弹塑性力学大题
弹塑性理论考试题及答案
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
弹塑性力学复习-1
二、计算题
1.已知一点的应力
500 σij = -100
-100
-100 400
0
-100
0
MPa
400
计算(1)主应力 (2)主方向 (3)最大切应力 (3)正八面体上的正应力 (4)正八面体上的切应力 (5)正八面体上的全应力
2.已知一点的应变
u (x1 x2 )2 e1 (x2 x3 )2 e2 x1x2e3
解(1): 管的两端是自由的应力状态
1 6
[(1
2
)2
(
2
3 )2
(
3
1)2
]
2 s
(Mises)
1 3 2 s (Tresca)
1
pR t
,
2
z
0, 3
r
0, zr
r
z
0
1 6
[(
pR t
)2
(
pR t
一、概念题
1.若物体内一点的位移均为零,则该点的应变也 为零。
2.在x为常数直线上,u=0,则沿该线必有 x 0 。 34..在满足y为平常衡数微直分线方上程,又u满=0足,力则边沿界该条线件必的有应 x力 0是。
否是实际应力。 5.应变状态 x k(x2 y2 ), y ky2, xy 2kxy 不可能存在。 6.若 是平面调和函数,1 (x2 y2 ) 是否可以作为
应力函数。
一、概念题
7.平面应力与平面应变主要的异同是什么。 8.切应变的含义是什么。 9.变形协调方程的物理意义是什么。 10.应力主轴与应变主轴在什么情况下重合。 11.什么是横向各向同性材料。 12.受内压压圆环(筒)的应力分析 。 13.逆解法、半逆解法的理论依据是什么?为什么? 14.为什么最小势能原理等价于平衡方程与应力边 界条件? 15.里兹法与伽辽金法的近似性表现在哪里?
弹塑性力学历年考题(杨整理)
i, j x, y, z ,展开其中的 xy 。 (5 分)
三、 以图示平面应力问题为例,列出边界条件,叙述半逆解法的解题步骤。 (15 分) 。
四、 解释图示受内压 p 作用的组合厚壁筒(半径上的过盈量为 )的弹性极限载荷为何比 单层厚壁筒大。 (25 分)
五、 说明为何扭转问题可以进行薄膜比拟。计算边长为 a 的正方形截面,材料剪切屈服强 度为 s 的柱体扭转塑性极限扭矩。 (15 分) 六、 解释为何在用最小总势能原理和里兹法求解图示梁的挠度时,可以设位移函数 (15 分) w a1x 2 (l x) a2 x 2 (l 2 x 2 ) ... 取一项近似计算梁的挠度。
Ar 2 ( ) r 2 sin cos r 2 cos 2 tan ( A为常数)
能满足图示楔形悬臂梁问题的边界条件。并利用这个应力函数确定任一点的应力分量。
四、已知两端封闭的薄壁圆筒,半径为 R,壁厚为 t。圆筒由理想塑性材料制成,其屈服极 限为 s 。薄壁圆筒因受内压而屈服,试确定: (1)屈服时,薄壁筒承受的内压 p; (2) 塑性应力增量之比。 (20 分) 五、求解狭长矩形截面柱形杆的扭转问题:求应力分量和单位长度的扭转角。 (16 分) 六、试用能量法求解图示悬臂梁的挠度曲线。 (提示:设挠度函数为 y A1 cos 其中 A 为待定系数)
2 A r 2 4 sin cos 2(cos 2 sin 2 ) tan 2
2 2 A r 2 sin 2 2 sin cos ) tan r
满足协调方程:
4 (
应力分量:
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
工程弹塑性力学题库及答案
(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,
当
:
即
当
:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,
,
2)
沿 OB 线,
,
8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,
得
平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则
得
;
2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,
;
,联列可得 ,代入
(2)纯剪力状态,
。
解:(1)单向拉伸应力状态
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
弹塑性力学部分习题及答案
厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。
弹塑性力学大题
已知某材料在纯剪作用下应力—应变关系如图所示,弹性剪切模量为G ,Poisson 比为ν,剪切屈服极限为s τ,进入强化后满足const G d d ==,/γτ。
若采用Mises 等向硬化模型,试求(1)材料的塑性模量(2)材料单轴拉伸下的应力应变关系。
解:(1)因为τττγ221232*123121J d J h d p⎥⎥⎦⎤⎢⎢⎣⎡= 所以τγd hd p *3*1=,3*3G d d h p==γτ (2) 弹性阶段。
因为)1(2υ+=EG ,所以)1(2υ+=G E 由于是单轴拉伸,所以εσE = 塑性阶段。
ijp ij fd d σλε∂∂= 1111)1(σσσε∂∂∂∂=fd f h d kl kl p解:在板的固定端,挠度和转角为零。
显然:()0)(b y ==±=±=ωωa x 满足0)(2)(2)(222221=-⋅-=∂∂±=b y x a x C xa x ω故222222111)()(b y a x C w C w --==满足所有的边界条件。
02))((2)y(222221=⋅--=∂∂±=y b y a x C b y ω2、用Ritz 法求解简支梁在均布荷载作用下的挠度(位移变分原理)步骤:(1)设挠度的试验函数 w (x ) = c 1x (l -x )+c 2x 2(l 2-x 2)+…显然,该挠度函数满足位移边界w (0) =0,w (l ) = 0。
(2)求总势能()⎰⎰-''=+=∏l 002qwdx dx w EI 21lV U 仅取位移函数第一项代入,得()()⎰⎥⎦⎤⎢⎣⎡---=∏l 0121dxx l qx c c 2EI 21(3)求总势能的极值EI24ql c 0c 211==∂∏∂ 代入挠度函数即可1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x y D V by b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷
中国矿业大学《弹塑性力学》2021-2022学年第一学期期末试卷一.选择题(共10小题,每小题3分,共30分)1.力系简化时若取不同的简化中心,则( )。
(A)力系的主矢、主矩都会改变;(B)力系的主矢不会改变,主矩一般会改变;(C)力系的主矢会改变,主矩一般不改变;(D)力系的主矢、主矩都不会改变,力系简化时与简化中心无关。
2.当作用在质点系上的外力系的主矢恒为零时,则( )。
(A) 只有质点系的动量守恒; (B) 只有质点系的动量矩守恒;(C) 只有质点系的动能守恒; (D) 质点系的动量和动能均守恒。
3.关于瞬时平移时下列叙述正确的是:()(A) 速度相同,加速度不同; (B) 速度不同,加速度不同;(C) 速度不同,加速度相同; (D) 速度相同,加速度相同。
4.平面一般力系的二力矩平衡方程为是( )(A) 合力的作用线必然通过A点和B 点的连线 (B) x轴与A点和B点的连线不相互垂直;(C) x轴与A点和B点的连线相互垂直; (D) 合力与x轴相互垂直。
5.圆盘作定轴转动,若某瞬时其边缘上A、B 、C三点的速度、加速度如图所示,则的运动是不可能的()。
(A) 点A,B;(C) 点B,C;(B) 点A,C;(D) 点A,B,C。
6.刚体作平面运动,某瞬时平面图形的角速度为の,角加速度为α,则其上任意两点A、B的加速度在A、B连线上的投影()。
(A) 必相等; (B) 相差AB·w²;(C) 相差AB·α; (D) 相差(AB·w²+AB·α)。
7.在图示系统中,A点的虚位移大小δr₄与C点的虚位移大小δrc的比值δr₄:δrc=()(A)Icosβlh;(B)l/(hcos β);(C)lcos²βlh;(D)Ih/cos²β。
8.已知刚体质心C 到相互平行的z'、z轴之间的距离分别为a、b,刚体的质量为m,对 z 轴的转动惯量为J,则的计算公式为( )。
哈工大弹塑性力学考试题库
1、何谓应力张量?若应力张量已知,如何确定应力偏张量、球张量?应力偏张量、球张量有何含义?2、何谓主平面和主应力?何谓应力张量不变量?3、什么是平面应力问题?什么是平面应变问题?4、如果一点的应力状态一定,当坐标系改变时,主应力的大小是否改变?主剪应力呢?5、何谓名义应变与真实应变?在什么情况下,两者的差异很小?6、何谓名义应力?何谓真实应力?7、为什么应力球张量只会引起材料的体积变化,不会使材料产生形状变化?8、什么是塑性变形体积不变条件?9、材料发生弹性变形时,其应力-应变关系有何种特征?10、弹性力学问题求解的主要方法有几种?简述位移法求解弹性力学问题的基本步骤。
11、利用应力法求解弹性力学问题时,是否需要利用变形协调方程?为什么?12、弹性力学问题求解的主要方法有几种?利用位移法求解弹性力学问题时,是否需要利用变形协调方程?为什么?13、平面应变情况下,物体内质点位移有何特点?14、何谓平衡微分方程?其本质意义是什么?15、压缩类变形只能在至少有一个压应力作用下才能发生,这种说法对吗?为什么?16、要使物体产生伸长变形,至少应有一个主应力是拉应力,这种说法对吗?为什么?17、何谓理想刚塑性材料模型?其应力-应变关系有何特征?18、什么是平面应力问题?弹性变形条件下,平面应力问题中主应力为0的方向的正应变是否也为0?为什么?(老师从这又起头后80道题)19、从材料屈服进入塑性状态的角度而言,同种材料挤压变形(三向压应力状态)与拉拔变形(一向拉二向压应力状态),哪个工艺所需的载荷大一些?20、屈服准则的实验验证方法,主要有哪两种实验?(提示:两种实验均采用薄壁圆管试验)21、对直径相同,高度尺寸不同的圆柱体工件在相同工艺条件下进行镦锻变形时影响变形载荷的主要因素是什么?22、为什么与平砧镦粗相比,“V”型凸砧镦粗时,可减少工件的鼓肚现象?23、塑性变形的应力应变顺序对应的规律理论基础是什么?适用范围是什么?24、按照塑性变形的应力应变顺序对应的规律,当中间主应力与平均应力相等时,材料塑性变形属于哪种类型?25、塑性力学问题的解析求解方法主要有哪几种?26、采用常用的解析方法求解塑性力学问题,能解决什么问题?有什么工程应用价值?27、在利用切块法求解塑性力学问题,应用屈服准则时,要做什么样的近似处理?28、简答主应力法求解塑性问题的要点29、何谓滑移线?30、何谓滑移线法?31、滑移线场有何特点?32、严格地讲,滑移线法求解塑性力学问题,只适用于平面应变问题,为什么?33、表示塑性变形应力-应变关系的全量理论,其适用条件是什么?34、塑性变形应力-应变关系的理论有几种?35、何谓塑形变形的增量理论?36、何谓塑性变形的全量理论?适用范围是什么?37、当物体分别在三向压应力和三向拉应力作用下发生塑性变形,其第一、第三主应变在性质上有无区别?38、无模胀球过程中,在球壳厚度不变的情况下,直径大的球壳容易胀形还是直径小的球壳容易胀形?(所需内压力P的大小)39、镦粗过程中,直径一定的坯料,高度大时所需载荷大,还是高度小时所需载荷大?40、塑性变形过程,应力与全量应变是否存在定量的规律性对应关系?41、塑性变形时,应力与全量应变是否存在线性关系?42、弹性变形时,应力—应变关系具有什么特点?43、固体现实应力空间中,为什么塑性变形区的空间在主应力空间等倾线负方向越来越大(即材料断裂罩呈钟罩形状)?44、简述圆柱体在平砧间镦粗变形过程发生鼓肚的原因。
弹塑性力学习题集_很全有答案_
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
弹塑性力学试题集锦(很全,有答案)
1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
弹塑性力学答案
一、简答题1答:(1)如图1所示,理想弹塑性力学模型:e s seE E σεεεσεσεε=≤==>当当(2)如图2所示,线性强化弹塑性力学模型:()1e s s eE E σεεεσσεεεε=≤=+->当当(3)如图3所示,幂强化力学模型:nA σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性:0s sεσσεσσ=≤=>当不确定当(b )线性强化钢塑性:()0/s s sEεσσεσσσσ=≤=->当当图1理想弹塑性力学模型图2线性强化弹塑性力学模型图3幂强化力学模型(a ) (b ) 图4钢塑性力学模型2答:3答:根据德鲁克公设,()00,0pp ij ij ij ij ij d d d σσεσε-≥≥。
在应力空间中,可将0ij ijσσ-作为向量ij σ与向量0ij σ之差。
由于应力主轴与应变增量主轴是重合的,因此,在应力空间中应变增量也看作是一个向量。
利用向量点积的定义:()00cos 0p p ijij ij ij ij ij d σσεσσεϕ-=-≥,ϕ为两个向量的夹角。
由于0ij ij σσ-和p ij ε都是正值,要使上式成立,ϕ必须为锐角,因此屈服面必须是凸的。
4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。
半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。
如果能满足弹性力学的全部条件,则这个解就是正确的解答。
否则需另外假定,重新求解。
二、计算题1解:对于a 段有:0N a a a aF A E a a σσεε==∆=,对b 段有:0N b b bbP F A E b b σσεε-==∆=又a b ∆=∆ 则N bPF a b=+ 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=,3 1.5MPa σ=-()0123/3 5.33MPa σσσσ=++=08.62MPa τ==3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=,310MPa σ=-12352MPa σστ-=±=±,132152MPa σστ-=±=±,123102MPa σστ-=±=±所以max 15MPa τ=(2)代入公式,160I =,21075I =,35250I =故主应力:130MPa σ=,222.1MPa σ=,37.9MPa σ=1237.12MPa σστ-=±=±,13211.052MPa σστ-=±=±,123 3.952MPa σστ-=±=±所以max 11.05MPa τ=4 证明:将213132σσσσμσσ--=-中,化简得:13=将0τ=13max 2σστ-=代入maxττ中,化简得:0max13ττ=所以,等式得证。
弹塑性力学习题集_很全有答案_
σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
硕士生弹塑性力学复习题(2007)
硕士生弹塑性力学复习题一、 判断题1、 对于单个弹性材料组成的物体,其平面应力问题的应力与位移解答都与弹性体的材料常数有关。
( )2、 应力轴对称问题的位移解答也一定是轴对称的。
( )3、 应变状态,是可能的。
( )3,,x y xy Axy By C Dy εεγ===−24、 第一边值问题的所有解答(应力、应变、位移)都是唯一的。
( )5、 弹性体保持连续(不发生相互脱离或侵入现象)的条件是满足应变协调方程。
( )6、 作用在半无限体上的集中力对离作用力位置较远的地方会产生较大的应力集中。
( )7、 对梁端部作用一附加平衡力系,则该力系对作用点附近的应力分布会产生明显的影响。
( )8、 弹性薄板上的扭矩可以等效为分布及集中剪力。
( )9、 薄板的Navier 解法只适用于四边支承的矩形板。
( ) 10、薄板的Levy 解法适用于任意支承的矩形板。
( )11、满足应力相容方程的一组应力分量,也一定满足平衡方程。
12、最大正应力作用面上的剪应力为零,最大剪应力作用面上的正应力为零。
( ) 13、应力不变量与坐标系的选择无关。
( )14、薄板弯曲时,若满足了自由边合剪力与弯矩等于零的边界条件,则弯矩M 、扭矩xy M 、横向剪力Q 都分别为零。
( )15、Tresca 屈服条件是:当最大拉应力达到某一数值时,材料就发生屈服。
( ) 16、当八面体上的剪应力达到某一数值时,材料就会产生屈服现象。
( )二、 填空题1、 弹性力学的基本假设有 , , , , , 。
2、弹性力学的三类边值问题是:(1) ,(2) ,(3) 。
3、对于平面应变问题,只需将对应的平面应力问题的解答作材料常数的替换即可,即 E → ,γ→ 。
4、弹性薄板的弹性曲面方程为: 。
5、弹性力学问题有 和 两种基本解法,前者以 为基本未知量,归结为在 条件下求解 ,后者以 为基本未知量,归结为在 条件下求解 。
6、对于平面应变问题z σ= ,z ε= ;对于平面应力问题z σ= ,z ε= 。
浙江大学工程弹塑性力学例题-2014
ε ≤
6
题7.4
已知某材料在纯拉时进入强化后满足 dσ = ψ ′ = const条件。 dε p 若采用Mises等向强化模型,求该材料在纯剪时 dτ / d γ 的表达式。
解: Mises等向强化模型 Mises等向强化模型 (P.149 (7.71)式 (7.71)式)
d ε ijp =
3 dσ Sij 2ψ ′ σ
题7.3
已知某材料在简单拉伸时满足线性强化规律,即: Eε σ= σ s + E ′(ε − ε s )
ε ≤ εs ε ≥ εs
1 在弹性时ν 0 ≠ ,问σ (ε )曲线是什么形式? 2
解: ∵ σ = σ s + E ′(ε − ε s ) 及 ε = 3Eε − ( E − E ′)(2ν 0 − 1)ε s
已知某材料在纯拉时进入强化后满足 dσ = ψ ′ = const条件。 dε p 若采用Mises等向强化模型,求该材料在纯剪时 dτ / d γ 的表达式。
解: Mises等向强化模型 Mises等向强化模型 (P.149 (7.71)式 (7.71)式)
d ε ijp =
3 dσ Sij 2ψ ′ σ
工程弹塑性力学
例题
浙江大学
建筑工程学院
题5.9
解:
σ 1 =σ 2 =P / A ⇒ ∆σ 1 = ∆σ 2 = ∆P / A
1
题6.4
设S1,S2,S3为应力偏量,试证明用应力偏量表示Mises屈服条件时,其形式为:
3 2 ( S1 + S 22 + S32 ) = σ s 2
σ 1 2 2 2 证明: 证明: Mises屈服条件为 Mises屈服条件为: 屈服条件为:J 2 ′ = (σ 1 -σ 2) + (σ 2 -σ 3) + (σ 3 -σ 1) = S
同济大学弹塑性力学试卷及习题解答(完整资料).doc
【最新整理,下载后即可编辑】弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( )(2)可用矩阵描述的物理量,均可采用张量形式表述。
( )(3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( )(4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
( )(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么,由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
( )(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( )(7)Drucker 假设适合于任何性质的材料。
( )(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( )(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65(5)随动强化后继屈服面的主要特征为:___________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知某材料在纯剪作用下应力—应变关系如图所示,弹性剪切模量为G ,Poisson 比为ν,剪切屈服极限为s τ,进入强化后满足const G d d ==,/γτ。
若采用Mises 等向硬化模型,试求 (1)材料的塑性模量(2)材料单轴拉伸下的应力应变关系。
解:(1)因为τττγ221232*123121J d J h d p⎥⎥⎦⎤⎢⎢⎣⎡= 所以 τγd h d p *3*1=,3*3G d d h p==γτ (2) 弹性阶段。
因为)1(2υ+=EG ,所以)1(2υ+=G E 由于是单轴拉伸,所以εσE = 塑性阶段。
ijp ij fd d σλε∂∂= 1111)1(σσσε∂∂∂∂=fd f h d kl kl p解:在板的固定端,挠度和转角为零。
显然:()0)(b y ==±=±=ωωa x 满足0)(2)(2)(222221=-⋅-=∂∂±=b y x a x C xa x ω故222222111)()(b y a x C w C w --==满足所有的边界条件。
2、用Ritz 法求解简支梁在均布荷载作用下的挠度(位移变分原理)步骤:(1)设挠度的试验函数 w (x ) = c 1x (l -x )+c 2x 2(l 2-x 2)+…显然,该挠度函数满足位移边界w (0) =0,w (l ) = 0。
(2)求总势能()⎰⎰-''=+=∏l002q w d x dx w EI 21lV U 仅取位移函数第一项代入,得()()⎰⎥⎦⎤⎢⎣⎡---=∏l0121dxx l qx c c 2EI 21(3)求总势能的极值EI24ql c 0c 211==∂∏∂ 代入挠度函数即可02))((2)y(222221=⋅--=∂∂±=y b y a x C b y ω1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x y D V by b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω 两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
如右图所示,矩形板在四个角点作用分别作用大小为F 的集中力,其中A 点和C 点的集中力向上,B 点和D 点的集中力向下,四条边均为自由,求板的挠度。
解:板边的边界条件为:()02=±=a x x M ,()02=±=ax x V()02=±=by y M ,()02=±=b y y V4个角点的边界条件均为:F M xb y a x xy =±=±=,2)2(由于横向分布荷载0=q ,因此基本微分方程变为:022=∇∇ω假定坐标圆点的挠度为零,上式的解是xy βω= 式中的β是待定常数。
使用)(2222y w x w D M x ∂∂+∂∂-=ν )(2222x w y w D M y ∂∂+∂∂-=ν y x wD M xy ∂∂∂--=2)1(ν])2([2333yx wx w D V x ∂∂∂-+∂∂-=ν ])2([2333yx wy w D V y ∂∂∂-+∂∂-=νB B xy B yx wD M R ])1(2[-)(22∂∂∂-==ν ω2x Q ∇∂∂-=x Dω2y Q ∇∂∂-=yD则有:0==y x M M ,βν)1(--=D M xy ,0==y x Q Q ,0==y x V V 显然板边的边界条件能自然满足,为满足角点的边界条件,应有()3)1(62332,2βνβGt Et M F by a x xy -=+-==±=±=,因此得:33Gt F -=β 挠度解就是:xy GtF33-=ω如图所示的楔形体受水压力作用,水的容重为γ,试写出边界条件 解:在x =0上,l = -1,m =0, (σx )x=0⋅ (-1)+(τyx )x =0⋅0 = γy (τxy )x =0⋅ (-1)+(σy )x =0⋅0 = 0 (σx )x =0=-γy (τxy )x =0⋅ 在斜边上l = cos α,m = -sin ασx cos α-τyx sin α = 0τxy cos α-σy sin α = 0O α1y x正方形薄板,三边固定另一边受均匀压力q 作用,应力函数取为32221221-y A y x A qx ++=ϕ,基于应力辩分原理Ritz 法求解(v=0.3) 步骤:有应力函数求得应力y A x A x F x x 2212262-y+=∂∂=ϕσ 21222-x y A q y F y y +-=∂∂=ϕσ,xy A xy 124yx -=∂∂∂-=ϕτ满足力边界条件,一定满足平衡方程。
由于位移边界已知位移为0,外力余势能为0,总余势能就是应变余能,平面应力与线弹性情况下,应变余能为()dxdy U U xy xy y y x x c γτεσεσ++==⎰⎰21,将应变由应力表达得 ()()dxdy E U xy y x y x c 22212221τυσυσσσ++-+=⎰⎰,将所求应力代入方程,求0/1=∂∂A II c ,0/2=∂∂A II c ,即得22212175,21730a qA a q A -==一处在平面应变状态下(0z ε=)的理想刚塑性体,其材料的应力应变关系服从Levy-Mises 增量理论,即ij ij d d s ελ=,且材料体积是不可压缩的,考察其中的一个微单元体,试证明:(1)其应力状态分量可分解为静水压力状态与纯剪应力状态之和: (2)Tresca 和Mises 屈服条件重合。
解:(1)00000000000000000000x yx x yx ij yx yyx y z z στσστσστστσσσσσσσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭其中03x y zσσσσ++=,上式第一项的第一不变量为0,故是纯剪状态,第二项为静水压力状态,得证。
(2)=0,所以, 所以平面应变状态:2=2== 故屈服条件重合薄壁圆管受拉与扭转作用,材料单拉时的应力应变关系为 试按以下三种加载路径达到最后应力状态,分别求其对应产生的应变εz 与γθz(1) 首先沿z 轴加载至σz=σs ,并保持σz 不变,然后再增加剪应力至τθz=σs/√3; (2) 先增加剪应力至τθz=σs/√3,并保持τθz 不变,然后再增加拉应力至σz =σs ; (3) 比例加载,按σz:τθz=√3:1增加应力至σz =σs ,τθz=σs/√3。
解:(1)求塑性模量:在单轴应力状态下, 弹性应变是 。
而塑性应变是塑性模量应是 (2)加载判别:当应力状态达到初始屈服后,下一步应力增量是否产生塑性变形,取决于 (∂f /σ∂ij ) d σij 是否大于零。
该题各路径下的应力状态偏量均可表示为: sz = σz ,sx = sy = -σz ,s θz = sz θ=τθz ,由于σz 、d σz 同号,τθ、d τθz 同号,因此, (3)使用流动法则求塑性变形(4)按上述路径进行积分,塑性变形 路径(1):σz=σs ,材料屈服,再增加剪应力d τθz ≠0,d σz=0,路径(2):当剪应力τθz=σs/√3,材料屈服,增加应力σz ,即d σz ≠0,d τθz=0,τθz=σs/√3E E s'σ-σ+σ=εστσsσs /3(1)(2)(3)Ee σ=εE se p '-=-=σσεεεE d d h p'=εσ=3312222s z z J σ=τ+σ=θ)232(232z z z z ij ij d d J d f θθττ+σσ=σσ∂∂0>σσ∂∂ij ijd fz z z z z z ij ij p z J d d J h f d f h d σττ+σσ=σ∂∂⎪⎪⎭⎫ ⎝⎛σσ∂∂=εθθ3223)232(231122zz z z z d d J h σττ+σσ=θθ)31(112z z z z z z z z z z zij ij p z d d J h J d d J h f d f h d θθθθθθθθτττ+σσ=τττ+σσ=τ∂∂⎪⎪⎭⎫ ⎝⎛σσ∂∂=γ)3(21123)232(23112122222231z s s J θτ+σ=σ=σ⎰σθθθθστττ+σ=ε3022)(331s s z z z s p z d h 3/0223ln 2s s s x h σ⎪⎪⎭⎫ ⎝⎛σ+σ=2ln 2h s σ=⎰σθθθθθττττ+σ=γ3022)3(331s z z z zs p z d h 3/03arctan 3339s s z s z h σθθ⎪⎪⎭⎫ ⎝⎛στσ-τ=s h σ⎪⎭⎫ ⎝⎛π-=413ss s z s z z z z s z p z h d h σσθ⎪⎭⎫ ⎝⎛σσσ-σ=σσσσ+σ=ε⎰03022arctan 1)31(31⎪⎭⎫ ⎝⎛π-σ=41h s路径(3):在加载中σz = √3τθz ,σz=σs /√2材料屈服,且d σz = √3d τθz ,塑性变形与加载路径有关三种应力路径下的弹性应变都是薄壁圆筒平均半径为R ,壁厚为t ,轴线方向为z ,轴部受轴向拉力T 和扭矩M 共同作用,材料的弹性模量为E ,剪切模量为G ,拉伸屈服条件为s σ。
试:写出单位体积弹性应变能的表达式;分别写出Mises 以及Tresca 屈服条件的具体表达式;使用Mises 屈服条件给出:轴向拉力T 和扭矩M 满足何种关系时,圆筒处于加载状态。
解:应力状态为22002000022ij M R t M T R tRt πσππ⎛⎫ ⎪⎪= ⎪ ⎪⎪⎝⎭,根据ij σσ-=0得出其三个主应力分别为1σ=230,σσ== 第一不变量1132TI Rtσσπ=+=,第二不变量222214()622T M J Rt R t ππ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 单位体积应变能21211182W I J K G=+,将1I ,2J 代入此式即可。
其中323(12)3(12*)3E EK K G K Gυ==---+,化简此式得93E G K G E -=- (2)Mises 屈服条件为223s f J σ=-,代入2J 即得。