第10章 含有耦合电感的电路
10章 含有耦合电感的电路
jω L2 (支路 支路3)L ± 同侧取 同侧取“ 支路 3=±M(同侧取“+”,异 异
R2
侧取“ 侧取“-”) (支路 1’=L1 m M,M前所取符 支路1)L 支路 , 前所取符 号与L 号与 3中的相反 (支路 2’=L2 m M,M前所取 支路2)L 支路 , 前所取 符号与L 符号与 3中的相反
反相串联无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
Z = Z1 + Z 2 = R1 + R2 + jω ( L1 + L2 − 2 M )
R1
L1 u1
2、顺向串联 、 每一耦合电感支路的阻抗为: 每一耦合电感支路的阻抗为:
Z1 = R1 + jω ( L1 + M )
两个耦合线圈的磁通链可表示为: 两个耦合线圈的磁通链可表示为:
ψ 1 = ψ 11 ± ψ 12
= L1i1±Mi2
ψ 2 = ±ψ 21 + ψ 22
= ±Mi1+L2i2 上式表明, 上式表明 , 耦合线圈中的磁通链与施感电流 线性关系 关系, 成 线性 关系 , 是各施感电流独立产生的磁通链叠 加的结果。 加的结果。
di di u2 = R2i + ( L2 −M ) dt dt di = R2i + ( L2 − M ) dt
无互感等效电路
R1 u1 u M L1 R1 L1-M u1 R2 u2 L2 u R2 L2-M u2
di u = u1 + u 2 = ( R1 + R2 )i + ( L1 + L2 − 2 M ) dt
L1 N1 L2 N2
电路第十章含有耦合电感的电路
.. . . .. .. . . .. 一致,故1,4是同名端,(不2是,同名端,1,4是同名端,
3也是同名i1 端) i2 (2,3也是同名端i1 ) i2
1 23 4
1 23 4
同名端只与线圈的绕向有关,与电流方向无关。 只要知道线圈的绕向,就能标出同名端。
L L1L2 M2 L1 L2 2M
M2 L1L2
M L1L2 M L1 L2
2
几何平均值(小) 算术平均值(大)
除非两电感相同,一般:几何平均值< 算术平均值
∴用几何平均值求M更严格
∴互感M必须满足 M L1L2 的要求 ∴ M的最大值 Mmax L1L2
3.耦合系数 k M M max
最大值
i(t)
••
u ( t ) L1 L2
i(t)
u(t)
L1 -
di
M
dt +
L2
+
M
di
- dt
utL1d d ti Md d ti L2d d ti Md dti
L1
L2
2Mdi
dt
L
di dt
反接时,串联电感值为
LL1L22M
电感贮能 WL 12LiL2 0
即L一定为正值
L1L22M
M L1 L2 2
实际值
M L1 L 2
0k1
k 反应了磁通相耦合的程度
k=1 k→1 k<0.5 k=0
全耦合
线圈中电流产生的磁通全部与另一个线 圈交链达到使M无法再增加
紧耦合,强耦合
松耦合,弱耦合
无耦合
4.耦合电感的T型等效
第十章含有耦合电感的电路-精选文档
d di u L dt dt
+
u _
在此电感元件中,磁链Ψ和感 应电压u均由流经本电感元件的电 流所产生,此磁链感应电压分别称 为自感磁链和自感电压。
2、互感:如图所示表示两个耦合电感,电流i1在线 圈1和2中产生的磁通分别为Φ11和Φ21,则Φ21≤Φ11。 这种一个线圈的磁通交链于另一线圈的现象,称为 磁耦合。电流i1称为施感电流。Φ11称为线圈1的自感 磁通,Φ21称为耦合磁通或互感磁通。如果线圈2的 匝数为N2,并假设互感磁通Φ21与线圈2的每一匝都 交链,则互感磁链为Ψ21=N2Φ21。
§10-1 互感
耦合电感:耦合元件,储能元件,记忆元件。
一、耦合电感:为互感线圈的理想化电路模型
1 、自感:对于线性非时变电感元件,当电流的 参考方向与磁通的参考方向符合右螺旋定则时, 磁链Ψ与电流I满足Ψ=Li,L为与时间无关的正实 常数。
根据电磁感应定律和线圈的绕向,若电压的参考 正极性指向参考负极性的方向与产生它的磁通的参 考方向符合右螺旋定则时,也就是在电压和电流关 联参考方向下,则
输入阻抗Z为
Z Z Z ( 8 j 4 ) 8 . 94 26 . 57 1 2
为: 50 0 V 令U ,解得 I
50 0 I U / Z A 5 . 59 26 . 57 A 8 . 94 26 . 57
第十章 含有耦合电感的电路
内容提要
本章主要介绍耦合电感中的磁耦合 现象、互感和耦合因数、耦合电感的同 名端和耦合电感的磁通链方程、电压电 流关系;还介绍含有耦合电感电路的分 析计算及空心变压器、理想变压器的初 步概念。
§10-1 互感 §10-2 含有耦合电感电路的计算 §10-3 空心变压器
含有耦合电感的电路
解法一:设电流 和电压 参考方向如图所示,列出图示电路的KVL方程
根据理想变压器的VCR,有
将方程式(3)和(4)代入到方程式(1)中,得
解法二:题解10-18图为理想变压器原边等效电路,图中等效电路电阻Req为
故
又根据理想变压器VCR中的电压放程
又可求得电压 为
注:理想变压器是在耦合电感元件基础上加进3个理想化条件而抽象出的一类多端元件。
§10-4理想变压器
1、变压和变流作用
2、阻抗变换作用
典型习题
习题10-2两个具有耦合的线圈如图所示,
(1)标出它们的同名端;(2)当图中开关S闭合时或闭合后再打开时,试根据毫伏表的偏转方向确定同名端。
解:(1)根据同名端的定义和两个线圈的绕向,采用题10-1种的分析方法,判定同名端为(1,2),如题10-2图中所标示。
第十章含有耦合电感的电路
本章重点:
1.互感及互感电压用
本章难点:空心变压器的等效电路
本章内容
§10-1互感
1、概念:互感、总磁链、同名端。
2、耦合线圈的电压、电流关系)
设 为关联参考方向:
(1)
式中:u11=L1 ,u22=L2 称为自感电压;u22= M ,u12= M 称为互感电压(互感电压的正负,决定于互感电压“+”极性端子,与产生它的电流流进的端子为一对同名端,则互感电压为“+”号).
线圈1吸收的复功率为:
习题10-11图示电路中 0。求此串联电路的谐振频率。
解:该电路的耦合电感为顺接串联,所以其等效电感 为
故,此串联电路的谐振频率为:
习题10-12求图示一端口的戴维宁等效电路。已知 , (正弦)
第10章电路邱关源课件PPT
电路第十章含有耦合电感的电路电路§1010--1 1 互互感1121i 111'22'L 2N 2L 1N 1i 222212ΨΨΨ+±=12111ΨΨΨ±=电路22122111i L Mi ΨMi i L Ψ+±=±=1111i L Ψ=2222i L Ψ=21212i M Ψ=12121i M Ψ=**ML 1L 2+−i 1i 2u 1u 2+−11'22'dt di Mdt di L dt d u 21111±=Ψ=dtdi L dt di M dt d u 22122+±=Ψ=ML 1L 2+−i 1i 2u 1u 2+−122122111i L Mi ΨMi i L Ψ+±=±=2111I M j I L j U &&&ωω+=2212I L j I M j U &&&ωω+=Mj Z M ω=121≤=L L Mk 22211112ΨΨΨΨ=k电路§1010--2 2 含有耦合电感电路的计算含有耦合电感电路的计算I L j R U &&)(111ω+=[]I M L L j R R U &&)22121(−+++=ω1R R 1L −+1u −+uM••i 1R R ML −21−+1u −+ui I L j R U &&)(222ω+=[]I M I M j L j R &&)(−=−+11ωω[]I M I M j L j R &&)(−=−+22ωω电路[])22121(M L L j R R U I−+++=ω&&))222111((M M L j R Z L j R Z −−+=+=ωω)22121(M L L j R R Z −+++=ω))222111((M M L j R Z L j R Z ++=++=ωω)22121(M L L j R R Z ++++=ω电路cos10002**12M1R 2+−iu s4522000°∠Z cos 22121×L L ∠2电路1R R 1L −+1u −+uM••i SS 826.05.125.782121=×===L L ML L M k ωωωΩ−∠=−=−+=o46.904.35.03)(111j M L j R Z ωΩ∠=+=−+=o4237.65.45)(222j M L j R Z ωΩ∠=+=+=o57.2694.84821j Z Z Z o &050∠=U57.2659.557.2694.8050−∠=∠∠==oo &&Z U I1212121Z I X jI R I S =+=AV 63.14025.1564237.659.52222⋅+=∠×==j Z I S oAV 12525057.2659.550*⋅+=∠×==j I U S o &&21S S S +=A V .....⋅−=−∠×=631575934690435952j o1R R 2L j ω1L j ω−+U&••I&1I &I &Mj ω2111I j I L j R U M &&&ωω++=)(1R R 2L j ω1L j ω−+U&••I&1I &I &Mj ω22212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++−=−+=2221I L j R I j U M &&&)(ωω++=2112I I I I I I &&&&&&−=−=[]I j I M L j R M &&m ωω±+=111)(1R R ML −1−+U&I&1I &I &ML −21R R ML +1−+U&I&1I &I &ML +222212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++±=±+=[]222I M L j R I j U M &m &&)(ωω++±=)()(1111I I j I L j R U M &&&&−±+=ωω电路410CL =ωH 05.0662410510411===−×××C L ωA87.36025.0240320010)(2111o o &&−∠=+∠=−+−+=j M L M L j R U I AB ωV13.53387.36025.0120)(12o o &&∠=−∠×=−=j I M L j U ED ωW2.0025.03202211=×==I R P电路+−U S500 V o13ΩIR 25Ω1j ωL 2I 1**j ωM+−U S500 V o13ΩIR 25Ω1j (+)ωL M 2I 1()22电路()+−U S500 V o13ΩIR 25Ω1j (+)ωL M 2I 1电路§1010--3 3 空心变压器空心变压器()21111I j I L j R U M &&&ωω++=11Z22Z MZ 2221112221111)(Y M Z U Y Z Z U I M ω+=−=&&&1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′2221)(0I jX R L j R I j L L M &&++++=ωω1222⋅−=I Z Z I M &1⋅I电路11222111112221112)(Y M jX R L j R U MY j Y Z Z U Y Z I L L M M ωωω++++−=−−=&&&−+1U &222)(Y M ω1I 12221112221111)(Y M Z U Y Z Z U I M ω+=−=&&&Z 2I −+111U MY j &ω1222⋅−=I Z Z I M &电路1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′Ω==50111j L j Z ωΩ+=++=123222j jX R L j Z L L ωΩ−=+=37.3184.7123400)(222j j Y M ωo &021001∠=U o &&2.675.337.3184.7502/100)(2221111−∠=−+=+=j j Y M Z U I ωo o &&84.12666.51232.675.3202212∠=+−∠×=−=j j Z I M j I ω)84.12610cos(266.5)2.6710cos(25.321oo +=−=t i t i电路cos3142115**+−u sa i 112L 1L 2R LM电路+−a b422Ω−Ωj189U 1I 1电路§1010--3 3 理想变压器理想变压器1N ••1−+1u ••2N ••−+u 21i n −••1−+1••11u n 2211N u N u =12211=+i N i N 122211=+i u i u 1N N电路11N ••1−+1u ••2N ••−+u 21in ••1−+1••11u n −22211nu u N N u −=−=212112ii i n N N ==电路11N ••1−+1u ••2N ••Z ••1−+1u 11I U Z in &&=1N ••1−+1u ••2N ••Z Ln in Z n I U n I U Z 221211=−==&&&&L n Z n I U n 2212=−=&&电路1−+s u ••Z −+2u −+1u 110:Ω+=+×==300300)33(1022j j Z n Z L in inZ −+sU &1I 13003001000220011j Z R U I in s ++∠=+=&&09.3644.0−∠=211I nI &&−=12I n I &&=A9.364.4−∠=电路21210I nI I &&&==1−+s u ••−+2u −+1u 1n sU U &&=1000221∠==s c U nU &&22I U Z in &&=Ω===1)1(12111R n I n U n &&9.364.433102202−∠=++∠=+=j Z Z U I L in oc &&in−+oc u 2i电路1••iI &−+1U &22••2I &−+2U &−+1u 1:2R 1I &ii I U R &&1=221212)11(1I U R R U R &&&−=++−11U U n &&=)(22112R U U I n I n I i &&&&&−−=−=121U U n &&=i I n R n nR nR U &&=−++)211(2121Ω==381ii I U R &&电路Ω−5j V 4=sU &Ω−=)5(222j n Z in Ω+−=5120141222n j j Y 05120122=+−n j j 22=n 2211Z n Z in =100=Ω=42Z 100421=n 51=n W 04.01004422m ax=×=×=ssUR U P电路)1(21==R R 21122111I L j I M j U I M j I L j U &&&&&&ωωωω+=+=21,1)2(L L M k ==1R 1L j ω••−+1U &1′••2R 2L j ωR ω••2′−+2U&2121u u L L =121212L L L L L L 221212221111I L j I L L j U I L L j I L j U &&&&&&ωωωω+=+=n=电路nL L L =∞→211211i ni −=212111I L L L j U I &&&−=ω2121I L L I &&−=n L L =21)3(221111I L L j I L j U &&&ωω+=电路M j Z L j R Z L j R Z M ωωω=+=+=222111221211I Z I Z U I Z I Z U M M &&&&&&+±=±=U Z Z Z Z Z I MM &m &22121−=U Z Z Z Z Z I MM &m &22112−=U Z Z Z Z Z Z I I I M M &m &&&2212121−+=+=22212111)()(I L j R I j U I j I L j R U M M &&&&&&ωωωω++±=±+=电路。
10第十章 含有耦合电感的电路PPT课件
图10-1(b)
对于图10-l(b)所示的情况有:
11112L1i1M12i2 22122M21i1L2i2
式中11、22表示电流在本身线圈形成的磁链,称为 自感磁链。12、21表示另一个线圈中电流产生的磁场在
本线圈中形成的磁链,称为互感磁链。也就是说每个线圈
根据以上叙述,定义一种称为耦合电感的双口电路元 件,其元件符号和电压电流关系分别如下所示:
u1
L1
d i1 dt
M
d i2 dt
u2
M
d i1 dt
L2
d i2 dt
u1
L1
d i1 dt
M
d i2 dt
u2
M
d i1 dt
L2
d
i2
d t
u1
L1
d i1 dt
M
d i2 dt
中的总磁链为自感磁链与互感磁链的代数和。
当电流i1和i2随时间变化时,线圈中磁场及其磁链也随 时间变化,将在线圈中产生感应电动势。
图(a)
对于图(a)的情况,根据电磁感应定律可以得到:
u1
d1
dt
d11
dt
d12
dt
L1
di1 dt
Mdi2 dt
u2
d2
dt
d21
dt
d22
dt
Mdi1 dt
L2
最后得到图(a)单口网络的等效电路为5电阻与10H电
感的串联。
§ 10.3 耦合电感的功率
当耦合电感中的施感电流变化时,将出现变化的 磁场,从而产生电场(互感电压),耦合电感通过 变化的电磁场进行电磁能的转换和传输,电磁能从 耦合电感一边传输到另一边。
电路PPT课件第10章含有耦合电感的电路
由同名端及u、i参考方向确定互感线圈的特性方程
有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画 出同名端及参考方向即可。
M
*
*
i1
+ u21 –
M
*
*
i1
– u21 +
u21
M
di1 dt
u21
M
di1 dt
例
i1
M
i2
+*
*+
u1 L1 _
L2 u2 _
u1
L1
di1 dt
M
di2 dt
u
L1
L2
–
i1
M
i2
+
**
+
u
L1
L2
u
–
–
•
I
jM
j(L1-M)
•
•
I1 I2
j(L2-M)
•
I1
j(L1-M)
•
I2
j(L2-M)
jM
4. 受控源等效电路
i1
M
i2
+
**
+
u
L1
L2 u
–
–
•
I1
+
j L1
•
U1
+
•
jM
–
I–2
•
I2
+
j L2
•
+
U2
•
jMI 1
–
–
•
•
•
U 1 jL1 I 1 jM I 2
US
j (L1 L3 2M31)
第十章 含有耦合电感电路
§10.3
二、分析方法
1、方程法分析
空心变压器
在正弦稳态情况下,空心变压器电路的回路方程为:
令
Z11 R1 jL1
Z 22 R2 jL2 Z
称为原边回路阻抗
称为副边回路阻抗
§10.3
则上述方程简写为:
空心变压器
从上列方程可求得原边和副边电流:
§10.3
2、等效电路法分析
,求:原、副边电流 I 1
I2
§10.3
空心变压器
例10-9 全耦合互感电路如图(a)所示,求电路初级端 ab 间的等效阻抗。
例 10 — 9 图 ( a )
例 10 — 9 图( b )
§10.3
空心变压器
例10-10、已知L1=L2=0.1mH , M =0.02mH , R1=10Ω , C1=C2=0.01μF , ω=106rad/s, U s 10 0 V 问:R2=?时能吸收最大功率,并求最大功率。
例 10-3 图(a)
例 10-3 图(b)
§10.2
例10-4
含有耦合电感电路的计算
图(a)为有耦合电感的电路,试列写电路的回路电流方程。
电路的开路电压。
§10.2
含有耦合电感电路的计算
例10-6 图(a)为有互感的电路,若要使负载阻抗 Z 中的电 流 i =0 ,问电源的角频率为多少?
第十章 含有耦合电感电路
§10.1 §10.2 §10.3 §10.4 互感 含有耦合电感电路的计算 空心变压器 理想变压器
§10.1
一、互感
互感
两个靠得很近的电感线圈之间有磁的耦合,如图所示,当 线圈1中通电流i1时,不仅在线圈1中产生磁通φ11,同时,有 部分磁通φ21穿过临近的线圈2;同理,若在线圈2中通电流i2 时,不仅在线圈2中产生磁通φ22,同时,有部分磁通φ12穿 过线圈1,φ12和φ21称为互感磁通。
电路第10章---含有耦合电感的电路讲解
§10.1 互感耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。
1. 互感两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流i 2 时,不仅在线圈2中产生磁通f 22,同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。
定义互磁链:图 10.1ψ12 = N 1φ12 ψ21 = N 2φ21当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:互感磁通链:上式中 M 12 和 M 21 称为互感系数,单位为(H )。
当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:需要指出的是:1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12 =M21 =M2)自感系数L 总为正值,互感系数 M 值有正有负。
正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。
2. 耦合因数工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义一般有:当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。
耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。
3. 耦合电感上的电压、电流关系当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。
根据电磁感应定律和楞次定律得每个线圈两端的电压为:即线圈两端的电压均包含自感电压和互感电压。
在正弦交流电路中,其相量形式的方程为注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。
第十章 含有耦合电感的电路-文档资料
U 1 R 1 jL 1 M I Z 1 I U 2 R 2 jL 2 M I Z 2 I
U R 1 R 2 j L 1 L 2 2 M I Z I
-
1'
L2 u2
-
2'
制作群
主 页 总目录 章目录 上一页 下一页 退 出
§10-2 含有耦合电感电路的计算
一、反向串联
i R1
L1
u1R1iL1ddtiMddti
R1iL1Mddti
i R1 L1- M
++
u
-
u1
-
+
M R2
u2
L2
-
++
u1
-+
R2
u2R2iL2d dtiMd dti
解:u1L 1d d it1M d d it25s0i1 nt0 V u2M d d it1L 2d d it2 15 si1 0nt0 V
正弦稳态情况下:
U 1jL 1I1jM I2
U 2jM I1jL 2I2
互感抗:M
1 i1
M
i2 2
+
+
u1 L1
u
-
L2- M
u2
-
R2iL2
Mdi
dt
去耦等效电路
制作群
主 页 总目录 章目录 上一页 下一页 退 出
§10-2 含有耦合电感电路的计算
d i d i
d i d i
u u 1 u 2 R 1 i L 1 d t M d t R 2 i L 2d t M d t
第10章 含有耦合电感的电路
R1
L1 u1
i
R1
u1
L1
u
M
R2 u2
u
M R2 u2
L2
L2(a)顺向串联电路(来自)反向串联电路1、计算公式
对于反向串联电路,按图示参考方向,列写 KVL方程为: di di
u 1 R 1 i ( L1 M )
i
R1 u1
L1
dt
dt di dt di dt di dt )
R 1 i ( L1 M ) u 2 R2i ( L2 di dt
1 L1 i1 M i 2
2
M i1 L 2 i 2
i L 例1:下图中,i1 1 0 A ,2 5 co s(1 0 t ) A ,1 2 H , L M 求 2 3 H , 1H 。求两耦合线圈中的磁通链。
1
i1
M
i2
2
L2 u2 2’
1 1 L1 i1 2 0 W b
U j M I 3 [ R 1 j ( L1 M )] I 1 U j M I 3 [ R 2 j ( L 2 M )] I 2
根据上述方程可以给出一个无互感的等效电路, 如右下图所示:
I3
j M
I3
I2
j M
I1
解:
1 L1 i1 M i 2 [ 2 0 5 co s(1 0 t )]W b
2
M i1 L 2 i 2 [1 0 1 5 co s(1 0 t )]W b
u 1 L1 u2 M
电路分析基础第10章 含有耦合电感的电路
+
2
线圈彼此耦合的情况:
线圈1中的电流i1产生自感磁通链ψ11和互感 磁通链ψ21, 同样线圈2中的电流i2也产生自感磁通 链ψ22和互感磁通链ψ12 (图中未标出).
L1
N1
L2
N2
11
i1 i1
21
2‘ _
i2
1‘
1
u21
+
2
L1
N1
L2
N2
11
i1 i1
21
2‘ _
i2
1‘
1
u21
22 L2i2
12 M12i2 21 M 21i1 互感磁通链 上式中M12和M21称为互感系数,简称互感。
互感用符号M表示,单位为:亨利H。 由于互感具有互易性质,即M12= M21 , 当只有两个线圈耦合时,可略去下标,统一使用M。
两个耦合线圈的磁通链可表示为:
1 11 12
d 1 di1 di2 u1 L1 M dt dt dt d 2 di1 di2 u2 M L2 dt dt dt
令自感电压 互感电压
di1 u11 L1 dt di2 u12 M dt
u 22
di2 L2 dt
di1 u 21 M dt
di2 u 22 L2 自感电压 dt di1 u 21 M 互感电压 dt 说明 u12是变动电流i2在L1中产生的互感电压,
Z1 R1 j ( L1 M )
u
R1 u1
L1
M
R2
u2
L2
Z 2 R2 j ( L2 M )
而
Z Z1 Z 2 R1 R2 j ( L1 L2 2M )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
* 2 2'
1'
di 0, dt
u22' = M di 0 dt
R S 1
1'
i *
电压表瞬时正偏。 思考:当开关S打开时,电压表?
*2
2'
章目录 返回
+ V –
14
上一页 下一页
10--2 含有耦合电感电路的计算
对于含有耦合电感电路的正弦稳态分析仍可以采用相量法。 •直接计算法
提示思考:同名端改变,电流流入端改变时,磁通链变化?
7
章目录 返回 上一页 下一页
三、互感线圈的伏安特性
当互感线圈通以变动的电流时,根据电磁感应 定律,在每个线圈两端将产生感应电压。
u = i1
d Ψ dt
1.仅线圈1上通以变动的电流
11
M
* L1 * L2 +
21 N1 N2 _ * i1 1*+ u1 _ 1 u + 2 ´ 2 ´ 2 + u11 – + u21 有了同名端后,分析互感电压时不必考虑线圈实 –
u 1 = u 11 + u 12 = L 1 di 1 + M di 2 dt dt u 2 = u 21 + u 22 = M di 1 + L 2 di 2 dt dt
思考总结: 线圈绕向,同名端,互感磁通增强/减弱,互感电压正极性端之间的关系?
9
章目录 返回 上一页 下一页
例10-2 图示电路,i1=10A,i2=5cos(10t),L1=2H, L2=3H, M=1H,求两耦合线圈的端电压u1 和u2 。
2 2
等效
I
+ U –
Req
jω Leq
+ j ( L + M ) I = R2 I 2 =U +U = ( R + R )I + j ( L + L + 2 M ) I = ( Req + jLeq ) I U 1 2 1 2 1 2
Req = R1 + R2 Leq = L1 + L2 + 2 M Z eq = Req + jLeq
13
章目录 返回 上一页 下一页
六、同名端的确定方法总结:
同名端实质:反映线圈绕法的相互关系。
i
(1) 根据绕向判别:当两个线圈中电流同时由 同名端流入(或流出)时,两个电流产生的 磁场相互增强。 (2) 实验判别法:当随时间增大的时变电 流从一线圈的一端流入时,将会引起 另一线圈相应同名端的电位升高。 如图电路,当闭合开关S时,i 增加, 1
•互感消去法
首先分析互感的连接方式,然后对互感采用前述方法去耦;
电路去耦后,求解方法视方便,自由选择,无任何限制;
思考:互感线圈的可能连接方式?
章目录 返回
15
上一页 下一页
一.互感线圈的串联
1. 串联顺接
M
i 等效 + u –
Req Leq
i i1 R1 + + u –
* u1
L1
i2 R2
– +
* u2
L2 –
i = i1 = i2 u = u1 + u2
di1 di2 di di di u1 = R1i1 + L1 +M = R1i + L1 + M = R1i + ( L1 + M ) dt dt dt dt dt di di di2 di1 di = R2 i + L2 + M = R2 i + ( L2 + M ) u2 = R2 i2 + L2 +M dt dt dt dt dt di di = Req i + Leq u = u1 + u2 = ( R1 + R2 )i + ( L1 + L2 + 2 M ) dt dt
它们的相互位置有可能改变耦合因数的大小;当 L1和 L2一定时,也就相应 地改变了互感系数 M 的大小。
12
章目录 返回 上一页 下一页
特殊地,当k=1为全耦合: 11= 21,22 =12
1 1' 2
思考
2'
什么情况下 k≈0 ?
k≈1
互感现象的利与弊: 利用——变压器:信号、功率传递; 避免——干扰; 克服:合理布置线圈相互位置减少互感作用;采用屏蔽。
11 = L1 i1 =20Wb
22 = L2 i2 =15cos(10t) Wb
21 = M i1 =10Wb
12 = M i2 = 5cos(10t) Wb
1 = L1 i1 + M i2 =[20+ 5cos(10t)] Wb 2 = M i1 + L2 i2 =[10+ 15cos(10t)] Wb
L 1= y
11
i1
, L 2=
y
22
i2
,
称 L 1 L 2 为自感系数,单位亨 ( H) 。
M 21 =
y
21
M 12 =
i1 y
,称 M 21 为线圈 1 对线圈 2的互感系数,单位亨( H )。
12
i2
,称 M 12 为线圈 2 对线圈 1的互感系数,单位亨( H )。
M21 = M12 =M
– +
*
U 2
jω L2
–
–
2
=RI U 1 1 1 + jL1 I 1 + jMI 2 + jL I = R1 I 1 + jMI + j ( L + M ) I = R1 I 1 =RI U 2 2 2 + jL2 I 2 + jMI 1 + jL I + jMI =RI
dΨ 1 u1 = , Ψ 1 = L1 i1 + Mi2 dt dΨ2 u2 = , Ψ 2 = L2 i 2 + Mi1 dt
i1 + + + * u1 u11 u12L1 _ _ _
M
i2
* + + + L2 u21 u22 u2 _ _ _
di1 di2 u1 = L1 +M = 50 sin( 10t ) dt dt di1 di2 u2 = M + L2 = 150 sin( 10t ) dt dt
第十章 含有耦合电感的电路
§10-1 互感 §10-2 含有耦合电感电路的计算 §10-3 空心变压器
§10-4 理想变压器
1
章目录 返回 上一页 下一页
10. 1 互感
一、 互感
11
N1
i1 +
1
21
N2 –
1’
u11
+
2
u21
–
2’
当线圈1中通入电流i1时,在线圈1中产生磁通(magnetic flux) 11 , 产生的自感磁通链为11 ,同时,有部分磁通穿过临近线圈2,产生互 感磁通链为21 ,我们把这种一个线圈的磁通交链另一线圈的现象称为 磁耦合。 i1 称为施感电流, 11 = N1 11 , 21 = N2 21
不首先对具有互感的电感解耦,因为互感电压是电流的函数,所以 列写电路方程求解时,通常采用以电流为未知量的求解方法建立方 程;具体地,可采用支路电流法、回路电流法、网孔法。 • KCL的形式不变; • 在KVL的表达式中,应计入由于互感的作用而引起的互感电压。即当 某些支路具有耦合电感时,这些支路的电压将不仅与本支路电流有关, 同时还将与那些与之有互感关系的支路电流有关。 •关键:不要丢掉互感电压;
i1 * L1
M * L2
i2
+ u2 _
2
2’ 5
章目录 返回
上一页 下一页
当有两个以上的电感彼此之间存在耦合时,同名端应一对一对地 加以标记。每一对采用不同的符号。如果每一电感都有电流时,则每 一电感中的磁通链将等于自感磁通链与所有互感磁通链的代数和。
11
s 0
N1
i1
+ * u11 –
2 = ± 21+22
思考:上式什么时候取加?什么时候减?
3
章目录 返回 上一页 下一页
当线圈周围各向同性的线性磁介质时,11、21与i1成正比, 12、22与i2成正比。可以分别用下式表示:
11 = L1 i1, 21 = M21 i1, 22 = L2 i2, 12 = M12 i2
M 恒大于或等于零
1 = L1 i1 ± M i2 2 = ± M i1 + L2 i2
4
章目录 返回 上一页 下一页
二、互感线圈的同名端
1 = L1 i1 + M i2
2 = + M i1 + L2 i2 21
11
i1
1
N1
1’
i2
+
u11–Βιβλιοθήκη + u212
N2
2’
1 = L1 i1 -M i2
k =
de f
y 12 y 21 = y 11 y 22
k=
def
M L1 L2
| 21 |= Mi1
M 1 L1 L2
11 = L1i1 ,
|12 |= Mi2 , 22 = L2 i2 ,
Mi2 Mi1 = L1 i1 L2 i2
说明:
显然,k1。
k 的大小与 2 个线圈的结构、相互位置以及周围磁介质有关。改变或调整