1,2,3-三唑化合物的合成研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年第29卷有机化学V ol. 29, 2009第1期, 13~19 Chinese Journal of Organic Chemistry No. 1, 13~19
zgs@
*
E-mail:
Received December 25, 2007; revised March 26, 2008; accepted June 5, 2008.
国家自然科学基金(No. 20672031)、河南省创新型科技人才建设工程(No. 084100510002)及新世纪优秀人才支持计划(No. 2006HANCET-06)资助项目.
14
有 机 化 学 V ol. 29, 2009
1.1 Cu(II)盐还原产生Cu(I)催化合成1,2,3-三唑
铜催化的有机叠氮化合物和端炔烃之间的1,3-偶极Huisgen 环加成反应机理上是Cu(I)起到催化作用[6], 但Cu(I)盐在空气中的不稳定性会使其催化效果大大降低. 而进一步研究发现在反应过程中由Cu(II)盐还原产生Cu(I)来催化反应进行却能取得更好的效果, 像实验室常用的CuSO 4•5H 2O, Cu(OAc)2, CuSO 4等都可与铜金属或其它一些还原剂共同作用产生Cu(I)催化剂, 例如CuSO 4•5H 2O-抗坏血酸钠[5], CuSO 4•5H 2O-抗坏血酸[7], CuSO 4•5H 2O-Cu(0)[8], Cu(OAc)2•H 2O-抗坏血酸钠[9]等体系. 这些催化剂体系反应条件温和, 反应非常可靠, 对氧气、水不敏感, 产物立体选择性好, 产率高, 反应后处理及产物分离简单, 速率达到无催化剂时的107
倍[6]
, 因此称之为是一种“click ”化学. 广泛取代的反应物、温和的反应条件以及产物区域专一性使得该方法一经发现就被广泛应用于药物发现[10]、生物分子的修饰[11]以及材料科学[12](Eq. 2)等
.
近年来又有许多关于该方法催化click 化学反应溶剂方面的报道[13], 反应大多是在叔丁醇/水体系中进行, 亲脂性、亲水性试剂在此体系中都能取得很好的效果. 另外水和其它一些有机溶剂如乙醇、二甲亚砜、四氢呋喃、乙腈、二甲基甲酰胺、丙酮等与水互溶的有机溶剂的混合溶剂中也有很好的效果. 2006年, Lee 等[13]又研究了生成三唑环的一种新的有效溶剂体系: 二氯甲烷/水. 这种溶剂体系和其它体系相比不仅提高了反应产率, 缩短了反应时间, 而且扩大了应用范围, 在此体系中已高效合成出了一些结构复杂的分子.
随着对合成1,2,3-三唑研究的不断深入, 一锅法催化合成1,2,3-三唑受到人们极大关注. 该方法是在反应
过程中由底物首先生成有机叠氮, 然后不经分离直接进行铜催化1,3-偶极环加成反应. 这样可以使一些不稳定的或不易分离的叠氮化合物直接和炔基反应生成稳定的三唑.
如2005年Wang 等[14]利用click 反应以未保护单糖为起始原料一锅合成了含1,4-二取代-1,2,3-三唑的糖聚体. 反应经过乙酰化、溴化、叠氮化、Cu(I)盐催化的Huisgen 环加成生成目标化合物(Eq. 3). 该方法简化了糖化学反应过程中繁琐的操作, 避免了分离上的困难
.
2007年Yadav 等[15]将环氧化合物通过click 反应有效合成了各种β-羟基-1,2,3-三唑化合物(Eq. 4). 反应条件温和, 易于操作
.
Fukuzawa 等[16]最近利用Cu(OTf)2作为双重催化剂催化芳香烃的酯和三甲基硅叠氮(TMSN 3)及端炔烃, 一锅合成1,4-二取代-1,2,3-三唑(Eq. 5). 反应进程不需再加其它催化剂
.
多组分一锅法反应应用于1,2,3-三唑的合成, 不仅依然具有条件温和、产物选择性好、产率高, 反应后处理及产物分离简单等合成上的优势, 而且提高了合成效率, 很大程度上扩大了click 化学的底物应用范围.
自从1986年Gedye 等[17]研究了在微波辅助下的酯化反应, 微波技术在有机反应中的应用得到了快速发展. 尽管叠氮化合物和端炔烃之间的1,3-偶极环加成反应一般不需要高温, 但微波辅助催化能使反应时间由几十小时缩短到几十分钟甚至几分钟[18]. 例如一锅法CuSO 4-Cu(0)催化合成1,2,3-三唑中, 在微波辅助条件下一系列1,2,3-三唑化合物15 min 内可由卤代烃直接反应得到[19], 极大地提高了传统一锅法的合成效率. 微波具有清洁、高效、耗能低、污染少等特点, 它的应用将会
No. 1
王景梅等:1,2,3-三唑化合物的合成研究进展
15
使click 化学向一个更高效、更环保的方向发展.
综上所述, Cu(II)盐-抗坏血酸钠等体系的催化剂无论在传统合成方法中, 还是在一锅法合成或微波辅助下的合成都有广泛的应用, 但同时也可以看到它多数是在含水体系中的应用, 一些水敏感性基团却需要在有机溶剂中进行反应, 这就需要寻找一些在有机溶剂中溶解性能好的铜盐催化剂, 来扩大click 反应的应用范围. 1.2 Cu(0)氧化产生Cu(I)催化合成1,2,3-三唑
在合成1,2,3-三唑的众多催化体系中, 铜金属是一种特别引人注目的催化剂. 铜金属催化安全廉价, 操作简便. 例如铜金属在一些氧化剂(CuSO 4, FeCl 3[20]等)存在下生成Cu(I)催化反应进行. 又如有机叠氮和炔烃的水/醇的混合液中加入过量的铜金属也能高效地得到相应的1,2,3-三唑环[6](Eq. 6). 但用铜金属和其它催化体系相比需要较长的反应时间和较大的量. 这就需要对铜金属催化体系加以改进, 使其既能提高催化活性又能保持操作简便的优势
.
相比之下对纳米铜粒子的利用则提供一个较好的方法, 例如在胺的盐酸盐存在下, 可溶性活性纳米铜粒子[21]可高效地催化反应进行(Eq. 7), 表现了和其它铜盐催化体系同样广泛的应用范围. 但反应体系需要加入铵盐、或者炔烃或叠氮分子上存在铵盐, 这从某种程度上限制了该方法进一步深入和广泛的应用
.
值得一提的是2006年Choudary 等[22]将卤代烃与叠氮化钠及炔烃在水相中利用Cu-Al 2O 3纳米粒子催化, 一锅得到1,4-二取代-1,2,3-三唑化合物(Eq. 8). 反应不仅扩大了底物的范围, 而且水相的利用也减少了对环境的污染
.
铜纳米簇[23]在无任何铵盐的条件下, 也能高效催化有机叠氮化合物和端炔烃之间的环加成反应生成1,4-二取代-1,2,3-三唑(Eq. 9). 研究表明反应中催化作用可能发生在铜的表面, 且仍可能有Cu(I)-炔中间体的产 生[24]
.
从Eq. 9可知铜纳米簇催化剂有很高的催化活性, 但铜纳米簇和其它铜催化体系相比要昂贵许多, 较大程度地限制了它在工业和科研中的应用. 1.3 Cu(I)盐催化合成1,2,3-三唑
2002年Meldal 等[4]最早报道了Cu(I)盐在固相中催化有机叠氮化合物和端炔烃之间的1,3-偶极环加成反应得到1,4-二取代-1,2,3-三唑肽化合物. 他们将Cu(I)盐加到树脂固载的端炔烃中, 在碱如DIPEA (N ,N -diisoprop- ylethylamine)的存在下进行反应得到1,4-二取代-1,2,3-三唑化合物. 研究表明固相中Cu(I)催化的叠氮化合物和端炔烃的环加成反应适用于多种反应条件和树脂类型, 但由于过量炔烃的自身偶联使得反应产率较低. 近
年来一些文献[25]报道了即使在炔烃浓度较大的情况下, 仍然可以利用树脂固载叠氮的固相反应高效合成1,2,3-三唑的方法. 但由于树脂对叠氮基团的空间位阻影响, 一些反应可能会由于炔基偶联占优势导致产率下降. 因此还需要进一步探索和改进.
Wong 等[26]较早在液相中直接用Cu(I)盐催化叠氮化合物和端炔烃之间的1,3-偶极环加成反应. 近几年Cu(I)盐在液相中催化叠氮化合物和端炔烃之间偶合的应用很多且反应条件更加温和, 像CuI, CuBr, CuCl, CuCN 等铜盐都可用来催化并能取得很好的产率, 例如在糖化学[27]中应用CuI 催化得到取代位置专一的糖聚体(Eq. 10), 产率达到
96%.
随着对反应的深入研究, Cu(I)催化的反应体系也逐渐多样化. 如2005年Yan 等[28]报道了在三乙胺的存在