大跨径连续刚构桥梁的常见病害及控制措施
大跨径连续刚构桥梁的常见病害及控制措施通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1) 跨中挠度过大;(2) 箱梁腹板、底板产生裂缝;(3) 墩顶0 # 梁段开裂;(4) 桥墩墩身裂缝。
1跨中挠度(1)适当增加梁高,提高结构的承载能力(2)设置足够的施工预拱度(3)应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5)延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少饶度。
竖向接缝存在,可以采用把接缝作成斜接缝,阶梯接缝,销槽式接缝等.增加截面的配筋率减小徐变对结构的影响。
我国施工质量水平总体不高, 管理不完善,.采用预抛高的方法,即在建造期间通过设置预拱度来抵消桥梁长期下挠变形。
是对高标号混凝土的收缩、徐变的考虑不足,且在施工中预拱度的设置存在偏差.顶板悬臂施工束有效性降低对主梁下挠有较大的影响2混凝土开裂,如箱梁竖向开裂、箱梁底板纵向开裂、箱梁腹板出现斜裂缝等;箱梁裂缝主要表现为纵向裂缝、弯曲裂缝、弯曲剪应力裂缝和主拉应力裂缝,(1)选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱梁,底板下缘曲线常采用半立方抛物线和二次抛物线(2)预应力筋过于集中及预应力吨位过大导致混凝土开裂。
设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服腹板主拉应力过大(3) 在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,(4)增设腹板纵向预应力下弯束(5)适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋(6)合拢段的混凝土标号提高半级或一级(7)合理布置桥梁跨径。
箱梁腹板截面几何尺寸偏小,为了减少结构自重,对于宽箱梁,多数桥梁腹板仅仅是由构造决定其厚度,这导致截面抗剪能力储备不足.主梁梁体非预应力钢筋配置不足,也会导致砼的开裂. 墩柱的约束过大,导致主梁开裂应尽可能使其具有较大的抗弯刚度和较小的抗推刚度, 国内外连续刚构墩身形式多为双墙式薄壁柔性墩。
大跨度连续刚构桥典型病害成因分析及应对措施
( 1) 混凝土由多种地方性材料配制而 成, 施工过程中对混凝土原材料的选择及 拌合、浇注控制不严, 再加上施工各方片面 追求高强度而忽视混凝土的综合性能指 标, 导致混凝土的品质达不到设计的要求。
( 2) 箱梁的腹板承受各种荷载组合下 的主拉应力或主压应力, 腹板的厚度较设 计厚度减薄将进一步恶化腹板斜截面的抗 剪能力, 甚至会导致腹板开裂。因此, 施工 过程中因模板安装不好导致的腹板厚度过 薄将直接影响到腹板的抗裂性能, 过厚又 增加了悬臂箱梁的重量。
3 大跨度连续刚构病害应对措施
大跨度连续刚构病害的应对措施应分 为两个方面: 即新建桥梁的设计对策及已 有病害桥梁的加固措施。 3.1 新建桥梁设计对策
( 1) 改善主梁断面设计方式。按零弯矩 或少弯矩设计主梁断面, 以利于减小连续 刚构的徐变挠度。
( 2) 改善纵向预应力束的布置方式。跨 内纵向预应力束下弯到箱梁截面中心附 近、边梁现浇段配置曲线预应力束以提供 较大的预剪力, 使得腹板的主拉应力有较 大的改善。
从已加固的一些连续刚构桥中发现, 孔道的压浆有时不饱满, 存在着一些孔隙, 有的则浆体分离, 孔道一经戳破即有水流 出, 处于这样孔道中的预应力束肯定会发 生锈蚀, 导致有效预应力的降低, 不但会引 起梁体下挠, 而且有可能出现受弯竖向裂 缝, 也降低了抗主拉应力的能力。 2.1.2 箱梁开裂问题
浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施
浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施摘要:本文对大跨径预应力混凝土连续刚构桥的常见病害及成因进行了分析,针对各病害提出了可行的控制方法。
或可为该类桥梁的设计施工提供参考。
关键词:预应力混凝土,连续刚构,病害,控制措施。
1常见病害通过调查,我国已建成的大跨径连续刚构桥梁中,常见的病害主要有以下几种:(1) 跨中挠度过大;(2) 箱梁梁体产生裂缝;(3) 墩顶0#块开裂;(4)桥墩(或塔墩)靠承台区段的竖向裂缝。
2跨中挠度过大的成因分析及控制措施跨中挠度过大,通常是由于梁体本身刚度不足所致,而梁体由混凝土、普通钢筋和预应力钢筋组合而成,故梁高过小、腹板厚度不足、混凝土标号不足、普通钢筋配置不足、预应力不足都会导致梁体刚度不足,进而导致跨中挠度过大。
其中,预应力配置不足可以由设计中预应力配置不足或者预应力筋应力松弛过大、混凝土收缩徐变导致预应力损失过大引起。
此外,如设置的预拱度不足,也会导致桥梁合龙后跨中挠度过大。
可通过以下方法降低跨中挠度:(1) 适当增加梁高,提高结构的承载能力(2) 设置足够的施工预拱度(3) 应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5) 延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少挠度。
3箱梁梁体裂缝的成因分析及控制措施3.1箱梁节段间施工接缝处腹板竖向裂缝箱梁节段间施工接缝处腹板竖向裂缝处于两施工节段之间,严重的缝宽1-2mm甚至更宽。
开裂原因:(1)悬臂浇注移动支架的整体刚度不够,浇注过程中变形大;(2)混凝土浇注程序不对:先浇注后端(紧靠前一浇注节段),然后逐步向前端浇注,前端的荷载引起悬臂支架变形,导致后端混凝土裂开。
控制措施:(1)支架的刚度和强度必须满足施工要求,必须采用相当于实际荷载的荷载预压,除强度满足需要外,其最大挠度应小于或等于2.0cm。
跨径200m以上连续刚构桥病害防治
跨径200m以上连续刚构桥病害防治王宁打王科$(1•北京工业大学,北京100124;2.中国人民解放军95338部队,湖南衡阳421001)【摘要】连续刚构桥是目前最常见的桥梁结构形式之一,文章通过对国内外大跨径桥梁的调查,分析了大跨径连续刚构桥在建成使用过程中常出现的跨中挠度过大、顶板裂缝、底板裂缝、腹板裂缝以及锚固区裂缝这些病害的成因并且从混凝土的收缩和徐变、截面尺寸,控制施工质量,桥面加固等方面对其防治提出了相应的对策。
【关键词】连续刚构;大跨径;病害;防治【中图分类号】U445.7+1大跨径连续刚构桥具有整体性能好、变形小、抗震性能好、后期运营维护成本低的特点,并且连续梁体和梁墩的固结,使得连续刚构桥没有伸缩缝,车辆能够平稳运行,同时它也没有支座,不需要转换系统,并有很大的顺桥向抗弯刚度和横向抗扭刚度,这些优势使得它在近几十年得到迅速发展,已成为大跨度预应力混凝土桥梁的一种类型⑷(表1)。
大跨度预应力混凝土连续梁式桥主要包括三种结构类型:T 型刚构桥、连续梁桥以及连续刚构桥。
随着计算机技术的发展,我国在预应力混凝土桥梁的设计、结构分析、试验研究、预应力材料与工艺设备、施工工艺等方面可谓日新月异,桥梁的设计技术与施工技术已达到了相当高的水平,从结构受力多经济指标综合考虑,连续刚构的跨度适用范围在300m以内。
随着桥梁在各种环境中的长时间运营以及设计经验、施工质量等问题,很多大跨径连续刚构桥都出现了一些病害,于是在现有的技术基础上对大跨度连续刚构桥的病害进行分析以及改正成了亟需解决的问题。
1典型病害及原因大跨连续刚构桥的病害主要是主梁的下挠以及裂缝的问题,而根据裂缝产生的位置又主要分为梁体的顶板裂缝、底板裂缝、腹板裂缝、横隔板裂缝、锚固裂缝等⑵。
1.1连续刚构桥的跨中挠度及成因大跨径桥梁梁体跨中挠度过大是桥梁工程中比较常见的一种现象,虽然目前国内外的研究人员对大跨径连续刚构桥有着丰富的设计施工经验,但是跨中挠度过大仍然是困扰工程师的一个难题。
大跨连续刚构桥常见病害与设计方案对策
大跨连续刚构桥常见病害与设计对策摘要:通过分析已成大跨径连续刚构桥出现病害的原因,就大跨径连续刚构桥的设计提出一些新的思路.为今后类似桥梁设计提供参考。
关键词:连续刚构桥;箱粱;设计;挠度;裂缝文章编号:1009—6477(2005)增一0109—03 中图分类号:U448.23 文献标识码:B山区地形大多呈“V”字形,地形起伏较大,为了跨越山谷深沟,连续刚构桥作为较经济的大跨径桥梁结构形式,在山区的桥梁设计中常常被采用。
虽然连续刚构桥不论在设计方面还是在施工方面,都有较为成熟的经验,而且在国内建成较多,但由于目前对连续刚构桥梁认识的局限性,很多大跨径连续刚构桥均出现不同程度的病害。
在现有认识的基础上,如何克服和尽量减少病害的产生,是目前在设计过程中急需解决的问题。
1 常见病害通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1)跨中挠度过大;(2)箱梁腹板、底板产生裂缝;(3)墩顶0 梁段开裂;(4)桥墩墩身裂缝。
2 设计对策由于现代桥梁在结构的安全性和耐久性方面的认识不断提高,在大跨径桥梁方面给我们设计人员提出了新的要求。
从对连续刚构桥出现病害的原因进行分析的结果来看,其实这些病害在早期并不影响结构的整体安全,但随着时间的推移,会逐渐降低结构的耐久性。
针对大跨径连续刚构桥病害出现的特点,笔者通过多年的工作实践,认为在设计中可以采取相应的有效措施,来克服和尽量减少病害的产生,以提高结构的安全性和耐久性。
2.1 跨中挠度通过调查,很多大跨径连续刚构桥梁虽然在主梁的设计中设有足够的预拱度,但在建成通车一段时间后,箱梁跨中均出现不同程度的下挠,这不但给行车带来麻烦,而且会使结构开裂、破坏,给结构带来安全隐患。
经过分析,这是由于混凝土的收缩徐变的结果。
虽然在设计中主梁的预拱度考虑了混凝土的收缩徐变因素,但考虑到混凝土在三向受力的实际情况与理论计算模型并不完全相同,因此,在设计中可以采取以下措施:(1)适当增加梁高,提高结构的承载能力。
高墩大跨连续刚构桥施工中若干病害的防治
高墩大跨连续刚构桥施工中若干病害的防治主题词:薄壁空心墩裂纹防治,悬臂预应力张拉要点一.引言随着我国公路交通事业的迅速发展,公路刚构桥特别是高墩大跨连续刚构桥已在桥梁工程领域得到推广和应用。
福建龙长高速公路A3标段紫云宫大桥〈以下均简称为紫云宫大桥〉即为预应力混凝土变截面连续箱梁高墩刚构桥。
本文结合紫云宫大桥施工,对高墩大跨连续刚构桥高墩施工中容易产生裂纹及悬臂施工预应力张拉中易出现的病害及其防治进行探讨。
二.薄壁空心高墩施工中混凝土裂缝的防治目前,我国连续刚构常用的桥墩断面型式有两种:一种是双肢薄壁空心断面即双薄壁空心墩;另一种是单薄壁空心断面即单薄壁空心墩,紫云宫大桥主墩即采用这一型式.其特点是抗推钢度大,在相同墩高条件下,由上部结构传递的弯矩大,墩体的稳定性安全系数也比较大。
但是,薄壁空心墩施工工艺要求高,如果处理不当,则容易产生一系列病害,其中承台的温度裂缝及上实体段底部的变形裂缝是常见病害之一。
2.1. 承台大体积混凝土温度裂缝控制连续刚构桥薄壁空心墩柱的承台一般为大体积混凝土施工。
大体积混凝土施工遇到的普遍问题是温度裂缝.如果承台产生温度裂缝,必然会影响到墩柱安全。
所以,承台大体积混凝土温度裂缝的控制至关重要.紫云宫大桥针对温度裂缝采取了下述措施:2。
1。
1优化混凝土配合比设计,达到降低水化热的目的。
2。
1。
1.1.采用低水化的普通硅酸盐水泥。
经对三组不同厂家水泥制作的试件测试,最终采用了海螺牌42。
5普通硅酸盐水泥2。
1.1.2。
碎石采用地产5~31。
5mm连续级配反击破碎石,由于在6月份施工承台,所以在搅拌前采用冲洗方法降低骨料初始温度2。
1。
1。
3.掺加适量粉煤灰,降低水灰比,改善熟料和易性2。
1。
2改进砼浇筑工艺,加快砼散热速度2.1。
2.1紫云宫大桥承台砼方量较大,采用泵送砼。
一般情况下,泵送砼浇筑速度为每分钟0.4~0。
6m3,本工程将速率控制在每分钟0.3~0.4m3,抑制绝热温升小于50℃2。
大跨径连续刚构桥梁常见问题与对策的研究
径连 续刚构桥 粱在施 工过程 中常遇 的 问题 , 并对此提 出 了相 关的对 策。 关键 词 : 大跨 径连续 刚构桥 梁 ; 问题 ; 策 对
1常 见 害 病 一 半立方抛 物线 和二次抛物线 。采用二次抛物线 身大多为柔性墩 ,常见的有双肢薄壁墩和空心 J U 段的梁高减小 , 4 减小 了结构 薄壁墩。 双肢薄壁墩常用于墩身不高的情况, 墩 经过对国内已建成的大跨径连续 刚构 桥梁 可 以使箱梁 I  ̄ 8 但对克服该 区段 的主拉应力不利 。 身较 高常采用空心薄壁墩。分析大跨径连续刚 的来 看 , 通过调查 , 国已成的大跨径连续 刚构 自重 , 我 设计合适可靠 的竖 向预应力 。箱梁施加竖 构 桥墩身开裂的原因 , 由于混凝土的收缩、 均是 桥梁中 , 的病害主要有 以下几种情况 : 中 出现 跨 内外 而造 挠 度过大 ; 箱梁腹板 、 底板产生裂缝 ; 墩顶 梁 向预应力的主要 目的是克服主拉应力 ,竖向预 日照温差 、 温差 的影 响 , 成表面开裂 。 应力的有效性 , 对箱梁腹板的受力影响很大 竖 为 了减 小混凝 土的收缩 , 增强混凝土的抗裂性 , 段 开裂 ; 桥墩墩身裂缝。 2裂缝形成的原因 向预应力常采用精轧螺纹粗钢筋或钢绞线 。 设计 与施工 中除 了配置足 够的受力钢筋外 , 尚 增加纵 向预应力下弯束。由于竖 向预应力 应在主筋 的外表 面设置 防裂钢筋 网片 ,同时在 目 , 国大跨径预应力混凝土连续梁桥 前 我 适 裂缝形成 的原因 , 主要有 以下几方面 : 在主桥总 的施工质量很难完全达到设计要求 , 当增设 混凝土 中加人—定的抗 裂防水膨胀剂。 4 4跨 中挠度过大预防 体设计 中, 比例 、 跨径 箱梁截面尺寸的拟定不合 腹板下弯束 ,对克服腹板 内的主拉应力和剪应 理; 结构设 计抗弯剪能力不足 ; 对有预应力钢束 力有利 ,同时下弯 束应弯至截 面高度 的 2 , 3以 很多大跨径连续 刚构桥梁虽然在 主梁 的设 在 提 引起的附 力估计不足 ;对温度应力 的重视不 下。 中跨跨 中及悬臂中部设置横隔板 , 高箱 计 中没有足够的预拱度 ,但在建成通车—段时 Ⅱ 够; 施工质量 不好 , 中包括 : 其 混凝 土浇筑 与养 梁畸变 刚度 , 而提高箱梁受力的整体性 。 从 间后 , 跨中均 出现不同程度 的下挠 , 箱梁 这不但 生不好 、预应力钢柬的保护层厚度达不到谢 } . 适 当增加边跨 现浇段的底板和腹 板厚度 , 给行车带 来麻烦 , 而且 会使结构 开裂 、 坏 , 破 给 要求、支架与模板变形过大、预 应力 张拉力 不 并设置 足够 的防崩钢筋 。由于受力和锚固的需 结构带来安全隐患 。 因此 , 设计与施工 中可以 在 要, 边跨底板预应力束在边跨现浇段 向顶板方 采取 以下措施 : 足、 灌浆不及时或其它质量问题等 。 2 l腹板剁象 原因 逢 蜥 向弯 曲, 且该处钢柬竖 弯曲线半径较小 。 钢束弯 适当增加梁高, 提高结构的承载能力。高、 腹板偏薄 ; 了竖弯束 ; 向预应力筋作 曲产生 的附 加径 向力使预应力管道下缘混凝土 跨比是影响主梁受力的主要参数,适当增加梁 取消 竖 用不如初期设计期待的好 ; 施工粗糙 , 未达设计 承受径 向荷载 的作用 ,底板因受过大的径向力 高 , 以提高结构的承载能力 。 可 要求 。 而容易产生崩裂。 梁高 , 可增加 主梁的刚度 , 改善主梁应力状 2 . 中底板纵 向裂缝原因分析 2跨 合拢段 的混凝土标号提高半级或一级 。由 况 。 根据设计经验 , 国内早期连续刚构箱梁根部 底 板厚度偏薄 ; 向普通钢筋配设不强 ; 横 张 于连续刚构桥往往具有跨度 大,施工过程存在 梁高一般为中跨 长度 的 1 6 I8 / ,/ ,近期 设计的 1,1 - 拉 进行孑道灌浆 。 L 结构体 系转换 的特 点。合拢段不但是结构最薄 连续刚构桥 ,箱梁根部梁高— 般为中跨长度的 2 3顶板纵向裂缝原因分析 弱的部 分, 而且该部分为后浇混凝土。 箱梁合拢 11 -11 。 ,6 -/7 主梁截面箱宽与翼板宽不当 , 向预应力 段混凝 土的浇 注 , 横 使得结构 由原来的静定结构 设置 足够的施工预拱度。混凝土的收缩徐 钢束设置不合理;横向预应力钢束张拉时间不 转换成 了超静定结构 ,同时 由于合拢温度的影 变对挠度的影响较大, 而根据 目 前的理论, 较难 当, 造成横向预应力分布不均匀; 箱梁温度应力 响 , 使得该部分的应力状况相对 较为复杂 , 高 准确计算 , 提 因此适当加大跨中预拱度, 以抵消箱 计算与实际清况不符。 混凝土的等级 , 以提高结构的抗裂效应。 可 梁 的后期下挠 。 3后期主梁下挠过大的原 因分 析 合理确定箱宽与悬臂翼缘 宽的比例,合理 增加底板预应力束, 并采用分批张拉, 部分 后期主梁下挠过大 的原因主要有 以下几个 设置横向预应力钢束 ,使顶板 在各种 工况情况 底板预应力束可滞后 1 年左右的时间, 待混凝 方面 :当前大型预应力混凝土连续刚构桥梁一 下不出现引起开裂的拉应力。适 当加强桥 面铺 土完成一定的收缩 、 变后再张拉。 徐 般采用泵送混凝土浇筑 , 混凝土强度高 、 水灰 比 装钢筋 , 如混凝 土桥面 , 则应注意设置混凝士桥 在中跨底板适当设置体外备用钢束, 待需 较大 , 各种添 加剂触 水剂 、 早强剂 、 凝剂) , 面变形纵 向缝 的位置。 缓 多 根据计算分析 , 合理设置 要时进行 张拉。 对 混凝土的收缩徐变特性有较大的影响 ,尤其 箱 梁桥面板横 向预应力钢束 张拉 锚固程 序 , 分 延长 混凝土 的加载龄期 , 减少徐变对结构 是 对混凝 土后期徐变的影响。加 载龄期对 混凝 批 张拉横 向预应力钢束 ,使横 向预应力分布趋 的影 响 , 如工期 容许 , 要求纵 向预应力的张拉龄 土的徐变有较大影响。预应力度 的大小对 混凝 于均匀 。 期不 少于 7 o d 土的徐变有影响。 混凝土徐变变形加大 , 预应力 4 2墩顶 0 梁段裂缝预 防 # 在施工中要控制混凝土的坍落度最好在 进一步减小 了预 通过分析 , 这些裂缝的产生主要是 由于温 1 厘米以下, 8 并且尽可能的延长混凝土的加载 应力度 , 从而导致 主梁下挠变形值加大。 度内力、 主梁预加应力及混凝土收缩引起 的。 为 龄期, 并加强施工控制, 保证主梁设汁线形。 4设计与施 工对策 了防止裂缝的产生 , 计与施工 中可 以采取 以 设 5结束语 从对连续阿 桥出现 问题的原 因进行分析 下措施 : 构 虽然 连续 刚构桥不 论在设计方面还是在施 的结果来看 , 其实这些问题在早期并不影响结 箱梁 梁段的横 隔板 的厚度不宜太厚 , 应 工方面, 都有较为成熟的经验, 而且在国内建成 构的整体安全, 但随着时间的推移, 会逐渐降低 尽 可能与顶板 、 的刚度匹配 , 腹板 以改善箱梁 。 较多 , 由于 目 对连续刚构桥梁认识的局限 社 但 前 结构 的耐久性 。针对 大跨径连续 刚构桥 问题 出 梁段的受力状况。 性, 很多大跨径连续刚构桥均出现了不同程度 现的特点,在设计与施工中可以采取相应的有 由于主墩墩顶弯矩较大, 而墩、 梁交接处为 的病 害。 如何克服和尽量减少病害的产生, 目 是 效措施 , 来克服和尽量减少问题的产生。 2 次施工的分 点, 使得该处受力不利 。因此箱 前在设计与施工过程中急需解决的问题。 4 箱梁裂缝 的预防 1 梁 梁段 的竖 向预应力 可延伸至墩顶 以下 5 ~ 参 考 文献 根据现有桥梁问题 的产生 ,箱梁的裂缝主 lr, O 以改善墩 、 e 梁交接处的受力。 『江 滂 . 1 】 大跨馒 连 续刚构桥 施工 关键技 术研 究 要出现在腹板、 底板和顶板 , 板裂缝 多出现在 腹 设置足够 的底板钢筋,必要时设置临时预 【】 济大学,06 D同 20. 1-  ̄ 7 1 之间 , 47 底板裂缝多 出现在跨 中部位及边 应力 。在箱粱 梁段 的内、 外主筋的表面设置 【 陈浩. 高墩 连续 刚构桥 的稳定性 分析【l 2 】 大跨 D 跨现浇段。分析原因 , 主要是腹板 内的剪应力 、 防裂 钢筋 网片, 同时箱梁 梁段的混凝土中可 西南交通大学 。 o. 2 7 o 主拉应力 和局部拉应力场作用的结果 。针对 这 加入抗混凝 土开 裂的杜拉纤维或钢纤维 ,以提 【杨 军 , 预 应力混凝 土葙梁桥常见结构裂 2 】 李坚. 些情况, 在设计与施工中可以采取 以下措施 : 高结构 的抗裂性能。 缝分析与设计对策田 海公路, 9. 上 17 9 选择合适的箱梁下缘曲线 。大跨径连续 刚 4 3桥墩墩身裂缝预防 f詹建辉 , . 大跨度连 续刚构主梁下挠及 4 ] 陈卉 特 构桥多采用变截面箱粱, 底板下缘曲线常采用 根据大跨径连续刚构桥的受力特| ,其墩 箱梁裂缝成因分 析切 冲外公路, 0. 25 0
大跨度连续梁连续刚构桥常见病害及防治对策
跨中挠度(mm)
3.7
8.5
9.4 3
4
潭洲大桥(125m)挠度、裂缝相关分析
开裂程度
5.0 5.6
2
2.1 施工过程中的病害
裂缝
– – – – – 顶板横向、纵向 腹板接缝处竖向 底板纵向 预应力锚头附近 底板分层劈裂(事故)
下挠
– 纵向 – 横向
底板分层劈裂事故
2.2 成桥后的病害
裂缝
针对运营阶段的长期问题
– – – – – – 提高预应力度、改变徐变次内力 施加体外预应力 限制荷载 减轻桥梁重量 组合结构桥梁 改变结构体系
4.1针对施工阶段的问题
– 提高预应力施加的可靠性 – 合理配筋 – 科学施工、提高施工精度
4.1针对施工阶段的问题
提高预应力施加的可靠性
– 纵向预应力
3.3 施工质量问题、措施不当
预应力灌浆质量
– 灌浆不饱满 – 忘记灌浆 – 管道内存在水分,造成预应力钢筋锈蚀
3.3 施工质量问题、措施不当
模板刚度
– 挂篮变形无规律
节段之间高低不平 阶段内高低不平,横坡误差大
– 内模刚度不足
– 大范围超重,达到恒载4~5%,抵消 1~2Mpa预应力
3.3 施工质量问题、措施不当
大跨度预应力混凝土连续梁、连 续刚构桥常见病害及防治对策
桥梁工程系研究生专业讲座
ФФФ 2006年12月
1 PC连续梁(刚构)桥的发展
世界
– Worms Bridge 首创悬臂浇注施工方法 – 1964年 Bendorf Bridge 208米 – 1985年 Gateway Bridge 260米 – 1998年 Stolma Bridge 301米 – 2006年 石板坡复线 340米
连续梁桥常见病害及对策
博士研究生专业讲座大跨度预应力混凝土连续梁、连续刚构桥常见病害及防治对策主讲:石雪飞教授学号:0510020141姓名:陈伟学院:土木工程学院桥梁工程系时间:2006,122006年12月16日下午,桥梁工程系石雪飞教授在桥梁馆一楼会议厅做了大跨度预应力混凝土连续梁、连续刚构桥常见病害及防治对策的专业学术报告,石老师渊博的学识、风趣的谈吐深深地吸引了大家,他把比较复杂的专业问题深入浅出地向大家娓娓道来,觉得受益颇深,下面是对石老师所讲的主要内容的回顾,并结合石老师所讲问题,谈一些自己的想法。
报告主要分为五个部分:PC连续梁(刚构)桥的发展、PC连续梁桥常见病害、病害的原因、处治对策和待研究的问题。
1.PC连续梁(刚构)桥的发展PC连续梁(刚构)桥是桥梁众多结构形式中运用最广泛的桥型之一,下面分别给出在世界上和中国具有里程碑意义的桥梁名称及建成年代:(1)世界上具有里程碑意义的桥梁及建成年代Worms Bridge 首创悬臂浇注施工方法1964年 Bendorf Bridge 208米1985年 Gateway Bridge 260米1998年 Stolma Bridge 301米2006年石板坡复线 340米(2)中国具有里程碑意义的桥梁及建成年代1982年重庆长江大桥 178米最大T型刚构1985年沙洋汉江桥111米连续梁首次过百1988年洛溪桥180米,第一座连续刚构1997年虎门大桥辅航道桥270米世界纪录2006年石板坡复线 340米在国内,随着经济的强大,交通工程得到前所未有的高速发展,最近20年来,修建了大量的连续梁桥和连续刚构桥,对促进交通事业的发展有重要意义。
但随着这些桥梁的建成,越来越多的问题暴露了出来。
2.PC连续梁桥常见病害PC连续梁桥中最常见的病害可分为两类:一类是裂缝,另一类是挠度。
它们存在于施工过程中,也存在于建成后的长期运营过程中。
另外还有一类病害是预应力连续梁特大桥梁体横移与支座偏位病害,以及对于连续梁桥、拱桥及悬臂梁桥等桥型结构,由于荷载的作用而产生负弯矩或拉力,使桥面铺装层受到拉力的作用而产生负弯矩区裂缝,从而造成桥面铺装的损坏。
连续刚构桥病害原因分析及对策
连续刚构桥病害原因分析及对策摘要随着城市建城区规模的急剧扩张以及美观的要求,许多经济、美观的桥梁形式被不断研究、引进和开发。
高墩大跨径预应力刚构桥梁由于自身得天独厚的优点,在城市环线上得到广泛的应用。
结合实际工程,针对以前修建的几座连续刚构桥存在的一些病害情况,对这些病害作了详细分析,拟通过采取一系列措施,改善结构受力,减少开裂。
关键词连续刚构桥病害;原因;对策1高墩大跨连续刚构桥具有的特点梁墩固结,结构整体性好,抗震性能优,抗扭潜力大,结构受力合理。
上下部结构共同承受荷载,减小墩顶负弯矩。
墩较柔,能够承受较大变形。
结构为多次超静定,收缩徐变、温度变化、预应力、不均匀沉降引起的次内力对结构影响较大。
但也存在对地基要求高,墩梁连接处受力复杂,高墩弯矩随墩高的骤然降低而急剧变化,合龙段结构体系转换引起内力重分布等问题。
近年来修建的大跨连续刚构桥中,有一些出现了病害,主要表现为:腹板出现斜裂缝,边跨端部上缘出现横向裂缝,中跨跨中下挠过大等。
2已建成连续刚构桥梁产生病害的不同原因采取了不同的对策1)保证足够的截面尺寸。
高跨比是影响主梁受力状态的主要参数,适当增加梁高,可增加主梁刚度,改善主梁应力状态。
本次设计七古寺大桥和柳园大桥采用了根部1/15、跨中1/40的高跨比。
2)改善预应力筋的布置。
大跨径连续刚构在对称纵向荷载作用下,截面将产生纵向翘曲位移,并且顶底板横向不同位置产生纵向位移差。
由于上下翼缘的剪切变形导致对称荷载弯曲引起的法向应力呈非均匀分布状态,即剪力滞后现象。
因此,在设置预应力筋时应该考虑法向应力的不均匀性,否则可能造成在应力分布最大处预加力不够,导致混凝土开裂。
以前的连续刚构桥均采用了直束的布置方式,即纵向预应力钢束基本上锚固于箱梁顶部而没有下弯,通过适当调整箱梁正应力及竖向应力控制主拉应力的产生。
该布束形式成立的前提是竖向预应力必须可靠,然而因设计及施工等诸多原因,竖向预应力往往不能达到设计预期的工作性能。
连续刚构桥梁常见通病(介绍1)
5、箱梁线形不平顺,箱梁底板、腹板节段处 错台。
5、箱梁顶板内侧、底板内外侧纵向裂缝
箱外
箱内
二、常见病害
1、混凝土表面蜂窝、麻面、空洞 2、混凝土保护层厚度不足,露筋,钢筋锈蚀
3、混凝土破损、不密实、露筋
4、张拉后未及时进行封锚
5、箱梁底板、腹板节段处错台
6、箱梁顶板内侧、底板内外侧纵向裂缝
1、混凝土表面蜂窝、麻面、空洞
2、混凝土保护层厚度不足,露筋,钢筋锈蚀。
2、混凝土离析、不密实,露筋。
连续刚构桥常见病害
一、介绍
二、常见病害
三、特殊病害 四、预防与控制
一、介绍
随着近年来设计、施工工艺的成熟,连续刚构 大桥已成为一种普通桥型结构,但在对连续刚构大 桥的验收检查中,一些问题及病害仍然频繁出现。 下面,我们把在检查过程中发现的典型病害做个简 单介绍,以便参建各方在施工过程中加强管理,避 免类似病害的发生。
连续刚构桥梁主要病害原因分析及控制措施
连续刚构桥梁主要病害原因分析及控制措施摘要:我国已建成的大跨径连续刚构桥梁中,常出现的主要病害为跨中挠度过大、箱梁梁体混凝土开裂。
本文通过对连续刚构桥梁跨中下挠及箱梁开裂的研究,分析了病害产生的原因,从设计和施工方面提出了控制措施。
关键词:连续刚构;桥梁;病害;原因分析;控制措施Abstract: This article analyzes the continuous rigid frame bridge midspan sag and the box girders’cracking, analyzes the reasons of disease, and from the aspects of design and construction puts forward some control measures.Key words: continuous rigid frame bridge;; disease; reason analysis; control measures连续刚构桥是一种介于连续梁桥和T型刚构桥之间的桥型,这种桥型的桥梁又称为墩梁固结的连续梁桥。
目前连续刚构桥大多用于大跨度的薄壁高墩上,即把高墩看作一种摆动支承体系,从而降低墩的内力。
由于其具有跨越能力大、整体性能好、抗震性能优、施工相对简单的特点,近年来得到了广泛的应用。
通过调查,我国已建成的大跨径连续刚构桥梁中,常出现的主要病害为跨中挠度过大、箱梁梁体混凝土开裂。
本文通过对连续刚构桥梁跨中下挠及箱梁开裂的研究,分析了病害产生的原因,从设计和施工方面提出了控制措施。
1跨中挠度过大的原因分析及控制措施1.1跨中挠度过大的原因分析跨中挠度过大是连续刚构桥梁常见的也是最主要的病害,即影响行车安全,又影响结构安全,主要由预应力损失、预拱度设置偏小、施工线性控制不准所引起。
预应力损失的主要原因有预应力筋与管道壁间的摩擦引起的应力损失;锚具变形、预应力筋回缩、接缝压缩引起的应力损失;弹性压缩引起的应力损失;预应力筋松弛引起的应力损失;混凝土收缩徐变引起的应力损失;预应力灌浆不饱满导致预应力筋锈蚀引起的应力损失。
大跨径连续刚构桥梁的常见病害及控制措施
大跨径连续刚构桥梁的常见病害及控制措施通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1) 跨中挠度过大;(2) 箱梁腹板、底板产生裂缝;(3) 墩顶0 # 梁段开裂;(4) 桥墩墩身裂缝。
1跨中挠度(1) 适当增加梁高,提高结构的承载能力(2) 设置足够的施工预拱度(3) 应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5) 延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少饶度。
.竖向接缝存在,可以采用把接缝作成斜接缝,阶梯接缝,销槽式接缝等.增加截面的配筋率减小徐变对结构的影响. 我国施工质量水平总体不高, 管理不完善,.采用预抛高的方法, 即在建造期间通过设置预拱度来抵消桥梁长期下挠变形.是对高标号混凝土的收缩、徐变的考虑不足, 且在施工中预拱度的设置存在偏差.顶板悬臂施工束有效性降低对主梁下挠有较大的影响2混凝土开裂, 如箱梁竖向开裂、箱梁底板纵向开裂、箱梁腹板出现斜裂缝等;箱梁裂缝主要表现为纵向裂缝、弯曲裂缝、弯曲剪应力裂缝和主拉应力裂缝,(1) 选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱梁,底板下缘曲线常采用半立方抛物线和二次抛物线(2)预应力筋过于集中及预应力吨位过大导致混凝土开裂。
设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服腹板主拉应力过大(3) 在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,(4) 增设腹板纵向预应力下弯束(5) 适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋(6) 合拢段的混凝土标号提高半级或一级(7)合理布置桥梁跨径.箱梁腹板截面几何尺寸偏小,为了减少结构自重,对于宽箱梁,多数桥梁腹板仅仅是由构造决定其厚度,这导致截面抗剪能力储备不足.主梁梁体非预应力钢筋配置不足, 也会导致砼的开裂. 墩柱的约束过大, 导致主梁开裂应尽可能使其具有较大的抗弯刚度和较小的抗推刚度, 国内外连续刚构墩身形式多为双墙式薄壁柔性墩。
大跨径连续刚构桥梁常见病害及设计与施工对策
设计时横向一般采用设置扁锚式的预应力钢 绞线克服弯拉应力, 但是由 于箱梁的顶 板跨 中较薄、顶板上布设了大最纵向预应力钢束 等构造因 素, 横向 预应力钢绞线布设不可能 同时在悬臂根部(负弯 矩区)布设在顶板上缘, 而在顶板的跨中部 分则布设在顶板下缘。因 此,设计时横向预应力钢绞线一般只布设在 靠近上缘处。当顶板箱宽与冀板宽比例不适 当时,比如翼板太宽,悬臂太长,顶板在 恒载情况下负弯矩较小,若横向预应力束按 照恒载加活载应力布设,则恒载情况下翼板
20 7
N0
0/
:夕 IENC E & T卜 〕 CHNOL() 日 INF以刁 Y MAT ION
工 业 技 术
大跨径连续刚构桥梁常见病害及设计与施工对策
周传明
(江苏省高速公路经营管理中心
江苏南京
210009 )
摘 要: 通过分析大跨径连续刚构桥出现病害的原因,就大跨径连续刚构桥提出一些设计与施工对策,为今后类似桥梁的设计与施工 提供参考。 关键词:连续刚构桥 箱梁 裂缝 挠度 中图分类号: T U7 文献标识码: A 文章编号: 1672一 3791(2007)03(a卜0018一 02 板总厚度也不过 1 . 6m ,两者比较,后者腹 板太薄, 开裂是很自 然的。2 ) 取消了竖弯 ( 束。为了施工方便,多数连续刚构桥梁在设 计时取消了纵向竖弯预应力钢束。比较连续 刚构与连续梁两种体系,对主梁而言,两者 受力形式相同,按理,其纵向预应力的配索 原则也应基本相同。但是,多数连续刚构桥 梁取消 了 上、下弯预应力索,仅设置竖向预 应 力筋 ,而连续梁桥上、下弯索都有 ,有 效地避免了腹板开裂问题,这表明连续刚构 在配索 卜 存在缺点。3 竖向预应力筋作用不 () 如初期设计期待的好。设计连续刚构桥梁 1 / 4一 SL 跨处箱梁高度也相对较低,1 4一 3/ / 3/ SL 跨处主梁主拉应力相对较大。设计中采用 的竖向预应力高强钢筋长度短,张拉锚固损 1 常见病害 加之有的 从国内已建成的大跨径连续刚构桥梁的 失大. 有效预应力与计算值差即大, 边跨过大, 加 来看,混凝七梁或多或少地出现 r 部分病害。 桥粱设计采用偏大的边中跨比, 大了边跨的主拉应力。而较短的竖向预应力 首先是混凝土开裂,几乎所有的已建成连续 钢筋可靠性差, 更加剧 r 边跨腹板的开裂。 同 刚构桥都出现混凝土裂纹、 裂缝, 其中有温度 时根据计算分析, 竖向预应力 在节段中分布 裂缝, 也有受力裂缝, 裂缝的多发部位有: 墩 不均,节段的接合部是竖向预应力的最低谷, 顶0 # 梁段、 箱梁腹板和底板、 墩身等。 其次 (4 是主梁在运营阶段出现过大下挠。根据传统 这也是箱梁腹板开裂的原因之 一。) 施工粗 糙, 未达设计要求。 由丁绝大部分竖向预应力 的混凝土徐变理论,混凝土在施工完成后的 钢筋采用的精轧螺纹粗钢筋锚具为螺母式锚 一年内将完成 8 %的徐变,后期徐变效应本 0 该不明显, 但实际运营阶段, 部分桥梁的下挠 具,其锚固时的拧紧操作存在较大的人为因 素。 在施工过程中, 桂愉底模后吊杆锚固与箱 的幅度相当大, 特别是对于主跨Z m 以上的 o 梁底板上, 也可能造成腹板出现斜裂纹。 桥梁 混凝土连续刚构桥,后期下挠有的已接近跨 交付运营后,在交通荷载作用下这些裂纹 可 径的 1% . 能发展成可见斜裂缝。 2 . 2 跨中底板纵向裂缝原因分析 2 裂缝形成的原因 跨中底板纵向裂缝产生的原因主要有以 目前,我国大跨径预应力混凝十连续梁 下几个方面: (1 底板厚度偏薄。 ) 底板纵向裂缝 桥裂缝形成的原因, 主要有以下几方面: (1 在 ) 为 箱梁底 主桥总体设计中, 跨径比例、 箱梁截面尺寸的 一般发生在跨中, r 减轻结构自重, 板在跨中一般比较薄,有的桥梁底板布设一 拟定不合理。) 结构设计抗弯剪能力不足; (2 预应力钢束, 其厚度仅25一 厘米, 8 2 布 ( 3)对有预应力钢束引起的附加力估计不足。 层纵向 纵向预应力 钢束的厚度也仅为3 厘米。 2 ( 4 )对温度应力的重视不够; 5、 施工质量不好, 设两层 减小平弯角度, 预应力钢 其中包括: 混凝土浇筑与养生不好、 预应力 钢 为了锚固靠近腹板, 7 束的保护层厚度达不到设计要求、支架与模 束往往横向间距较小,一般管道净间距仅 6一 厘米,在此部分的截面挖空率非常大,截面 板变形过大、 预应力张拉力不足、 灌桨不及时 削弱较大。 横向普通钢筋配设不强。一些 (2 ) 或其它质量问题等。 桥梁横向普通钢筋配设不强,且该处混凝土 2. 1 腹板斜裂缝原因分析 () 腹板斜裂缝产生的原因主要有以下几个 浇筑质量不易保证。3 张拉锚固未分批次张 方面: ( 1 ) 腹板偏薄。为 了 尽量减少结构 自 拉和未及时进行孔道灌浆。当截面削弱较 多,强大的底板纵向预应力钢束全部一次张 重,大跨径刚构桥往往尽量减少箱梁截面面 积。对于宽箱梁,多数桥梁腹板仅仅是由构 拉锚固时,底板部分的混凝土承受不了底板 束的压力,必然导致纵向开裂. 造决定其厚度。在 1/ 4 一3/ SL 跨附近一般纵 2 . 3 顶板纵向裂缝原因分析 向预应力的腹板束已经锚固完,顶板束则锚 顶板纵向裂缝产生的原因主要有以下几 固在腹板两边的承托上,从构造上可以减薄 ) 腹板厚度,如与简支梁比较,一般相同宽度 个方面: ( 1 主梁截面箱宽与翼板宽不当,横 向预应力钢束设置不合理。主梁顶板在较长 ( 10 片梁) 的一孔桥梁腹板总厚度在 1 . 6 m 恒载、活载产生的负 以上, 但其跨度不过才30m 一 m , SO 而单跨 悬臂箱梁翼板的根部, 弯矩均较大,顶板跨中的活载正弯矩较大, 在20 m 以上的预应力混凝土连续刚构桥梁腹 0 连续刚构桥梁由于墩梁固结,主墩不设 支座,顺桥向杭弯刚度和横桥向抗扭刚度较 大 ,具有整体性能好,结构刚度大,变形 小抗震性能好,主梁变形挠曲 线平缓、桥面 伸缩缝少、行车舒适等特点, 在跨越山谷、 深沟、江河等,作为较经济的大跨径桥梁结 构形式,被广泛的采用。虽然连续刚构桥不 论在设计方面还是在施工方面, 都有较为成 熟的经验,而且在国内建成较多,但由于目 前对连续刚构桥梁认识的局限性,很多大跨 径连续刚构桥均出现了不同程度的病害。如 何克服和尽量减少病害的产生,是目前在设 计与施工过程中急需解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1针对施工阶段的问题
提高预应力施加的可靠性
– 纵向预应力
塑料波纹管 真空压浆 严格双控
– 竖向预应力
采用带圆头的锚具 二次张拉
– 横向预应力
防止管道上浮,多设几道定位钢筋
4.1针对施工阶段的问题
合理配筋
– 齿板配筋
保证锚固长度
– 底板配筋
设置一定数量的拉筋 保证弧线内侧的保护层厚度
4.2 针对运营阶段的长期问题
改变结构体系
– 新桥
矮塔斜拉桥?
– 已经下挠的桥梁
增加拉索体系 Puttesund
Bridge
5 待研究的问题
徐变规律
– 实际情况与实验室的差异
裂缝、下挠的机理
– 先裂缝,再下挠? – 先下挠,大应变造成裂缝? – 开裂后的应力重分布,稳定吗?
汾江大桥裂缝图
黄石长江大桥 245米
下挠32厘米 6000多条裂缝
虎门大桥辅航道桥跨中挠度
225 200 175
Right Left
Deformation ( Unit: mm )
150 125 100 75 50 25 0 -25 0 10 20 30 40 50 60 70 80
Time after been open to traffic ( Unit: Month )
已建桥梁的承载能力
– 下挠、开裂后的剩余承载能力 – 剩余寿命
问题,跨度超过200米几乎无法体内实现 体内,体外预应力同时? 体外什么时间施加?
– 吻合索配索
一次落架连续梁,有徐变,无次内力 悬臂施工实现吻合索
悬臂施工实现吻合索
m
h(m) h t
(t)
图
塔高(h)和索力(S)优化
悬臂施工实现吻合索
4.2 针对运营阶段的长期问题
施加体外预应力
– 纵向节段间的不同步收缩
主要出现在0号与1号块,顶板纵向裂缝
竖向分层
3.4 汽车超重
总重量
– 增加总体下挠 – 薄弱截面经常出现临时裂缝,横向裂缝
轴重
– 桥面板局部开裂,纵缝
汾江桥2车道车辆随机荷载流示意图
80 70 60
) t 车重(
50 40 30 20 10 0 500 1000 1500
虎门大桥辅航道桥跨中挠度
Parrotts Ferry Bridge 195米
Koror-Babeldaob 240米
3 病害的原因
设计理念
– 预应力只要使混凝土不出现拉应力 – 预应力抵消大部分恒载弯矩
构造设计错误
– 普通钢筋配筋问题
施工质量问题、措施不当
– – – – 预应力施加质量 模板刚度 预应力灌浆质量 分层分段问题
减轻桥梁重量
– 减小跨中梁高
跨中梁高:主跨的1/80
– 跨中使用轻质材料
轻质混凝土
– Stolma Bridge和RaftSundet Bridge
跨中段采用钢梁
– 石板坡复线桥
石板坡复线桥
4.2 针对运营阶段的长期问题
采用组合结构桥梁
– 腹板、底板钢板,顶板混凝土 – 波折腹板 – 桁架腹板
Midspan -40000 -20000 0 Mid-pier A 20000 -15 50 115 180 Longitudinal location(m) 245 9561.7 Mid-pier B
Pavement thickness compare with Dead load bending moment
4
潭洲大桥(125m)挠度、裂缝相关分析
2.1 施工过程中的病害
裂缝
– – – – – 顶板横向、纵向 腹板接缝处竖向 底板纵向 预应力锚头附近 底板分层劈裂(事故)
下挠
– 纵向 – 横向
底板分层劈裂事故
2.2 成桥后的病害
裂缝
– 顶板纵向 – 腹板斜向 – 底板横向
下挠
– 纵向
垮桥
汽车超重
3.1 设计理念
预应力度
– 全预应力 – 变形用预拱度抵消 – 问题
预应力压力 λ= ≥1 外荷载拉力
徐变次内力难以估计 预应力损失难以估计
3.1 设计理念
预应力完全抵消外荷载弯矩
– 好处:梁处于轴心受压状态,只有纵向变 形 – 弱点:费材料
小跨径 大跨径?截面上无法布置
4.1针对施工阶段的问题
科学施工、提高施工精度
– 接缝安排
竖向,横向,有接缝的位置适当增加防裂钢筋
– 工期安排
混凝土养生时间控制 合拢步骤的安排
– 施工机具操作
挂篮变形控制——锚杆的紧固 模板变形控制
4.2 针对运营阶段的长期问题
提高预应力度、改变徐变次内力
– 零弯矩配索、减小上下缘压应力差配索
汾江大桥裂缝与下挠图
0 (1996成桥) 2 0 3.9 40 1 跨中挠度(mm) 80 120 160 200 240 5 跨中顶板裂缝 支点腹板裂缝 跨中底板裂缝 左幅挠度 跨中腹板裂缝 右幅挠度 3.7 4.6 开裂程度 5.0 5.6 8.5 9.4 3 2 6.8 7.7 4 桥龄(年) 6 8 10 0
20
15
10
8
5
m id s p a n
0 0 50 100 150 200 250
Flexural moment under Dead load(kN-m)
-100000 -80000 -60000
lo n g it u d in a l p o s it io n (
u n it : m )
-89134.0 -76113.9
– 对于新桥
预留体外预应力转向块及张拉位置 成桥时压重,以后慢慢取出
– 对于旧桥
植筋设转向块后,增加体外预应力 效果不好
– 体内预应力的效应无法判断 – 植筋进一步造成混凝土开裂
先预压,后取出
悬臂施压、成桥拆除
4.2 针对运营阶段的长期问题
施加体外预应力
– 对于新桥
预留体外预应力转向块及张拉位置 成桥时压重,以后慢慢取出
4 处治对策
针对施工阶段的问题
– – – 提高预应力施加的可靠性 合理配筋 科学施工、提高施工精度 提高预应力度、改变徐变次内力 施加体外预应力 限制荷载 减轻桥梁重量 组合结构桥梁 改变结构体系
针对运营阶段的长期问题
– – – – – –
4.1针对施工阶段的问题
– 提高预应力施加的可靠性 – 合理配筋 – 科学施工、提高施工精度
大跨度预应力混凝土连续梁、连 续刚构桥常见病害及防治对策
桥梁工程系研究生专业讲座
石雪飞 2008年12月
1 PC连续梁(刚构)桥的发展
世界
– 1953年 Worms Bridge 悬臂浇注施工工艺 – 1964年 Bendorf Bridge 208米 – 1985年 Gateway Bridge 260米 – 1998年 Stolma Bridge 301米 – 2006年 石板坡复线 340米
– 大范围超重,达到恒载4~5%,抵消 1~2Mpa预应力
铺装厚度与裂缝
>25cm 8cm
70 80 90 100 110 120 130 140 150 160
汾江大桥主桥桥面铺装厚度--左幅主跨
3.3 施工质量问题、措施不当
分层分段问题
– 竖向分层间的不同步收缩
腹板后浇混凝土开裂,竖向裂缝
裂缝
– 施工过程中 – 长期
下挠
– 施工过程中 – 长期
佛开高速公路汾江大桥
Description of the figure of the bridge
– – – – Type:PC continuous beam bridge Span:65m + 100m + 65m Material: C50 concrete Longitudinal prestressed tendons arranged in deck slab, web and bottom slab – Built from 1994 to 1996 – Built by free balanced cantilever method
– 对于旧桥
植筋设转向块后,增加体外预应力 效果不好
– 体内预应力的效应无法判断 – 植筋进一步造成混凝土开裂
佛开高速公路汾江大桥
-200 1996年12月成桥
100m左幅 100m右幅 125m左幅 125m右幅
-150
-100 跨中挠度(mm)
-50 2001年7月 2001年12月 2002年6月 2000年8月
Case 2
Ambiguous location of hoop bars
In designer’s mind
In contractor’s mind
底板分层压溃
老问题新现象
3.3 施工质量问题、措施不当
预应力施加质量
– 纵向预应力:摩阻损失
管道不平顺 管道内漏浆
– 竖向预应力:锚口损失
0
2005年6月 2006年4月
50
100 1996年1月
1998年1月
2000年1月
2002年1月
2004年1月
2006年1月
96~06年挠度变化对比 (以00年8月观测数据为参考点)