结构力学力矩分配法(新)
结构力学下多结点力矩分配法
![结构力学下多结点力矩分配法](https://img.taocdn.com/s3/m/db2dc04aeef9aef8941ea76e58fafab069dc4437.png)
结构力学下多结点力矩分配法引言在结构力学中,力矩分配法是一种常见的分析方法,用于计算多结点约束下的力矩分配。
多结点力矩分配法通过将外加载荷分配给结构中的各个节点,以确定每个节点承载的力矩。
本文将介绍结构力学下的多结点力矩分配法的基本原理和计算方法。
原理多结点力矩分配法的原理基于以下假设:1.结构是一个刚体,可以忽略其变形。
2.结构中的每个节点都可以承受力矩,且力矩的分配是均匀的。
基于这些假设,我们可以将外加载荷分配给结构中的各个节点,并计算每个节点承载的力矩。
力矩的分配是根据节点间的刚性关系来确定的。
计算方法多结点力矩分配法可以通过以下步骤进行计算:1.确定结构的节点个数和节点编号。
2.根据结构的几何形状和边界条件,建立节点间的刚性关系。
3.将外加载荷均匀地分配给每个节点。
可以根据结构的几何形状和边界条件,考虑节点之间的距离和角度来确定各个节点的分配比例。
4.根据节点间的刚性关系,计算每个节点承载的力矩。
可以使用刚体平衡条件来计算力矩的分配。
5.检查计算结果的合理性。
根据结构的几何形状和边界条件,验证计算得到的力矩分配是否符合工程实际。
示例下面以一个简单的桁架结构为例,介绍多结点力矩分配法的计算方法。
假设桁架结构的节点个数为4,节点编号分别为1, 2, 3和4。
外加载荷为M,沿结构的纵向均匀分布。
根据桁架结构的几何形状和边界条件,建立节点间的刚性关系。
假设节点1和节点2之间的刚性系数为k1,节点2和节点3之间的刚性系数为k2,节点3和节点4之间的刚性系数为k3。
将外加载荷均匀地分配给每个节点。
假设节点1承载的力矩为M1,节点2承载的力矩为M2,节点3承载的力矩为M3,节点4承载的力矩为M4,可以得到以下关系:M1 + M2 + M3 + M4 = M根据节点间的刚性关系,可以得到以下关系:k1 * (M2 - M1) = 0k2 * (M3 - M2) = 0k3 * (M4 - M3) = 0通过这些关系,我们可以求解出每个节点承载的力矩。
结构力学——力矩分配法分解
![结构力学——力矩分配法分解](https://img.taocdn.com/s3/m/d3ab20923c1ec5da51e27060.png)
3 . 一般最终的杆端力矩与固端力矩是同量级的,要求精确 到三位有效数字,计算中取4位计算,以保证前三位的 精确度
第三节 多结点力矩分配法
计算的指导思想由两个步骤说明:
固定状态的计算(与单点固定一样)。
即刚臂→荷载→固端力矩→约束力矩;
100k0N
EI
1 EI
2 EI
0.43 0.57 0.57 0.43
-500 -1000
M3B=1000
例题:有支座移动(已知结点线位移)E=200GPa,I = 2500cm4
绘制弯矩图。
A
B
C
D
EI
EI
=1cm
10m
10m
10m
0.429 0.571
0.571 0.429
MF
3000
3000 -1500
2 . 不相邻 点可同时 释放.
例题:用力矩分配法求图示结构弯矩图(利用传递系数的概念) 。
A
EI
10m
1 EI
10m
100k0N 2 EI 3 B 3B是悬臂梁,
转动结点3 时,
10m 1m 悬臂可自由转
0.43 0.57 0.5 0.5 1 0
动,固其转动
MF
1000 刚度为零
或A
MF
100k0N
放松状态的计算(与单点放松不同)。
力矩的分配和传递是在远端约束已知的情况下进行的, 因此,分配单元的相邻结点不应同时放松。每次只能 放松一个结点,同时相邻结点保持固定,所以,整个 放松过程是轮流放松每一个结点来逐步完成的。
第三节 多结点力矩分配法
结构力学第六章超静定结构的计算——力矩分配法
![结构力学第六章超静定结构的计算——力矩分配法](https://img.taocdn.com/s3/m/d046bb1f591b6bd97f192279168884868762b892.png)
《结构力学》习题集- 33 -第六章 超静定结构的计算——力矩分配法一、本章基本内容:1、基本概念:转动刚度、分配系数、传递系数、侧移刚度;(1)力矩分配法是以位移法为基础的一种渐进解法;(2)转动刚度与杆件的线刚度和远端支承情况有关;(3)杆件远端的支承情况不同,相应的传递系数也不同;(4)分配系数的值小于等于1,并且1=∑ik μ;(5)力矩分配法只适用于计算无结点线位移的结构。
2、固端力矩、结点不平衡力矩的计算;3、用力矩分配法计算多跨梁和无侧移刚架的一般步骤:(1)计算汇交于各结点的每一杆端的分配系数并确定传递系数;(2)求出各杆件的固端弯矩;(3)求出结点不平衡力矩,将其反号乘上各杆件的分配系数得到相应的分配弯矩。
然后,再将分配弯矩乘以传递系数,求出远端的传递弯矩。
按此步骤循环计算,直到不平衡力矩小到可以忽略不计为止。
(4)将每一杆端的固端弯矩、历次的分配弯矩和传递弯矩相加,求出最后杆端弯矩。
(5)校核最后杆端弯矩,作内力图。
二、习题:(一)、判断题(不作为考试题型):1、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。
2、若图示各杆件线刚度i 相同,则各杆A 端的转动刚度S 分别为:4 i , 3 i , i 。
AA A3、图示结构EI =常数,用力矩分配法计算时分配系数4 A μ= 4 / 11。
1l ll第六章 力矩分配法- 34 -4、图示结构用力矩分配法计算时分配系数μAB =12/,μAD =18/。
BCA D E =1i =1i =1i =1i5、用力矩分配法计算图示结构,各杆l 相同,EI =常数。
其分配系数μBA =0.8,μBC =0.2,μBD =0。
A B CD6、在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。
7、若用力矩分配法计算图示刚架,则结点A 的不平衡力矩为 −−M Pl 316。
结构力学(I)力矩分配法
![结构力学(I)力矩分配法](https://img.taocdn.com/s3/m/df98fb99daef5ef7ba0d3c70.png)
M1B M1FB
M1C M1FC
S1 B ( R ) M1FB 1B ( R1P ) S 1P
1
1
S1C ( R ) M 1FC 1C ( R1P ) S 1P
1
力矩分配法采用了与位移法相同的基本结 构,即固定刚结点,在固定状态下刚臂上产生 约束力矩,为恢复到原状态,将刚臂放松(加 反方向约束力矩),求出放松状态产生的杆端 力矩,将固定状态与放松状态的杆端力矩叠加 即得结构的实际杆端力矩.
一. 基本概念
远端支撑 固定 铰支 滑动 转动刚度S 4i 3i i 传递系数C 1/2 0 -1
1
1
1
可避免解联立方程 不需要求出角位移 计算程式简单机械
哈工大 土木工程学院
4i
1 / 31
2i
3i
哈工大 土木工程学院
i
2 / 31
讨论 1 点在M作用下各杆端的弯矩 1M m1 0
列表法
练习:用力矩分配法求图示结构弯矩图
B
EI
A
EI
C
40 kN
10m
10m
q 10 kN/m
M F 100
分 配 传 递
0.571 0.429 100 0 57.1 42.9 42.9 42 .9
0 0
A
4m
EI
BБайду номын сангаас
4m
EI
C
6m
28.6
M 128.6
128 .6
0
42.9
M
哈工大 土木工程学院
ql 2 /12
A
F F M BC M CB 0
结构力学——力矩分配法
![结构力学——力矩分配法](https://img.taocdn.com/s3/m/35d3ec2259fafab069dc5022aaea998fcd224048.png)
结构力学——力矩分配法结构力学是研究物体在外力作用下的变形和破坏行为的学科。
其中,力矩分配法是一种求解结构梁的内力和变形的常用方法之一、本文将介绍力矩分配法的基本理论和应用。
首先,对于结构力学的研究,我们需要了解一些基本概念。
力矩是由力的作用点与旋转轴之间的距离和力的大小决定的。
在结构力学中,我们通常考虑作用在梁上的力和力矩。
梁是一种常见的结构元件,可以将其看作是在两个固定点之间作用的力的集合。
在力矩分配法中,我们将梁分割成若干个小段,然后逐段计算每个小段的内力和变形。
假设有一根长度为L,截面形状均匀的梁,并且在两个固定点之间施加了一系列分布力。
我们可以将梁分割成n个小段,每个小段的长度为Δx=L/n。
接下来,我们需要计算每个小段的内力和变形。
首先,我们可以根据材料力学的基本原理得出梁的拉伸、压缩和弯曲的力学方程。
然后,我们可以根据小段的切线方向和切线上的任意一点来推导出该小段的内力和弯曲方程。
最后,我们将内力分量在小段两端的力矩分配系数和位置矩分配系数进行合成,从而得出该小段的内力和弯曲方程。
在力矩分配法中,一个重要的概念是力矩分配系数。
力矩分配系数是一个无量纲的参数,用来表示力和力矩在小段两端分配的比例。
在计算力矩分配系数时,我们可以根据梁的几何形状和分布力的位置,利用力矩的基本原理进行推导。
力矩分配系数是力矩分配法的核心,它可以帮助我们计算出每个小段的内力和变形。
在实际应用中,力矩分配法通常用于求解多跨梁的内力和变形。
我们可以将多跨梁分割成若干个小段,并根据力矩分配法计算出每个小段的内力和变形。
然后,我们可以将各个小段的内力和变形进行叠加,得出整个多跨梁的内力和变形。
需要注意的是,力矩分配法具有一定的局限性。
首先,它只适用于存在弯曲变形的梁,对于其他类型的结构,如框架和板,需要采用其他的分析方法。
其次,力矩分配法仅适用于分布力作用在梁的直线部分上,对于弯曲部分或非均匀分布力的情况,需要采用其他的方法进行分析。
7 力矩分配法 结构力学
![7 力矩分配法 结构力学](https://img.taocdn.com/s3/m/d1e70028844769eae009ed5c.png)
第7章 力矩分配法
Moment Distribution Method
工程技术学院土木教研室
主要内容:
§9-1
力矩分配法的基本概念 点线位移刚架
§9-2 力矩分配法计算连续梁和无结
§9-3 超静定结构超静定结构小结
§9-1 力矩分配法的基本概念
一、转动刚度:
(3)计算分配弯矩 A 和传递弯矩
3m
40KN B EI 3m
16KN/m C EI 3m
1.分配系数 2.固端弯矩 -30 3.分配弯矩 传递弯矩 -2.4
' M BA 0.4 ( 12) 4.8 KNm
0.4 0.6 30 -18 -4.8 -7.2
0
0
' M BC 0.6 ( 12) 7.2 KNm
1 j
S1 j
S
(1)
M1 j 1 j M
ij
S ij
S
(i )
ij
S ij
S
(i )
M ij ij M
各杆的分配弯矩 Mij 各杆在i端的分配系数之和等于1。 校核分配系数的计算是否正确?
ij 1
(i )
三、传递系数:
• 传递系数:远端弯矩与近端(转动端)弯矩的 比值称为近端向远端的传递系数,简称传递系 数。用Cij表示。 • 传递弯矩:远端弯矩
(1) (1)
M1 j
S1 j
S14 M S
(1)
S
(1)
M
M1 j
S1 j
S
(1 )
M
各杆在1端的弯矩与该杆在1端的转 动刚度成正比。 下标 j 为汇交于1点的各杆之远端, j= 2、 3、 4、 5 各杆在1端的弯矩等于外力矩乘上 一个相应的系数 1j--分配系数。 下标 i 为近端、j 为汇交于 i 点的 各杆之远端。
结构力学 课件 力矩分配法
![结构力学 课件 力矩分配法](https://img.taocdn.com/s3/m/7ee11020a5e9856a561260e0.png)
SAB
1
2 传递系数C
传递系数: 一单跨超静定梁的一端(A端)单位转角时,发生于远 端(B端)的弯矩与近端(A端)的弯矩之比。
如: 当远端(B端)固定,C AB
M
BA
SAB
1 2 S AB
MBA
A B
图(a)
1
C 当远端(B端)铰支 , AB
M
SAB
A
B
BA
0
SAB
A
1
图(b)
S AB
(1)设想在结点B增加一个附加刚臂,得到位 移法基本结构。阻止其转动如图(g)所示。 查表容易得到各单跨超静定梁的杆 端弯矩。则附加刚臂的约束力矩由 结点B的平衡条件得
M
B
Fp
A
q
B C
图(f)
MB
A
Fp
B
q
C
图(g)
M
F BA
M
F BC
MB MBAF -MB
A B C
附加刚臂的约束力矩MB 是原结构 上所没有的,它反映了基本结构汇 交于B结点的各杆B端弯矩所不能平 衡的差额。我们称之为B结点的不 平衡力矩。
MBCF
图(h)
(2)原结构在结点B本来没有转动约束,即不存在不平衡力矩MB ,因 此,为了与实际情况相符,必须消除人为引入的附加刚臂,即使MB 0,这就相当于在 MB的基础上再施加上一个(- MB )如图(h)所示。
此时梁将产生新的杆端弯矩M´BA 、 M´BC (分配弯矩),在远端将产生新 的杆端弯矩M´AB 、 M´CB 、(传递弯 矩)。 (3)原结构在荷载的作用下的实际杆端弯 矩应为图(g) 和图(h)两种情况的叠加。 下面举例说明力矩分配法的解题过 程。
结构力学第七章力矩分配法
![结构力学第七章力矩分配法](https://img.taocdn.com/s3/m/0038d9f6cc7931b764ce152d.png)
§7-1 引言
➢ 力矩分配法是基于位移法的逐步逼近精确解的 近似方法。
➢ 力矩分配法可以避免解联立方程组,其计算精 度可按要求来控制。在工程中曾经广泛应用。
➢ 从数学上说,是一种异步迭代法。
➢ 单独使用时只能用于无侧移(线位移)的结构。
➢ 力矩分配法的理论基础是位移法,力矩分配法 中对杆端转角、杆端弯矩、固端弯矩的正负号 规定,与位移法相同(顺时针旋转为正号)。
1
远端铰支时: 3i A i B
C=0
1
远端定向时: i A i B
C=-1
与远端支承 情况有关
§7-2 力矩分配法的基本原理
例7-1 结构的A端、B端,C端的支撑及各杆刚度如图
所示,求SBA、SBC、SBD及CBA、CBC、CBD。
(a)
B
C
A EI
EI
EI l
D
l
l
(b) A
B EI
EI
θB C
结点B作用的力偶,按各杆的分配系数分配给各杆的近端;
可见:各杆B 端的弯矩与各杆B 端的转动刚度成正比。 例7-1 结构的A端、B端,C端的支撑及各杆刚度如图所示,求SBA、SBC、SBD及CBA、CBC、CBD。
近端弯矩MBA、MBC为
§7-2 力矩分配法的基本原理
利用结点B的力矩平衡条件∑MB=0,得
A
B
k=EI/l 3 l
A
θ =1
B
Δ =θ l
FyB=k
SAB
A
B
FyB EI/l
解:当A 端转动θ=1时,因AB杆是刚性转动,所以B 产
生向下的竖向位移Δ=l×θ=l ,弹簧反力FyB=kΔ=EI/l2 。则
第7章 力矩分配法
![第7章 力矩分配法](https://img.taocdn.com/s3/m/b8472b8abceb19e8b8f6ba98.png)
M BA 1 C BA M AB 2
传递系数
远端固定
C AC
M CA 1 M AC M DA 0 M AD
远端滑动
C AD
远端铰支
远端弯矩等于近端弯矩乘以传递系数。
§7-1 力矩分配法的基本概念
2பைடு நூலகம்
基本运算(单结点的力矩分配)
计算FP作用下的杆端弯矩。
(1)在结点B加一个阻止转动的约束,阻止B点的转动。
C M CB
28.6 d CM BC 0 ( 42.9) 0
传递弯矩
与远端支承 情况有关
固定状态: F M AB ql 2 / 12 100kN .m
F M BA 100kN .m F F M BC M CB 0
举例分析2:
q 12kN / m
A
A
M AB S AB M S
A
S AB
M S AC S AD
M AD S AD M S
A
M AC
S AC M S
A
§7-1 力矩分配法的基本概念
M AB S AB M S
A
M AC
S AC M S
A
M AD
S AD M S
A
A端弯矩与各杆A端的转动刚度成正比。 统一用下列公式
M Aj Aj M
Aj
S
A
S Aj
——分配系数
力偶M,按各杆的分配系数分配于各杆的A端。 很明显
Aj
1
§7-1 力矩分配法的基本概念
(3)传递系数 由位移法中的刚度方程得
M AB 4i AB A M BA 2i AB A M AC i AC A M CA iCA A M AD 3i AD A M DA 0
结构力学 力矩分配法
![结构力学 力矩分配法](https://img.taocdn.com/s3/m/99f17f81ec3a87c24128c405.png)
最后杆端弯矩的计算,是将同一杆 端(表中同一杆端下的列)下的固 端弯矩、分配弯矩及传递弯矩相叠 加得出。
例10-2-2 用力矩分配法计算图示刚架, 并作弯矩图。
q= 20kN /m B C E
A 6m (a)
D 6m
解:1)计算分配系数:设EI/6=1
结点B单元:SBA=4 SBC=8 BA 1 3 BC 2 3
M A3
3 63 21kN m 9
C M 3A 0
3)叠加计算各杆最后弯矩
F M A1 M A1 M A1 28 6 34 kN m
F M A2 M A2 M A2 14 0 14 kN m
M A3 21 9 12 kN m
F M A M Ai i 1 n
(10-1-4)
例10-1-1
q=2kN/m,FP1=10kN,FP2=8kN
试用力矩分配法计算,并作刚架弯矩图。
FP 1 =10kN
FP 2 =8kN 1 A
(a)
6m
6m
FP1 = 10kN
F P2= 8kN 1 A
60kN m 1 14kN m A
例10-2-1
用力矩分配法计算图(a)所示连续梁, 并作弯矩图。
E I
2 2 m m
6 m
4 m
解:1)计算分配系数:令EI=1 B结点分配 单元:
S BA EI 4 1 4
S BC
EI 2 4 6 3
S
Bi
5 3
BA
3 5
BC
2 5
C结点分配单元:
S CB 2 3 8 17
EI 3 S CD 3 4 4 9 CD 17
第八章力矩分配法-精品文档
![第八章力矩分配法-精品文档](https://img.taocdn.com/s3/m/fe973536ff00bed5b9f31d7d.png)
φK
B
原状态
F A MAK MKA K MKB MBK
MAK
F
固定状态
F FRKF
F F F
放松状态(转动状态)
mK = - FRKF
B
C D D C
K
C
KA 图 示 结 构、、= M M M ? K A K B K C
M KC
φK
l
K结点
M + M + M = m K A K B K C K
EI= C B
r 4 i 3 i i K K K A K B K C
M KB
S S S K A K B K C
l
l
S
KI
如何分配?
KA KK
K
C K
φK
( 3 ) 作 MK及 M 图 F
ห้องสมุดไป่ตู้
2iKA
3
iKB
iKC
(4)求刚度系数和自由项
B
B M
K
基本系
r 4 i 3 i i K K K A K B K C
rK K
4
S S S K A K B K C
iKC
F
RKF
m
F
R K F
K
iKA
K
A K
C
S KI
m
M AK =
2iKA
mK
M
=0
mK
C
IK
B M
F
RKF
传递系数:传递弯矩与分配弯矩之比,记为:C 只与远端约束有关 一般式: M =C M C
C D IK KI KI
K I
K I
第九章 力矩分配法
![第九章 力矩分配法](https://img.taocdn.com/s3/m/58bb841159eef8c75fbfb3e3.png)
BC ( M B ) M BC
例1. 用力矩分配法作图示连续梁 (1)B点加约束 的弯矩图。 167.2 M图(kN· m) 200 6 115.7 F 200kN 150 kN m MAB = 20kN/m 8 90 300 F= 150 kN m M BA EI EI C B A 2 20 6 90kN m MBCF= 3m 6m 3m 8 MB= MBAF+ MBCF= 60 kN m 200kN 60 20kN/m (2)放松结点B,即加-60进行分配 C 设i =EI/l B A 计算转动刚度: -150 150 -90 SBA=4i SBC=3i + -60 4i 0.571 0.429 BA 0.571 分配系数: 4i 3i C A -17.2 -34.3 B -25.7 0 0.571 A -150
Hale Waihona Puke 第9章 力矩分配法【例9-6】设图示连续梁支座A顺时针转动了0.01rad,支座B、C分别下沉了
ΔB =3cm和ΔC =1.8cm,试作出M图,并求D端的角位移θD。已知 EI=2×104kN· m2。
A =0.01rad
B A EI
B
C EI =3cm 4m EI
C =1.8cm
D
4m 3.47 A
分 配 与 传 递
-5.72
+2.86 +2.86 -0.41 +0.21 +0.20 -81.93 +81.93
-11.43 -8.57
4i 0.625 4i 3 0.8i DE BA 0.375
2、计算固端弯矩
F M DE 2kN m F M DC 5.62kN m F M CD 9.38kN m
结构力学(第四章)-力矩分配法
![结构力学(第四章)-力矩分配法](https://img.taocdn.com/s3/m/d23a836fb84ae45c3b358c28.png)
C M CB = 0
0 0
配 传 递
最终杆端弯矩: 最终杆端弯矩 M AB = 100 28.6 = 128.6 q = 12kN / m 42.9 M BA = 100 57.1 = 42.9 M BC = 0 42.9 = 42.9 128 .6 M CB = 0
C d M AB = CM BA = 0.5 × ( 57.1) = 28.6 C d M CB = CM BC = 0 × ( 42.9) = 0
传递弯矩
与远端支承 情况有关
固定状态: 固定状态 F M AB = ql 2 / 12 = 100kN .m F M BA = 100kN .m F F M BC = M CB = 0 放松状态: 放松状态 d u M BA = BA ( M B ) = 57.1 d u M BC = BC ( M B ) = 42.9
1
ql / 8
2
12
2
100 0 -57.1 -42.9 -6.1 3.5 2.6
0 0 0
28.6
100
-28.6 -57.1 -42.9
21.4 6.1 -9.2 -12.2 -6.1 1.8 6.1 1.8 3.5 2.6
分 配 传 递
0
M 0
A
0
q = 12 kN / m
40.3
2
B
… … ...
A
M
d BA
B
u MB
B
u MB
C
u d d M B + M BA + M BC = 0 1 u ( M B ) B = S BA + S BC
B
结构力学 力矩分配法
![结构力学 力矩分配法](https://img.taocdn.com/s3/m/5847f7ff83d049649b6658d5.png)
同时:各杆远端产生传递弯矩:
M A B
1 2
M
B A
MCB 0
(三)(b)图+(c)图=(a)图,即:
M BA
M
g BA
M B A
M AB
M
g AB
M A B
M BC M B C
MCB 0
归纳:
②①② ①放固放 固松 定松定节 节节节点 点点点, ,,,分 各分各配 杆配杆弯 端弯端矩 有矩有, 固,固传 端传端弯递弯递弯 矩弯矩矩 ,矩,。 有。有节节点点不不平平衡衡力力矩矩。。
第8章 力矩分配法
8.1 力矩分配法的基本概念
属于位移法类型的渐近解法。 一、力矩分配法依据
1. 理论基础:位移法 2. 解题方法:渐进法 3. 适用范围:连续梁、无结点线位移的刚架 4. 计算对象:杆端弯矩,正负号规定与位移法相同 二、力矩分配法的三个基本概念
(一)转动刚度 转动刚度表示杆端对转动的抵抗能力。数值上
M
M AB
S AB S
M
D
A θA
B
A
M AC
S AC S
M
分配弯矩
A
C
θA
M
S
A
M AD
S AD S
M
A
令
μAj
S Aj S
(
j
B,C, D)
A
(a)
M AB SAB θA 4 iAB θA
M AC S AC θA iAC θA
M AD S AD θA 3iAD θA
例: 试绘制连续梁的弯矩图。
结构力学力矩分配法
![结构力学力矩分配法](https://img.taocdn.com/s3/m/a765850387c24028905fc31f.png)
⑶为了取消结点C的刚臂,放松结点C,在结点C加上 (-(MC+ M传)),如图d,为了使BCD部分只有一个角位 移,结点B再锁住,按基本运算进行力矩分配和传递。结 点C处于暂时的平衡。
⑷传递弯矩的到来,又打破了B点的平衡,B点又有了新 的约束力矩M传,重复⑵、⑶两步,经多次循环后各结点 的约束力矩都趋于零,恢复到了原结构的受力状态和变形
MB=150-90=60
2)去掉约束,相当于
m -150 A-15
M-1-50175
200kN150M-B 90 20kN/m
MB
-3B0 151020
-30↓↓↓↓↓↓↓↓↓↓↓ --12900
C
在结点加上负的不平衡
力矩,并将它分给各个 175
杆端及传递到远端。
mBA 300
mBC 120 -MB=-6090
单结点结构在集中结点力偶作用下的力矩分配法
MiA=4iθ=SiAθ
S iA
M
S
B
M
A
i
注2):M分i1B配)=力3μiθ矩=称S是为iB杆θ力端矩转分S动i配BS时M系产数生。的且近∑端μ弯=1矩。
3)结M点iC=集iθ中=S力iCθ偶荷载S顺iCS时M针为正。
C
∑M= MiA+MiB+MiC-M=0
5.8 5097.1 -62.342-.3109.3
1,3
16 15.2 1537.6 20.9
2
-5.2 -10.3-18.2
0.762 0.238 33.3 -288
129141.1.7 60.6 -51.4
41.7 13
-9.1 288
1解,3 :
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
M
f ki
3iik
因为,汇交于同一刚结点的各杆转角都相等, 所以,都应满足上式.
9-4计算结果的校核
例题
80kN
i=2 3m 3m
30kN/m
i=1 10m
160kN
i=1 3m 5m
分配系数 固端弯矩
分配 与 传递
杆端弯矩
M图(kNm)
0.6 0.4 90 -250
0.5 0.5 250 -187.5 112.5
9-2 单结点的力矩分配——基本运算
练习
i
i
k
i
Sik=4iik
k
i
Sik=4iik
k Sik=3iik
k
Sik=0
i
k
Sik=4iik
i
k
EI=∞ K
Sik=Kl2
l
i
k Sik=4iik
9-2 单结点的力矩分配——基本运算
q
i l
Mik=-ql2/12 Mki=ql2/12
k
9-2 单结点的力矩分配——基本运算
M21 2i121 M31 i131 M41 0
9-1力矩分配法的基本概念
根据平衡条件
M 0
1
M12 M13 M14 M
M 1 4i12 i13 3i14
M12
4i12
4i12 i13 3i14
M
M13
4i12
i13 i13
3i14
M
M14
4i12
3i12 i13 3i14
96 64 → 32
-23.6 ← -47.3 -47.3 → -23.6 14.2 9.4 → 4.7
-1.2 ← 0.7 0.5 →
-2.3 -2.3 → -1.2 0.3
-0.1 -0.2
200.9 -200.9
237.3 -237.3 87.7
200.9
237.3
87.7
9-4计算结果的校核
M
1 M21 2 M12 M31 M13 M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
i
M ik
1 2
M
ki
M
f ik
1 2
M
f ki
3iik
对于B点
AB B
200.9 0 90 0
3 2
110.9 6
200.9 1 237.3 250 1 250
BC B
2
31
2
55.45 110.9
3
6
同理,可对C点进行校核
9-4计算结果的校核
结束
9-4计算结果的校核
4m
练习
100kNm i
i i
i
50kNm
12kN/m
4m
练习
4m
i
i
2Δ
l
l
4m Δ
9-3 多结点的力矩分配——渐进运算
100
45.7
40.3
100
22.9
54.3
9-3 多结点的力矩分配——渐进运算
100kN
12.5kN
5m 100kN
B
C
EI=常数
5m
A
D
5m 5m
10m
100kN
5m 100kN
第9章 渐进法及超静定力的影响线 9-1 力矩分配法的基本概念 9-2 单结点的力矩分配法 9-3 多结点的力矩分配法 9-4 计算结果的校核
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
Sik Sik
i
ik 1
i
3 传递系数:近端发生转角时,远端弯矩与近端弯矩的比值.
Cik
M ki M ik
1
2
0
远端为固定端 远端为铰支端
1 远端为平行支链杆
9-2 单结点的力矩分配——基本运算
例题
M
ii
ii
4/7 3/7
固端弯矩
-M
分配、传递 2M/7
← 4M/7 3M/7
→
0
杆端弯矩 2M/7
5m
B
C
EI=常数
A
D
125kNm
ABCD部分: 弯矩图一样 剪力图一样 轴力图不一样
5m 5m
9-4计算结果的校核
平衡条件:每次分配时,自然满足
变形协调条件:
M ik
4iiki
2iikk
M
f ik
M ki
2iik i
4iikk
M
f ki
消去远端转角 k
i
M ik
1 2
M
ki
M
f ik
56.4
70.2
51.6
4.8
2.4
M图(kNm)
9-2 单结点的力矩分配——基本运算
例题
0.8 0.2
Bi C
qi
l
A l
ql2/12 -4ql2/60
-ql2/60
ql2/60 -ql2/60
C
ql2/60 ql2/60
ql2/60
M图
7ql2/60
-ql2/12
-2ql2/60
-7ql2/60 A
4M/7 3M/7
0
M图
2M/7
4M/7 3M/7
9-2 单结点的力矩分配——基本运算
q
例题
il
i
l
4/7 3/7
固端弯矩 分配、传递 2ql2/56 杆端弯矩 2ql2/56
← 4ql2/56 ← 4ql2/56
-ql2/8 3ql2/56 -4ql2/56
4ql2/56
M图 4ql2/56
→0 →0
36 -18
分配、传递 -3.6
← -7.2 -10.8 →
0Байду номын сангаас
最后M -39.6
28.8 -28.8
0
39.6
28.8
M图
(kNm)
9-2 单结点的力矩分配——基本运算
例题
i
l
固端弯矩 分配、传递 FPl/2
杆端弯矩 FPl/2
M图 FPl/2
2i l
10
-FPl FPl 0 FPl -FPl
FPl
23
24 2 4 1.5 4
0.4
1 M AB 8 3016 60kNm
100 2 32
M DA
52
72kN m
AB AC AD
B
0.3 0.4 0.3
D
A
60
-48
72
-3.6 -4.8 -3.6
→
-1.8
56.4 -4.8 51.6
→
70.2
C↓ -2.4
9-2 单结点的力矩分配——基本运算
FP 0
9-2 单结点的力矩分配——基本运算
例题
4m
30kN/m B i=2
4m
100kN
D
A
i=1.5
i=2
C
3m
2m
9-2 单结点的力矩分配——基本运算
AB
2
3
23 2 4 1.5 4
0.3
AD
2
1.5 4 3 2 4 1.5 4
0.3
100 22 M AD 52 48kNm
AC