圆周角和圆心角的关系公开课教案

合集下载

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案:圆周角和圆心角的关系教学目标:1.理解圆周角和圆心角的定义;2.掌握圆周角和圆心角的关系;3.运用所学知识解决实际问题。

教学准备:1.教材:《数学必修二》;2.教具:投影仪、计算器。

教学过程:Step 1:导入新知1.讲解圆周角和圆心角的概念。

圆周角:圆上的两条弧所对的角叫做圆周角。

圆心角:由圆心射出的两条弧所对的角叫做圆心角。

2.提问学生:“在圆上,两条弧所对的角是否相等?”3.引导学生发现,根据圆周角的定义,圆周角的度数等于弧所对的圆心角的一半。

Step 2:讲解圆周角和圆心角的关系1.通过投影仪展示有关圆周角和圆心角的图形,并示范解题方法。

2.教师讲解定理:“在同一个圆或等圆中,所对圆心角相等的圆周角也相等;所对圆周角相等的圆心角也相等。

”Step 3:练习1.完成教材《数学必修二》的相关习题。

2.制定小组练习题,提高学生之间的合作学习能力。

Step 4:运用1.学生进行一些实际问题的解答,如“一个园丁想在花园中心种一圈花,他决定每两株花之间的夹角是圆心角45°,他一共要种多少株花?”引导学生运用圆周角和圆心角的关系解题。

2.学生自主完成其他实际问题的解答。

Step 5:总结1.归纳总结圆周角和圆心角的关系,明确圆周角等于所对圆心角的一半。

2.提问巩固所学内容。

教学扩展:1.学生之间进行小组竞赛,比赛谁能最快解出题目中的圆周角和圆心角的关系。

2.学生利用计算器综合运用所学知识解决实际问题。

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案

圆周角和圆心角的关系教案教案目标:1. 理解和描述圆周角和圆心角的概念;2. 掌握圆周角和圆心角之间的关系;3. 能够解决与圆周角和圆心角相关的问题。

教学步骤:I. 引入(约5分钟)- 利用生活中的例子引起学生对圆周角和圆心角的注意,例如车轮、钟表等。

- 引导学生思考圆周角和圆心角的定义和特点。

II. 讲解圆周角和圆心角的概念(约10分钟)- 通过示意图解释圆周角和圆心角的定义,并介绍角度的度量单位。

- 强调圆周角是指相邻两条弧所对应的角,圆心角是指以圆心为顶点的角。

III. 圆周角和圆心角的关系(约15分钟)- 阐述圆周角和圆心角之间的关系,即圆周角的度数是圆心角的二倍。

- 使用具体案例和图形进行说明,让学生理解这一关系。

IV. 解决问题(约15分钟)- 给学生一些练习题,让他们应用所学的知识解决问题。

- 引导学生逐步解决问题,并给予必要的提示和指导。

- 鼓励学生主动思考和讨论,提高解决问题的能力。

V. 总结(约5分钟)- 和学生一起总结本节课所学的内容,检查是否达到了教学目标。

- 强调圆周角和圆心角之间的关系对圆的几何性质的重要性。

VI. 拓展活动(约10分钟)- 给学生一些拓展问题,让他们运用所学的知识进行探究和进一步思考。

- 鼓励学生在小组内互相讨论和合作,提出自己的观点和解决方法。

VII. 课堂作业(约5分钟)- 布置一些课后作业,包括练习题和思考题,巩固和拓展所学的内容。

- 强调作业的重要性,并鼓励学生按时完成和提交。

备注:以上教案的时间安排仅供参考,请根据实际情况做适当调整。

(教案完)。

圆周角和圆心角的关系优秀教案

圆周角和圆心角的关系优秀教案

圆周角和圆心角的关系【课时安排】2课时【第一课时】【教课目的】一、教课知识点。

(一)认识圆周角的观点。

(二)理解圆周角定理的证明。

二、能力训练要求。

经历研究圆周角和圆心角的关系的过程,学会以特别状况为基础,经过转变来解决一般性问题的方法,浸透分类的数学思想。

三、感情与价值观要求。

经过察看、猜想、考证推理,培育学生研究数学识题的能力和方法。

【教课要点】圆周角观点及圆周角定理。

【教课难点】认识圆周角定理需分三种状况证明的必需性。

【教课方法】指导研究法。

【教课过程】一、创建问题情境,引入新课。

[师 ]前面我们学习了与圆相关的哪一种角?它有什么特色?请同学们画一个圆心角。

[生 ]学习了圆心角,它的极点在圆心。

[师 ]圆心是圆中一个特别的点,当角的极点在圆心时,就有圆心角。

这样角与圆两种不一样的图形产生了联系,在圆中还有比较特别的点吗?假如有,把这样的点作为角的极点,会是怎样的图形?二、讲解新课。

(一)圆周角的观点。

[师 ]同学们请察看下边的图(1)。

这是一个射门游戏,球员射中球门的难易与他所处的地点 B 对球门 AC 的张角(∠ ABC)相关。

[师 ]图中的∠ ABC,极点在什么地点?角的两边有什么特色?[生 ]∠ ABC 的极点 B 在圆上,它的两边分别和圆有另一个交点。

(经过学生察看,类比得到定义。

)圆周角( angle in a circular segment)定义:极点在圆上,而且角的两边和圆订交的角。

[师 ]请同学们考虑两个问题:1.极点在圆上的角是圆周角吗?2.圆和角的两边都订交的角是圆周角吗?请同学们绘图回答上述问题。

[师 ]经过绘图,相互沟通,议论认清圆周角观点的实质特色,进而总结出圆周角的两个特征:(1)角的极点在圆上;(2)两边在圆内的部分是圆的两条弦。

(二)增补练习 1判断以下图示中,各图形中的角能否是圆周角,并说明原因。

答:由圆周角的两个特色知,只有 C 是圆周角,而 A、B、 D、E 都不是。

北师大版(2012)数学九年级下册3.4圆周角与圆心角的关系(第一课时)优秀教学案例

北师大版(2012)数学九年级下册3.4圆周角与圆心角的关系(第一课时)优秀教学案例
(四)总结归纳
1.学生汇报:每个小组将会向全班汇报他们的探究过程和结果,其他小组可以进行评价和提问,促进学生之间的交流和合作。
2.合作解决问题:学生在小组内合作解决提出的问题,通过分享思考、讨论方法、共同操作等方式,共同得出结论。
3.小组汇报:每个小组将会向全班汇报他们的探究过程和结果,其他小组可以进行评价和提问,促进学生之间的交流和合作。
(四)反思与评价
1.学生自我反思:学生在课后进行自我反思,总结自己在课堂上的学习情况和表现,找出自己的优点和不足,制定改进的计划。
在教学过程中,我注重与学生的互动,充分尊重学生的个性差异,鼓励学生发表自己的见解,培养学生的创新精神和团队合作意识。同时,我注重对学生的评价,以鼓励为主,使学生在学习过程中保持积极的态度,提高学习效果。
二、教学目标
(一)知识与技能
1.学生能够理解圆周角与圆心角的概念,掌握圆周角与圆心角的关系,并能够运用这一关系解决一些实际问题。
2.学生能够通过观察、思考、讨论等方法,自主发现圆周角与圆心角的关系,培养观察能力和思考能力。
3.学生能够利用多媒体课件进行学习,提高学习兴趣和效果。
4.学生能够完成具有挑战性的练习题,提高解决问题的能力。
(二)过程与方法
1.学生通过观察、思考、讨论等方法,自主发现圆周角与圆心角的关系,培养观察能力和思考能力。
北师大版(2012)数学九年级下册3.4圆周角与圆心角的关系(第一课时)优秀教学案例
一、案例背景
本节内容为北师大版(2012)数学九年级下册3.4圆周角与圆心角的关系(第一课时),是学生在学习了圆的相关概念、圆的性质等知识的基础上进行的一次更深入的探究。通过本节课的学习,使学生掌握圆周角与圆心角的关系,理解并能够运用这一关系解决一些实际问题。

圆心角与圆周角的关系教案

圆心角与圆周角的关系教案

圆周角与圆心角的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数就是圆心角的度数。

解题思路:1.已知圆周角,可以利用圆周角求出圆心角2.已知圆心角,可以利用圆心角求出圆周角3.已知直径和弧度,可以求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,并且两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个基本特征:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个基本特征:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】理解圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去寻找圆心O与∠BAC的关系本题有三种情况:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●如果圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●如果圆心O在∠BAC的内部或外部,那么只要作出直径AD,将这个角转化为上述情况的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,如果两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

冀教版数学九年级上册《圆心角和圆周角的关系》教学设计1

冀教版数学九年级上册《圆心角和圆周角的关系》教学设计1

冀教版数学九年级上册《圆心角和圆周角的关系》教学设计1一. 教材分析冀教版数学九年级上册《圆心角和圆周角的关系》是本册教材中的一个重要内容,主要让学生通过探究圆心角和圆周角的关系,加深对圆周角定理的理解和应用。

本节课通过实例引入圆心角和圆周角的概念,引导学生通过观察、猜想、证明等过程,发现圆心角和圆周角之间的关系,从而掌握圆周角定理。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,对图形的旋转也有一定的理解。

但学生对圆心角和圆周角的概念可能还比较模糊,对圆心角和圆周角之间的关系需要通过实例和探究活动来加深理解。

三. 教学目标1.理解圆心角和圆周角的概念,掌握圆周角定理。

2.培养学生观察、猜想、证明的能力,提高学生的逻辑思维能力。

3.培养学生合作学习的精神,提高学生的沟通表达能力。

四. 教学重难点1.圆心角和圆周角的概念。

2.圆周角定理的发现和证明。

五. 教学方法1.实例引入:通过生活中的实例引入圆心角和圆周角的概念,激发学生的学习兴趣。

2.观察猜想:让学生观察实例,引导学生猜想圆心角和圆周角之间的关系。

3.小组合作:分组进行探究活动,让学生通过合作交流发现圆周角定理。

4.证明讲解:引导学生用数学语言和逻辑推理证明圆周角定理。

5.巩固拓展:设计练习题,让学生运用圆周角定理解决问题。

六. 教学准备1.准备相关的生活实例和图片,用于导入和呈现。

2.准备探究活动所需的学习单和材料。

3.设计巩固拓展的练习题。

七. 教学过程1.导入(5分钟)通过展示生活中的实例,如圆形的钟表、车轮等,引导学生观察并思考这些实例中的圆心角和圆周角。

让学生发表自己的看法,教师总结并引入圆心角和圆周角的概念。

2.呈现(10分钟)呈现相关图片和实例,让学生观察并猜想圆心角和圆周角之间的关系。

教师引导学生进行思考和讨论,总结出圆周角定理。

3.操练(10分钟)学生分组进行探究活动,根据圆周角定理,尝试解决实际问题。

教师巡回指导,解答学生的疑问。

圆周角和圆心角的关系-北师大版九年级数学下册教案

圆周角和圆心角的关系-北师大版九年级数学下册教案

圆周角和圆心角的关系 - 北师大版九年级数学下册教案一、知识目标1.记住圆周角和圆心角的定义,知道它们的度数关系。

2.熟悉相关概念和公式,能够灵活运用。

3.理解圆周角和圆心角的概念对于解题的重要性。

二、教学重点1.记住圆周角和圆心角的定义,明确它们的度数关系。

2.了解使用相关概念和公式解题的方法。

3.掌握圆周角和圆心角的应用技巧。

三、教学难点1.掌握圆周角和圆心角的应用技巧。

2.在实际应用中能够识别圆周角和圆心角。

四、教学过程1. 导入环节老师可以出示两个圆形图片,一个是圆周角的例子,一个是圆心角的例子,让学生自主分析其定义和特点,提出不同于直角角度的新角度,并引出本节课的主旨:圆周角和圆心角的关系。

2. 讲解圆周角和圆心角的概念1.圆周角:以圆心为端点,它所对的弧所对应的角度称为圆周角。

常用的表示方法为:θ=弧长/圆周长×360°。

2.圆心角:以圆的圆心为端点,它所对的弧所对应的角度称为圆心角。

常用的表示方法为:θ=弧长/半径。

3. 圆周角和圆心角的度数关系1.当圆弧等于圆周时,圆周角为360°,圆心角为2π。

2.当其他弧对应的圆周角大小为x°时,圆心角的大小为2x°。

3.当弧对应的圆周角大小为x°,半径为r时,弧长为x/360×2πr。

4. 综合练习1.练习1:在相同半径的圆中,一圆周角为120度,求另一圆弧所对的圆心角的大小。

2.练习2:半径为3cm的圆上的一弧所对的圆周角的大小为60度,求这个弧的长度。

3.练习3:在相同圆周上,圆心角比圆周角小20度,求这个圆弧对应的圆心角和圆周角的大小。

五、教学体会本节课主要介绍了圆周角和圆心角的概念和度数关系,通过逐一分析演示,使学生更加深刻地了解到各种情形下圆周角和圆心角的度数大小,并通过解题练习加深了对相关知识的掌握。

在教学的过程中,应适时提醒学生注重归纳总结,加强题目训练,以提高学生对知识点的理解和认识。

北师大版九年级数学34圆周角和圆心角的关系教案

北师大版九年级数学34圆周角和圆心角的关系教案

【教学目标】1.理解圆周角和圆心角的概念;2.掌握计算圆周角和圆心角的方法;3.运用圆周角和圆心角的关系解决实际问题;4.培养学生的逻辑思维和问题解决能力。

【教学重点】1.理解圆周角和圆心角的概念;2.掌握计算圆周角和圆心角的方法;3.运用圆周角和圆心角的关系解决实际问题。

【教学难点】1.运用圆周角和圆心角的关系解决实际问题;2.培养学生的逻辑思维和问题解决能力。

【教学准备】1.教师:教学课件、圆规、直尺;2.学生:教材、笔记本。

【教学过程】【导入】1.教师出示一张有关圆的图片,请学生观察并描述图片中有关圆角的特点。

引导学生注意到圆周角和圆心角的概念。

2.教师引导学生总结并复习圆的相关概念:直径、半径、弦、弧。

3.教师提问:“圆周上的弧是什么?圆心角是什么?”引导学生回答,引入圆周角和圆心角的概念。

【讲解】1.教师分别介绍圆周角和圆心角的概念,并在黑板上画出对应的示意图。

2.教师通过示意图简单讲解圆周角和圆心角的计算方法。

【练习】1.教师出示一道练习题,请学生用所学知识计算圆周角和圆心角,并请学生说出自己的解题思路。

2.随机抽几名学生回答问题,并让学生互相评价答案的正确与否。

【拓展】1.教师出示一些有关圆的实际问题,请学生在小组内讨论,并用圆周角和圆心角的知识解决问题。

2.随机抽几个小组汇报解题过程和答案,其他组学生进行评价和讨论。

【总结】1.教师引导学生总结圆周角和圆心角的计算方法。

2.教师提问:“在什么情况下圆周角等于圆心角?”,并解释为什么圆周角和圆心角有这样的关系。

3.教师总结本节课的重点和难点,强调学生应该培养逻辑思维和问题解决能力。

【课堂小结】本节课我们学习了圆周角和圆心角的概念,并掌握了计算圆周角和圆心角的方法。

希望同学们能够用所学知识解决实际问题,并培养良好的逻辑思维和问题解决能力。

【作业布置】1.完成课堂练习册上的相关练习题;2.收集一些有关圆的实际问题和解决方法,并写到作业本上;3.预习下节课的内容,准备好提问。

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1

北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。

通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。

教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。

二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。

但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。

此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。

三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。

3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。

四. 教学重难点1.教学重点:圆周角定理的掌握和运用。

2.教学难点:圆周角定理的证明和理解。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。

3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。

2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。

3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。

2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。

通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。

九年级数学上册《圆心角和圆周角的关系》教案、教学设计

九年级数学上册《圆心角和圆周角的关系》教案、教学设计
3.数学证明:在学生自主探究的基础上,给出严谨的数学证明,让学生理解圆心角和圆周角关系的数学原理。
4.应用举例:通过具体例题,展示圆心角和圆周角关系在实际问题中的应用,使学生认识到数学知识在实际生活中的价值。
(三)学生小组讨论
1.分组:将学生分成若干小组,确保每个小组内成员的数学水平相对均衡。
2.讨论主题:以圆心角和圆周角的关系为主题,让学生在小组内分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们在之前的课程中学习了角度、三角形等基本概念,为本章节的学习奠定了基础。但在圆的相关知识方面,学生们的认识可能还不够深入,对圆心角和圆周角的关系理解可能存在困难。因此,在教学过程中,要注意以下几点:
1.充分发挥学生已有的知识经验,引导他们主动发现圆心角和圆周角的关系。
五、作业布置
为了巩固学生对圆心角和圆周角知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础巩固题:根据课堂所学,完成课本相关练习题,加深对圆心角和圆周角概念的理解。
(1)画出一个圆,并在圆内画出两个圆心角相等、圆周角相等的两组角,比较它们之间的关系。
(2)画出一个圆,并在圆内画出两个圆心角相等、圆周角不相等的两组角,分析原因。
2.提高拓展题:结合圆心角和圆周角的关系,解决以下实际问题。
(1)一块圆形的披萨,被切成八等份,每份的圆心角是多少度?如果切成十二等份呢?
(2)一个圆形的花坛,要将其分割成若干个扇形区域,每个区域圆心角相等,且总面积为花坛面积的一半。请问需要分割成几个区域?
3.创新研究题:以小组为单位,选择以下课题进行研究,并将研究结果以报告形式提交。
c.组织小组讨论,让学生分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。

数学初三下北师大版3.3圆周角和圆心角的关系(第一课时)教案

数学初三下北师大版3.3圆周角和圆心角的关系(第一课时)教案

教学过程:一、设计情景,引入新课师:在上周我们班和九二班旳足球友谊赛中,咱们班以二比三险胜,现在说起来还有些小兴奋呢,大家和记不记得这三个球都是谁进旳? 生:是王程、李明亮、李柄桦.师:感谢他们给我们班带来旳胜利,现在有这样旳一个游戏是他们三个人参与旳. 课件出示:如果他们三人进展一射门游戏,过球门A 、C 画了一个圆,在球门B 、D 、E 旳位置射任意球〔直线射〕,仅从教学旳角度考虑,请问站在那个位置射球最有利?生:D .课时第三章第三节第1课时 课 题课 型新授课时 间 2021年2月28日 周四节 次第四节授 课 人教学 目标 旳概念,掌握圆周角旳两个特征、定理旳内容及简单应用. 旳关系.旳证明,进一步体会思考问题旳全面性和合理性. 旳运用,渗透转化旳数学思想.5.学会以特殊情况为根底,通过转化来解决一般问题旳方法,体会分类旳数学思想. 重点 圆周角旳概念和圆周角定理难点 圆周角定理旳证明中由“一般到特殊〞旳数学思想方法和完全归纳法旳数学思想 教法 学法 类比教学法、启发式教学法、合作探究法、直观教学法 课前准备 多媒体课件、几何画板、圆规、三角尺师:为什么呢?生:因为角度大.师:你说旳角度是这旳什么呢?可不可以到黑板上给同学们指一下.生:〔边指边说〕连接AD、CD形成旳∠ADC.师:同学们都是这样认为旳吗?生表达意见.师:我看有好多同学都是想选D,那我们带着这个问题来学习今天旳内容:圆周角和圆心角旳关系〔板书课题〕,学完以后我们再来看终究应该怎样选择.设计意图:由生活实践来创设情境,让学生感受数学与生活旳联系.将实际问题数学化,让学生从一些简单旳实例中,不断体会从现实世界中寻求数学模型、建立数学关系旳方法.引导学生对图形旳观察、发现激发学生旳好奇心和求知欲,并在运用数学知识解答问题旳活动中获取成功旳体验,建立学生旳自信心.二、师生互动,探究新知〔一〕圆周角旳定义师:大家还记得什么叫做圆心角吗?生:顶点在圆心上旳角叫做圆心角.师:这个图中旳∠AOB就是一个圆心角,那我把它旳圆心拖到圆周上C点旳位置,看一下这个角有什么特点?生:这个角旳顶点在圆周上,并且角旳两边都和圆相交.师:他观察出了这个角旳特征,那同学们能不能仿照圆心角旳名字给它起一个名字?生:圆周角.师:是根据什么而定旳?或者说什么叫做圆周角呢?生:顶点在圆心上,且角旳两边分别与圆还有另一个交点旳角,叫做圆周角.师:对,这就是我们要来掌握旳另一种角.板书:圆周角.设计意图:采用类比教学法,通过圆心角定义让学生得出圆周角定义,培养学生旳观察能力、归纳能力.师:我们来看一组图片,这里五个角哪些是圆周角?为什么?A B C D E生1:A不是,因为它旳顶点不在圆周上.生2:B不是,因为它旳顶点不在圆周上.生3:C是.生4:D不是,角旳两边分别与圆没有另一个交点.生5:E不是,角旳一条边和圆没有另一个交点.师:那我们判断一个角是不是圆周角时要把握什么?生:先看这个角旳圆心在不在圆周上,再看角旳两边与圆还有没有另一个交点.师:说旳很好,我们再来看这道题目:课件出示:2.判断以下命题是否正确.〔1〕圆周角旳顶点一定在圆上.〔〕〔2〕顶点在圆上旳角叫做圆周角.〔〕〔3〕圆周角旳两边都和圆相交.〔〕〔4〕两边都和圆相交旳角是圆周角.〔〕学生判断并说明理由.生1:〔1〕正确.生2:〔2〕错误.还要看角旳两边是否和圆还有另外一个交点.生3:〔3〕正确.生4:〔4〕错误.还有看这个角旳顶点是否在圆上.师:这道题目比拟简单,下面我们来看谁能在最短旳时间内找出图中所有旳圆周角.课件出示:以下两个圆中,各有几个圆周角?生1:∠CAD,∠BAD,∠BAC师:你是怎样找旳?生:我先在圆上找顶点,在确定角.师:第二幅图呢?生:∠CAB,∠ABD,∠ABC,∠DBC,∠BCA,∠BCD,∠ACD和∠CDB共8个圆周角.设计意图:通过练习加深对圆周角定义旳理解.师:非常好,不重与不漏.我们在学习了圆周角旳定义以后再来看看刚刚旳问题.〔课件出示图3-13〕球员射中球门旳难易程度与他所处旳位置B对球门AC旳张角〔∠ABC〕有关.当球员在B、D、E处射门时,他所处旳位置队球门AC分别形成三个张角∠ABC,∠ADC,∠AEC,我们首先把这个问题转化成数学模型.这三个角有什么特征?生:这三个角都是圆周角.师:还有呢?生:它们都对着AC.师:那这三个角谁大谁小?生大胆猜测:一样大.师:为什么?生有些茫然.师:我们上节课学习了圆心角旳有关知识,那么我们旳这个问题是不是能转化成圆周角和圆心角旳关系,然后再来说明这三个角旳大小呢?这是我们这节课要研究旳主要内容.〔二〕探究活动一.师:下面请各个组进展探究活动一,拿出探究活动纸:学生开场探究活动,教师进展巡视指导.师:现在我们请每一个小组派一位组员上来,我们汇总一下结果.各个小组利用实物投影仪进展汇报,教师引导学生进展汇总,最后分为三类:教师利用几何画板固定∠AOC旳位置,拖动点B使其落在不同旳位置上,是同学们再次形象旳并且连续性旳认识上面旳问题.师:如图①O点在∠ABC旳一条边上;拖动O点如图②,O点在∠ABC旳内部;继续拖动如图③,O点在∠ABC旳外部.所以我们把圆周角和圆心角旳位置关系分为三种,我们在分类时一定要做到不重不漏.下面我们进展探究二.①A②③设计意图:引导学生发现问题、提出问题、分析问题、并能解决问题.展示旳设计:教师利用几何画板从动态旳角度进展演示,目旳是用运动变化旳观点来研究问题,在运动变化旳过程中寻求不变旳关系.〔三〕探究二师:我们要研究一条弧所对旳圆周角∠ABC与它所对旳圆心角∠AOC旳大小关系.我们先来看一下用电脑测量出来旳这两个角是什么关系?找一位学生利用电脑上旳几何画板软件进展操作:每拖动一次B点旳位置就测量一次圆周角和圆心角.A师:同学们计算一下∠AOC与∠ABC旳大小有什么关系?生:两倍关系.师感谢学生旳操作,然后利用几何画板改变AC旳位置引导学生发现,∠AOC依然是∠ABC旳两倍.师:那现在同学们能不能猜测一下同一条弧所对旳圆周角和圆心角旳大小关系呢?.生:一条弧所对旳圆周角等于它所对旳圆角心旳12师板书结论.设计意图:让学生亲自动手,利用度量工具〔几何画板〕进展猜测、实验、探究,得出结论.激发学生旳求职欲望,调动学生学习旳积极性.师:刚刚我们是通过观察、猜测得到了一条弧所对旳圆周角和圆心角旳大小关系,下面我们就来尝试证明一下,看看哪个小组能最快旳把这三种情况旳证明旳出来.学生利用探究纸进展小组探究,师巡视指导,抽时间将这三组图画在黑板上以方便随后旳展示.师:好,先停一下.下面我们将小组已经探究旳结果来展示一下.我们从那一幅图开场?生:第一幅图.师:谁来说一下?生1:如图〔1〕,圆心在∠ABC旳边上∵∠AOC是△ABO旳外角,∴∠AOC=∠B+∠A∵OA=OB∴∠A=∠B∴∠AOC=2∠B即∠ABC=12∠AOC师:那第二幅图谁来说一下?生2:如图,连接BO并延长交圆于D点,那么将这幅图转化成图〔1〕旳形式.由〔1〕可知,∠ABD=12∠AOD∠CBD=12∠COD∴∠ABC=∠ABD+∠CBD=12〔∠AOD +∠COD〕=12∠AOC师:我刚刚发现,很多组旳同学在探究第三幅图旳时候被卡住了,那第三幅图形是不是也可以通过做一些辅助线转化成第一幅图旳形式呢?再给同学们两分钟旳时间快速旳思考一下.小组讨论,教师巡视并作出适时适当旳指导.师:现在谁来说一下第三种情况你们是怎样证明旳?生3:还是连接BO并延长交圆于D点,我们就可以得到两组根本图形:∠ABD和∠AOD;∠CBD和∠COD.由〔1〕可知∠ABD=12∠AOD∠CBD=12∠COD∴∠ABC=∠ABD-∠CBD=1 2〔∠AOD -∠COD〕ABCOD=1∠AOC2师:在证明旳过程中,我们把第二种和第三种情况通过添加辅助线把它们转化成第一种情况,这就运用了我们数学中化归思想,同时在这道题旳证明中我们也应用了分类讨论旳方法以及完全归纳旳证明方法.对于这个定理“一条弧所对旳圆周角等于它所对旳圆心角旳一半.〞我们也可以这样理解:一条弧所对旳圆心角等于它所对旳圆周角旳二倍;圆周角旳度数等于它所对旳弧旳度数旳一半.设计意图:让学生对所发现旳结论进展证明,培养学生严谨旳治学态度.学生通过合作探索学会运用分类讨论旳数学思想研究问题,培养学生思维旳深刻性.同时让学生学会一种分析问题、解决问题旳方式方法:从特殊到一般.学会用化归思想将问题转化,体验数学建模思想.同时也解决了难点、突出了重点.(四)解决问题师:现在让我们再回到到个问题上〔多媒体出示画面〕,在B、D、E这三个点上,在那个点上射门是最有利旳呢?生:一样旳.师:为什么?生:因为∠ABC、∠ADC、∠AEC所对旳弧都是AC,AC所对旳圆心角旳度数是固定旳,这三个角旳度数等于这个角度数旳一半,所以这三个角旳度数是相等旳.师:从而我们就能得到这样旳结论:在同圆或等圆中,同弧或等弧所对旳圆周角相等.(五)联系实生活实际师:在生活中还有那些运用圆周角旳实例,有没有同学想出来啊?只要我们善于观察就会发现我们旳生活中处处有数学.比方〔课件出示〕:我们有团圆吧,团徽、团旗中有没有圆周角啊?生:有.师:还有许多歌剧院、大剧院旳座位排列都是呈圆弧状旳,这是为什么呢?生:这样可以保证在同排旳观众视角是一样旳.师:非常好.〔学生鼓掌〕设计意图:通过回归生活实践,将数学知识与现实生活相联系起来,让学生在解决实际问题中获得成功旳体验.三、稳固应用,开拓创新师:现在请同学们看大屏幕,快速旳完成这两道题.多媒体出示:1、如图1,在⊙O中,∠BOC=50°,那么∠A= .2、如图2,A,B,C,D是⊙O上旳四点,且∠BCD=100°,那么∠BOD= °,∠BAD= °.图1 图2学生完成后,教师安排学生到大屏幕前讲解自己旳做法.设计意图:练习层层推进,难易结合,考察学生对定理旳理解和运用,使学生很好地进展知识旳迁移,让学生在练习中加深对本节知识旳理解.教师通过练习及时发现问题,评价教学效果.四、课堂小结师:刚刚同学们旳表现都非常好.现在我们请一位同学来谈一谈这节课旳收获.;在同圆或等圆中,同弧或等弧所对旳生:一条弧所对旳圆周角等于它所对旳圆角心旳12圆周角相等.师:还有要补充旳吗?生:一条弧所对旳圆心角等于它所对旳圆周角旳二倍;圆周角旳度数等于它所对旳弧旳度数旳一半.师:我们这节课学习了圆周角定理以及圆周角定理旳推论,在圆周角定理旳证明中,运用了数学中分类讨论和化归旳思想以及完全归纳旳证明方法.设计意图:小结使学生归纳、梳理总结本节课旳知识、技能、方法,将本节课所学知识与以前所学知识进展严密联接,有利于培养学生数学思想、数学方法、数学能力和对数学旳积极情感.五、课堂检测1、⊙O旳弦AB等于半径,那么弦AB所对旳圆周角一定是〔〕.〔A〕30°〔B〕150°〔C〕30°或150°〔D〕60°2、△ABC 中,∠B =90°,以BC 为直径作圆交AC 于E ,假设BC =12,AB =123 ,那么BE 旳度数为〔 〕.〔A 〕60° 〔B 〕80° 〔C 〕100° 〔D 〕120° 3、一条弦分圆为1:4两局部,求这弦所对旳圆周角旳度数? 4、AB 为⊙O 旳直径,AC 和AD 为弦,AB =2,AC =2,AD =1,求∠CAD 旳度数. 六、布置作业作业题:课本112页,数学理解,第2、3题.思考题:在航海时,船长常常通过测定角度来确定是否遇到暗礁,你知道其中旳微妙吗?设计意图:课后作业是对课堂所学知识旳检验,是让学生稳固、提高、开展,同时关注不同层次学生对所学内容旳理解和掌握.师:最后再送给同学们一句话:要养成用数学旳语言去说明道理,用数学旳思维去解读世界旳习惯. 下课.七、板书设计§旳关系〔一〕一、圆周角定义顶点在圆心上,且角旳两边分别与圆还有另一个交点旳角,叫做圆心角.二、圆周角定理一条弧所对旳圆周角等于它所对旳圆心角旳一半. (1) (2) (3)设计意图:让本节课旳学习内容及重难点一目了然.教学反思:收获:研究圆周角和圆心角旳关系,应该说,学生解决这一问题是有一定难度旳,尽管如此,教学时仍应给学生留有时间和空间,让他们进展思考.让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习旳主要目标. 问题:在探究一中,学生画图表示圆周角和圆心角旳关系旳位置关系时,有一个小组是这样画旳:我说这也属于“圆心角旳顶点在圆周角旳内部〞,当时就有一些同学不认可,或者说是不能BA AO C A BCO D很好地理解,我当时对这个问题没有重视一带而过了,现在想想这说明同学们对优角和优弧旳概念还是很陌生,不能灵活旳加以应用.改良:这对圆周角定理完成证明后,可以把上面这幅图在呈现出来,让同学们来验证一下.。

2024年《圆周角和圆心角的关系》说课稿

2024年《圆周角和圆心角的关系》说课稿

2024年《圆周角和圆心角的关系》说课稿《圆周角和圆心角的关系》说课稿1“圆周角和圆心角的关系”是义务教育课程标准实验教科书北师大版九年级数学下册第三章第三节的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。

1、本节知识点(1)圆周角的概念(2)圆周角的定理2、教学目标(1)理解并掌握圆周角的概念;(2)掌握圆周角定理,并能熟练地运用它们进行论证和计算;(3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。

教学重点:圆周角定理。

教学难点:认识圆周角定理需要分三种情况逐一证明的必要性。

(重点与难点的突破将在教学过程中详细说明)二、本节教材安排本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。

今天我向大家汇报的是第一课时的设计。

三、教学方法数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。

本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。

四、教学步骤(一)、旧知回放,探索新知(圆周角的概念的突破)1、出示课件,演示将圆心角的顶点由圆心拖至圆上,请同学们仿照圆心角的概念给形成的新角起名字,学生很容易的就会命名为圆周角。

2、引导学生进行讨论,规范圆周角的概念。

(设计意:让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能、分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义。

)特别说明:本节的引入我采用了动态演示的方法,从学生已知的圆心角出发,引申到这节课要学的圆周角,便于学生在已有的知识基础上掌握所学,符合学生的认知规律.本节教材中给出的引例是一个生动而实际的例子,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,它要引出的是第二课时的内容.本着活用教材原则,在深入挖掘教材之后,我觉得这个例子放在第一课时并不太合适.3、巩固练习,看谁最棒(请同学们判断各形的角是否是圆周角,并说明理由。

最新圆心角和圆周角教案(实用5篇)

最新圆心角和圆周角教案(实用5篇)

最新圆心角和圆周角教案(实用5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新圆心角和圆周角教案(实用5篇)作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

《圆周角和圆心角的关系》公开课教学设计【北师大版九年级数学下册】

《圆周角和圆心角的关系》公开课教学设计【北师大版九年级数学下册】

《圆周角和圆心角的关系》教学设计圆周角和圆心角的关系是义务教育北师大九年级下册第三章圆的第四节内容,本章主要学习与圆有关的性质,本节课要求理解圆周角的概念及其相关性质,所以本节的重点是圆周角和圆心角的关系。

【知识与能力目标】理解圆周角的概念及其相关性质 【过程与方法目标】经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。

【情感态度价值观目标】1. 培养学生独立探索,相互合作交流的精神。

2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。

3.【教学重点】圆周角和圆心角的关系【教学难点】圆周角和圆心角的关系PPT 课件◆ 课前准备◆◆ 教学过程◆ 教材分析◆ 教学目标◆ 教学重难点 ◆课前热身:1、 回顾圆周角和圆心角的关系 定理2、 在射门游戏中,球员射中球门的难易与他所处的位置B 对球门AC 的张角(∠ABC )有关。

自主学习:1、 圆周角与圆心角 通过射门游戏引入圆周角的概念。

提出这一问题意在引起学生思考,为本节活动埋下伏笔。

圆周角:角的顶点在圆上,两边是圆的两条弦圆心角:角的顶点是圆心,两边是圆的两条半径 2、 讲解例题例1 下列图形中的角是不是圆周角。

分析:通过此例,让学生理解好圆周角的定义。

3、 讲解例题例2 下列图形中,哪些图形中的圆心角∠BOC 和圆周角∠A 是同对一条弧。

分析:通过此例,让学生理解好什么是同一条弧所对的圆心角和圆周角。

同弧或等弧所对的圆周角和圆心角的关系☆ 议一议 书本P 101 议一议一条弧所对的圆周角等于它所对的圆心角的一半圆周角定理的几个推论在同圆或等圆中,同弧或等弧所对的圆周角相等。

直径所对的圆周角是直角;90°的圆周角所对的弦是直径A B C O B C O A B C O AB C O D ABC O AB O4、总结方法☆议一议书本P 106 议一议☆做一做书本P 107 做一做5、讲解例题例3 如图,AB是的直径,BD是的弦,延长BD到C,使CA = AB。

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

3.4 圆周角和圆心角的关系 第1课时 圆周角和圆心角的关系1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点) 2.能运用圆周角定理及其推论进行简单的证明计算.(难点)一、情境导入在以下图中,当球员在B, D, E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC ,∠AEC .这三个角的大小有什么关系?二、合作探究探究点:圆周角定理及其推论【类型一】 利用圆周角定理求角的度数如图,CD 是⊙O 的直径,过点D的弦DE 平行于半径OA ,假设∠D 的度数是50°,那么∠C 的度数是( )A .25°B .30°C .40°D .50°解析:∵OA ∥DE ,∠D =50°,∴∠AOD =50°.∵∠C =12∠AOD ,∴∠C =12×50°=25°.应选A.方法总结:解决问题的关键是熟练掌握圆周角定理. 变式训练:见《学练优》本课时练习“课堂达标训练〞第2题【类型二】 利用圆周角定理的推论求角的度数如图,在⊙O 中,AB ︵=AC ︵,∠A=30°,那么∠B =( )A .150°B .75°C .60°D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等〞得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°.应选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.变式训练:见《学练优》本课时练习“课堂达标训练〞第8题【类型三】 圆周角定理与垂径定理的综合如以下图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为点C ,交⊙O 于点D ,E 在⊙O 上.(1)∠AOD =52°,求∠DEB 的度数; (2)假设AC =7,CD =1,求⊙O 的半径.解析:(1)由OD ⊥AB ,根据垂径定理的推论可求得AD ︵=BD ︵,再由圆周角定理及其推论求∠DEB 的度数;(2)首先设⊙O 的半径为x ,然后由勾股定理得到方程解答.解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD ︵=BD ︵,∴∠DEB =12∠AOD =12×52°=26°;(2)设⊙O 的半径为x ,那么OC =OD -CD =x -1.∵OC 2+AC 2=OA 2,∴(x -1)2+(7)2=x 2,解得x =4,∴⊙O 的半径为4.方法总结:此题综合考查了圆周角定理及其推论、垂径定理以及勾股定理.注意掌握数形结合思想与方程思想的应用. 变式训练:见《学练优》本课时练习“课堂达标训练〞第3题【类型四】 圆周角定理的推论与圆心角、弧、弦之间的关系的综合如图,△ABC 内接于⊙O ,AB =AC ,点D 在弧AB 上,连接CD 交AB 于点E ,点B 是CD ︵的中点,求证:∠B =∠BEC .解析:由点B 是CD ︵的中点,得∠BCE =∠BAC ,即可得∠BEC =∠ACB ,然后由等腰三角形的性质,证得结论.证明:∵B 是CD ︵的中点,∴BC ︵=BD ︵,∴∠BCE =∠BAC .∵∠BEC =180°-∠B -∠BCE ,∠ACB =180°-∠BAC -∠B ,∴∠BEC =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠BEC .方法总结:此题考查了圆周角定理的推论以及等腰三角形的性质.解答时一定要结合图形.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题【类型五】 圆周角定理的推论与三角形知识的综合如图,A 、P 、B 、C 是⊙O 上四点,且∠APC =∠CPB =60°.连接AB 、BC 、AC .(1)试判断△ABC 的形状,并给予证明;(2)求证:CP =BP +AP .解析:(1)利用圆周角定理可得∠BAC =∠CPB ,∠ABC =∠APC ,而∠APC =∠CPB =60°,所以∠BAC =∠ABC =60°,从而可判断△ABC 的形状;(2)在PC 上截取PD =AP ,那么△APD 是等边三角形,然后证明△APB ≌△ADC ,证明BP =CD ,即可证得.(1)解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角,∠ABC 与∠APC 是AC ︵所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 为等边三角形;(2)证明:在PC 上截取PD =AP ,连接AD .又∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,即∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,∴△APB≌△ADC (AAS),∴BP =CD .又∵PD =AP ,∴CP =BP +AP .方法总结:此题考查了圆周角定理的理论以及三角形的全等的判定与性质,正确作出辅助线是解决问题的关键. 【类型六】 圆周角定理的推论与相似三角形的综合如图,点E 是BC ︵的中点,点A 在⊙O 上,AE 交BC 于D .求证:BE 2=AE ·DE .解析:点E 是BC ︵的中点,根据圆周角定理的推论可得∠BAE =∠CBE ,可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例得结论.证明:∵点E 是BC ︵的中点,即BE ︵=CE ︵,∴∠BAE =∠角),∴△BDE ∽△DE ∶BE ,∴BE 2=AE 方法总结:角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等〞这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来那么相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.第2课 伟大的历史转折1 教学分析【教学目标】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。

圆周角和圆心角的关系 优秀教案

圆周角和圆心角的关系 优秀教案

圆周角和圆心角的关系【教学目标】一、教学知识点1.掌握圆周角定理几个推论的内容。

2.会熟练运用推论解决问题。

二、能力训练要求1.培养学生观察、分析及理解问题的能力。

2.在学生自主探索推论的过程中,经历猜想、推理、验证等环节,获得正确的学习方式。

三、情感与价值观要求培养学生的探索精神和解决问题的能力。

【教学重点】圆周角定理的几个推论的应用。

【教学难点】理解几个推论的“题设”和“结论”。

【教学方法】指导探索法。

【教学过程】一、创设问题情境,引入新课[师]请同学们回忆一下我们前几节课学习了哪些和圆有关系的角?它们之间有什么关系?[生]学习了圆心角和圆周角、一条弧所对的圆周角等于它所对的圆心角的一半。

即圆周角定理。

[师]我们在分析、证明上述定理证明过程中,用到了些什么数学思想方法?[生]分类讨论、化归、转化思想方法。

[师]同学们请看下面这个问题:已知弦AB和CD交于⊙O内一点P,如下图。

求证:PA·PB=PC·PD[师生共析]要证PA·PB=PC·PD,可证PA PCPD PB。

由此考虑证明以PA、PC为边的三角形与以PD、PB为边的三角形相似。

由于图中没有这两个三角形,所以考虑作辅助线AC和BD.要证△PAC∽△PDB.由已知条件可得∠APC与∠DPB相等,如能再找到一对角相等。

如∠A=∠D 或∠C=∠B.便可证得所求结论。

如何寻找∠A=∠D或∠C=∠B.要想解决这个问题。

我们需先进行下面的学习。

二、讲授新课[师]请同学们画一个圆,以A、C为端点的弧所对的圆周角有多少个?(至少画三个)它们的大小有什么关系?你是如何得到的?[生] 弧AC所对的圆周角有无数个,它们的大小相等,我是通过度量得到的。

[师]大家想一想,我们能否用验证的方法得到上图中的∠ABC=∠ADC=∠AEC?(同学们互相交流、讨论)[生]由图可以看出,∠ABC、∠ADC和∠AEC是同弧(弧AC)所对的圆周角,根据上节课我们所学的圆周角定理可知,它们都等于圆心角∠AOC的一半,所以这几个圆周角相等。

3.4.2圆周角和圆心角的关系(教案)

3.4.2圆周角和圆心角的关系(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角和圆心角的基本概念。圆周角是圆上任意两条弧所对的角,圆心角是以圆心为顶点的角。它们在几何图形中具有重要的地位,可以帮助我们解决圆中的角度问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆中不同角度的关系,展示圆周角和圆心角在实际中的应用,以及如何利用它们解决问题。
-求解圆中未知角度;
-分析圆中角度关系。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的几何直观能力,通过观察和操作,让学生理解圆周角和圆心角的概念,并能运用它们描述和解决几何问题;
2.发展学生的逻辑推理能力,通过探究圆周角和圆心角的关系,引导学生发现并掌握圆周角定理及其推论,培养严谨的数学思维;
-圆周角和圆心角的关系:掌握同弧所对的圆周角等于它所对圆心角的一半的定理,并能应用于解题;
-定理的推论:了解圆周角定理的推论,并能应用于求解圆中未知角度;
-实际问题的解决:能够运用圆周角和圆心角的关系解决实际问题。
举例解释:
-通过直观的图形展示,让学生理解圆周角和圆心角的概念,并强调它们在几何图形中的重要性;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆周角和圆心角的关系》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解圆中角度的情况?”(如自行车轮辐的角度分配)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角和圆心角的奥秘。

九年级数学下册《圆周角和圆心角的关系》教案、教学设计

九年级数学下册《圆周角和圆心角的关系》教案、教学设计
(二)过程与方法
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如上图,已知:在⊙O中, 所对的圆周角是∠ABC,圆心角是∠AOC.
求证:∠ABC= AOC.(学生口述,教师板书)
证明:∵∠AOC是△ABO的外角,
∴∠AOC=∠ABO+∠BAO.
∵OA=OB,
∴∠ABO=∠BAO.
∴∠AOC=2∠ABO.
即∠ABC= ∠AOC.
特殊情况会给我们什么启发吗?(学生互相交流、讨论)
这三个角有什么共同特征?它们的大小有什么关系?
类比圆心角探索圆周角
在同圆或等圆中,相等的弧所对的圆心角相等。那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?(学生探索)
1、请同学们在圆上确定一条劣弧AC,画出它所对的圆心角与圆周角。
2、它们的大小有什么关系?弧AC所对的圆周角和圆心角之间有什么关系?你是通过什么方法得到的?
(2)两边在圆内的部分是圆的两条弦.
圆周角定义:顶点在圆上,并且角的两边和圆相交的角.
练习
判断下列图示中,各图形中的角是不是圆周角,并说明理由.
2.研究圆周角和圆心角的关系.
这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关。
在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.
本节通过学习认识了圆周角,并且探索了圆周角定理。
在上述探索过程中,利用分类讨论情况,利用由“特殊到一般”的途径,将问题进行转化,加以证明。
Ⅳ.课后作业
习题3.4知识技能1、2、3.
拓展:1.如图(1):AB是直径,你能确定∠C的度数吗?
2.如图(2),在⊙O中,∠B,∠D,∠E的大小有什么关系?为什么?
1题 2题
实验结论:在同圆或等圆中,一条弧所对的圆周角等于它所对圆心角的一半.
有限次的测量得到的结论,必须通过论证。说说你的想法,尝试证明。并与同伴交流.(互相讨论、交流,寻找解题途径.)
想一想:一个圆的圆心与这个圆上的圆周角可能有几种关系?
(圆心在圆周角内部;圆心在圆周角的一边上;圆心在圆周角的外部)
[师生共析]考虑从特殊情况入手.圆周角 一边经过圆心.
课题:3.1.1圆周角和圆心角的关系
授课教师:王玥
教学目标
(一)教学知识点
1.了解圆周角的概念.
2.理解圆周角定理的证明.
(二)能力训练要求
经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.
(三)情感与价值观要求
通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法.
教学重点
圆周角概念及圆周角定理.
教学难点
认识圆周角定理需分三种情况证明的必要性.
教学方法
指导探索法.
教学过程
Ⅰ.创设问题情境,引入新课
思考并回答问题:
1、点与圆有怎样位置关系?2、什么是圆心角?(学生回答)
3、当角的顶点发生变化时,这个角和圆的位置图形:说说圆周角的特征。(1)角的顶点在圆上;
经过刚才我们一起分类探讨、并通过证明,确定结论。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
4.课堂练习
(1).如图,在⊙O中,∠BOC=50°,
则∠BAC=。
变化题1:
如图,点A,B,C是⊙O上的三点,∠BAC=40°,
则∠BOC=
变化题2:
如图,∠BAC=40°,则∠OBC=
Ⅲ.课时小结
相关文档
最新文档