轴对称与中心对称专题复习

合集下载

轴对称图形与中心对称复习

轴对称图形与中心对称复习

轴对称图形与中心对称复习一、轴对称图形轴对称图形是指能够沿着一个轴线折叠后两边完全重合的图形。

在平面几何中,轴对称图形具有以下特点:1.轴线对称性:轴对称图形具有一个轴线,该轴线对称地分割图形成两部分,两部分图形在轴线上的所有对应点完全重合。

2.对称点:轴对称图形的轴线上的每一个点都有一个对应点,称为对称点,对称点关于轴线对称。

3.对称性:轴对称图形的任意一点关于轴线对称的对应点也在图形中。

常见的轴对称图形包括正方形、长方形、圆形以及许多字母和数字等。

轴对称图形在日常生活和设计中广泛应用,具有美学和功能性的优点。

二、中心对称图形中心对称图形是指存在一个中心点,将图形绕该中心点旋转一定角度后重合的图形。

中心对称图形具有以下特点:1.中心对称性:中心对称图形具有一个中心点,该中心点的任意一条射线上的对称点与中心点距离相等,图形通过旋转保持对称。

2.对称点:中心对称图形的中心点对称地分割图形,对称点与中心点距离相等。

3.对称性:中心对称图形的任意一点关于中心点对称的对应点也在图形中。

常见的中心对称图形包括五角星、六角星、雪花等。

中心对称图形在艺术、布局设计等领域中具有重要的应用,给人以和谐、平衡的感觉。

三、轴对称与中心对称的异同轴对称和中心对称有许多相似之处,但也存在一些不同点。

相似之处:1.对称性:轴对称和中心对称图形都具有对称性,在空间上都有一种平衡的美感。

2.对称点:轴对称和中心对称图形都有对称点,关于轴线/中心点对称。

不同之处:1.轴线或中心点的位置:轴对称图形的轴线位于图形的一侧,将图形分割成两个镜像对称的部分;而中心对称图形的中心点位于图形的中心位置,图形旋转后能够实现重合。

2.对称方式:轴对称是通过沿轴线进行折叠实现对称,对称后左右两侧完全一致;中心对称是通过旋转实现对称,对称后图形相同角度旋转后完全一致。

四、应用实例1.建筑设计:轴对称和中心对称图形常用于建筑设计中,如对称的立面设计和室内布局,能够给人一种和谐、平衡的感觉。

考点知识梳理

考点知识梳理

轴对称与中心对称专题知识复习考点知识梳理考点一图形的轴对称1.轴对称图形如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.轴对称把一个图形沿着某一条直线翻折过去,如果它能够和另一个图形重合,那么这两个图形关于直线对称,两个图形关于直线对称也称轴对称.这条直线叫做对称轴.3.轴对称变换的基本性质(1)对应点所连的线段被对称轴垂直平分.(2)对应线段相等,对应角相等.4.轴对称和轴对称图形的区别轴对称涉及两个图形,是两个图形的位置关系;轴对称图形是对一个图形本身而言的.5.镜面对称原理(1)镜中的像与原来的物体轴对称.(2)镜子中的像改变了原来物体的左右位置,即像与物体左右位置互换考点二中心对称图形和中心对称1.在平面内,一个图形绕某个点旋转180°,能与原来的图形重合,这个图形叫做中心对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点.2.在平面内,一个图形绕某一定点旋转180°,它能够与另一个图形重合,就说这两个图形关于这个点成中心对称,这个点叫做对称中心,旋转后两个图形上能够重合的点叫做关于对称中心的对称点.3.中心对称的性质(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心平分;(2)关于中心对称的两个图形是全等图形;(3)点P(x,y)关于原点的对称点P′的坐标为(-x,-y).中考典例解析例1 (1)(2012·天津)下列标志中,可以看作是中心对称图形的是()(2)(2012·长沙)下列标志既是轴对称图形又是中心对称图形的是()(3)(2012·柳州)娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形【点拨】本题组考查轴对称图形、中心对称图形及对称轴的概念.【解答】(1)B A,C,D均为轴对称图形,只有B是中心对称图形,故此题选B.(2)A A既是轴对称图形,又是中心对称图形;B,D只是轴对称图形;C只是中心对称图形,故选A.(3)C圆的对称轴是过圆心的直线,有无数条;等边三角形的对称轴有3条,是各边中线所在的直线;矩形对称轴有2条,是对边中点所在的直线;等腰梯形有1条对称轴,是上下底中点所在的直线.例2 (1)(2012·潍坊)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形,则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)(2)(2012·遵义)在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有____________种.【点拨】(1)分别根据选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答案.(2)根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【解答】(1)C A若放入黑(3,7),白(5,3),则此时黑棋是轴对称图形,白棋也是轴对称图形;B若放入黑(4,7),白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形;C若放入黑(2,7),白(5,3),则此时黑棋不是轴对称图形,白棋是轴对称图形;D若放入黑(3,7),白(2,6),则此时黑棋是轴对称图形,白棋也是轴对称图形.(2)13如图所示:基础巩固训练1.如图,所给图形中是中心对称图形但不是轴对称图形的是()2.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()3.如图,在3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,方法有()A.1种B.2种C.3种D.4种4.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形5.某人在平面镜里看到的时间是12:01,此时实际时间是()A.12:01 B.10:51C.10:21 D.15:106.如图,请在下列三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)考点训练一、选择题(每小题4分,共48分)1.(2012·宁波)下列交通标志图案是轴对称图形的是()2.(2012·桂林)下面四个标志图是中心对称图形的是()3.(2012·上海)下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形4.(2012·青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()5.(2012·襄阳)下列图形中,是中心对称图形,但不是轴对称图形的是()6.小华在镜子中看到身后墙上的钟,你认为实际时间最接近8点的是()7.(2012·南通)线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为()A .(4,2)B .(-4,2)C .(-4,-2)D .(4,-2)8.如图,在矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .6【解析】由折叠知BE =EF =3,则EC =5.故CF =EC 2-EF 2=4.设AB =x ,则AF =x ,AC =x +4,∴x 2+82=(x +4)2.∴x =6.9.如图所示,将正方形纸片ABCD 折叠,使AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为( )A .15°B .30°C .45°D .60°【解析】∵四边形ABCD 是正方形,∴∠ABC =90°.由轴对称可知:∠DBF =∠CBF ,∠ABE =∠DBE ,∴∠EBF =12∠ABC =45°.10.如图所示,在△ABC 中,∠C =90°,BC =6,D 、E 分别在AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A.12B .2C .3D .4 【解析】由△ADE ∽△ABC 得DE BC =AE AC ,∴DE 6=13,∴DE =2.11.(2012·兰州)如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,则∠AMN +∠ANM 的度数为( )A .130°B .120°C .110°D .100°【解析】作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于M ,交CD 于N ,则A ′A ″即为△AMN 的周长的最小值.延长DA 到H ,∵∠DAB =120°, ∴∠HAA ′=60°,∴∠AA ′M +∠A ″=∠HAA ′=60°, ∵∠MA ′A =∠MAA ′,∠NAD =∠A ″,且∠MA ′A +∠MAA ′=∠AMN ,∠NAD +∠A ″=∠ANM ,∴∠AMN +∠ANM =∠MA ′A +∠MAA ′+∠NAD +∠A ″=2(∠AA ′M +∠A ″)=2×60°=120°. 故选B. 12.(2012·舟山)如图,已知△ABC 中,∠CAB =∠B =30°,AB =23,点D 在BC 边上,把△ABC 沿AD 翻折使AB 与AC 重合,得△AB ′D ,则△ABC 与△AB ′D 重叠部分的面积为( )A.3-32B.3-12C .3- 3 D.3-36【解析】过点D 作DE ⊥AB ′于点E ,过点C 作CF ⊥AB , ∵△ABC 中,∠CAB =∠B =30°,AB =23, ∴AC =BC ,∴AF =12AB =3,∴AC =AF cos ∠CAB =332=2,由折叠的性质得:AB ′=AB =23,∠B ′=∠B =30°,∵∠B ′CD =∠CAB +∠B =60°, ∴∠CDB ′=90°,∵B ′C =AB ′-AC =23-2,∴CD =12B ′C =3-1,B ′D =B ′C ·cos B ′=(23-2)×32=3-3,∴DE =CD ·B ′D B ′C =(3-1)(3-3)23-2=3-32,∴S 阴影=12AC ·DE =12×2×3-32=3-32.故选A.二、填空题(每小题4分,共20分)13.在平面直角坐标系中,点A (1,2)关于y 轴对称的点为点B (a,2),则a =-1.14.如图,D 是AB 边上的中点,将△ABC 沿过点D 的直线折叠,使点A 落在BC 边上的F 处.若∠B =50°,则∠BDF =80度.15.(2012·日照)如图①,正方形OCDE 的边长为1,阴影部分的面积记作S 1,如图②,最大圆半径r =1,阴影部分的面积记作S 2,则S 1< S 2(用“>”“<”或“=”填空).【解析】∵OE =1,∴由勾股定理得OD =2, ∴AO =2,∴AC =AO -CO =2-1,∴S 阴影=S 矩形ACDF =(2-1)×1=2-1,∵大圆面积=πr 2=π∴阴影部分面积=14π.∵2-1<14π,∴S 1<S 2,故答案为:<.16.(2012·吉林)如图,在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则S △ADOS △ABC= 14. (2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为 直角三角形.【解析】(1)△ABC 如图所示.点B 的坐标为(-1,2),点C 的坐标为(-1,-2),△ADO ∽△ABC , ∴S △ADO S △ABC=(AD AB )2=14. (2)点B 的坐标为(-a ,b ),点C 的坐标为(-a ,-b ),∴AB ⊥BC .∴△ABC 是直角三角形.17.如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点A 1处,已知OA =3,AB =1,则点A 1的坐标是 (32,32) .【解析】在矩形OABC 中,∠OAB =90°,OA =3,AB =1,∴tan ∠BOA =33,∴∠BOA =30°,∴∠A 1OA =2×30°=60°,过A 1作A 1D ⊥OA 于D ,在Rt △A 1DO 中,OA 1=OA =3,∴A 1D =OA 1·sin ∠A 1OA =3×32=32,OD =OA 1·cos ∠A 1OA =3×12=32,∴A 1(32,32).三、解答题(共32分)18.(12分)如图,已知:▱ABCD .(1)画出▱A 1B 1C 1D 1,使▱A 1B 1C 1D 1与▱ABCD 关于直线MN 对称; (2)画出▱A 2B 2C 2D 2,使▱A 2B 2C 2D 2与▱ABCD 关于点O 中心对称; (3)▱A 1B 1C 1D 1与▱A 2B 2C 2D 2是对称图形吗?若是,请在图上画出 对称轴或对称中心.19.(10分)(2012·乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l 对称的△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应);(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积. (1)解:如图,△A 1B 1C 1是△ABC 关于直线l 的对称图形. (2)解:由图得四边形BB 1C 1C 是等腰梯形,BB 1=4,CC 1=2, 高是4.∴S 四边形BB 1C 1C =12(BB 1+CC 1)×4=12×(4+2)×4=12.20.(10分)如图①,一张矩形纸片ABCD ,其中AD =8 cm ,AB =6 cm ,先沿对角线BD 对折,点C 落在点C ′的位置, BC ′交AD 于点G .(1)求证:AG =C ′G ;(2)如图②,再折叠一次,使点D 与点A 重合,得折痕EN , EN 交AD 于点M ,求EM 的长.(1)解:(1)证明:∵沿对角线BD 对折,点C 落在点C ′的位置, ∴∠A =∠C ′,AB =C ′D .∴在△GAB 与△GC ′D 中, ⎩⎪⎨⎪⎧∠A =∠C ′∠AGB =∠C ′GD AB =C ′D,∴△GAB ≌△GC ′D ,∴AG =C ′G .(2)∵点D 与点A 重合,得折痕EN ,∴DM =4 cm , ∵AD =8 cm ,AB =6 cm ,∴BD =10 cm ,∵EN ⊥AD ,AB ⊥AD ,∴EN ∥AB ,∴DN =12BD =5(cm),∴MN =3 cm ,由折叠的性质可知∠NDE =∠NDC ,∵EN ∥CD ,∴∠END =∠NDC ,∴∠END =∠NDC =∠NDE ,∴EN =ED ,设EM =x ,则ED =EN =x +3,由勾股定理得ED 2=EM 2+DM 2,即(x +3)2=x 2+42,解得x =76,即EM =76cm.。

【精编版】中考数学轴对称与中心对称专题复习讲义

【精编版】中考数学轴对称与中心对称专题复习讲义

苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。

下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。

中考专题复习第30课时 轴对称与中心对称

中考专题复习第30课时   轴对称与中心对称

第七单元┃ 图形与变换 探究4 轴对称与中心对称有关的作图问题
命题角度: 1.画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴(或对称 中心)的对称图形(或中心对称图形); 2.利用轴对称或中心对称的性质设计图案. 例 4 分别按下列要求解答: (1)在图 30-6①中,作出⊙O 关于直线 l 成轴对称的图形;(2)在图 30-6② 中,作出△ABC 关于点 P 成中心对称的图形.
图 30-3
回归教材 考点聚焦 考向探究
第七单元┃ 图形与变换
[解析] 根据 B、 C 两点的坐标及△ABC 的面积求出点 A 的坐 标,画出△ABC,再画出 A、B、C 三点关于 y 轴的对称点,连接 各对应点即可得到符合要求的图形. 解:(1)点 B、C 的坐标分别为 B(1,0),C(5,0),BC=4. 根据题意,可知等腰三角形 ABC 的高为 5,点 A 的横坐标为 3, 纵坐标为 5,即 A(3,5).在第一象限内画出△ABC,如图①.
区别
联系
中心对 (1)成中心对称的两个图形中,对应点的连线 平分 ;(2) 称的性 经过对称中心,且被对称中心________ 全等 质 成中心对称的两个图形________
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换
考 向 探 究
探究1 轴对称图形与中心对称图形的概念
命题角度: 1.直接判定一个图形是轴对称图形或中心对称图形; 2.画一个图形关于某条直线成轴对称的图形或关于某点成中心 对称的图形; 3.应用轴对称或中心对称的性质求线段长或角度.
图 30-10 (4)圆中的对称(如图 30-10②).
回归教材
考点聚焦
考向探究
第七单元┃ 图形与变换

高考数学复习考点题型专题讲解2 中心对称轴对称和周期性

高考数学复习考点题型专题讲解2 中心对称轴对称和周期性

高考数学复习考点题型专题讲解 第2讲 中心对称、轴对称与周期性7类【题型一】中心对称性质1:几个复杂的奇函数【典例分析】 已知函数()1e e 21x x xf x -=+-+,若不等式()()2121f ax f ax +-≥对x ∀∈R 恒成立,则实数a 的取值范围是() A .(]0,e B .[]0,e C .(]0,1 D .[]0,1【答案】D 【分析】构造函数()()12g x f x =-,判断函数的奇偶性与单调性,将所求不等式转化为()()2111222f ax f ax ⎡⎤-≥---⎢⎥⎣⎦,即()()221g ax g ax ≥-,再利用函数单调性解不等式即可. 【详解】 ()1e e 21x x xf x -=+-+Q , ()()1111e e e e 121212121x x x xx x x x f x f x ----∴+-=+-+-+=++=+++ 令()()12g x f x =-,则()()0g x g x +-=,可得()g x 是奇函数,又()()()2121e e e e e 21e 21ln 2ln 2++2122x x x x x xx x x x xg x --'⎛⎫''=+-== ⎪+⎝++--+⎭, 又利用基本不等式知e 2+1e xx ≥当且仅当1e e xx=,即0x =时等号成立;ln 2ln 214222x x ≤++当且仅当122xx=,即0x =时等号成立; 故()0g x '>,可得()g x 是单调增函数,由()()2121f ax f ax +-≥得()()()21111212222f ax f ax f ax ⎡⎤-≥--+=---⎢⎥⎣⎦, 即()()()21221g axg ax g ax ≥--=-,即2210axax -+≥对x ∀∈R 恒成立.当0a =时显然成立;当0a ≠时,需2440a a a >⎧⎨∆=-≤⎩,得01a <≤, 综上可得01a ≤≤,故选:D.【变式演练】1.对于定义在D 上的函数()f x ,点(),A m n 是()f x 图像的一个对称中心的充要条件是:对任意x D ∈都有()()22f x f m x n +-=,判断函数()32234f x x x x =+++的对称中心______.【答案】270327⎛⎫- ⎪⎝⎭,【分析】根据点(),A m n 是()f x 图像的一个对称中心的充要条件,列出式子,即可得出结果.解:因为()32234f x x x x =+++,由于()32322222223323234x f x f x x x x x ⎛⎫⎛⎫⎛⎫+-⨯-=-⨯--⨯- ⎪ ⎪ ⎪⎝⎭+++++⎝⎭⎝⎭+701403422327272x +=⨯=⎛⎫-⨯- ⎪⎝⎭.即23m =-,7027n =.所以270327⎛⎫- ⎪⎝⎭,是()32234f x x x x =+++的一个对称中心.故答案为:270327⎛⎫- ⎪⎝⎭,.2.设函数())ln f x x =,若a ,b 满足不等式()()22220f a a f b b -+-≤,则当14a ≤≤时,2a b -的最大值为 A .1 B .10 C .5 D .8【答案】B 【详解】因为()))()ln ln0f x f x x x +-=+=,所以函数()f x 为奇函数,又因为()))0ln-lnx f x x x >==时为单调减函数,且(0)0f =所以()f x 为R 上减函数,因此()()()()()()2222222202222f a a f b b f a a f b b f a a f b b -+-≤⇔-≤--⇔-≤-+222222(1)(1){{2020a b a ba ab b a b a b a b ≥≤⇔-≥-+⇔-≥-⇔+-≥+-≤或,因为14a ≤≤,所以可行域为一个三角形ABC 及其内部,其中(1,1),(4,4),(4,2)A B C -,因此直线2z a b =-过点C 时取最大值10,选B.3..已知函数()ln 2e exf x x e x=-+-,若22018202020202020e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2019201920202e f a b ⎛⎫=+ ⎪⎝⎭,其中0b >,则12a a b +的最小值为A .34B .54C D 【答案】A 【分析】通过函数()f x 解析式可推得()()2f x f e x +-=,再利用倒序相加法求得2201820192020202020202020e e e e f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得到a b +的值,然后对a 分类讨论利用基本不等式求最值即可得出答案. 【详解】解:因为()ln 2e exf x x e x=-+-,所以()()()ln ()ln 22()e ex e e e xf x f e x x e x e x e e x -+-=-++--+---2()()lnln ln()ln 2ex e e x ex e e x e e x x e x x--=+=⋅==--, 令2201820192020202020202020e e e e S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 则2019220182019222019202020202020202020202020e e e e e e S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++=⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以2019S = 所以()201920192a b +=,所以2a b +=,其中0b >,则2a b =-. 当0a >时1||121212()112||2222a b a b a b a b a b a b -+⎛⎫+=+=+-=+⋅- ⎪⎝⎭15215511222224b a a b ⎛⎛⎫=++-≥+-= ⎪ ⎝⎭⎝ 当且仅当2,2b a a b =即24,33a b ==时等号成立;当0a <时1||1121212||222a a b a b a b a b a b ---+=+=+=++---112152()1122222b a a b a b a b --⎛⎫⎛⎫=+⋅++=-+++ ⎪ ⎪--⎝⎭⎝⎭1531224⎛≥-++= ⎝, 当且仅当2,2b a a b -=-即2,4a b =-=时等号成立;因为3544<,所以1||2||a a b +的最小值为34.故选:A.【题型二】中心对称性质2:与三角函数结合的中心对称【典例分析】已知函数sin 1y x =+与2x y x+=在[]a a -,(a Z ∈,且2017a >)上有m 个交点11()x y ,,22()x y ,,……,()m m x y ,,则1122()()()m m x y x y x y ++++++=A .0B .mC .2mD .2017【答案】B 【详解】由图可知交点成对出现,每对交点关于点(0,1)对称,横坐标和为0,纵坐标和为2,所以()()()1122m m x y x y x y ++++++=22mm ⨯=,选B.【变式演练】1.函数11()2sin[()]12f x x x π=+--在[3,5]x ∈-上的所有零点之和等于______. 【答案】8 【详解】分析:通过化简函数表达式,画出函数图像,分析图像根据各个对称点的关系求得零点的和. 详解:零点即()0f x =,所以112sin 12x x π⎡⎤⎛⎫=-- ⎪⎢⎥-⎝⎭⎣⎦ 即12cos 1x x π=-,画出函数图像如图所示函数零点即为函数图像的交点,由图可知共有8个交点 图像关于1x =对称,所以各个交点的横坐标的和为8点睛:本题考查了函数的综合应用,根据解析式画出函数图像,属于难题.2.若关于的函数的最大值为,最小值为,且,则实数的值为___________.【答案】 【解析】试题分析:由已知22222sin 2sin ()=t+tx x t x x xf x x t x t++++=++,而函数22sin x x y x t +=+为奇函数 又函数()f x 最大值为,最小值为,且,()242M t N t M N t t ∴-=--∴+==∴=考点:函数的奇偶性和最值【名师点睛】本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.解释要充分利用已知条件将函数变形为22sin ()=t+x x f x x t ++,则函数22sin x xy x t+=+为奇函数,而奇函数的最值互为相反数,可得()M t N t ∴-=--,则问题得解.3.已知函数()())2+1sin lnf x x x x =++,若不等式()()39334x x x f f m -+⋅-<对任意x ∈R 均成立,则m 的取值范围为()A .()1-∞ B .(),1-∞-C .()1-D .()1,-+∞【答案】A 【分析】由题设,构造()()2g x f x =-,易证()g x 为奇函数,利用导数可证()g x 为增函数,结合题设不等式可得(39)(33)x x x g g m -<-⋅,即3313x x m <+-对任意x ∈R 均成立,即可求m 的范围. 【详解】由题设,令()()22sin )g x f x x x x =-=++,∴()2sin())2sin )()g x x x x x x x g x -=-+-+=---=-, ∴()g x 为奇函数,又()2cos 0g x x '=+>,即()g x 为增函数,∵()()39334x x xf f m -+⋅-<,即(39)2[(33)2]x x x f f m --<-⋅--,∴(39)(33)(33)x x x x g g m g m -<-⋅-=-⋅,则3933x x x m -<-⋅,∴3313x x m <+-对任意x ∈R 均成立,又331113xx +-≥=,当且仅当12x =时等号成立,∴1m <,即m ∈()1-∞.故选:A【题型三】轴对称【典例分析】 已知函数()()222212222x x x f x ea a ---=-+-有唯一零点,则负实数a =( ) A .2- B .12-C .1-D .12-或1- 【答案】A 【解析】函数()()222212222x x x f x ea a ---=-+-有有唯一零点,设1x t -=,则函数()()212222t t t f x e a a -=-+-有唯一零点,则()212222t t t e a a--+= 3e |t|-a (2t +2-t )=a 2,设()()1122222222tt t t t tg t e a g t e a g t ---=-+-=-+=(),()(),∴g t ()为偶函数,∵函数f t ()有唯一零点,∴yg t =()与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ∴-=,解得2a =-或1a =(舍去),故选A .【变式演练】1.已知函数()()()22241x x f x x x ee x --=--++在区间[]1,5-的值域为[],m M ,则m M +=( )A .2B .4C .6D .8【答案】C【详解】解:()()24x xy x e ex -=--+ 在[]3,3-上为奇函数,图象关于原点对称,()()()()()222222412423x x x x f x x x e e x x e e x ----⎡⎤=--++=---+-+⎣⎦是将上述函数图象向右平移2个单位,并向上平移3个单位得到,所以()f x 图象关于()2,3对称,则6m M +=,故选C .2.已知函数f (x )(x ∈R )满足f (x )=f (a-x ),若函数y=|x 2-ax-5|与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),且mi i 1x =∑=2m ,则a=( )A .1B .2C .3D .4【答案】D【详解】∵f (x )=f (a-x ),∴f (x )的图象关于直线x=2a对称,又y=|x 2-ax-5|的图象关于直线x=2a对称, 当m 为偶数时,两图象的交点两两关于直线x=2a 对称,∴x 1+x 2+x 3+…+x m =2m•a=2m,解得a=4.当m 奇数时,两图象的交点有m-1个两两关于直线x=2a 对称,另一个交点在对称轴x=2a上, ∴x 1+x 2+x 3+…+x m =a•-12m +2a=2m .解得a=4.故选:D .3.已知函数()()()22sin 122xf x x x x π=+-+,下面是关于此函数的有关命题,其中正确的有①函数()f x 是周期函数;②函数()f x 既有最大值又有最小值;③函数()f x 的定义域为R ,且其图象有对称轴;④对于任意的()1,0x ∈-,()0f x '<(()f x '是函数()f x 的导函数) A .②③ B .①③ C .②④ D .①②③【答案】A 【详解】函数()f x 定义域为R ,当x →+∞或x -∞←时,()0f x →,又0x =,1x =±,2x =±,3x =±,……时,()0f x =,且均为变号零点.又因为函数满足()()()()()()()()2222sin 1sin 1122111212x xf x f x x x x x x x ππ-===-⎡⎤⎡⎤+-+-+---+⎣⎦⎣⎦,所以函数()f x 关于直线12x =对称,函数图像如下图,故②③正确.【题型四】中心对称和轴对称构造出周期性【典例分析】已知函数 为定义域为 的偶函数,且满足,当 , 时, .若函数在区间 , 上的所有零点之和为__________.【答案】5【详解】∵足,∴ ,又因函数 为偶函数,∴,即 ,∴ ,令 ,,,即求 与交点横坐标之和.,作出图象:由图象可知有10个交点,并且关于 , 中心对称,∴其和为故答案为:5【变式演练】1.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .6【答案】A【分析】根据条件可得出()f x 的图象关于1x =对称,()f x 的周期为4,从而可考虑()f x 的一个周期,利用[]1,3-,根据()f x 在[)0,1上是减函数可得出()f x 在(]1,2上是增函数,()f x 在()1,0-上是减函数,在[)2,3上是增函数,然后根据()1f x =-在[)0,1上有实数根,可判断该实数根是唯一的,并可判断()1f x =-在一个周期[]1,3-内有两个实数根,并得这两实数根和为2,从而得出()1f x =-在区间[]1,11-这三个周期内上有6个实数根,和为30.【详解】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .2.已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为()A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【分析】由函数()f x 的图像关于原点对称,得出()00f =,再由()()30f x f x -+-=得出函数()f x 的最小正周期为6T =,由原函数与导函数具有相同的周期性可得函数'()f x 的最小正周期为6T =,由此可得选项.【详解】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .3.若函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,且1211x x -??时,2121[()()]()0f x f x x x -->,比较(2017)f ,(2018)f ,(2019)f 的大小为()A .(2017)(2018)(2019)f f f <<B .(2018)(2017)(2019)f f f <<C .(2018)(2019)(2017)f f f <<D .(2019)(2018)(2017)f f f <<【答案】D【分析】由题意可知,函数()y f x =的周期4T =,再由当1211x x -??时,2121[()()]()0f x f x x x -->可知函数()y f x =在[]1,1-上为增函数,然后计算比较即可.【详解】函数()y f x =是R 上的奇函数,又(1)y f x =+为偶函数,∴()()f x f x -=-,(1)(1)-+=+f x f x ,∴()(4)f x f x =+,即函数()y f x =的周期4T =,1211x x -??时,210x x ->,2121[()()]()0f x f x x x -->,∴21()()0f x f x ->即21()()f x f x >,函数()y f x =在[]1,1-上为增函数, ∴(2017)(14504)(1)f f f =+⨯=,(2018)(24504)(2)(0)f f f f =+⨯==,(2019)(14505)(1)f f f =-+⨯=-,∴(2019)(2018)(2017)f f f <<.故选:D.【题型五】画图:放大镜【典例分析】设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“似周期函数”,非零常数T 为函数()y f x =的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”()y f x =的“似周期”为1-,那么它是周期为2的周期函数; ②函数()2x f x =是“似周期函数”;③如果函数()cos f x x ω=是“似周期函数”,那么“2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ”. 以上正确结论的个数是() A .0 B .1C .2D .3【答案】C【分析】根据题意,首先理解“似周期函数”的定义,逐一分析,从而可判断命题的真假. 【详解】解:①∵“似周期函数”()y f x =的“似周期”为1-, (1)()f x f x ∴-=-,(2)(1)()f x f x f x ∴-=--=,故()y f x =它是周期为2的周期函数,故①正确;②若函数()2x f x =是“似周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅, 即22x T x T +=⋅恒成立,故2T T =成立,但无解,故②错误;③若函数()cos f x x ω=是“似周期函数”,则存在非零常数T ,则()()f x T T f x +=⋅, 即[]cos ()cos x T T x ωω+=恒成立,故cos()cos x T T x ωωω+=恒成立, 即cos cos sin sin cos x T x T T x ωωωωω⋅-⋅=恒成立,故cos sin 0T T T ωω=⎧⎨=⎩,故2,k k ωπ=∈Z 或(21),k k ωπ=+∈Z ,故③正确.所以以上正确结论的个数是2.故选:C.【变式演练】1.已知函数()f x 满足当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0=>a f x x a 且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是() A .(625,)+∞ B .(4,64)C .(9,625)D .(9,64)【答案】C 【分析】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可. 【详解】先作出函数()f x 在(,0]-∞上的部分图象,再作出()log a f x x =关于原点对称的图象,如图所示,当01a <<时,对称后的图象不可能与()f x 在(,0]-∞的图象有3个交点; 当1a >时,要使函数()f x 关于原点对称后的图象与所作的图象有3个交点,则11log 321log 54a a a ⎧⎪>⎪⎪->-⎨⎪⎪-<-⎪⎩,解得9625a <<.故选:C.2.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有1()2f x ≥-,则m 的取值范围是()A .3,2⎛⎤-∞ ⎥⎝⎦B.10,4⎛-∞ ⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D.⎛-∞ ⎝⎦【答案】B 【分析】作出图示,求出当23x <≤时,函数的解析式,求出1()2f x =-成立的x 的值,运用数形结合的思想可得选项. 【详解】解:(0,1]x ∈时,()=(1)f x x x -,(+1)=2()f x f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令14(2)(3)2x x --=-,解得12x x ==所以要使对任意(,]x m ∈-∞,都有1()2f x ≥-,则m ≤,m ⎛∴∈-∞ ⎝⎦, 故选:B .3.定义在R 上函数q 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是()A .72B .92C .134D .154【答案】D 【分析】 计算()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,画出图像,计算()116f x =,解得154x =,得到答案. 【详解】根据题设可知,当[)1,2x ∈时,[)10,1x -∈,故()()()11112322f x f x x =-=--, 同理可得:在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤.作函数()y f x =的图象,如图所示.在7,42⎡⎫⎪⎢⎣⎭上,由()11127816f x x =⎡--⎤=⎣⎦,得154x =. 由图象可知当154x ≥时,()116f x ≤. 故选:D .【题型六】利用对称解决恒成立和存在型【典例分析】已知函数()lg(f x x =,且对于任意的(12]x ∈,,21()[]01(1)(6)x mf f x x x ++>---恒成立,则m 的取值范围为()A .()0-∞,B .(]0-∞,C .[4)+∞,D .(12)+∞,【答案】B 【分析】本题根据函数的解析式先判断函数的奇偶性与单调性,再运用单调性转化不等式,接着运用参变分离构建新函数,最后借导函数求函数在指定区间内的最大值即可解题.【详解】()f x 的定义域为R ,()))()f x x x f x -===-=-,∴()f x 为奇函数,又()f x 在(0,)+∞上单调递增, ∴221()[][]1(1)(6)(1)(6)x m m f f f x x x x x +>-=------,∴211(1)(6)x mx x x +>----, 又(1,2]x ∈,则10x ->,60x -<,∴(1)(1)(6)x x x m +--<-恒成立; 设32()(1)(1)(6)66g x x x x x x x =+--=--+, 则22()31213(2)13g x x x x =--=--',当12x <≤时()0g x '<,∴()g x 在(12],内单调递减,()g x 的最大值为从负数无限接近于0,max ()0g x <, ∴0m ≤-,0m ≤,故选:B.【提分秘籍】基本规律常见不等式恒成立转最值问题:(1)min ()()x D f x m f x m ∀∈>⇔>,; (2)max ()()x D f x m f x m ∃∈>⇔>,;(3)()min ()()()()0x D f x g x f x g x ∀∈>⇔->,; (4)()max ()()()()0x D f x g x f x g x ∃∈>⇔->,; (5)12121min 2max ,()()()()x D x M f x g x f x g x ∀∈∈>⇔>,; (6)12121max 2min ,()()()()x D x M f x g x f x g x ∃∈∈>⇔>,; (7)12121min 2min ,()()()()x D x M f x g x f x g x ∀∈∃∈>⇔>,;(8)12121max 2max ,()()()()x D x M f x g x f x g x ∃∈∀∈>⇔>,;【变式演练】1.已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x =-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦【答案】D 【分析】问题转化为函数()f x 的值域是()g x 值域的子集,分别求出()f x 和()g x 的值域,得到关于m 的不等式组,解出即可. 【详解】对任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =, 即()f x 在[]0,1上的值域是()g x 在[]1,2上的值域的子集,22111()1212121x x x xxm m m f x +++--===++++, 当1m <时,∴10m -<,∴()f x 在[]0,1上单调递增,()f x ∴的值域为12,23m m ++⎡⎤⎢⎥⎣⎦, 又()(1)g x m x =-在[]1,2上单调递减,()g x ∴的值域为:[]22,1m m --,[]12,22,123m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦,1222213m m m m +⎧≥-⎪⎪∴⎨+⎪≤-⎪⎩,方程无解 当1m >时,10m ->,∴()f x 在[]0,1上单调递减,()f x ∴的值域为21,32m m ++⎡⎤⎢⎥⎣⎦()g x 的值域为:[]1,22m m --,[]21,1,2232m m m m ++⎡⎤∴⊆--⎢⎥⎣⎦1222213m m m m +⎧≤-⎪⎪∴⎨+⎪≥-⎪⎩,解得5532m ≤≤ 当1m =时,()1,()0f x g x ==,显然不满足题意.综上,实数m 的取值范围为55,32⎡⎤⎢⎥⎣⎦故选:D .2.已知()f x 是定义在R 上的函数,且()1f x +关于直线1x =-对称.当0x ≥时,()211422,022log ,2x x f x x x -+⎧⎪≤<=⎨⎪-≥⎩,若对任意的[],1x m m ∈+,不等式()()22f x f x m -≥+恒成立,则实数m 的取值范围是()A .1,04⎡⎫-⎪⎢⎣⎭B .1,12⎡⎤⎢⎥⎣⎦C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】D 【分析】结合复合函数的单调性,可知()f x 在[)0,+∞上单调递减,由()1f x +关于直线1x =-对称,可知()f x 为偶函数,从而可将题中不等式转化为22x x m -≤+,整理得223(82)40x m x m -++-≤对任意的[],1x m m ∈+恒成立,进而结合二次函数的性质,可求出m 的取值范围.【详解】当02x ≤<时,()21142x f x -+=,函数2114y x =-+在[)0,2上单调递减,且2x y =是R 上的增函数,根据复合函数的单调性可知,函数()f x 在[)0,2上单调递减,且()2121421f x -⨯+=>;当2x ≥时,()22log f x x =-,易知函数()f x 在[)2,+∞上单调递减,且()()22log 221f x f -==≤. ∴函数()f x 在[)0,+∞上单调递减.∵()1f x +关于直线1x =-对称,∴()f x 关于0x =对称,即()f x 为偶函数,∴不等式()()22f x f x m -≥+可化为()()22f x f x m -≥+,∴22x x m -≤+恒成立,即2222x x m -≤+,整理得223(82)40x m x m -++-≤,令()223(82)4g x x m x m =-++-,∴对任意的[],1x m m ∈+,()0g x ≤恒成立,∴2222()3(82)40(1)3(1)(82)(1)40g m m m m m g m m m m m ⎧=-++-≤⎨+=+-+++-≤⎩, 即840410m m -+≤⎧⎨--≤⎩,解得12m ≥.故选:D.3.已知2()sin ||sin ||f x x x ππ=-,()|ln |g x x =,若对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,则实数m 的取值范围是_________.【答案】⎡⎫+∞⎪⎢⎪⎣⎭【分析】先分析题意即()()12min min f x g x ≥,再利用单调性求解()f x 的最小值和()g x 的最小值,解不等式即得结果. 【详解】依题意,对于121,36x ⎡⎤∀∈--⎢⎥⎣⎦,122,x e e -⎡⎤∃∈⎣⎦使得()()12f x g x ≥,只需()()12min min f x g x ≥. 21,36x ⎡⎤∀∈--⎢⎥⎣⎦时()sin sin sin y x x x πππ==-=-,2,36x πππ⎡⎤--⎢⎣∈⎥⎦,0y <,故当232,x πππ⎡⎤--⎢⎣∈⎥⎦,即212,3x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递增, 当2,6x πππ⎡-∈⎤-⎢⎥⎣⎦,即1261,x ⎡⎤∈--⎢⎥⎣⎦时,sin y x π=单调递减.而函数2()f x x x=-,显然在(),0x ∈-∞单调递减. 故根据复合函数单调性可知,2()sin ||sin ||f x x x ππ=-在212,3x ⎡⎤∈--⎢⎥⎣⎦单调递减,在1261,x ⎡⎤∈--⎢⎥⎣⎦上单调递增,故min 122()sin 11221sin 2f x f ππ⎛⎫=-=-=-= ⎪⎝⎭.对于12,x e e -⎡⎤∈⎣⎦,()|ln |g x x =,当1,1x e -⎡⎤∈⎣⎦时ln 0x ≤,故()ln g x x =-是单调递减的,当(21,x e ⎤∈⎦时ln 0x >,故()ln g x x =是单调递增的,故min ()(1)|ln1|g x g ===.故依题意知,1≥,即m ≥.所以实数m 的取值范围是⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:⎡⎫+∞⎪⎢⎪⎣⎭.【题型七】函数整数问题【典例分析】定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x <解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D.【变式演练】1.定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[)0,2x ∈时,2()48f x x x =-+.若在区间[],a b 上,存在(3)m m ≥个不同的整数(1,2,...,)x i m =,满足111()()72m i i f x f x =+=-≥∑,则b a -的最小值为A .15B .16C .17D .18【答案】D 【详解】定义在R 上的奇函数()f x 满足()()22f x f x +=-,得2222f x f x f x f x ++=--=-=-()()()(),即4?f x f x +=-()(),则44[]f x f x f x f x f x +=-+=--=∴()()()().()的周期为8.函数f x ()的图形如下:比如,当不同整数i x 分别为-1,1,2,5,7…时,b a -取最小值,141420f f f -=-==(),(),(),,至少需要二又四分一个周期,则b-a 的最小值为18,故选D2.已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式在[150,150]-上有且只有150个整数解,则实数t 的取值范围是()A .12(0,)e - B .1322(,3)e e --C .312(3,2)e e --D .112(,2)e e --【答案】B 【分析】利用导函数讨论当[0,3]x ∈时的单调性,结合对称性周期性数形结合求解. 【详解】当[0,3]x ∈时,2()xf x xe -=,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(]2,3x ∈时,()0f x ¢<,当[)0,2x ∈时,()0f x ¢>, 所以函数()f x 在(]2,3x ∈单调递减,在[)0,2x ∈单调递增, ()32(0)0,330f f e-=>=,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-, 所以()(3)(3)3f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322(,3)t e e --∈。

高考函数对称轴对称中心压轴题专题

高考函数对称轴对称中心压轴题专题

对称性与周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.(2)关于函数周期性常用的结论①若满足,则,所以是函数的一个周期();②若满足,则 =,所以是函数的一个周期();③若函数满足,同理可得是函数的一个周期().④如果是R 上的周期函数,且一个周期为T ,那么.⑤函数图像关于轴对称.⑥函数图像关于中心对称.⑦函数图像关于轴对称,关于中心对称.(3)函数()y f x =的图象的对称性结论①若函数)(x f y =关于x a =对称⇔对定义域内任意x 都有()f a x +=()f a x -⇔对定义域内任意x 都有()f x =(2)f a x -⇔()y f x a =+是偶函数;②函数)(x f y =关于点(a ,0)⇔对定义域内任意x 都有()f a x -=-()f a x +⇔(2)f a x -=-()f x ⇔()y f x a =+是奇函数;③若函数)(x f y =对定义域内任意x 都有)()(x b f a x f -=+,则函数)(x f 的对称轴是2b a x +=; ④若函数)(x f y =对定义域内任意x 都有()()f x a f b x +=--,则函数)(x f 的对称轴中心为(,0)2a b +; 改编:若函数)(x f y =对定义域内任意x 都有f(a+x)+f(b-x)=c 则函数)(x f 的对称轴中心为________⑤函数(||)y f x a =-关于x a =对称.例1 2016 (12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(A)0 (B)m (C) 2m (D) 4m例2 (2016年全国II 高考)已知函数满足,若函数与图像的交点为 则( )(A )0 (B ) (C ) (D )例3(2017新课标Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1 例4【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【命题意图探究】本题主要考查函数的单调性、对称性,是中档题. 【答案】C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C .例 5 【2018全国卷Ⅱ】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=f A .50- B .0 C .2 D .50例6 【2015高考新课标1,文12】设函数()y f x =的图像与2x a y +=的图像关于直线y x=-对称,且(2)(4)1f f -+-=,则a =( ) (A ) 1- (B )1 (C )2 (D )4例7【2015高考湖南,文14】若函数()|22|x f x b =--有两个零点,则实数b 的取值范围是 . 例8 【2015高考福建,文15】若函数()2()x a f x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.例9 【2015高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.例10 (2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D .D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 例11 (2016山东)已知函数f (x )的定义域为R .当x <0时, ;当 时,;当 时,,则f (6)=A .−2B .−1C .0D .2 D 【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .2018高考函数专题(2018全国卷 理数-1)5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 9.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.(2018全国卷 理数-2)3.函数()2e e x xf x x --=的图像大致为6.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .50(2018 全国卷 理数-3)4.若,则A .B .C .D .12. (2018鄂尔多斯市模拟卷)若定义在R 上的函数f(x)满足f(-x)=-f(x),f(1-x)=f(1+x),且当x є(0,1]时,f(x)=1-x,则方程()1[7,1]x f x e =--在区间上的实数根的数为( )。

中考复习之轴对称与中心对称

中考复习之轴对称与中心对称

第32讲┃ 归类示例
此类作图问题的关键是根据轴对称与中心对称坐标特 征求出对称点的坐标.的拓展创新
教材母题 北师大版八上P95问题解决第13题 如图32-4,甲、乙两个单位分别位于一条封闭街道的 两旁,现准备合作修建一座过街天桥,问:
图32-4 (1)桥建在何处才能使由甲到乙的路线最短?注意,桥 必须与街道垂直. (2)桥建在何处才能使甲、乙到桥的距离相等?
两个 区 轴对称是指______全等图形之 别 间的相互位置关系
第32讲┃ 考点聚焦
联系
轴对称 的性质
①如果把成轴对称的两个图形看成一个整体 (一个图形),那么这个图形是轴对称图形; ②如果把一个轴对称图形中对称的部分看成 是两个图形,那么它们成轴对称 (1)对称点的连线被对称轴________ 垂直平分 (2)对应线段________ 相等 对称轴 (3)对应线段或延长线的交点在________上 (4)成轴对称的两个图形________ 全等
第32讲┃ 归类示例 ► 类型之二 图形的折叠与轴对称
命题角度: 图形的折叠与轴对称的关系.
[2013· 北京] 如图 32-2,在△ABC 中,∠C=90°, 将△ABC 沿直线 MN 翻折后, 顶点 C 恰好落在 AB 边上的点 D 处,已知 MN∥AB,MC=6,NC=2 3,则四边形 MABN 的 面积是 A.6 3 C.18 3 B.12 3 D.24 3 图 32-2 ( C )
图32-3
第32讲┃ 归类示例
[解析] (1)根据关于 y 轴对称的点的横坐标互为相反数,纵 坐标相等,找出点 P′的位置,然后以 3 为半径画圆即可;再根 据直线与圆的位置关系解答; (2)设直线 PP′与 MN 相交于点 Q,在 Rt△QP′N 中,利用 勾股定理求出 QN 的长度,在 Rt△QPN 中,利用勾股定理列式 计算即可求出 PN 的长度.

初中中考复习之轴对称和中心对称(含答案)

初中中考复习之轴对称和中心对称(含答案)

中考复习之轴对称和中心对称一、选择题: 1.下列标志中,可以看作是中心对称图形的是【 】2.在下列图形中,为中心对称图形的是【 】A .等腰梯形B .平行四边形C .正五边形D .等腰三角形 3.下列图形中,是轴对称图形的是【 】 A . B . C . D .4.下列图形中,既是轴对称图形又是中心对称图形的是【 】5.下列图形中是轴对称图形的是【 】 A . B . C . D .6.下列平面图形,既是中心对称图形,又是轴对称图形的是【 】A .等腰三角形B .正五边形C .平行四边形D .矩形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是【 】A .B .C .D .(D ) (C ) (B ) (A )9.下列图形中不是中心对称图形的是【】A.矩形B.菱形C.平行四边形D.正五边形10.下列图案中,属于轴对称图形的是【】A. B.C.D.11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A.①B.②C.③D.④12.下列交通标志图案是轴对称图形的是【】A.B.C.D.13.在下列四个汽车标志图案中,是中心对称图形的是【】A.B. C.D.14.下列图形中,中心对称图形是【】15.下列图案是轴对称图形的是【】A. B. C. D.17.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形 B.等边三角形 C.等腰梯形 D.正方形18.下列图形中是轴对称图形的是【】19.下列几何图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.矩形C.平行四边形D.等腰梯形20.下列两个电子数字成中心对称的是【】21.下列图形中,是.中心对称图形,但不是..轴对称图形的是【】22.下列图形中,有且只有两条对称轴的中心对称图形是【】.A .正三角形 B.正方形 C.圆 D.菱形23.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A. B. C. D.24.下列图形:①等腰梯形,②菱形,③函数1y=x的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的有【】 A.①② B.①③ C.①②③ D.②③④A. B. C. D.26.下列图形中,既是轴对称图形,又是中心对称图形的是【】.A.等腰三角形B.平行四边形C.正方形D.等腰梯形27.下列平面图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C. D.28.下列图案中是中心对称图形但不是轴对称图形的是【】A.B.C.D.29.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形 B.中心对称图形C.既是轴对称图形,又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形30.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是【】31.下列图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形 B.平行四边形 C.正方形 D.等腰梯形32.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.33.把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC【】A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确34.下列图形中,既是轴对称图形又是中心对称图形的有【】A. 4个B. 3个C. 2个D. 1个35.下列几何图形中,对称性与其它图形不同的是【】36.下列历届世博会会徽的图案是中心对称图形的是【】A. B. C. D.37.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有【】A.1种B.2种C.3种D.4种38.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.39.下列图形是中心对称图形的是【】A. B. C. D.40.下列图形中,既是轴对称图形又是中心对称图形的是【】41.下列交通标志是轴对称图形的是【】A. B. C. D.42.下列各图,不是轴对称图形的是【】43.下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A. B. C. D.44.下列图形是中心对称图形的是【】A. B. C. D.45.下列图形中既是中心对称图形,又是轴对称图形的是【】A.正三角形B.平行四边形C.等腰梯形D.正方形46.下列图形中,既是轴对称图形又是中心对称图形的有【】A.4个B.3个C.2个D.1个47.下列图形中,是中心对称图形的是【】A. B. C. D.48.下列图形中是中心对称图形是【】A.B.C.D.49.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个 B.2个 C .3个 D.4个50.下列图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C . D.51.如图,所给图形中是中心对称图形但不是轴对称图形的是【】A .B.C.D.52.下列图形即使轴对称图形又是中心对称图形的有:【】①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个B.2个C.3个D.4个53.下面四个标志图是中心对称图形的是【】A B C D54.在下列平面图形中,是中心对称图形的是【】A. B. C. D.55.娜娜有一个问题请教你,下列图形中对称轴只有两条的是【】56.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.57.下列四幅图案中,既是轴对称图形又是中心对称图形的是【】A. B. C. D.58.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是【】A. B. C. D.59.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.60.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°61.下列图形中,既是轴对称图形,又是中心对称图形的是【】A. B. C. D.62.下列哪个函数的图象不是中心对称图形【 】A.y 2x =-B. 3y x= C .()2y x 2=- D.y 2x = 63.下列图形是中心对称图形的是【 】.(A) (B) (C) (D)64.下列图形既是轴对称图形,又是中心对称图形的是【 】A .B .C .D .二、填空题:1.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点,则OP OQ ⋅= .2.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .3.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)4.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC⊥MN 于点C ,过B 作BD⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是 。

中心对称和轴对称题集

中心对称和轴对称题集

中心对称和轴对称题集
一、例题
例1. 1、下列标志中,既是轴对称图形又是中心对称图形的为()
二、针对练习
1、单词NAME的四个字母中,是中心对称图形的是()
2、下列交通指示标识中,不是轴对称图形的是()
3、在下列图案中,是中心对称图形的是()
A. B . C . D.
4、下列图形中,既是轴对称图形又是中心对称图形的是
5、下列图形中,既是轴对称图形,又是中心对称图形的是
A B C D
6、已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则a= ,b= .
作业:
1、下列汽车标志的图形是中心对称图形的是( )
A. B. C. D.2、下列图形中,既是轴对称图形,又是中心对称图形的是()
A B C D
3、下列图形中,是中心对称图形的是()
A. B. C. D.
4、点P(﹣3,4)关于原点对称的点的坐标是.。

中考专项训练-轴对称与中心对称

中考专项训练-轴对称与中心对称

轴对称与中心对称【典型例题】例1.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.如果8cm AB =,4cm BE =,3cm DH =, (1)根据题意你能得到那些结论?(2)图中阴影部分面积为 2cm .例2.△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向右平移6个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;并写出点C 1的坐标; (2)将△ABC 绕原点O 逆时针旋转90°得到△A 2B 2C 2,请画出△A 2B 2C 2. (3)将△ABC 绕原点O 旋转180°得到△A 3B 3C 3,请画出△A 3B 3C 3(4)△A 1B 1C 1与是△A 3B 3C 3成中心对称吗?如果是找出对称中心并写出改点坐标坐标例3(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.例4、已知:如图是抛物线342+-=x x y 与x 轴相交于点A 、B ,与y 轴相交于点C (1)求A 、B 、C 三点的坐标(2)在P 是抛物线对称轴上的一动点,求当P 点运动到什么位置时△ACP 的周长最短?求此时P 点的坐标。

【课堂练习】1.下列几何图形中,一定是轴对称图形的有( )A. 2个B. 3个C. 4个D. 5个2.下面四张扑克牌中,图案属于中心对称的是图中的 ( )3.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A .等腰梯形B .平行四边形C .正三角形D .矩形4.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为 ( )A.①③B. ①④C.②③D.②④5如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .A 图① A 图② F EE D C FB A 图③ E DC A B F G 'D ' A DE C BG α图④ 图⑤B6、下列图形中,是轴对称图形但不是中心对称图形的是 ( ) A .正三角形 B .菱形C .直角梯形D .正六边形7.如图是一个中心对称图形,A 为对称中心,若 ∠C =90°,∠B =30°,BC =1,则BB '的长为( ) A .4 B .33 C .332 D .3348.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于 ( ) A .120° B .90° C .60°D.30°9、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.1.如图,OAB △绕点O 逆时针旋转80到OCD△的位置,已知45AOB ∠=,则AO D ∠等于A.55 B.45 C.40 D.35 ( )2.如图,用放大镜将图形放大,应该属于( ) A.相似变换 B.平移变换 C.对称变换 D.旋转变换3.将线段AB 平移1cm ,得到线段A B '',则对应点A 与A'的距离为 cm .4.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是 ( ) A .⑴⑷ B .⑵⑶ C .⑴⑵ D .⑵⑷5.在平面直角坐标系中,ΔABC 的三个顶点的位置如图所示, 点A ′的坐标是(一2,2) ,现将 △ABC 平移.使点A 变换为点A ′, 点B ′、C ′分别是B 、C 的对应点.(1) 请画出平移后的像///A B C ∆ (不写画法) ,并直接写出点/B 、/C 的坐标:/B ( )、/C ( ) .(2) 若ΔABC 内部一点P 的坐标为(a ,b ),则点P 的对应点/P 的坐标是 .6.如图,矩形纸片ABCD 中,AB=4,BC=43,将矩形沿对角线AC 剪开,解答以下问题:(1)在△ACD 绕点C 顺时针旋转60°,△A 1CD 1是旋转后的新位置(图(a )),求此AA 1的距离;(2)将△ACD 沿对角线AC向下翻折(点A 、点C 位置不动,△ACD 和△ABC 落在同一平面内),△ACD 2是翻折后的新位置(图(b)),求此时BD 2的距离;7.把一副三角板如图甲放置,其中90ACB DEC ==∠∠45A =∠,30D =∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1 E 1 相交于点F .(1)求1OFE ∠的度数;(2)求线段AD 1的长;(3)若把三角形D 1 C E 1 绕着点C 顺时针再旋转30°得△D 2 CE 2 ,这时点B 在△D 2 CE 2的内部、外部、还是边上?说明理由.8(2007年荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1)四边形ABCD 是平行四边形吗?说出你的结论和理由:______________________.(2)如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说出你的结论和理由:__________.(3)在Rt △BCD 沿射线BD 方向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是__________.(图3、图4用于探究)9、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠C PD=∠OAB,且58BD BA =,求这时点P 的坐标.。

第十六章 轴对称和中心对称

第十六章 轴对称和中心对称

第十六章轴对称和中心对称(A卷-中档卷)注意事项:本试卷满分100分,试题共23题,选择10道.填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.答题时间:60分钟一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·四川·威远县凤翔中学二模)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2022·江苏无锡·八年级期中)下列说法中错误的是( )A.两个成轴对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个四边形对称D.轴对称指的是两个图形沿着某一条直线对折后能完全重合3.(2022·陕西渭南·三模)如图,在水平地面AB上放一个平面镜BC,一束垂直于地面的光线经平面镜反射,若反射光线与地面平行,则平面镜BC与地面AB所成的锐角a为()A.30°B.45°C.60°D.75°V的内部建一个超4.(2022·河北保定·八年级期中)如图,A,B,C三个村庄围成了一个三角形,想在ABC市,且超市到三个村庄的距离相等,则此超市应建在()A .ABC V 三条高的交点处B .ABC V 三条角平分线的交点处C .ABC V 三条边垂直平分线的交点处D .ABC V 三条中线的交点处5.(2022·山东滨州·八年级期中)如图,已知()ABC AC BC <V ,用尺规在BC 上确定一点P ,使PA PC BC +=.则下列四种不同方法的作图中准确的是( )A .B .C .D .6.(2022·江苏·仪征市第三中学八年级期中)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是AOB Ð的角平分线.”他这样做的依据是( )A .角平分线上的点到这个角两边的距离相等B .角的内部到角的两边的距离相等的点在角的平分线上C .三角形三条角平分线的交点到三条边的距离相等D .线段垂直平分线上的点到线段两端的距离相等7.(2022·湖北·武汉外国语学校(武汉实验外国语学校)八年级期中)如图,在ABC V 中,47C Ð=°,将ABC V 沿着直线l 折叠,点C 落在点D 的位置,则12Ð-Ð的度数是( )A .88°B .94°C .104°D .133°8.(2022·广西·南宁十四中八年级期中)如图,在ABC V 中,BAC Ð和ABC Ð的角平分线交于点O ,6cm,9cm,AB BC ABO ==△的面积为218cm ,则BOC V 的面积为( )A .213.5cmB .218cmC .224cmD .227cm 9.(2022·山东山东·八年级期中)如图,已知AB CD ∥,AE 和CE 分别平分BAC Ð和ACD Ð,AE 与CE 交于点E ,作直线ED CD ^,垂足为D ,交AB 于点B ,若8,6AC BD ==,则ACE △的面积为( )A .24B .18C .12D .610.(2022·江苏常州·八年级期中)如图,在四边形ABCD 中,90A Ð=°,2AD =,5BC =,BD 平分ABC Ð,则BCD △的面积是( )A .5B .6C .8D .10二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022·江苏苏州·九年级期中)如图,三圆同心于O ,4AB cm =,CD AB ^于O ,则图中阴影部分面积为______cm 2.12.(2022·陕西西安·九年级期中)已知点(),3A a -与点()4,B b 关于原点对称,则()2022a b +的值是 _____.13.(2022·湖北·公安县教学研究中心八年级期中)如图,在ABC V 中,4AB =,6AC =,8BC =,以点A 为圆心,适当长为半径画弧,交AB 于点M ,交AC 于点N ,分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在BAC Ð的内部相交于点G ,画射线AG ,交BC 于点D ,点F 在AC 边上,且AF AB =,连接DF ,则CDF V 的周长为______.14.(2022·山东滨州·八年级期中)如图,BD 垂直平分AG 于D CE ,垂直平分AF 于E ,若243BF FG GC ===,,,则ABC V 的周长为____.15.(2022·天津二十中八年级期中)如图,ABE V 和ADC △是由ABC V 沿着AB 、AC 边翻折180°得到的,若::28:5:3BAC ABC ACB ÐÐÐ=,则1Ð的度数为___________.16.(2022·天津·测试·编辑教研五八年级期中)如图,将ABC V 沿AD 折叠使得顶点C 恰好落在AB 边上的点M 处,D 在BC 上,点P 在线段AD 上移动,若6AC =,14AB =,11BC =,则PMB △周长的最小值为_______.三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤)17.(2022·浙江·九年级专题练习)在小正方形构成的网格中,每个小正方形的顶点叫做格点.(1)ABC V 的三个顶点都在格点上.①在图1中,画出一个与ABC V 成中心对称的格点三角形;②在图2中,画出ABC V 绕着点C 按顺时针方向旋转90°后的三角形.(2)如图3是由5个边长为1的小正方形拼成的图形,请用无刻度的直尺画经过点P 的一条直线,使它平分该图形的面积,保留连线的痕迹,不要求说明理由.18.(2022·山东菏泽·八年级期中)如图,在ABC V 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,点D 为CE 的中点,连接AD ,此时24CAD Ð=°,66ACB Ð=°.求证:BE AC =.19.(2022·山东济宁·八年级期中)图1是一个平分角的仪器,其中OD OE FD FE ==,.(1)如图2,将仪器放置在ABC V 上,使点O 与顶点A 重合,D ,E 分别在边AB AC ,上,沿AF 画一条射线AP ,交BC 于点P .AP 是BAC Ð的平分线吗?请判断并说明理由.(2)如图3,在(1)的条件下,过点P 作PQ 上AB 于点Q ,若69PQ AC ==,,ABC V 的面积是60,求AB 的长.20.(2022·重庆南开中学八年级开学考试)如图,已知在△ABC 中,∠BAC =80°,∠ACB =70°.(1)尺规作图:按要求完成下列作图(不写作法,保留作图痕迹):①作∠BAC 的角平分线AF ,交BC 于F ;②作线段AB 的垂直平分线DE ,分别交AB 、BC 于点D 、点E ;(2)在(1)的条件下,连接AE ,∠EAF =_____°.21.(2022·新疆·哈密市第四中学八年级期中)如图所示,已知O 是APB Ð内的一点,点M 、N 分别是O 点关于PA 、PB 的对称点,MN 与PA 、PB 分别相交于点E 、F ,已知5cm MN =.(1)求OEF V 的周长;(2)连接PM 、PN ,判断PMN V 的形状,并说明理由;(3)若APB a Ð=,求MPN Ð(用含a 的代数式表示).22.(2022·湖南长沙·八年级期中)如图所示,在ABC V 中,90C Ð=°,AD 是BAC Ð的平分线,DE AB ^交AB 于E ,F 在AC 上,B CFD Ð=Ð.证明:(1)CF EB =;(2)2AB AF EB =+.23.(2022·江西赣州·七年级期末)综合与实践:折纸中的数学知识背景我们在七年级上册第四章《几何图形初步》中探究了简单图形折叠问题,并进行了简单的计算与推理.七年级下册第五章我们学习了平行线的性质与判定,今天我们继续探究:折纸中的数学﹣﹣长方形纸条的折叠与平行线.知识初探(1)如图1,长方形纸条ABGH 中,,AB GH AH BG P P ,∠A =∠B =∠G =∠H =90°,将长方形纸条沿直线CD 折上,点A 落在A '处,点B 落在B '处,B 'C 交AH 于点E ,若∠ECG =70°,则∠CDE = ;类比再探(2)如图2,在图1的基础上将∠HEC 对折,点H 落在直线EC 上的H '处,点G 落在G '处得到折痕EF ,则折痕EF 与CD 有怎样的位置关系?说明理由;(3)如图3,在图2的基础上,过点G '作BG 的平行线MN ,请你猜想∠ECF 和∠H 'G 'M 的数量关系,并说明理由.。

中考复习第30课时轴对称与中心对称课件

中考复习第30课时轴对称与中心对称课件
第30课时 轴对称与 中心对称
第30课时┃ 轴对称与中心对称
考 点 聚 焦
考点1 轴对称
1.下列图形中,不是轴对称图形的是( C )
考点聚焦
豫考探究
当堂检测
第30课时┃ 轴对称与中心对称
2.如图30-2,直线l是四边形ABCD的对称轴,有下面的结论: ①AB=AD;②BO=DO;③BD⊥AC;④△ABC≌△ADC. 其中正确的结论有 ①②③④ .(填序号)
2.[2012· 乐山] 如图30-9,在10×10的 正方形网格中,每个小正方形的边长 都为1,网格中有一个格点△ABC(即 三角形的顶点都在格点上 ). (1)在图中作出△ABC关于直线l对称的 △A1B1C1;(要求:A与A1,B与B1,C与C1相对应) (2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
(3)拓展延伸 如图④:点P是四边形ABCD内一点,分别在边AB、BC上作出 点 .. M、点N,使PM+PN的值最小,保留作图痕迹,不写作法.
考点聚焦 豫考探究
当堂检测
第30课时┃ 轴对称与中心对称

(1) 3.
因为BP+PE=CE=AD= AB2-BD2= 22-12= 3; (2) 2 ;作B点关于CD的对称点B′,连接OA、OB′、AB′,则 OA2+OB′2 =
考点聚焦
豫考探究
当堂检测
第30课时┃ 轴对称与中心对称 解
(1)如图,△A1B1C1是△ABC关于直线l的对称图形.
(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高 是4. 1 1 ∴S四边形BB1C1C= (BB1+CC1)×4= ×(4+2)×4=12. 2 2
考点聚焦
豫考探究

中考数学专题复习:轴对称与中心对称

中考数学专题复习:轴对称与中心对称

中考数学专题复习:轴对称与中心对称一、选择题1. 如图所示的尺规作图是作()A.一条线段的垂直平分线B.一个角的平分线C.一条直线的平行线D.一个角等于已知角2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3.下列图形中是中心对称图形的是( )4. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是( )5.图是由“○”和“□”组成的轴对称图形,则该图形的对称轴是直线()A.l1B.l2C.l3D.l46. 如图,分别以线段AB 的两端点A ,B 为圆心,大于12AB 的长为半径画弧,在线段AB的两侧分别交于点E ,F ,作直线EF 交AB 于点O.在直线EF 上任取一点P(不与点O 重合),连接PA ,PB ,则下列结论不一定成立的是( )A .PA =PB B .OA =OBC .OP =OFD .PO ⊥AB 7. 如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,若点M ,N 分别是射线OA ,OB上异于点O 的动点,则△PMN 周长的最小值是 ( )A .B .C .6D .38. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的( )二、填空题9. 如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为 .10. 若点A (x +3,2y +1)与点A ′(y -5,1)关于原点对称,则点A 的坐标是________.11. 等腰三角形的两边长分别为6 cm ,13 cm ,其周长为________ cm .12. 在平面直角坐标系中,点P(4,2)关于直线x =1的对称点的坐标是________. 13. 如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,AD 恰好平分∠BAC.若DE =1,则BC 的长是________.,AC 的垂直平分线分别交BC 于点E ,F .若△AEF 的周长为10 cm ,则BC 的长为 cm .15. 现要在三角地带ABC 内(如图)建一座中心医院,使医院到A ,B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请你确定这座中心医院的位置.16. 如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M 为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.三、解答题17. 已知:如图,AB=AC ,DB=DC ,点E 在直线AD 上.求证:EB=EC.18. 如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.19. 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.20. 如图,在△ABC中,∠BAC的平分线AD交BC的垂直平分线DE于点D,点E在BC 上,过点D作DM⊥AB于点M,DN⊥AC交AC的延长线于点N.求证:BM=CN.21. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四=3S△EDF,求AE的长;边形ECBF(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.参考答案1. 【答案】A2. 【答案】B3. 【答案】B4. 【答案】A5. 【答案】C [解析] 沿着直线l 3折叠,直线两旁的部分能够互相重合,因此该图形的对称轴是直线l 3.6. 【答案】C [解析] 由作图可知,EF 垂直平分AB ,因此可得OA =OB ,PO ⊥AB ,由线段垂直平分线的性质可得PA =PB ,但不能得到OP =OF.7. 【答案】D [解析]分别以OB ,OA 为对称轴作点P 的对称点P 1,P 2,连接OP 1,OP 2,P 1P 2,P 1P 2交射线OA ,OB 于点M ,N ,则此时△PMN 的周长有最小值,△PMN 的周长=PN +PM +MN=P 1N +P 2M +MN=P 1P 2,根据轴对称的性质可知OP 1=OP 2=OP=,∠P 1OP 2=120°,∴∠OP 1M=30°,过点O 作MN 的垂线段,垂足为Q ,在Rt △OP 1Q 中,可知P 1Q=,所以P 1P 2=2P 1Q=3,故△PMN 周长的最小值为3. 8. 【答案】C9. 【答案】12 [解析]∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24. ∵点O 是菱形两条对角线的交点,∴阴影部分的面积=×24=12.10. 【答案】(6,-1) [解析] 依题意,得⎩⎪⎨⎪⎧x +3=-(y -5),2y +1=-1,解得⎩⎪⎨⎪⎧x =3,y =-1.∴点A 的坐标为(6,-1).11. 【答案】32 [解析] 由题意知,应分两种情况:(1)当腰长为6 cm 时,三角形的三边长为6 cm ,6 cm ,13 cm ,6+6<13,不能构成三角形; (2)当腰长为13 cm 时,三角形的三边长为6 cm ,13 cm ,13 cm ,能构成三角形,周长=2×13+6=32(cm).12. 【答案】(-2,2) [解析] ∵点P(4,2),∴点P 到直线x =1的距离为4-1=3.∴点P 关于直线x =1的对称点P′到直线x =1的距离为3.∴点P′的横坐标为1-3=-2. ∴对称点P′的坐标为(-2,2).13. 【答案】3 [解析] ∵AD 平分∠BAC ,且DE ⊥AB ,∠C =90°,∴CD =DE =1.∵DE 是AB 的垂直平分线,∴AD =BD. ∴∠B =∠DAB. ∵∠DAB =∠CAD , ∴∠CAD =∠DAB =∠B.∵∠C =90°,∴∠CAD +∠DAB +∠B =90°. ∴∠B =30°.∴BD =2DE =2. ∴BC =BD +CD =2+1=3.14. 【答案】10 [解析] ∵AB ,AC 的垂直平分线分别交BC 于点E ,F ,∴AE=BE ,AF=CF .∴BC=BE+EF+CF=AE+EF+AF=10 cm .15. 【答案】解:作线段AB 的垂直平分线EF ,作∠BAC 的平分线AM ,EF 与AM 相交于点P ,则点P 处即为这座中心医院的位置.16. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=, ∴CD 的最大值为14,故答案为:14. 17. 证明:连接BC.∵AB=AC ,DB=DC ,∴直线AD 是线段BC 的垂直平分线.又∵点E 在直线AD 上,∴EB=EC.18. 解:(1)∵点D 和点D 1是对称点, ∴对称中心是线段DD 1的中点, ∴对称中心的坐标是(0,52).(2)B(-2,4),C(-2,2),B 1(2,1),C 1(2,3). 19. 解:(1)如图①,直线m 即为所求. (2)如图②,直线n 即为所求.20. 证明:连接BD ,CD.∵DE 垂直平分BC ,∴BD=CD.∵AD 平分∠BAC ,DM ⊥AB ,DN ⊥AC , ∴∠DMB=∠DNC=90°,DM=DN.在Rt △BMD 和Rt △CND 中,∴Rt △BMD ≌Rt △CND (HL). ∴BM=CN.21. (1)如解图①,∵折叠后点A 落在AB 边上的点D 处,解图①∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF , ∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF , ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF ,4△ACB S ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2, 即AB =42+32=5, ∴(AE 5)2=14,∴AE =52;(2)①四边形AEMF 是菱形. 证明:如解图②,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME , ∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB ,AC AB ∵AB =5, ∴445-,x x=解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM =(209)2-(169)2=43, ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S AEMF 菱形=4S △AOE =2OE·AO , 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CMAC , ∵CM =43,AC =4,∴AO =3OE , ∴S AEMF 菱形=6OE 2, 又∵S AEMF 菱形=AE ·CM , ∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.。

中考数学点对点-轴对称与中心对称图形问题(解析版)

中考数学点对点-轴对称与中心对称图形问题(解析版)

专题35 轴对称与中心对称图形问题专题知识点概述1.对称轴:把一个图形沿某条直线对折,如果它与另一个图形重合,就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2.轴对称图形:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

3.轴对称的性质:(1)关于某条直线成轴对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

(4)轴对称图形上对应线段相等、对应角相等。

4.中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

这个点就是它的对称中心。

例题解析与对点练习【例题1】(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B.C.D.【答案】C【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解.A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.【对点练习】(2019山东东营)下列图形中,是轴对称图形的是()【答案】D【解析】观察图形,选项D中图形是轴对称图形,有3条对称轴,其他图形都不是轴对称图形.故选D.【例题2】(2020武汉模拟)下列图形中是中心对称图形的是()【答案】D【解析】根据中心对称图形是图形沿对称中心旋转180度后与原图重合的图形。

所给图形中只有D绕着中心旋转180°后能与自身重合,故选D。

【对点练习】下列图形是中心对称图形的是()A B C D【答案】A.【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.A.∵该图形旋转180°后能与原图形重合,∴该图形是中心对称图形;B.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;C.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形;D.∵该图形旋转180°后不能与原图形重合,∴该图形不是中心对称图形.专题点对点强化训练1.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C.D.【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,不合题意;D.既是中心对称图形,又是轴对称图形,符合题意.2.下列图案中,属于轴对称图形的是()【答案】D.【解析】根据轴对称图形的定义:在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.四个选项只有选项D符合要求,故答案选D.3.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数 C.随机性D.数形结合【答案】A【解析】用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的轴对称性。

初中中考复习之轴对称和中心对称(精编含答案)

初中中考复习之轴对称和中心对称(精编含答案)

中考复习之轴对称和中心对称一、选择题:1.下列标志中,可以看作是中心对称图形的是【 】2.在下列图形中,为中心对称图形的是【 】A .等腰梯形B .平行四边形C .正五边形D .等腰三角形3.下列图形中,是轴对称图形的是【 】A .B .C .D .4.下列图形中,既是轴对称图形又是中心对称图形的是【 】5.下列图形中是轴对称图形的是【 】A .B .C .D .6.下列平面图形,既是中心对称图形,又是轴对称图形的是【 】A .等腰三角形B .正五边形C .平行四边形D .矩形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是【 】A .B .C .D .(D ) (C ) (B ) (A )9.下列图形中不是中心对称图形的是【】A.矩形B.菱形C.平行四边形D.正五边形10.下列图案中,属于轴对称图形的是【】A. B.C.D.11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A.①B.②C.③D.④12.下列交通标志图案是轴对称图形的是【】A.B.C.D.13.在下列四个汽车标志图案中,是中心对称图形的是【】A.B.C.D.14.下列图形中,中心对称图形是【】15.下列图案是轴对称图形的是【】A.B.C.D.16.下列图形中,既是轴对称图形又是中心对称图形的是【】17.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.平行四边形B.等边三角形C.等腰梯形D.正方形18.下列图形中是轴对称图形的是【】19.下列几何图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.矩形C.平行四边形D.等腰梯形20.下列两个电子数字成中心对称的是【】21.下列图形中,是.中心对称图形,但不是..轴对称图形的是【】22.下列图形中,有且只有两条对称轴的中心对称图形是【】.A .正三角形 B.正方形 C.圆 D.菱形23.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是【】A.B.C.D.24.下列图形:①等腰梯形,②菱形,③函数1y=x的图象,④函数y=kx+b(k≠0)的图象,其中既是轴对称图形又是中心对称图形的有【】A.①② B.①③ C.①②③ D.②③④25.下列图形中,是中心对称图形,但不是轴对称图形的是【】A.B.C.D.26.下列图形中,既是轴对称图形,又是中心对称图形的是【】.A.等腰三角形B.平行四边形C.正方形D.等腰梯形27.下列平面图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.28.下列图案中是中心对称图形但不是轴对称图形的是【】A.B.C.D.29.岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是【】A.轴对称图形B.中心对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,又不是中心对称图形30.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是【】31.下列图形中,既是轴对称图形又是中心对称图形的是【】A.等边三角形B.平行四边形C.正方形D.等腰梯形32.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.33.把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC【】A.是中心对称图形,不是轴对称图形B.是轴对称图形,不是中心对称图形C.既是中心对称图形,又是轴对称图形D.以上都不正确34.下列图形中,既是轴对称图形又是中心对称图形的有【】A. 4个B. 3个C. 2个D. 1个35.下列几何图形中,对称性与其它图形不同的是【】36.下列历届世博会会徽的图案是中心对称图形的是【】A. B. C. D.37.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有【】A.1种B.2种C.3种D.4种38.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.39.下列图形是中心对称图形的是【】A.B.C.D.41.下列交通标志是轴对称图形的是【】A.B.C.D.42.下列各图,不是轴对称图形的是【】43.下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.44.下列图形是中心对称图形的是【】A. B. C. D.45.下列图形中既是中心对称图形,又是轴对称图形的是【】A.正三角形B.平行四边形C.等腰梯形D.正方形46.下列图形中,既是轴对称图形又是中心对称图形的有【】A.4个B.3个C.2个D.1个A .B .C .D.48.下列图形中是中心对称图形是【】A .B .C .D .49.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个B.2个C.3个D.4个50.下列图形中,既是轴对称图形,又是中心对称图形的是【】A .B .C .D .51.如图,所给图形中是中心对称图形但不是轴对称图形的是【】A .B .C .D .52.下列图形即使轴对称图形又是中心对称图形的有:【】①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个B.2个C.3个D.4个53.下面四个标志图是中心对称图形的是【】A B C D54.在下列平面图形中,是中心对称图形的是【】A.B.C.D.55.娜娜有一个问题请教你,下列图形中对称轴只有两条的是【】56.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.57.下列四幅图案中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.58.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是【】A.B.C.D.59.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.60.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°61.下列图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.62.下列哪个函数的图象不是中心对称图形【】A.y 2x =-B. 3y x = C .()2y x 2=- D.y 2x = 63.下列图形是中心对称图形的是【 】.(A) (B) (C) (D)64.下列图形既是轴对称图形,又是中心对称图形的是【 】A .B .C .D .二、填空题:1.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA 十QB 的值最小的点,则OP OQ ⋅= .2.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .3.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)4.如图,MN 为⊙O 的直径,A 、B 是O 上的两点,过A 作AC ⊥MN 于点C ,过B 作BD ⊥MN 于点D ,P 为DC 上的任意一点,若MN =20,AC =8,BD =6,则PA +PB 的最小值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲轴对称与中心对称图形
平移与旋转
知识点一:平移变换的概念
由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都沿方向运动,且运动的距离,这样的图形改变叫做图形的平移变换,简称平移.
例1、如图所示,A,B,C,D四个图形中可以由图形E平移得到的是图形( )
同步测试:
1.如图2中的两个福娃贝贝,其中左边的福娃贝贝可
以看作是右边的福娃贝贝经过得到的.
2.学校对学生寝室进行了整顿,并举行了文明寝室评比,
结果七年级(1)班被评为文明寝室.你看她们的牙刷、牙杯放
得多整齐,你能说说她们用了数学知识中的.
知识点二:平移变换的性质
平移变换不改变图形的、和.连结对应点的线段平行(或在同一条直线上)而且.
例2、网格中有一个小甲虫(),它喜欢吃牛粪,它又会把吃剩的牛粪滚成牛粪球()藏进仓库().规定向左为L,向右为R,向上为U,向下D,如:L1表示向左平移一格,D2表示向下平移2格.例如:要把左图中的所有的牛粪球推到最近的仓库里,可以编写程序:L1-R1-U2-D3-R2-U1,小甲虫就能把所有的牛粪球推到最近的仓库.你来试一试,可编写一个怎样的程序才能使小甲虫把右边图上的所有牛粪球推到最近的仓库里.(只需写出一种可行的程序即可)
知识点三:旋转变换的概念
由一个图形改变为另一个图形,在改变的过程中,原图形上的所有点都绕一个的点,按同一个,转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转,这个固定的点叫做中心.
例3、关于旋转变换下列说法正确的有( )
①旋转变换不改变图形的形状;②旋转变换不改变图形的大小;③旋转变换不改变图形的位置;④旋转变换的旋转角度相等,旋转的结果就一样.
(A)1个(B)2个(C)3个(D) 4个
同步测试:
1.在下列图形中,可以通过部分旋转后得到的图形是( )
知识点四:旋转变换的性质
旋转变换不改变图形的和大小。

对应点到旋转中心的距离。

对应点与旋转中心连线所成的角度旋转的角度。

例4、(2008年双柏县中考题)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:
(1)作出关于直线AB的轴对称图形;
(2)将你画出的部分连同原图形绕点O逆时针旋转;
(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.
1. 屋檐最前端的一片瓦为瓦当,瓦面上带著有花纹垂挂圆型的挡片。

下列例举了四种瓦当,其中是轴对称图形的有( )
A.1种
B.2种
C.3种
D.4种
2.如图1,若,边绕点逆时针旋转后能构成平角,则=( )
(A)(B)(C)(D)
3. 如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG
绕点O按逆时针方向旋转130°,两个正方形的重叠部分四边形OMCN
的面积()
A.不变B.先增大再减小
C.先减小再增大D.不断增大
4. 如图,四边形EFGH是由四边形ABCD平移得到的,
已知AD=5,∠B=70°,则()
A.FG=5,∠G=70°B.EH=5,∠F=70°
C.EF=5,∠F=70°D.EF=5,∠E=70°
5. 如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的
三角形,至少需要移动______________格.
6. 钟表的分针旋转120°所需时间为分;时针转3小时,旋转了.
7. 一块长方形草地的大小尺寸如图所示,要在上面沿东西、
南北方向分别铺2条、4条甬道,若甬道的宽均为1米,则
草地的总面积为.
8.四边形是正方形,旋转后与重合。

(1)旋转中心是哪一点?
(2)旋转角等于多少度?
(3)试判断的形状。

9. 如图一块三角形的玻璃裂开成A、B、C共3块,位置、
形状如图所示,请选择若干次平移变换、轴对称变换把它
复原成整个三角形,请简明扼要地讲述你所做的变换过程。

轴对称与中心对称
知识点一:轴对称、轴对称图形
1、轴对称图形:如果一个图形沿某条直线对折,对折的两部分是的,那么就称这样的图形为轴对称图形。

这条直线称为,一定为直线。

2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么这两个图形成,两个图形中的对应点叫。

例1:(2009湖南株洲)下列四个图形中,不是
..轴对称图形的是
A .
B .
C .
D .
同步测试:
1.(2009广西梧州)在下列对称图形中,对称轴的条数最少的图形是( ) A .圆 B .等边三角形
C .正方形
D 。

正六边形
2.(2009贵州黔东南州)在下列几何图形中一定是轴对称图形的有( )
A 、1个
B 、2个
C 、3个
D 、4个 知识点二:轴对称图形的性质
1、轴对称图形的对应线段 ,对应角 ,对应点的连线被对称轴 。

轴对称的两个图形,对应线段或延长线相交,交点在 上。

2、轴对称图形变换的特征是不改变图形的 和 ,只改变图形的 ,新旧图形具有对称性。

例2:(2009湖北荆门)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( )
A .40°
B .30°
C .20°
D .10°
同步测试:
1.(2009广东)如图所示的矩形纸片,先沿虑线按箭头方向向右对折,接着将对折后的纸片沿虑线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )
知识点三:中心对称、中心对称图形 1、中心对称图形:一个图形绕着某点旋转 后能与自身 ,这种图形叫中心对称图形,该点叫作 。

2、中心对称:把一个图形绕着某一点旋转 ,如果它能与另一个图形 ,那么,这两个图形成中心对称,该点叫作 。

例3、(2009辽宁本溪)下列图案中,既是轴对称图形又是中心对称图形的是( )
C .
D .
A .
B .
同步测试:
1.(2009甘肃庆阳)图中不是中心对称图形的是( )
A .
B .
C .
D .
知识点四:中心对称图形的性质
在中心对称的两个图形中,连接对称点的线段都经过 且被 平分。

例4、(2009吉林长春)图①、图②均为的正方形网格,点在格点上.
(1)在图①中确定格点,并画出以为顶点的四边形,使其为轴对称图形.(画一个即可)(3分) (2)在图②中确定格点,并画出以为顶点的四边形,使其为中心对称图形.(画一个即可)(3分)
同步测试:
1.(2009四川成都)在平面直角坐标系XOY 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′,则点A ′在平面直角坐标系中的位置是在( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限
2.(2009山东淄博)如图,点A ,B ,C 的坐标分别为.从下面四个点,,,中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( )
A .M
B .N
C .P
D .Q
1.(2009湖北黄石)下列图形中,对称轴有且只有3条的是( )
A .菱形
B .等边三角形
C .正方形
D .圆
2.(2009浙江杭州)如图,镜子中号码的实际号码是___________.
图②
3.(2009四川内江)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )
4.(09山东青岛)在等边三角形、平行四边形、矩形、等腰梯形和圆中,既是轴对称图形又是中心对称图形的有( ).
A .1种
B .2种
C .3种
D .4种
5.(2009山东淄博)矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为( )
A .8
B .
C .4
D .
6.(2009天津)在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将
所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A . B .
C .
D .
7.(2009广东广州)如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2)。

(1)写出点A 、B 的坐标;
(2)求直线MN 所对应的函数关系式;
(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作图痕迹,不写作法)。

8.(2009湖南娄底)如图9所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是
.
(2)画出四边形OABC 绕点O 顺时针方向旋转90°后得到的四边形OA 2B 2C 2,并求出点C 旋转到点C 2经过的路径的长度.
9.(09湖北荆门)一次函数的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取
得最小值时P点坐标.。

相关文档
最新文档