高考数学函数应用题

合集下载

高考数学应用题复习题集及参考答案

高考数学应用题复习题集及参考答案

高考数学应用题复习题集及参考答案本文为高考数学应用题复习题集及参考答案,旨在帮助学生复习并加深对应用题的理解。

以下是一系列经典的数学应用题,每道题后附有详细的解答和解题思路。

希望能够对广大考生有所帮助。

一、函数与极限1. 设函数\[y = f(x) = \frac{{\sin x}}{{\sqrt{x}}}\],求\[\lim_{{x\rightarrow 0}} f(x)\]的值。

解答:由于\[\lim_{{x \rightarrow 0}} \sin x = 0\],且\[\lim_{{x \rightarrow 0}} \sqrt{x} = 0\],所以我们有:\[\lim_{{x \rightarrow 0}} f(x) = \lim_{{x \rightarrow 0}} \frac{{\sin x}}{{\sqrt{x}}}\]\[= \frac{{\lim_{{x \rightarrow 0}} \sin x}}{{\lim_{{x \rightarrow 0}} \sqrt{x}}}\]\[= \frac{0}{0}\](形式不定)利用洛必达法则,求导得:\[\lim_{{x \rightarrow 0}} f(x) = \lim_{{x \rightarrow 0}} \frac{{\cos x}}{{\frac{1}{{2\sqrt{x}}}}}\]\[= \lim_{{x \rightarrow 0}} 2\sqrt{x} \cdot \cos x\]\[= 2 \cdot 0 \cdot 1 = 0\]因此,\[\lim_{{x \rightarrow 0}} f(x) = 0\]。

二、微分与导数2. 已知函数\[y = f(x) = x^3 - 3x^2 - 4x + 12\],求导函数\[y' = f'(x)\]。

解答:使用导数的定义,对函数进行求导:\[y' = \lim_{{\Delta x \rightarrow 0}} \frac{{f(x+\Delta x) -f(x)}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{(x+\Delta x)^3 - 3(x+\Delta x)^2 - 4(x+\Delta x) + 12 - (x^3 - 3x^2 - 4x + 12)}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{x^3 + 3x^2 \Delta x +3x(\Delta x)^2 + (\Delta x)^3 - 3x^2 - 6x \Delta x - 3(\Delta x)^2 - 4x -4\Delta x + 12 - x^3 + 3x^2 + 4x - 12}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - 6x \Delta x - 3(\Delta x)^2 - 4\Delta x}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} (3x^2 + 3x \Delta x + (\Delta x)^2 - 6x - 3\Delta x - 4)\]\[= 3x^2 - 6x - 4\]因此,导函数\[y' = f'(x) = 3x^2 - 6x - 4\]。

高考函数测试题及答案

高考函数测试题及答案

高考函数测试题及答案一、选择题1. 函数y=f(x)=x^2-4x+3的图象的对称轴是直线x=()A. x=2B. x=-2C. x=1D. x=3答案:A2. 函数y=f(x)=2^x-1在区间(0,+∞)上是()A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:A3. 若函数y=f(x)=x^3-3x在x=1处有极值,则该极值是()A. 2B. -2C. 1D. -1答案:B二、填空题4. 函数y=f(x)=x^2-6x+8的零点是x=______。

答案:2或45. 函数y=f(x)=sin(x)+cos(x)的值域是[-√2, √2]。

答案:√26. 函数y=f(x)=x^3-3x+1的单调递增区间是(-∞,-1)和(1,+∞)。

答案:(-∞,-1)和(1,+∞)三、解答题7. 已知函数y=f(x)=x^2-4x+c,求证:对于任意实数x,都有f(x)≥-3。

证明:函数y=f(x)=x^2-4x+c的对称轴为x=2,开口向上。

因此,函数的最小值出现在x=2处,即f(2)=4-8+c=c-4。

要使f(x)≥-3,只需c-4≥-3,解得c≥1。

因此,对于任意实数x,都有f(x)≥-3。

8. 已知函数y=f(x)=x^3-3x,求证:f(x)在区间(-1,1)内至少有一个零点。

证明:首先计算f(-1)和f(1)的值,得到f(-1)=-2,f(1)=-2。

由于f(x)在区间(-1,1)上连续,且f(-1)和f(1)异号,根据零点存在定理,f(x)在区间(-1,1)内至少有一个零点。

9. 已知函数y=f(x)=x^2-2x+1,求f(x)在区间[0,2]上的最大值和最小值。

解:函数y=f(x)=x^2-2x+1的对称轴为x=1,开口向上。

因此,函数在区间[0,1]上单调递减,在区间[1,2]上单调递增。

计算f(0)=1,f(1)=0,f(2)=1。

所以,f(x)在区间[0,2]上的最大值为1,最小值为0。

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用(解析版)-高中数学

函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。

高考数学函数的应用专项练习题(含答案)

高考数学函数的应用专项练习题(含答案)

高考数学函数的应用专项练习题(含答案)函数的定义通常分为传统定义和近代定义,下面是函数的运用专项练习题,希望对考生温习提高有协助。

一、选择题1.(2021渭南模拟)设函数f(x)=x-lnx(x0),那么y=f(x)()(A)在区间(e-1,1),(1,e)内均有零点(B)在区间(e-1,1),(1,e)内均无零点(C)在区间(e-1,1)内有零点,在区间(1,e)内无零点(D)在区间(e-1,1)内无零点,在区间(1,e)内有零点2.假定f(x)=那么函数g(x)=f(x)-x的零点为()(A)1+ (B)1-(C)1 (D)1或1+3.函数f(x)=x+2x,g(x)=x+lnx的零点区分为x1,x2,那么x1,x2的大小关系是()(A)x1x2(C)x1=x2 (D)不能确定4.(2021合肥模拟)符号函数sgn(x)=那么函数f(x)=sgn(lnx)-lnx的零点个数为()(A)1(B)2(C)3(D)45.设x1,x2是方程ln|x-2|=m(m为实常数)的两根,那么x1+x2的值为()(A)4 (B)2 (C)-4 (D)与m有关6.(2021延安模拟)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,假定函数y=f(x)-g(x)在x[a,b]上有两个不同的零点,那么称f(x)和g(x)在[a,b]上是关联函数,区间[a,b]称为关联区间.假定f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是关联函数,那么m的取值范围是()(A)(-,-2] (B)[-1,0](C)(-,-2] (D)(-,+)7.假定函数y=()|1-x|+m的图像与x轴有公共点,那么m的取值范围是()(A)m-1 (B)m1(C)-10 (D)0bc且f(1)=0,试证明f(x)必有两个零点.(2)假定对x1,x2R,且x10,f(1)=0,f(e)=e-10,f(e-1)f(1)0,f(1)f(e)0,应选D.2.【解析】选D.g(x)=f(x)-x=当x2或x-1时,g(x)=x2-2x-1,令g(x)=0得x=1+,当-10恒成立,即关于恣意bR,b2-4ab+4a0恒成立,所以有(-4a)2-4(4a)a2-a0,解之得0bc,a0,即ac0.又∵=b2-4ac0,方程ax2+bx+c=0有两个不等实根,函数f(x)必有两个零点.(2)令g(x)=f(x)-[f(x1)+f(x2)],那么g(x1)=f(x1)-[f(x1)+f(x2)]=,g(x2)=f(x2)-[f(x1)+f(x2)]g(x1)g(x2)=[][]=-[f(x1)-f(x2)]2.∵f(x1)f(x2),g(x1)g(x2)0.g(x)=0在(x1,x2)内必有一实根.即f(x)=[f(x1)+f(x2)]必有一实根属于(x1,x2).14.【解析】(1)关于恣意的aR(R为实数集),方程f(x)=1必有实数根是真命题.依题意:f(x)=1有实根,即x2+(2a-1)x-2a=0有实根,∵=(2a-1)2+8a=(2a+1)20关于恣意的aR(R为实数集)恒成立,即x2+(2a-1)x-2a=0必有实数根,从而f(x)=1必有实数根.(2)依题意:要使y=f(x)在区间(-1,0)及(0,)内各有一个零点,只需即解得0),那么t2+mt+1=0,当=0时,即m2-4=0,m=2或m=-2.又m=-2时,t=1,m=2时,t=-1(不合题意,舍去),2x=1,x=0契合题意.当0时,即m2或m-2时,t2+mt+1=0有两正或两负根,即f(x)有两个零点或没有零点,这种状况不契合题意.综上可知:m=-2时,f(x)有独一零点,该零点为0.函数的运用专项练习题分享到这里,更多内容请关注高考数学试题栏目。

高考数学应用题及答案

高考数学应用题及答案

高考数学应用题及答案1. 题目:某工厂生产一种产品,该产品的成本函数为 \( C(x) =3000 + 50x \),其中 \( x \) 表示生产的产品数量。

如果每件产品的销售价格为 \( 150 \) 元,求生产多少件产品时,工厂的利润最大。

答案:首先,我们需要找到利润函数 \( P(x) \)。

利润等于总收入减去总成本,即 \( P(x) = R(x) - C(x) \)。

总收入 \( R(x) \) 为 \( 150x \),因此利润函数为:\[ P(x) = 150x - (3000 + 50x) = 100x - 3000 \]为了找到利润最大的生产数量,我们需要求 \( P(x) \) 的最大值。

由于 \( P(x) \) 是关于 \( x \) 的线性函数,其最大值出现在\( x \) 取最大值时。

然而,实际生产中 \( x \) 必须是非负整数。

因此,我们需要考虑实际的生产限制。

由于 \( P(x) \) 是一个递增的线性函数,所以当 \( x \) 越大,利润 \( P(x) \) 也越大。

但是,实际生产中可能存在生产能力的限制,例如机器的最大生产能力、原材料的限制等。

假设生产能力限制为\( x_{\text{max}} \),那么在 \( 0 \leq x \leq x_{\text{max}} \) 的范围内,利润函数 \( P(x) \) 是递增的。

因此,在没有额外限制的情况下,生产的产品数量越多,利润越大。

但是,实际中需要考虑生产能力的限制。

2. 题目:某商店销售两种商品,商品A的售价为 \( 20 \) 元,成本为 \( 15 \) 元;商品B的售价为 \( 30 \) 元,成本为 \( 25 \) 元。

如果商店计划销售这两种商品,使得总利润最大化,且商品A和商品B的销售数量比为 \( 3:2 \),求商店应该销售多少件商品A和商品B。

答案:设商品A的销售数量为 \( 3k \) 件,商品B的销售数量为\( 2k \) 件,其中 \( k \) 为正整数。

高考数学专题《函数的实际应用》习题含答案解析

高考数学专题《函数的实际应用》习题含答案解析

专题3.9 函数的实际应用1.(2021·广东高三专题练习)某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米【答案】B 【解析】根据到1.84米得90分,先求得该女生训练前立定跳远距离,再求得训练后立定跳远距离,两者相减即可.【详解】该女生训练前立定跳远距离为90701.840.03 1.725--⨯=(米),训练后立定跳远距离为1.84+105900.1 2.145-⨯=(米),则该女生训练后,立定跳远距离增加了2.14 1.720.42-=(米).故选:B .2.(2020·四川省乐山沫若中学高一月考)2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下:级数一级二级三级每月应纳税所得额x 元(含税)3000x ≤300012000x <≤1200025000x <≤税率31020现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为( )A .1800B .1000C .790D .560练基础【答案】C 【解析】李某月应纳税所得额(含税)为:元,不超过3000的部分税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:.3.(2021·浙江高一期末)为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过312m 的部分3元/3m 超过312m 但不超过318m 的部分6元/3m 超过318m 的部分9元/3m 若某户居民本月交纳的水费为54元,则此户居民的用水量为( )A .36m B .39m C .315m D .318m 【答案】C 【解析】利用分段函数各段上的解析式,由函数值求自变量可得.【详解】设此户居民本月用水量为x 3m ,缴纳的水费为y 元,则当[0,12]x ∈时,336y x =≤元,不符合题意;当(12,18]x ∈时,123(12)6636y x x =⨯+-⨯=-,令63654x -=,解得15x =,符合题意;当(18,)x ∈+∞时,12366(18)999072y x x =⨯+⨯+-⨯=->,不符合题意.综上所述: 此户居民本月用水量为153m .故选:C.4.(2021·全国高三其他模拟(理))已知声音强弱的等级()f x (单位:dB)由声音强度x (单位:2W/m )决定.科学研究发现,()f x 与lg x 成线性关系,如喷气式飞机起飞时,声音强度为2100W/m 声音强弱的等1800050001000200010000---=30003%90⨯=()10000300010%700010%700-⨯=⨯=90700790+=C级为140dB ;某动物发出的鸣叫,声音强度为21W/m ,声音强弱的等级为120dB .若某声音强弱等级为90dB ,则声音强度为( )2W/m A .0.001B .0.01C .0.1D .1【答案】A 【解析】设()lg f x k x b =+,代入两点坐标即可得到函数表达式,进而解方程可得结果.【详解】解析依题意,设()lg f x k x b =+将()()100,140,1,120代入,1402120k bb =+⎧⎨=⎩,解得10,120k b ==,故()10lg 120f x x =+.令9010lg 120x =+,解得x =0.001.故选:A5.(2021·全国高三其他模拟(理))2021年初我国脱贫攻坚战取得了全面胜利,现行标准下区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.经过数据分析得到某山区贫困户年总收入与各项投入之间的关系是:贫困户年总收入y (元)=1200+4.1⨯年扶贫资金(元)+4.3⨯年自投资金(元)900+⨯自投劳力(个).若一个贫困户家中只有两个劳力,2016年自投资金5000元,以后每年的自投资金均比上一年增长10%,2016年获得的扶贫资金为30000元,以后每年获得的扶贫资金均比上一年减少5000元,则该贫困户在2021年的年总收入约为()51.1 1.6≈( )A .48100元B .57900元C .58100元D .64800元【答案】B 【解析】根据题意,分别求得2021年的自投资金和扶贫资金,进而求得该贫困户2021年的年总收入,得到答案.【详解】由题意,2021年的自投资金为55000 1.15000 1.68000⨯≈⨯=(元),2021年的扶贫资金为30000550005000-⨯=(元),所以该贫困户2021年的年总收入约为1200 4.15000 4.38000900257900+⨯+⨯+⨯=(元).故选:B.6.(2021·全国高三其他模拟(理))生物学家为了了解抗生素对生态环境的影响,常通过检测水中生物体内抗生素的残留量来进行判断.已知水中某生物体内药物残留量y (单位:mg )与时间t (单位:年)近似满足关系式()1e ty λλ-=-,其中λ为抗生素的残留系数,当23t =时,910y λ=,则λ的值约为(ln10 2.3≈)( )A .110B .10C .100D .1100【答案】A 【解析】将23t =时,910y λ=代入化简计算即可求出.【详解】当23t =时,()2391e 10y λλλ-==-,所以231e10λ-=,得23ln10 2.3λ=≈,故110λ≈.故选:A .7.(2021·山东聊城市·高三三模)声强级I L (单位:dB )由公式1210lg 10I I L -⎛⎫= ⎪⎝⎭给出,其中I 为声强(单位:W /m 2)一般正常人听觉能忍受的最高声强级为120dB ,平时常人交谈时声强级约为60dB ,那么一般正常人能忍受的最高声强是平时常人交谈时声强的( )A .104倍B .105倍C .106倍D .107倍【答案】C 【解析】根据已知函数关系式,设出未知数,解方程即可求出对应声强,然后可直接得结果.【详解】设一般正常人听觉能忍受的最高声强为1I ,平时常人交谈时声强为2I ,由题意得11221212010lg 106010lg 10I I --⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩解得2411821010I I ⎧=⎨=⎩∴61210I I =故选:C8.(2021·陕西西安市·高三其他模拟(理))现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取4粒红豆,乙每次取2粒白豆,同时进行,当红豆取完时,白豆还剩10粒;第二轮,甲每次取1粒红豆,乙每次取2粒白豆,同时进行,当白豆取完时,红豆还剩()*1620,n n n ∈<<N 粒.则红豆和白豆共有________粒.【答案】58【解析】设红豆有x 粒,白豆有y 粒,由两轮的结果可构造方程组,根据n 的范围可计算求得,x y ,加和即可得到结果.【详解】设红豆有x 粒,白豆有y 粒,由第一轮结果可知:1042x y -=,整理可得:220x y =-;由第二轮结果可知:2yx n =-,整理可得:22y x n =-;当17n =时,由220234x y y x =-⎧⎨=-⎩得:883743x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当18n =时,由220236x y y x =-⎧⎨=-⎩得:923763x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当19n =时,由220238x y y x =-⎧⎨=-⎩得:3226x y =⎧⎨=⎩,322658x y ∴+=+=,即红豆和白豆共有58粒.故答案为:58.9.(2021·江苏南通市·高三其他模拟)据观测统计,某湿地公园某种珍稀鸟类以平均每年4%的速度增加.按这个增长速度,大约经过___________年以后,这种鸟类的个数达到现有个数的4倍或4倍以上.(结果保留整数)(参考数据:lg 20.30,lg13 1.11≈≈)【答案】60【解析】设湿地公园某种珍稀鸟类的数量为a ,可得不等式1.044n …,两边取对数解不等式,即可得到答案;【详解】设湿地公园某种珍稀鸟类的数量为a ,1.04lg 4(14%)4 1.044log 4lg1.04n n a a n +⇒⇒=………2lg 22lg 22lg 22lg 2104lg1042lg81323lg 2lg132lg 100====-⨯-+-20.36030.3 1.112⨯==⨯+-,故答案为:60.10.(2021·浙江高一期末)某公司生产某种电子产品的固定成本为2万元,每生产一台该产品需增加投入100元,已知总收入R (单位:元)关于月产量x (单位:台)满足函数:21400,0400280000,400x x x R x ⎧-≤≤⎪=⎨⎪>⎩(1)将利润()f x (单位:元)表示成月产量x 的函数(2)当月产量x 为何值时,公司所获利润最大,最大利润是多少?(利润+总成本=总收入)【答案】(1)2130020000,0400()260000100,400x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)当月产量为300台时,公司所获利润最大,最大利润是25000.【解析】(1)根据题意建立函数关系式,写出分段函数形式;(2)分别求各段的最大值,即可求出公司利润最大值及取最大值时的产量.【详解】(1)由题意可得:当0400x ≤≤时,22()=20000100300200001140022x x x f x x x -----=+;当400x >时,1()=20000800000100000060f x x x ---=;所以2130020000,0400()260000100,400x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩.(2)当0400x ≤≤时,()22()30020000=250001130022f x x x x =+-+---,即最大值为25000;当400x >时,()60000100f x x =-为减函数,所以当400x >时,()2000025000f x <<,故max ()=25000f x .即当月产量为300台时,公司所获利润最大,最大利润是25000.1.(2021·四川高三三模(理))一种药在病人血液中的量保持在不低于1500mg ,才有疗效;而低于500mg ,病人就危险.现给某病人的静脉注射了这种药2500mg ,如果药在血液中以每小时0020的比例衰减,则再向这种病人的血液补充这种药物的时间范围是()A .5551log 31,1log 41log 4⎛⎤- ⎥--⎝⎦B .5551log 31,1log 41log 4⎛⎫- ⎪--⎝⎭C .(]51log 3,1-D .()51log 3,1-【答案】A 【解析】求出药物保有量随时间t 的关系式,列不等式求解可得.【详解】设t 小时保有量为y mg ,则2500(120%)t y =⨯-,由50025000.81500t≤⨯<,143555t⎛⎫≤< ⎪⎝⎭,555143log log log 555t ≤<,所以5551log 311log 41log 4t -<≤--.故选:A .2.(2021·湖北武汉市·高三三模)2020年我国832个贫困县全部“摘帽”,脱贫攻坚战取得伟大胜利.湖北秭练提升归是“中国脐橙之乡”,全县脐橙综合产值年均20亿元,被誉为促进农民增收的“黄金果”.已知某品种脐橙失去的新鲜度h 与其采摘后的时间t (天)满足关系式:t h m a =⋅.若采摘后10天,这种脐橙失去的新鲜度为10%,采摘后20天失去的新鲜度为20%,那么采摘下来的这种脐橙在多长时间后失去50%的新鲜度( )(已知lg 20.3≈,结果四舍五入取整数)A .23天B .33天C .43天D .50天【答案】B 【解析】根据题中条件,列出方程组求出1025%a m ⎧=⎨=⎩,设采摘下来的这种脐橙在t 天后失去50%的新鲜度,列出方程求解,即可得出结果.【详解】因为采摘后10天,这种脐橙失去的新鲜度为10%,采摘后20天失去的新鲜度为20%,所以102010%20%m a m a ⎧=⋅⎨=⋅⎩,则1025%a m ⎧=⎨=⎩,设采摘下来的这种脐橙在t 天后失去50%的新鲜度,则50%5%t a =⋅,即10t a =,所以10210t=,则2110log 1010lg 23t ===,因此100333t =≈.故选:B.3.(2021·全国高三其他模拟)生物学家为了了解滥用抗生素对生态环境的影响,常通过检测水中生物体内抗生素的残留量来作出判断.已知水中某生物体内抗生素的残留量y (单位:mg )与时间t (单位:年)近似满足数学函数关系式()1ty eλλ-=-,其中λ为抗生素的残留系数.经测试发现,当23t =时,910y λ=,则抗生素的残留系数λ的值约为( )()ln10 2.3≈A .10B .110C .100D .1100【答案】B 【解析】将23t =,910y λ=代入给定的函数关系,解指数方程即得.【详解】当23t =时,910y λ=,则()239110e λλλ-=-,23110e λ-=,123ln 10λ-=,即23ln10 2.3λ=≈,故110λ≈.故选:B4.(2021·全国高三其他模拟)大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比,且当1m /s v =时,鲑鱼的耗氧量的单位数为900.现有如下说法:①v 与3log 100Q的正比例系数为13k =;②当2m /s v =时,鲑鱼的耗氧量的单位数为2700;③当鲑鱼的耗氧量的单位数为100时,游速1m /s v e=.则说法正确的个数为( )A .0B .1C .2D .3【答案】A 【解析】列出v 对Q 的函数关系,把v 的值分别代入计算并判断得解.【详解】依题意,设3log 100Q v k =,则有39001log 100k =,解得12k =,故①错误;当2m /s v =时,有312log 2100Q=,解得8100Q =,故②错误;当100Q =时,游速31100log 0m /s 2100v ==,故③错误.故选:A5.(2021·全国高三其他模拟)在新冠肺炎疫情初期,部分学者利用逻辑斯蒂增长模型预测某地区新冠肺炎患者数量()P t (t 的单位:天),逻辑斯蒂增长模型具体为()0.420.4211tt e P t e K =⎛⎫+- ⎪⎝⎭,其中K 为环境最大容量.当()027.31KP t K K e=-+时,标志着已初步遏制疫情,则0t 约为( )A .63B .65C .66D .69【答案】B 【解析】由给定模型计算出P (t 0),建立方程,求解即得.【详解】由题意知,()000.4200.4227.3111t t e KP t K K e eK ==-⎛⎫++- ⎪⎝⎭,即000.4227.30.4227.311t t Ke Ke Ke K Ke K =+-+-,所以00.4227.3t e e =,解得065t =.故选:B6.(2021·四川眉山市·高三三模(理))2021年3月20日,“沉睡三千年,一醒惊天下”的三星堆遗址向世人展示了其重大考古新发现——6个三星堆文化“祭祀坑”现已出土500余件重要文物.为推测文物年代,考古学者通常用碳14测年法推算,碳14测年法是根据碳14的衰变程度来计算出样品的大概年代的一种测量方法.2021年,考古专家对某次考古的文物样本上提取的遗存材料进行碳14年代测定,检测出碳14的残留量约为初始量的68%,已知碳14的半衰期(放射性物质质量衰减一半所用的时间)是5730年,且属于指数型衰减.以此推算出该文物大致年代是()(参考数据:log 19034.7≈-,log 6834881≈-)A .公元前1400年到公元前1300年B .公元前1300年到公元前1200年C .公元前1200年到公元前1100年D .公元前1100年到公元前1000年【答案】C 【解析】设样本中碳14初始值为k ,衰减率为p ,经过x 年后,残留量为y ,可得函数关系式()1xy k p =-,根据半衰期可构造方程求得1p -,由此得到函数关系式,根据(68%xk k =可求得x ,由此可推断出年代.【详解】设样本中碳14初始值为k ,衰减率为p ,经过x 年后,残留量为y ,则()1xy k p =-,碳14的半衰期是5730年,()5730112k p k ∴-=,1p ∴-=,(xy k ∴=;由(68%xkk =得:()log 0.68log 68log 34881219034.73188x ==-=--⨯-≈,2021年之前的3188年大致是公元前1167年,即大致年代为公元前1200年到公元前1100年之间.故选:C.7.(2021·山西太原市·太原五中高三二模(理))地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准.震级M 用距震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示.里氏震级的计算公式为:max 0lg A M A =(其中常数0A 是距震中100公里处接收到的0级地震的地震波的最大振幅;max A 是指我们关注的这次地震在距震中100公里处接收到的地震波的最大振幅).地震的能量E 是指当地震发生时,以地震波的形式放出的能量. 4.8 1.51010M E =⨯(单位:焦耳),其中M 为地震震级.已知甲地地震产生的能量是乙地地震产生的能量的310倍,若乙地地震在距震中100公里处接收到的地震波的最大振幅为A ,则甲地地震在距震中100公里处接收到的地震波的最大振幅为()A .2AB .10AC .100AD .1000A 【答案】C【解析】设甲地地震震级为1M ,乙地地震震级为2M ,首先根据题意求得122M M -=,代入里氏震级的计算公式为:max 0lgA M A =求出max 100A A =即可.【详解】设甲地地震震级为1M ,乙地地震震级为2M ,因为甲地地震产生的能量是乙地地震产生的能量的310倍,所以11221.54.8 1.5()31.54.8101010101010M M M M -⨯==⨯,故122M M -=,又乙地地震在距震中100公里处接收到的地震波的最大振幅为A 因为max 0lg A M A =,所以max max 1200lg lg lg 2A A A M M A A A-=-==,解得:max 100A A =,甲地地震在距震中100公里处接收到的地震波的最大振幅为max 100A A =.故选:C.8.(2021·安徽合肥市·合肥一中高三其他模拟(文))自新冠病毒爆发以后,各国科技人员都在攻关疫苗的难题,近日我国在这一领域取得重大突破,国产疫苗在国际上受到广泛认可.我国在实验阶段为了研究T 型病毒的变化规律,将T 型病毒注入一个健康的小白鼠体内,根据观测统计的数据分析,小白鼠体内的病毒数y 与天数n 近似满足1*3()n y n N -=∈.已知T 型病毒在体内超过109个时,小白鼠就会死亡,但如果注射了某种药物可有效杀死体内的T 型病毒,为使小白鼠在实验过程中不会死亡,第一次注射该种药物最迟应在第___________天(参考数据:lg 30.477=).【答案】19【解析】由题意病毒细胞关于时间n 的函数为13-=n y ,由91310n -≤,求解即可.【详解】由题意病毒细胞关于时间n 的函数为13-=n y ,则由91310n -…两边取对数得319log 10n -≤,解得19.87n ≤.即第一次最迟应在第19天注射该种药物.故答案为:19.9.(2021·浙江高一期末)砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分.已知扇环周长300cm =,大扇形半径100cm OD =,设小扇形半径cm OA x =,AOB θ∠=弧度,则①θ关于x 的函数关系式()x θ=_________.②若雕刻费用关于x 的解析式为()101700w x x =+,则砖雕面积与雕刻费用之比的最大值为________.【答案】1002100x x ++,()0,100x ∈; 3【解析】利用弧长公式求»AB 与»DC根据扇环周长可得θ关于x 的函数关系式;根据扇形面积公式求出扇环面积,进而得出砖雕面积与雕刻费用之比,再利用基本不等式即可求解.【详解】由题意可知,AOB θ∠=,OA x = ,100OD =,所以»AB x θ=⋅,100AD BC x ==-,»DC100θ=,扇环周长»AB »AD BC DC+++2002100300x x θθ=⋅+-+=,解得()1002,0,100100x x xθ+=∈+,砖雕面积即为图中环形面积,记为S ,则»12DOC AOB S S S OD DC =-=⋅⋅扇形扇形»12OA AB -⋅⋅22111002100100500050002222100x x x x x x θθθθ⎛⎫+=⨯⨯-⋅⋅=-=-⋅ ⎪+⎝⎭,即雕刻面积与雕刻费用之比为m ,则()()()()()()()210000*********()210101017000170x x w x m x x x x x S +-+=+-+==+,令170t x =+,则170x t =-,()()22701203901202701227039101010t t t t t m t t t---+-⨯⨯∴===--+ 3936393≤-+=-+= ,当且仅当180t =时(即10x =)取等号,所以砖雕面积与雕刻费用之比的最大值为3.故答案为:1002100x x++,()0,100x ∈;310.(2021·浙江高一期末)为了响应国家提出的“大众创业,万众创新”的号召,王韦达同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产x 万件,需另投入可变成本()C x 万元,在年产量不足8万件时,21()33C x x x =+(万元);在年产量不小于8万件时,100()837C x x x=+-(万元).每件产品售价为7元,假设小王生产的商品当年全部售完.(1)写出年利润()f x (万元)关于年产量x (万件)的函数解析式(注:年利润=年销售收入-固定成本-可变成本);(2)年产量x 为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【答案】(1)2142,083()10035,8x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩;(2)年产量x 为10万件时,小王在这一商品的生产中所获利润最大,最大利润是15万元.【解析】(1)由题意列出解析式,再写成分段函数的结构;(2)分别求出每一段的最大值,即可得到利润的最大值,及取最大值时的产量.【详解】(1)当8x ≤时,22113423)3(72f x x x x x x ⎛⎫=--=-⎪⎭++⎝- ,当8x >时,21007()10083375x x x x x f x ⎛⎫+--+ ⎪⎛⎫=⎝=-- ⎝⎭⎭⎪,所以2142,083()10035,8x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩(2)当8x ≤时,()221142633)1(0f x x x x +-=--=-+,即6x =时,()21661013)0(6f +-==-最大;当8x >时,因为10020x x +≥=,所以10020x x ⎛⎫-+≤- ⎪⎝⎭,所以1003515()f x x x ⎛⎫- =+≤⎪⎝⎭,当且仅当x =10时,5(1)f x =所以max ()15f x =,此时x =10.即年产量x 为10万件时,小王在这一商品的生产中所获利润最大,最大利润是15万元.1.(2020·全国高考真题(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A .10名B .18名C .24名D .32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者9001850=名.练真题故选:B2.(2021·全国高考真题(文))青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( 1.259≈)A .1.5B .1.2C .0.8D .0.6【答案】C【解析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解.【详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-,则10.110110100.81.259V --===≈≈.故选:C.3.(2020·全国高考真题(文))Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I Kt --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3)A .60B .63C .66D .69【答案】C【解析】()()0.23531t KI t e --=+ ,所以()()0.23530.951t KI t K e **--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选:C.4.(2020·山东海南省高考真题)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.69 1.80.380.38t =≈≈天.故选:B.5.(2019·全国高考真题(理))2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:.设,由于的值很小,因此在近似计算中,则r 的近似值为ABCD【答案】D【解析】由,得2L 2L 2L 121223()()M M M R r R r r R +=++r R α=α34532333(1)ααααα++≈+r Rα=r R α=因为,所以,即,解得,所以6.(2018·上海高考真题)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=30 , 0<x ≤302x +1800x―90 , 30<x <100 (单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.【答案】(1) x ∈(45 , 100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析.【解析】(1)由题意知,当30<x <100时,f (x )=2x +1800x ―90>40,即x 2―65x +900>0,解得x <20或x >45,∴x ∈(45 , 100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x ≤30时,g (x )=30⋅x %+40(1―x%)=40―x10;当30<x <100时,g (x )=2x +180x ―90⋅x %+40(1―x%)=x 250―1310x +58;121223()()M M M R r R r r R +=++12122222(1)(1)M M M R R R ααα+=++543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++3α=3.r R α==∴g(x)=40―x101310x+58;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.。

高中数学函数应用练习题及参考答案

高中数学函数应用练习题及参考答案

高中数学函数应用练习题及参考答案一、选择题1. 下列函数中,不是一次函数的是()。

A. f(x) = 2x + 3B. f(x) = x^2C. f(x) = 3x - 1D. f(x) = 4 + x2. 已知函数 f(x) = 2x - 1,以下说法正确的是()。

A. 当 x = 0 时,f(x) = -1B. 当 f(x) = 2 时,x = 1C. 当 f(x) = 0 时,x = 1/2D. 当 f(x) = 1 时,x = 1/23. 若函数 f(x) = ax^2 + bx + c 是一个二次函数,其中a ≠ 0,则二次函数的图像是()。

A. 横坐标轴上的一条直线B. 一条抛物线的顶点在原点C. 一条抛物线开口向上D. 一条抛物线开口向下4. 已知函数 f(x) = x^2 + 2x - 3,求函数图像与 x 轴的交点个数为()。

A. 0B. 1C. 2D. 35. 如果 f(x) = 2x - 1,且 g(x) = 3x + 2,则函数复合 f(g(x)) 的解析式为()。

A. 6x + 1B. 6x + 5C. 5x + 6D. 5x - 6二、填空题1. 函数 f(x) = 3x^2 + 2x - 1 的对称轴为 _________。

2. 函数 f(x) = 4x^2 - 5x + 2 的顶点坐标为 _________。

3. 若函数 f(x) = ax^2 + bx + c 的图像与 x 轴有两个交点,则判别式Δ = _________。

4. 函数 f(x) = |x - 2| 的图像在 x 轴上的截距为 _________。

5. 函数 f(x) = log2(x - 1) 是定义域为 _________ 的对数函数。

三、计算题1. 已知函数 f(x) = 2x + 3,求 f(4) 的值。

2. 已知函数 f(x) = 3x^2 - 2x + 1,求解 f(x) = 0 的根。

高考数学函数与方程的应用题选择题

高考数学函数与方程的应用题选择题

高考数学函数与方程的应用题选择题1. 设函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取最小值,则f(x)在区间[-1, 1]上的最大值是多少?2. 设函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取最大值,则f(x)在区间[-1, 1]上的最小值是多少?3. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取极小值,则f(x)在区间[-1, 1]上的极小值是多少?4. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取极大值,则f(x)在区间[-1, 1]上的极大值是多少?5. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取最小值,且在x=2时取最大值,则f(x)在区间[-1, 1]上的最大值是多少?6. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取最大值,且在x=2时取最小值,则f(x)在区间[-1, 1]上的最小值是多少?7. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取极小值,且在x=2时取极大值,则f(x)在区间[-1, 1]上的极大值是多少?8. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取极大值,且在x=2时取极小值,则f(x)在区间[-1, 1]上的极小值是多少?9. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

若f(x)在x=1时取最小值,且在x=2时取最大值,则f(x)在区间[-1, 1]上的最大值是多少?10. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

(完整版)高考数学历年函数试题及答案

(完整版)高考数学历年函数试题及答案

设(x )是定义在R 上的偶函数, 其图象关于直线x=1对称, 对任意x1,x2∈[0, ]都有 (Ⅰ)设);41(),21(,2)1(f f f 求 (Ⅱ)证明)(x f 是周期函数。

2.设函数(Ⅰ)判断函数)(x f 的奇偶性; (Ⅱ)求函数)(x f 的最小值.3. 已知函数(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中, 画出函数 在区间 上的图象4. (本小题满分12分)求函数 的最小正周期、最大值和最小值.5. (本小题满分12分)已知在R上是减函数, 求的取值范围.6.△ABC的三个内角为A.B.C, 求当A为何值时, 取得最大值, 并求出这个最大值7.设a为实数, 函数在和都是增函数, 求a的取值范围.8.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的x 都有f(x)<c2成立, 求c的取值范围.9.已知函数 , .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数 在区间 内是减函数, 求 的取值范围.10.在 中, 内角A.b 、c 的对边长分别为a 、b 、c.已知 , 且 , 求b.11. 已知函数42()36f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线 上, 若该曲线在点P 处的切线 通过坐标原点, 求 的方程12.设函数 图像的一条对称轴是直线 (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13.已知二次函数 的二次项系数为 , 且不等式 的解集为 (Ⅰ)若方程 有两个相等的根, 求 的解析式; (Ⅱ)若 的最大值为正数, 求 的取值范围解答: 2.解: (Ⅰ) 由于),2()2(),2()2(f f f f -≠-≠- 故 既不是奇函数, 也不是偶函数.(Ⅱ)⎪⎩⎪⎨⎧<+-≥-+=.2,1,2,3)(22x x x x x x x f由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433.解)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数 的最小正周期为π, 最大值为 .(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是4.解:.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数 的最小正周期是 , 最大值是 最小值是 5.解: 函数f(x)的导数: .(Ⅰ)当 ( )时, 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以, 当 是减函数;(II )当 时, =由函数 在R 上的单调性, 可知当 时, )是减函数;(Ⅲ)当 时, 在R 上存在一个区间, 其上有 所以, 当 时, 函数 不是减函数. 综上, 所求 的取值范围是 6.解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A 当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π 7.解:),1(23)('22-+-=a ax x x f其判别试.81212124222a a a -=+-=∆ (ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f a x x所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f 所以 ,232>a即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈ 当.)(,0)(',),(21为减函数时x f x f x x x <∈ 依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a - 解得 1≤.26<a 由2x ≤1得,232a -≤3,a - 解得 .2626<<-a 从而 .)26,1[∈a 综上, a 的取值范围为 即 ∈a ).,1[]26,(+∞--∞ 9.解: (1) 求导: 当 时, , , 在 上递增; 当 , 由 求得两根为 即 在 递增, 递减,⎫+∞⎪⎪⎝⎭递增; (2)(法一)∵函数 在区间 内是减函数, 递减, ∴ , 且 , 解得: 。

高考数学函数应用题

高考数学函数应用题

高考数学函数应用题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22函数应用题【热点聚焦】最近几年的高试题,加强了对函数应用题的考查,主要的是将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义等等.【基础知识】运用函数概念建立模型研究解决某些实际问题的过程和方法:1)建立实际问题中的变量之间的函数关系,从而将实际问题转化为函数问题; 2)运用所学知识研究函数问题得到函数问题的解答;3)将函数问题的解翻译或解释成实际问题的解,从而解决实际问题.根据收集到的数据的特点建立函数模型,解决实际问题的基本过程:【课前训练】1.老师今年用7200元买一台笔记本.电子技术的飞速发展,计算机成本不断降低,每隔一年计算机的价格降低三分之一.三年后老师这台笔记本还值( )A .7200×(31)3元B .7200×(32)3元C .7200×(31)2元 D .7200×(32)2元 2.化学上常用pH 来表示溶液酸碱性的强弱,pH =-1g {c (H +)},其中f (H+)表示溶液中H +的浓度.若一杯胡萝卜汁的c (H +)=1×10-5mo l/L ,则这杯胡萝卜汁的pH 是( ) A .2B .3C .4D .53.如果某林区的森林蓄积量每年平均比上一年增长%,那么经过x 年可以增长到原来的y 倍,则函数y =f (x )的图象大致为图中的( ) .4.邮局规定,邮寄包裹,在5千克内每千克5元,超过5千克按每千克3元收费,邮费与邮寄包裹重量的函数关系式为____.5.某工厂八年来某种产品总产量C 与时间t (年)的函数关系如图所示,下列四种说法:(1)前三年中产量增长的速度越来越快;(2)前三年中产量增长的速度越来越慢;(3)三年后,这种产品停止生产了; (4)第三年后,年产量保持不变. 其中说法正确的是____.图2图1【试题精析】【例1】(2007年上海春季高考试题)某人定制了一批地砖. 每块地砖 (如图1所示)是边长为4.0米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形EFGH.(1) 求证:四边形EFGH是正方形;(2) FE、在什么位置时,定制这批地砖所需的材料费用最省【例2】(2003北京春)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少【评述】本题贴近生活.要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决.【例3】(2000全国卷)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图2—10中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图2—10中(2)的抛物线表示.(1)写出图中(1)表示的市场售价与时间的函数关系式P=f(t);写出图中(2)表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大(注:市场售价和种植成本的单位:元/102,kg,时间单位:天)3344【评述】本题主要考查由函数图象建立函数关系式和求函数最大值的问题.考查运用所学知识解决实际问题的能力.【例4】(2001上海卷)用水清洗一堆蔬菜上残留的农药.对用一定量的水清洗一...次.的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的21,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次....以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f (x ). (1)试规定f (0)的值,并解释其实际意义;(2)试根据假定写出函数f (x )应该满足的条件和具有的性质; (3)设f (x )=211x+,现有a (a >0)单位量的水,可以清洗一次,也 可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.【评述】本题主要考查运用所学数学知识和方法解决实际问题的能力.以及函数概念、性质和不等式证明的基本方法.【例5】据世界人口组织公布,地球上的人口在公元元年为亿,1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,到1999年底,地球上的人口数达到了60亿.请你根据20世纪人口增长规律推测,到哪年世界人口将达到100亿到2100年地球上将会有多少人口【例6】(2007年襄樊市调研试题)通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设)(t f 表示学生注意力随时间t (分钟)的变化规律()(t f 越大,表明学生注意力越集中),经过实验分析得知:⎪⎩⎪⎨⎧≤<+-≤<≤<++-=40203807201024010010024)(2t t t t t t t f(1)讲课开始后多少分钟,学生的注意力最集中能持续多少分钟(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中55(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目【针对练习】1.(2007年襄樊市调研试题)用清水漂洗衣服,假定每次能洗去污垢的43,若要使存留的污垢不超过原有的1%,则至少要漂洗( ) A .3次B .4次C .5次D .6次2.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是 ( ) A y =2x (x ∈N *) =2x (x ∈N *) =2x +1(x ∈N *) =log 2x (x ∈N *)3.对山东省某县农村抽样调查,结果如下:电冰箱拥有率49%,电视机拥有率85%,洗衣机拥有率44%,至少拥有上述三种家用电器中两种以上的占63%,三种电器齐全的占25%,那么一种电器也没有的相对贫困户所占比例为 ( )% % % D.资料不全,难以判断4.北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小蜥蜴体长15cm ,体重15g ,问:当小蜥蜴长到体长为20cm 时,它的体重大约是( ) A .20gB .25gC .35gD .40g5.向高为H 的水瓶中注水,注满为止,如果注水量y 与水深入的函数关系的图象如右图所示,那么水瓶的形状是……( )6.1999年11月1日起,全国储蓄存款征收利息税,利息税的税率为20%,即储蓄利息的20%由各银行储蓄点代扣代缴,某人在1999年11月l日存入人民币1万元,存期2年,年利率为%,则到期可净得本金和利息总计____元.7.已知函数f(x)的图象如右图,试写出一个可能的解析式____.8.根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP (GDP是指国内生产总值)4035亿元,2000年上海市GDP预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在%.若GDP与人口均按这样的速度增长,则要使本市年人均(GDP达到或超过1999年的2倍,至少需____年.(按1999年本市常住人口总数约1300万计算)9.我国水资源相对贫乏,某市节水方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量pm3时,只付基本费8元和每户每月定额损耗费q元;若用水量超过pm3时,除了付上述的基本费和损耗外,超过部分每m3付r元的超额费,已知每户每月的定额损耗不超过5元,该市一家庭某季度的用水量支付如下表:月份用水量(m3)水费(元)1992151932233(1)写出水费y(元)与用水量x(m3)的函数关系式(这里的p,q,r 可作为已知数);(2)根据数据表,求p,q,r的值.10.某公司生产某种产品的固定成本为150万元,而每件产品的可变成本为2500元,每件产品的售价为3500元.(1)分别求出总成本y1、单位成本y2、销售总收入y3、总利润y4与总产量x的函数解析式;(2)根据所求函数的图象,对这个公司的经济效益作出简单分析6677第七节参考答案【课前训练】1.答案:B 解析:此题关键是读懂每隔一年价格降低三分之一的含义.设原价为1,一年后降价为32,再过一年降价为32×32,……,三年后降价为32×32×32=(32)3,故选B . 2.答案:D 3.答案:D 解析:y =(1+%)x ,如图D4.答案:f (x )=⎩⎨⎧≤)5(3)5(5>x xx x5.答案:(2)(3)(4) 解析:从图形得知前三年的总产量增长趋势是先快后慢,所以(2)是正确的;三年后总产量不变,说明没有新的产量增加,所以(3)或(4)都是正确的. 【试题精析】【例1】 (1) 证明:图2是由四块图1所示地砖绕点C 按顺时针旋转 90后得到,△CFE 为等腰直角三角形,∴ 四边形EFGH 是正方形.(2) 解:设x CE =,则x BE -=4.0,每块地砖的费用为W ,制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a 、2a 、a (元),则a x x a x a x W ⎥⎦⎤⎢⎣⎡-⨯⨯--+⨯-⨯⨯+⋅=)4.0(4.0212116.02)4.0(4.02132122()24.02.02+-=x x a []4.00,23.0)1.0(2<<+-=x x a .由0>a ,当1.0=x 时,W 有最小值,即总费用为最省. 答:当1.0==CF CE 米时,总费用最省.【例2】解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600- =12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为:f (x )=(100-503000-x )(x -150)-503000-x ×50,整理得:f (x )=-502x +162x -21000=-501(x -4050)2+307050.所以,当x =4050时,f (x )最大,其最大值为f (4050)=307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元.【例3】解:(1)由图(1)可得市场售价与时间的函数关系为f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000,300t t t t 由图(2)可得种植成本与时间的函数关系为g (t )=2001(t -150)2+100,0≤t ≤300.88(2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,2175********t t t t t t当0≤t ≤200时,配方整理得h (t )=-2001(t -50)2+100,所以,当t =50时,h (t )取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h (t )=-2001(t -350)2+100,所以,当t =300时,h (t )取得区间(200,300]上的最大值.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.【例4】解:(1)f (0)=1表示没有用水洗时,蔬菜上的农药量将保持原样.(2)函数f (x )应该满足的条件和具有的性质是:f (0)=1,f (1)=21, 在[0,+∞)上f (x )单调递减,且0<f (x )≤1. (3)设仅清洗一次,残留的农药量为f 1=211a +,清洗两次后,残留的农药量为f 2=2222)4(16)2(11a a +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+,则f 1-f 2=22222222)4)(1()8()4(1611a a a a a a ++-=+-+. 于是,当a >22时,f 1>f 2;当a =22时,f 1=f 2;当0<a <22时,f 1<f 2. 因此,当a >22时,清洗两次后残留的农药量较少;当a =22时,两种清洗方法具有相同的效果;当0<a <22时,一次清洗残留的农药量较少.【例5】解:题目中的数据均为大致时间,粗略估计的量,带有较多的误差.因此寻找人口增长规律时不需要,也不应该过分强调规律与数据完全吻合.数据中20世纪以前的人口资料更加粗略,况且人口的预报准确程度主要受到20世纪人口增长规律的影响,因而组建预报模型时,不必考虑20世纪以前的数据资料,在20世纪人口增长速度是逐渐变快的,因此用直线变化(匀速增长)建模做预报是不恰当的.做为人口增长的模型,一般可以使用指数关系N (t )=ae ,其中N (t )为t 时人口数,a 、r 为参数.将N (t )=ae n 式取对数可得ln N (t )=ln a +r t ,它是关于t 的线性模型,这里ln为以e 为底的对数.利用1930~1999年的数据可以得到ln a =-,r =,a =33.28-e =×10-13.模型为N (t )=×10-13t e 0162.0(亿)(1930≤t ≤1999).模型的拟合效果如下表(人口单位:亿)拟合效果较好,可用于预报.99令N (t )=100,可求出t =,故可知如果照此规律大约在2031年世界人口将达到100亿,而于2100年世界人口将达到307亿.【例6】(1)解:当0<t ≤10时,244)12(10024)(22+--=++-=t t t t f 是增函数,且240)10(=f当20<t ≤40时,3807)(+-=t t f 是减函数,且240)20(=f 所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟(2)解:205)25(195)5(==f f ,,所以,讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中(3)当0<t ≤10时,令18010024)(2=++-=t t t f 得:4=t当20<t ≤40时,令1803807)(=+-=t t f 得:57.28≈t则学生注意力在180以上所持续的时间2457.24457.28>=-所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题。

2023高考数学函数应用练习题及答案

2023高考数学函数应用练习题及答案

2023高考数学函数应用练习题及答案一、选择题1. 已知函数 f(x) = 2x + 3,其中 x 取任意实数,则 f(x) 的值域是:A. (0, +∞)B. (-∞, +∞)C. (3, +∞)D. (-∞, 3)答案:B2. 设函数 f(x) = 3x^2 + 2x + 1,g(x) = 2x - 1,则 f(g(x)) 的解析式为:A. 6x^2 + 3xB. 3x^2 + 4x - 1C. 6x^2 + 2x - 1D. 6x^2 + 4x + 1答案:C3. 若函数 f(x) = 2^(x+1),g(x) = log2(x-3),则满足条件 f(g(8)) = 1 的实数 x 的取值是:A. 0B. 1C. 2D. 3答案:D二、填空题1. 函数 f(x) = 2^x 的反函数是 ___________。

答案:log2(x)2. 当 x > 0 时,方程 e^(2x) = 1 的解为 ___________。

答案:x = 03. 设函数 f(x) = ax^2 + bx + c,其中a ≠ 0,若 f(1) = 3,f(2) = 9,则f(3) = ___________。

答案:21三、解答题1. 已知函数 f(x) = log2(x),求 f(4) 的值。

解析:由 f(x) = log2(x) 的定义可知,f(4) 表示底数为 2,值为 4 的对数,即 2 的几次方等于 4。

设 f(4) = a,则可得 2^a = 4。

由指数与对数的定义知,2^2 = 4,因此 a = 2。

答案:f(4) = 22. 设函数 g(x) = x^3 + 2x - 1,求 g(-1) 的值。

解析:将 x = -1 代入函数 g(x) = x^3 + 2x - 1,可得 g(-1) = (-1)^3 + 2(-1) - 1 = -1 + (-2) - 1 = -4。

答案:g(-1) = -43. 已知函数 f(x) = a^x,若 a 的取值范围为正实数,则当 a > 1 时,f(x) 在何处取得最小值?解析:对于函数 f(x) = a^x,当 a > 1 时,随着 x 的增大,f(x) 的取值也会增大。

函数高考真题及答案及解析

函数高考真题及答案及解析

函数高考真题及答案及解析高考是每个学生都会经历的一场重要考试,而函数作为数学考试的重要一部分,往往也是考生们头疼的问题之一。

本文将带领大家回顾一些函数相关的高考真题,并附上详细的解析,帮助大家更好地掌握函数的知识。

问题一:已知函数f(x) = x^2 + 3x + 2,求f(2)的值。

解析:要求f(2)的值,就是将x替换为2,带入函数进行计算。

f(2) = 2^2 + 3(2) + 2 = 4 + 6 + 2 = 12所以f(2)的值为12。

问题二:已知函数g(x) = |x-1|,求g(-2)的值。

解析:g(x) = |x-1|表示的是x-1的绝对值。

要求g(-2)的值,就是将x替换为-2,带入函数进行计算。

g(-2) = |-2-1| = |-3| = 3所以g(-2)的值为3。

问题三:已知函数h(x) = 2x^2 + 5x - 3,求h(3)的值。

解析:同样,要求h(3)的值,就是将x替换为3,带入函数进行计算。

h(3) = 2(3)^2 + 5(3) - 3 = 2(9) + 15 - 3 = 18 + 15 - 3 = 30所以h(3)的值为30。

通过以上三个问题的解析,我们可以看出,高考函数题往往涉及到对函数表达式的替换和计算。

这种题型相对简单,只需要将给定的值代入函数进行计算即可。

下面我们再来看一些更加复杂的函数题。

问题四:已知函数P(x)满足P(x) = 2P(x-1) + 1,且P(0) = 1,求P(3)的值。

解析:根据题目所给条件,P(x)等于2P(x-1)加1。

初始条件是P(0)等于1。

要求P(3)的值,就需要使用递推的方式来解决这个问题。

首先,计算P(1)的值:P(1) = 2P(0) + 1 = 2(1) + 1 = 3接下来,计算P(2)的值:P(2) = 2P(1) + 1 = 2(3) + 1 = 7最后,计算P(3)的值:P(3) = 2P(2) + 1 = 2(7) + 1 = 15所以P(3)的值为15。

SXA375高考数学必修_函数应用题举例10

SXA375高考数学必修_函数应用题举例10

函数应用题解析函数的应用问题,是常见的数学知识的应用题,经常涉及物价、路程、产值、环保等现实生活中的实际问题,也可涉及角度、面积、体积、造价的最优化问题.在解此类问题的过程中,首先需要在实际的情境中去理解、分析所给的一系列数据,舍弃与解题无关的因素,抽象转化为数学模型.一、二次函数类型应用问题例1 某工厂生产某种产品,固定成20000元,每生产一件产品成本增加100元,已知总收益R(总收益指工厂出售产品的全部收入,它是总成本与总利润的和,单位:元)是年产量Q(单位:件)的函数,满足关系式R =)(Q f =2400,(0400)80000.(400)Q Q Q Q ⎧-≤≤⎨>⎩,求每年生产多少件产品时,总利润最大?并求出此时的最大利润.解:因总利润= 总收益-总成本,所以总利润函数为:F(Q) =21400(20000100),(0400)280000(20000100).(400)Q Q Q Q Q Q ⎧--+≤≤⎪⎨⎪-+>⎩=2130020000),(0400)210060000.(400)Q Q Q Q Q ⎧-+-≤≤⎪⎨⎪-+>⎩当0≤Q ≤400时,配方整理得:F(Q) =-21(Q -300)2+ 25000,所以当Q =300时,F(Q)在区间[0,400]上取得最大值25000.当Q >400时,F(Q) =60000-100Q <20000,综上可得,每年生产300件产品时,总利润最大,最大利润为25000元.此例属于利用现成模型,即题设中已给定的数学模型需对问题进行定量分析的数学应用题.套用了这些现成的公式后,就是一道纯粹的数学问题了.二、分段函数类型应用问题求分段函数的最值,应先求出函数在各段上的最值,然后加以比较,其中最大(小)者就是分段函数在整个定义域上的最大(小)值.例2 某家庭今年一月份,二月份,三月份煤气用量支付费如下表所示:该市煤气收费的方法是:煤气费= 基本费 + 超额费 + 保险费 .若每月用气量不超过最低限定Am 3,只付基本费3元和每户每月的定额保险费C 元;若用气量超过Am 3时,超过部分没立方米(m 3)付B 元.又知保险费不超过5元.根据上面的表格求A 、B 、C .解:设每月煤气用量为xm 3,支付费用为y 元,根据题设条件得:y =3,(0)(1)3().()(2)C x A B x A C x A +≤≤⎧⎨+-+>⎩由0<C ≤5,有3 + C ≤8,从表格中看出此家庭二、三月份的费用均大于8,故用气量25m 3、35m 3均大于最低限度Am 3,所以将x = 25,x = 35分别代入⑵得:⎩⎨⎧=+-+=+-+.19)35(3,14)25(3C A B C A B ⇒⎩⎨⎧+==.32,5.0C A B 再分析一月份的煤气用量是否超过最低限度,不妨设A <4,将x = 4代入⑵,得: 3 + 0.5[4-(2C + 3)] + C = 4,并由此得3.5 = 4,矛盾. 所以A ≥4,即一月份付费方式为⑴,∴3 + C = 4,即C = 1. 从而A = 5,B = 0.5,C = 1.评析:此类问题必须用分段函数表示,再分析一、二、三月份分别用哪一段上的解析式,所用分析、推断、验证等一系列方法完成.评析:本题结合国家征收个人工资、薪金所得税问题,给出了一个由一次函数构成的分段函数的应用实例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数应用题【热点聚焦】最近几年的高试题,加强了对函数应用题的考查,主要的是将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义等等.【基础知识】运用函数概念建立模型研究解决某些实际问题的过程和方法:1)建立实际问题中的变量之间的函数关系,从而将实际问题转化为函数问题;2)运用所学知识研究函数问题得到函数问题的解答;3)将函数问题的解翻译或解释成实际问题的解,从而解决实际问题.根据收集到的数据的特点建立函数模型,解决实际问题的基本过程:【课前训练】1.老师今年用7200元买一台笔记本.电子技术的飞速发展,计算机成本不断降低,每隔一年计算机的价格降低三分之一.三年后老师这台笔记本还值( ) A.7200×()3元 B.7200×()3元 C.7200×()2元 D.7200×()2元2.化学上常用pH来表示溶液酸碱性的强弱,pH=-1g{c(H +)},其中f(H+)表示溶液中H+的浓度.若一杯胡萝卜汁的c(H +)=1×10-5mo l/L,则这杯胡萝卜汁的pH是( ) A.2 B.3 C.4 D.53.如果某林区的森林蓄积量每年平均比上一年增长10.4%,那么经过x 年可以增长到原来的y倍,则函数y=f(x)的图象大致为图中的( ) .4.邮局规定,邮寄包裹,在5千克内每千克5元,超过5千克按每千克3元收费,邮费与邮寄包裹重量的函数关系式为____.5.某工厂八年来某种产品总产量C与时间t(年)的函数关系如图所示,下列四种说法: (1)前三年中产量增长的速度越来越快; (2)前三年中产量增长的速度越来越慢; (3)三年后,这种产品停止生产了; (4)第三年后,年产量保持不变. 其中说法正确的是____.【试题精析】图1【例1】(2007年上海春季高考试题)某人定制了一批地砖. 每块地砖(如图1所示)是边长为米的正方形,点E、F分别在边BC和CD上,△、△和四边形均由单一材料制成,制成△、△和四边形的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形.(1) 求证:四边形是正方形;图2(2) 在什么位置时,定制这批地砖所需的材料费用最省?【例2】(2003北京春)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【评述】本题贴近生活.要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决.【例3】(2000全国卷)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图2—10中(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图2—10中(2)的抛物线表示.(1)写出图中(1)表示的市场售价与时间的函数关系式P=f(t);写出图中(2)表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102,kg,时间单位:天)【评述】本题主要考查由函数图象建立函数关系式和求函数最大值的问题.考查运用所学知识解决实际问题的能力.【例4】(2001上海卷)用水清洗一堆蔬菜上残留的农药.对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).(1)试规定f(0)的值,并解释其实际意义;(2)试根据假定写出函数f(x)应该满足的条件和具有的性质;(3)设f(x)=,现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.【评述】本题主要考查运用所学数学知识和方法解决实际问题的能力.以及函数概念、性质和不等式证明的基本方法.【例5】据世界人口组织公布,地球上的人口在公元元年为2.5亿,1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,到1999年底,地球上的人口数达到了60亿.请你根据20世纪人口增长规律推测,到哪年世界人口将达到100亿?到2100年地球上将会有多少人口?【例6】(2007年襄樊市调研试题)通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生注意力随时间t(分钟)的变化规律(越大,表明学生注意力越集中),经过实验分析得知: (1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中? (3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?【针对练习】1.(2007年襄樊市调研试题)用清水漂洗衣服,假定每次能洗去污垢的,若要使存留的污垢不超过原有的1%,则至少要漂洗( )A.3次B.4次C.5次D.6次2.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是( )A y=2x(x∈N*) B.y=2x(x∈N*)C.y=2x+1(x∈N*)D.y=log2x(x∈N*)3.对山东省某县农村抽样调查,结果如下:电冰箱拥有率49%,电视机拥有率85%,洗衣机拥有率44%,至少拥有上述三种家用电器中两种以上的占63%,三种电器齐全的占25%,那么一种电器也没有的相对贫困户所占比例为 ( )A.35%B.10%C.15%D.资料不全,难以判断4.北京电视台每星期六晚播出《东芝动物乐园》,在这个节目中曾经有这样一个抢答题:小蜥蜴体长15cm,体重15g,问:当小蜥蜴长到体长为20cm时,它的体重大约是( ) A.20g B.25g C.35g D.40g5.向高为H的水瓶中注水,注满为止,如果注水量y与水深入的函数关系的图象如右图所示,那么水瓶的形状是……( )6.1999年11月1日起,全国储蓄存款征收利息税,利息税的税率为20%,即储蓄利息的20%由各银行储蓄点代扣代缴,某人在1999年11月l 日存入人民币1万元,存期2年,年利率为2.25%,则到期可净得本金和利息总计____元.7.已知函数f(x)的图象如右图,试写出一个可能的解析式____.8.根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP是指国内生产总值)4035亿元,2000年上海市GDP预期增长9%,市委、市府提出本市常住人口每年的自然增长率将控制在0.08%.若GDP与人口均按这样的速度增长,则要使本市年人均(GDP 达到或超过1999年的2倍,至少需____年.(按1999年本市常住人口总数约1300万计算) 9.我国水资源相对贫乏,某市节水方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量pm3时,只付基本费8元和每户每月定额损耗费q元;若用水量超过pm3时,除了付上述的基本费和损耗外,超过部分每m3付r元的超额费,已知每户每月的定额损耗不超过5元,该市一家庭某季度的用水量支付如下表:月份用水量(m3)水费(元)1992151932233 (1)写出水费y(元)与用水量x(m3)的函数关系式(这里的p,q,r可作为已知数); (2)根据数据表,求p,q,r的值.10.某公司生产某种产品的固定成本为150万元,而每件产品的可变成本为2500元,每件产品的售价为3500元.(1)分别求出总成本y1、单位成本y2、销售总收入y3、总利润y4与总产量x的函数解析式;(2)根据所求函数的图象,对这个公司的经济效益作出简单分析第七节参考答案【课前训练】1.答案:B 解析:此题关键是读懂每隔一年价格降低三分之一的含义.设原价为1,一年后降价为,再过一年降价为×,……,三年后降价为××=()3,故选B.2.答案:D 3.答案:D 解析:y=(1+0.104%)x,如图D 4.答案:f(x)=5.答案:(2)(3)(4) 解析:从图形得知前三年的总产量增长趋势是先快后慢,所以(2)是正确的;三年后总产量不变,说明没有新的产量增加,所以(3)或(4)都是正确的.【试题精析】【例1】(1) 证明:图2是由四块图1所示地砖绕点按顺时针旋转后得到,△为等腰直角三角形,四边形是正方形.(2) 解:设,则,每块地砖的费用为,制成△、△和四边形三种材料的每平方米价格依次为3a、2a、a (元),则.由,当时,有最小值,即总费用为最省.答:当米时,总费用最省.【例2】解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为: =12,所以这时租出了88辆车.(2)设每辆车的月租金定为x元,则租赁公司的月收益为:f(x)=(100-)(x-150)-×50,整理得:f(x)=-+162x-21000=-(x -4050)2+307050.所以,当x=4050时,f(x)最大,其最大值为f(4050)=307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元.【例3】解:(1)由图(1)可得市场售价与时间的函数关系为f(t)=由图(2)可得种植成本与时间的函数关系为g(t)=(t-150)2+100,0≤t≤300.(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=当0≤t≤200时,配方整理得h(t)=-(t-50)2+100,所以,当t =50时,h(t)取得区间[0,200]上的最大值100;当200<t≤300时,配方整理得h(t)=-(t-350)2+100,所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.【例4】解:(1)f(0)=1表示没有用水洗时,蔬菜上的农药量将保持原样.(2)函数f(x)应该满足的条件和具有的性质是:f(0)=1,f(1)=,在[0,+∞)上f(x)单调递减,且0<f(x)≤1.(3)设仅清洗一次,残留的农药量为f1=,清洗两次后,残留的农药量为f2=,则f1-f2=.于是,当a>2时,f1>f2;当a=2时,f1=f2;当0<a<2时,f1<f2.因此,当a>2时,清洗两次后残留的农药量较少;当a=2时,两种清洗方法具有相同的效果;当0<a<2时,一次清洗残留的农药量较少.【例5】解:题目中的数据均为大致时间,粗略估计的量,带有较多的误差.因此寻找人口增长规律时不需要,也不应该过分强调规律与数据完全吻合.数据中20世纪以前的人口资料更加粗略,况且人口的预报准确程度主要受到20世纪人口增长规律的影响,因而组建预报模型时,不必考虑20世纪以前的数据资料,在20世纪人口增长速度是逐渐变快的,因此用直线变化(匀速增长)建模做预报是不恰当的.做为人口增长的模型,一般可以使用指数关系N(t)=ae,其中N(t)为t时人口数,a、r为参数.将N(t)=ae n式取对数可得ln N(t)=ln a+r t,它是关于t的线性模型,这里ln为以e为底的对数.利用1930~1999年的数据可以得到ln a=-28.33,r=0.0162,a==4.97×10-13.模型为N(t)=4.97×10-13(亿)(1930≤t≤1999).模型的拟合效果如下表(人口单位:亿)年代19301960197419871999人口2030405060数拟合19.4931.7039.7849.1156.61数 拟合效果较好,可用于预报.令N(t)=100,可求出t=2030.84,故可知如果照此规律大约在2031年世界人口将达到100亿,而于2100年世界人口将达到307亿.【例6】(1)解:当0<t≤10时,是增函数,且当20<t≤40时,是减函数,且所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟(2)解:,所以,讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中(3)当0<t≤10时,令得: 当20<t≤40时,令得: 则学生注意力在180以上所持续的时间所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题。

相关文档
最新文档