第七章-数据挖掘PPT课件
合集下载
数据分析与数据挖掘ppt课件
(一)数据仓库定义和特点 (二)数据字典与元数据 (三)数据仓库的结构体系 (四)数据仓库的数据模型 (五)数据仓库的数据分析工具 (六)数据仓库的开发流程
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
(一) 数据仓库的定义与特点
4 数据挖掘与统计学
统计学与自然、经济、社会都有紧密的关系。 其法则和方法是概率论。 通过对全部对象(总体)进行调查,为制定计划
和决策提供依据。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
统计学中应用于数据挖掘的内容
3 数据挖掘与OLAP的比较
OLAP:多维、多层次分析
OLAP的典型应用,通过商业活动变化的查询发现 的问题,经过追踪查询找出问题出现的原因,达到 辅助决策的作用。
数据挖掘:发现规律、预测未来
数据挖掘任务在于聚类(如神经网络聚类)、分类 (如决策树分类)、预测等。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
数据挖掘(DM)技术能获取关联知识、时序知识、聚 类知识、分类知识等。
数据仓库(DW)、联机分析处理(OLAP)、数据挖 掘(DM)等结合,形成决策支持系统。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
二 数据仓库基本原理与应用
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
(一) 数据仓库的定义与特点
4 数据挖掘与统计学
统计学与自然、经济、社会都有紧密的关系。 其法则和方法是概率论。 通过对全部对象(总体)进行调查,为制定计划
和决策提供依据。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
统计学中应用于数据挖掘的内容
3 数据挖掘与OLAP的比较
OLAP:多维、多层次分析
OLAP的典型应用,通过商业活动变化的查询发现 的问题,经过追踪查询找出问题出现的原因,达到 辅助决策的作用。
数据挖掘:发现规律、预测未来
数据挖掘任务在于聚类(如神经网络聚类)、分类 (如决策树分类)、预测等。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
数据挖掘(DM)技术能获取关联知识、时序知识、聚 类知识、分类知识等。
数据仓库(DW)、联机分析处理(OLAP)、数据挖 掘(DM)等结合,形成决策支持系统。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
二 数据仓库基本原理与应用
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
数据挖掘第七章__聚类分析
火龙果 整理
Chapter 7. 聚类分析
• 聚类分析概述 • 聚类分析的数据类型
• 主要聚类分析方法分类
划分方法(Partitioning Methods)
分层方法
基于密度的方法
基于网格的方法
基于模型(Model-Based)的聚类方法
火龙果 整理
• 差异度矩阵
– (one mode)
0 d(2,1) 0 d(3,1 ) d ( 3, 2 ) : : d ( n,1) d ( n,2)
0 : ... ... 0
火龙果 整理
1.数据矩阵 数据矩阵是一个对象—属性结构。它是n个对象组
6.3 聚类分析中的数据类型
假设一个要进行聚类分析的数据集包含 n
个对象,这些对象可以是人、房屋、文件等。
聚类算法通常都采用以下两种数据结构:
火龙果 整理
两种数据结构
• 数据矩阵
– (two modes)
x11 ... x i1 ... x n1 ... x1f ... ... ... xif ... ... ... xnf ... x1p ... ... ... xip ... ... ... xnp
• 保险: 对购买了汽车保险的客户,标识那些有较高平均赔偿 成本的客户;
• 城市规划: 根据类型、价格、地理位置等来划分不同类型的 住宅; • 地震研究: 根据地质断层的特点把已观察到的地震中心分成 不同的类;
火龙果 整理
生物方面,聚类分析可以用来对动物或植物分类,或 根据基因功能对其进行分类以获得对人群中所固有的
(6.2)
火龙果 整理
Chapter 7. 聚类分析
• 聚类分析概述 • 聚类分析的数据类型
• 主要聚类分析方法分类
划分方法(Partitioning Methods)
分层方法
基于密度的方法
基于网格的方法
基于模型(Model-Based)的聚类方法
火龙果 整理
• 差异度矩阵
– (one mode)
0 d(2,1) 0 d(3,1 ) d ( 3, 2 ) : : d ( n,1) d ( n,2)
0 : ... ... 0
火龙果 整理
1.数据矩阵 数据矩阵是一个对象—属性结构。它是n个对象组
6.3 聚类分析中的数据类型
假设一个要进行聚类分析的数据集包含 n
个对象,这些对象可以是人、房屋、文件等。
聚类算法通常都采用以下两种数据结构:
火龙果 整理
两种数据结构
• 数据矩阵
– (two modes)
x11 ... x i1 ... x n1 ... x1f ... ... ... xif ... ... ... xnf ... x1p ... ... ... xip ... ... ... xnp
• 保险: 对购买了汽车保险的客户,标识那些有较高平均赔偿 成本的客户;
• 城市规划: 根据类型、价格、地理位置等来划分不同类型的 住宅; • 地震研究: 根据地质断层的特点把已观察到的地震中心分成 不同的类;
火龙果 整理
生物方面,聚类分析可以用来对动物或植物分类,或 根据基因功能对其进行分类以获得对人群中所固有的
(6.2)
火龙果 整理
《数据挖掘入门》PPT课件
依存性和关联性,如果两个事物或者多个事物之间存在
一定的关联关系,那么其中一个事物就能够通过其他事
物预测到。
6.
人们希望在海量的商业交易记录中发现感兴趣
的数据关联关系,用以帮助商家作出决策。例如:
7.
面包 2% 牛奶 1.5% (占超市交易总数)
8.
2%和1.5%表明这两种商品在超市经营中的重要程度,
8. 模式解释:对在数据挖掘步骤中发现的模式 (知识)进行解释。通过机器评估剔除冗余或 无关模式,若模式不满足,再返回到前面某些 处理步骤中反复提取。
9. 知识评价:将发现的知识以用户能了解的方式 呈现给用户。其中也包括对知识一致性的检查, 以确信本次发现的知识不会与以前发现的知识 相抵触。
05.06.2021
精选ppt
10
什么是数据挖掘
1. 数据挖掘(从数据中发现知识) 从海量的数据中抽取感兴趣的(有价值的、隐含的、
以前没有用但是潜在有用信息的)模式和知识。
2. 其它可选择的名字 数据库中知识挖掘、知识提取、数据/模式分析、数据
考古、数据捕捞、信息获取、事务智能等。
3. 广义观点 数据挖掘是从存放在数据库、数据仓库中或其它信息
24
6,分类与预测 分类和预测是两种重要的数据分析方法,在商业上
的应用很多。分类和预测可以用于提取描述重要数据类 型或预测未来的数据趋势。
分类的目的是提出一个分类函数或分类模型(即分 类器)通过分类器将数据对象映射到某一个给定的类别 中。数据分类可以分为两步进行。第一步建立模型,用 于描述给定的数据集合。通过分析由属性描述的数据集 合来建立反映数据集合特性的模型。第二步是用模型对 数据对象进行分类。
05.06.2021
数据挖掘精品PPT课件
ห้องสมุดไป่ตู้
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
数据挖掘课件
07
数据挖掘实践案例
电商用户行为分析
1 2
用户购买行为分析
分析用户的购买记录,识别用户的购买习惯和偏 好,为电商企业提供精准的产品推荐和营销策略 。
用户活跃度分析
分析用户的登录、浏览、搜索等行为,评估用户 的活跃度和兴趣,优化网站内容和结构。
3
用户满意度分析
通过用户评价和反馈,了解用户对产品的满意度 和需求,及时调整产品和服务,提高用户满意度 和忠诚度。
层次聚类算法的优缺点
层次聚类算法能够得到完整的聚类树,但计算复杂度高,且需要预先确定簇的数量或截断 线。
05
分类与回归
决策树算法
决策树算法概述
ID3算法
决策树是一种常见的分类与回归算法,通 过树形结构来表达决策过程。
ID3算法是决策树学习算法的一种,它根据 信息增益来选择划分属性。
C4.5算法
CART算法
C4.5算法是ID3算法的改进版,它引入了增 益率的概念,解决了ID3算法对可取值数目 较多的属性有所偏好的问题。
CART算法是一种采用二叉树结构的决策树 学习算法,概述
距离度量
K近邻算法是一种基本的分 类与回归算法,它根据距离 来衡量样本之间的相似性。
信用卡欺诈检测
01
异常交易检测
监测信用卡交易记录,及时发现 异常交易,如大额交易、异地交 易等,防止欺诈行为。
02
欺诈模式识别
03
实时监控与警报
通过对历史欺诈行为进行分析, 发现欺诈模式和特征,建立欺诈 检测模型。
实时监测信用卡交易,触发警报 机制,及时通知银行和持卡人, 防止欺诈行为。
股票价格预测
填充缺失值
对于缺失的数据,可以采 用不同的方法进行填充, 如用平均值、中位数或模 式匹配等方法。
数据挖掘概述课件
(5)建立模型
对建立模型来说要记住的最重要的事是它是一个反复的过程。需要仔细考 察不同的模型以判断哪个模型对你的商业问题最有用。
为了保证得到的模型具有较好的精确度和健壮性,需要一个定义完善的 “训练—验证”协议。有时也称此协议为带指导的学习。验证方法主要分为:
技术上的定义
数据挖掘(Data Mining)就是从大量 的、不完全的、有噪声的、模糊的、 随机的实际应用数据中, 提取隐含在 其中的、人们事先不知道的、但又是 潜在有用的信息和知识的过程。
商业角度的定义
数据挖掘是一种新的商业信息处理 技术, 其主要特点是对商业数据库 中的大量业务数据进行抽取、转换、 分析和其他模型化处理, 从中提取 辅助商业决策的关键性数据。
英国电信需要发布一种新的产品, 需要通过直邮的方式向客户推荐 这种产品。。。。。。
使直邮的回应率提高了100%
零售商店
GUS日用品零售商店需要准确 的预测未来的商品销售量, 降低 库存成本。。。。。。
通过数据挖掘的方法使库存成本比原 来减少了3.8%
税务局
美国国内税务局需要提高对 纳税人的服务水平。。。。 。。
在记录级提供历史 性的、动态数据信
息
Pilot Comshare
Arbor Cognos Microstrategy
在各种层次上提供 回溯的、动态的数
据信息
Pilot Lockheed
IBM SGI 其他初创公司
提供预测性的信息
数据挖掘是多学科的产物
数据库技术
统计学
机器学习
数据挖掘
可视化
人工智能
高性能计算
数据挖掘就是充分利用了统计学和人工智能技术的应用程 序, 并把这些高深复杂的技术封装起来, 使人们不用自己掌 握这些技术也能完成同样的功能, 并且更专注于自己所要 解决的问题。
数据挖掘ppt课件(2024)
医疗数据类型及特点
电子病历、医学影像、基因测序等 。
数据预处理与特征提取
针对不同类型的医疗数据进行预处 理和特征提取,如文本处理、图像 识别、基因表达谱分析等。
2024/1/29
模型评估与应用
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
贝叶斯分类器应用案例
03
如垃圾邮件识别、新闻分类、情感分析等。
17
神经网络在分类预测中应用
1 2
神经网络基本概念
模拟人脑神经元连接方式的计算模型,通过训练 学习输入与输出之间的映射关系。
神经网络在分类预测中的应用
通过构建多层感知机、卷积神经网络等模型,对 输入数据进行自动特征提取和分类预测。
3
神经网络应用案例
5
数据挖掘与机器学习关系
机器学习是数据挖掘的重 要工具之一。
2024/1/29
数据挖掘包括数据预处理 、特征提取、模型构建等 步骤,其中模型构建可以 使用机器学习算法。
机器学习算法如决策树、 神经网络、支持向量机等 在数据挖掘中有广泛应用 。
6
2024/1/29
02
数据预处理技术
7
数据清洗与去重
推荐模型构建
利用机器学习、深度学习等技 术构建推荐模型,如逻辑回归 、神经网络等。
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
32
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
2024/1/29
数据来源与处理
数据挖掘ppt课件
2021精选ppt
12
实例——科学数据库
Internet已经成为最大的信息源,但缺乏集中统一 的管理机制, 信息发布具有自由性和任意性, 难于控 制和管理 • 分散、无序、无政府、变动、数量、包罗万象 • 真伪并存, 资源信息和非资源信息难于驾御 • 非规范、非结构 • 检索查全和查准提出新的挑战 • 多媒体、多语种、多类型信息的整合提出新的挑 战 • 跨国界数据传递和流动, 带来政治、文化新问题 • 集成多种(正式和非正式等)交流方式
2021精选ppt
5
中医临床数据——结构化数据采集
2021精选ppt
6
中医临床数据——非结构化数据采集
2021精选ppt
7
中医临床数据
2021精选ppt
8
中医临床数据——全文数据库
2021精选ppt
9
中医临床数据——结构化数据库
2021精选ppt
10
数据及数据分类
1)按照数据所属行业类别分类 科学数据,科学研究过程中产生的数据
12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -,-, 10700,4,0,normal, abnormal, +, 1080, 680, 400, 71, 59, F,-,ABPC+CZX,, 70, negative, n, n, n, BACTERIA, BACTERIA
15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502, 47, 63, F, -,FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA
数据挖掘概述ppt课件
• 缺陷
–只注重模型的生成,如何和预言模型系统集成导致了第三代
数据挖掘系统的开发
10
二、数据挖掘软件的发展 第二代数据挖掘软件 DBMiner
11
二、数据挖掘软件的发展 第二代软件 SAS Enterprise Miner
12
二、数据挖掘软件的发展
第三代数据挖掘软件
• 特点 –和预言模型系统之间能够无缝的集成,使得由数据挖掘软件 产生的模型的变化能够及时反映到预言模型系统中 –由数据挖掘软件产生的预言模型能够自动地被操作型系统吸 收,从而与操作型系统中的预言模型相联合提供决策支持的 功能 –能够挖掘网络环境下(Internet/Extranet)的分布式和高 度异质的数据,并且能够有效地和操作型系统集成
一、数据挖掘概念----技术
• 技术分类
– 预言(Predication):用历史预测未来 – 描述(Description):了解数据中潜在的规律
• 数据挖掘技术
– 关联分析 – 序列模式 – 分类(预言) – 聚集 – 异常检测
6
二、数据挖掘软件的发展
Robert Grossman, National Center for Data Mining University of Illinois at Chicago 的观点
一、数据挖掘概念----发展
• 1989 IJCAI会议: 数据库中的知识发现讨论专题 – Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
• 1991-1994 KDD讨论专题 – Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
数据挖掘 PPT
什么是聚类?
▪ 一系列将具有相似特征的 情形分组在一起的技术
▪ 考虑将相似的事物分组到 一起
什么是 Kohonen 网络?
▪ 将具有相似特征的情形分组在一起的聚类技术
▪ 没有建立一个预测 ▪ 可以处理分类和连续字段
▪ 有时候称为一个自组织映射(SOM) ,因为结 果将生成一个二维 “映射”
什么是 K-means 聚类?
什么是精炼?
▪ 一个精炼的模型可以直接 放置回数据流区域
▪ 一个生成的模型创建的新 字段(或者数据列)可能 为:
▪ 分组 ▪ 预测和关联值
精炼模型
未精炼模 型
什么是预测?
决定一个数值或分类结果
什么是神经网络?
▪ 在输入的基础上预测结果的一种建模技术,这些输入在 隐藏层上被权重修改
▪ 和大脑内神经元的行为相似
▪ 更传统的聚类技术 ▪ 和其它分类技术又非常紧密相关,但是对于分
类数据处理的不是很好
什么是两步聚类?
▪ K-means 聚类需要终端用户去决定聚类数, 两步 聚类在统计算法的基础上决定聚类数
▪ 并不像 Kohonen 那样需要大量的系统资源
▪ 步骤:
▪ 所有的记录进入最大;Old ( > 35)
Cat. % n Bad 90.51 143 Good 9.49 15 Total (48.92) 158
Cat. % n Bad 0.00 0 Good 100.00 7 Total (2.17) 7
Cat. % n Bad 48.98 24 Good 51.02 25 Total (15.17) 49
▪ 建模主要途径 : ▪ 预测 – 预测一个数字值或符号值 ▪ 关联 – 寻找可能一起发生的事件 ▪ 聚类 – 寻找表现相似事物的群体
数据挖掘PPT全套课件
记录数据
记录(数据对象)的汇集,每个记录包含固定的数 据字段(属性)集
Tid Refund Marital Taxable Status Income Cheat
1 Yes 2 No 3 No 4 Yes 5 No 6 No 7 Yes 8 No 9 No 10 No
10
Single 125K No
和三维结构的DNA数据)
数据库技术、 并行技术、分 布式技术
数据挖掘的任务
预测 – 使用已知变量预测未知变量的值.
描述 – 导出潜在联系的模式(相关、趋势、聚类、异
常).
数据挖掘的任务
分类 [预测] 聚类 [描述] 关联分析 [描述] 异常检测 [预测]
分类 例子
Tid Refund Marital Taxable Status Income Cheat
矿石硬度、{好, 较好,最好}、 成绩
中值、百分位、 秩相关、游程 检验、符号检 验
日历日期、摄氏、 均值、标准差、
华氏温度
皮尔逊相关、
t和F检验
绝对温度、货币 量、计数、年龄 、质量、长度、 电流
几何平均、调 和平均、百分 比变差
属性类 型
标称
变换 任何一对一变换
序数
值的保序变换
新值 = f(旧值)
– (1)统计学的抽样、估计、假设检验
– (2)人工智能、模式识别、机器学习
的搜索算法/建摸技术、学习理论
– (3)最优化、进化算法、
信息论、信号处理、 可视化、信息检索
统计学
人工智能、 机器学习
– (4)数据库技术、并行计算
和模式识别
、分布式计算
传统的方法可能不适合
数据挖掘
《数据挖掘》课件
NumPy、Pandas、 Matplotlib等,能够方便地进 行数据处理、建模和结果展示
。
Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
。
Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
《数据挖掘导论》课件
详细描述
KNIME是一款基于可视化编程的数据挖掘工具,用户 可以通过拖拽和连接不同的数据流模块来构建数据挖掘 流程。它提供了丰富的数据挖掘和分析功能,包括分类 、聚类、关联规则挖掘、时间序列分析等,并支持多种 数据源和输出格式。
Microsoft Azure ML
总结词
云端的数据挖掘工具
详细描述
Microsoft Azure ML是微软Azure云平台上的数据挖掘工具,它提供了全面的数据挖掘和分析功能, 包括分类、聚类、关联规则挖掘、预测建模等。它支持多种数据源和输出格式,并提供了强大的可扩 展性和灵活性,方便用户在云端进行大规模的数据挖掘任务。
03
数据挖掘过程
数据准备
01
数据清洗
去除重复、错误或不完整的数据, 确保数据质量。
数据集成
将多个来源的数据整合到一个统一 的数据集。
03
02
数据转换
将数据从一种格式或结构转换为另 一种,以便于分析。
数据归一化
将数据缩放到特定范围,以消除规 模差异。
04
数据探索
数据可视化
通过图表、图形等展示数据的分布和关系。
序列模式挖掘
总结词
序列模式挖掘是一种无监督学习方法,用于 发现数据集中项之间具有时间顺序关系的有 趣模式。
详细描述
序列模式挖掘广泛应用于股票市场分析、气 候变化研究等领域。常见的序列模式挖掘算 法包括GSP、PrefixSpan等。这些算法通过 扫描数据集并找出项之间具有时间顺序关系 的模式,如“股票价格在某段时间内持续上
高维数据挖掘
高维数据的降维
高维数据的聚类和分类
利用降维技术如主成分分析、线性判 别分析等,将高维数据降维到低维空 间,以便更好地理解和分析数据。
数据挖掘.ppt
重要 性值
P
独立样本1 的均值
独立样本2 的均值
X1 X2 (v1 n1 v2 n2)
要95%的确信两个样本之 间的差异是显著的,等
式中 P 2
均值的 方差值
样本
大小 运用条件:每个均
值是用一个独立数
据集计算出来的
Company Logo
三、属性评估
属性的类型及相应的评估方法
日历年龄日期,摄氏 温度
质量,长度,
均值,标准差,t 和F检验
几何平均,调和平 均,
Company Logo
数值属性重要性的假设检验
前提假设
数值属性A,其重要性有待确定
属性A的n个类C1,C2,…,Cn,以及相应的均值
X1
… X 2
Xn
计算。为每一类Ci和Cj,用如下公式计算
L
125 NO
2 No
M
100 NO
3 No
S
70
NO
4 Yes
M
120 YES
5 No
L
95
NO
6 No
M
60
NO
7 yes
S
220 NO
检验集
tid 属性1 属性2 属性3 类
9 No S 10 Yes M 11 yes L
55 ? 80 ? 110 ?
学习算法
Hale Waihona Puke 归纳学习模型运用模型 推论
模型
例题:假定分类器在运用于有100个检验实例的随机 样本时有10%的错误率,计算错误率的置信区间。
错误率:如
预测的类
类=1
类=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021
10
7.2.3 朴素贝叶斯分类器 朴素贝叶斯方法是基于统计的学习方法,利用 概念统计进行学习分类,如预测一个数据属于 某个类别的概念。主要算法有朴素贝叶斯算法、 贝叶斯信念网络分类算法等。
2021
11
7.3 聚类 7.3.1概念 聚类分析的核心是聚类,聚类是一种无监督 学习,实现的是将整个数据集分成不同的 “簇”,在相关的文献中,也将之称为“对象” 或“数据点”。聚类要求簇与簇之前的区别尽 可能的大,而簇内数据的差异要尽可能的小。 与分类不同,不需要先给出数据的类别属性。
2021
8
7.2.1 决策树分类法 有关决策树学习在前一章机器学习已经提到,我们 已经知道决策树分类法是一种简单但广泛的分类技术。 原则上讲,对于给定的数据集,可以构造的决策树 的数目达指数级。尽管某些决策树比其他决策树更为 准确,但是由于搜索空间是指数规模的,找出最佳决 策树在计算上是不可行的。现在的许多算法都采取贪 心算法,采取一系列局部最优决策来构造决策树,比 如Hunt算法。
2021
16
7.3.2.4 基于模型的聚类 基于模型的聚类方法试图将给定数据与某个数学 模型达成最佳拟合。此类方法经常假设数据是根据 潜在的概率分布生成的。主要包括统计学方法、概 念聚类方法和神经网络方法。
2021
4
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
2021
7
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
2021
3
7.1.2数据挖掘的任务 数据挖掘的任务可以分为预测型任务和描述型 任务。预测型任务就是根据其他属性的值预测 特定属性的值,如回归、分类、离群点检测等。 描述型任务就是寻找概括数据中潜在联系的模 式,如聚类分析、关联分析、演化分析、序列 模式挖掘。 (1)分类分析 分类分析就是通过分析示例数据库中的数据, 为每个类别做出准确的描述,或建立分析模型, 或挖掘出分类规则,然后用这个分类模型或规 则对数据库中的其他记录进行分类。分类分析 已广泛用于用户行为分析、风险分析、生物分 析、生物科学领域等。
2021
14
7.3.2.2 层次聚类的方法 层次聚类技术是第二类重要的聚类方法。 与K均值一样,与许多聚类方法相比,这 些方法相对较老,但是它们仍然被广泛使 用。在该方法中,采用的是某种标准对给 定的数据集进行层次的分解。
2021
15
7.3.2.3 基于密度的方法 大部分划分方法基于对象之间的距离进行聚类。这 样的方法只能发现球状簇,而在发现任意形状的簇时 遇到了了困难。已经开发了基于密度概念的聚类方法, 其主要思想是:只要“领域”中的密度超过了某个阈 值,就继续增长给定的簇。也就是说,对给定簇中的 每个数据点,在给定半径的领域中必须至少包含最少 数目的点。这样的方法可以用来过滤噪声或离群点, 发现任意形状的簇。
2021
2
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
2021
5
7.1.3数据挖掘的应用 数据挖掘就是为大数据应用而生,有大量数 据的地方就有数据挖掘用武之地。目前,应 用较好的领域或行业有生物信息学、电信业、 零售业以及保险、银行、证券等金融领域。
2021
6
在数据挖掘阶段,概括而言,数据挖掘分 析员,可以使用的数据挖掘方法主要有如下 几个:
(1)预估模型,包括分类和预估两种类型。 (2)聚类技术 (3)连接技术 (4)时间序列分析
第7章 1数据挖掘概述 7.1.1数据挖掘概念与发展 随着科学技术的飞速发展,使得各个领域或组织 机构积累了大量的数据。如何从这些数据中提取 有价值的信息和知识以帮助做出明智的决策,成 为巨大的挑战。计算机技术的迅速发展使得处理 并分析这些数据成为可能,这种新的技术就是数 据挖掘(Data Minging),又称为数据库知识发 现(Knowledge Discovery in Database,KDD)。
2021
9
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
2021
12
7.3.2 聚类分析的基本方法 聚类分析的研究主要基于距离和基于相似度的 方法,经过长时间的发展,形成不少聚类算法。 根据不同的数据类型,聚类的目的可以选择不 同的聚类算法。
2021
13
7.3.2.1 划分聚类的方法 给定一个数据集,将构建数据集的有限个划 分,每个划分都是一个簇,且每一个划分应当 满足如下两个条件: (1)每个划分中至少包含一个样本; (2)每个样本只能属于一个簇。 K-Means和K-Medoids就是典型的划分聚类算 法,下面将介绍K-Means具体算法。