最大公倍数和最小公倍数求法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、观察法.
运用能被2、3、5整除的数的特征进行观察.
例如,求225和105的最大公约数.因为225、105都能被3和5整除,所以225和105至少含有公约数(3×5)15.因为225÷15=15,105÷15=7.15与7互质,所以225和105的最大公约数是15.
二、查找约数法.
先分别找出每个数的所有约数,再从两个数的约数中找出公有的约数,其中最大的一个就是最大公约数.
例如,求12和30的最大公约数.
12的约数有:1、2、3、4、6、12;
30的约数有:1、2、3、5、6、10、15、30.
12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数.
三、分解因式法.
先分别把两个数分解质因数,再找出它们全部公有的质因数,然后把这些公有质因数相乘,得到的积就是这两个数的最大公约数.
例如:求125和300的最大公约数.因为125=5×5×5,300=2×2×3×5×5,所以125和300的最大公约数是5×5=25.
四、关系判断法.
当两个数关系特殊时,可直接判断两个数的最大公约数.例如,两个数互质时,它们的最大公约数就是这两个数的乘积;两个数成倍数关系时,它们的最大公约数就是其中较小的那个数.
五、短除法.
为了简便,将两个数的分解过程用同一个短除法来表示,那么最大公约数就是所有除数的乘积.
例如:求180和324的最大公约数.
因为:
5和9互质,所以180和324的最大公约数是4×9=36.
六、除法法.
当两个数中较小的数是质数时,可采用除法求解.即用较大的数除以较小的数,如果能够整除,则较小的数是这两个数的最大公约数.
例如:求19和152,13和273的最大公约数.因为152÷19=8,273÷13=21.(19和13都是质数.)所以19和152的最大公约数是19,13和273的最大公约数是13.
七、缩倍法.
如果两个数没有之间没有倍数关系,可以把较小的数依次除以2、3、4……直到求得的商是较大数的约数为止,这时的商就是两个数的最大公约数.例如:求30和24的最大公约数.24÷4=6,6是30的约数,所以30和24的最大公约数是6.
八、求差判定法.
如果两个数相差不大,可以用大数减去小数,所得的差与小数的最大公约数就是原来两个数的最大公约数.例如:求78和60的最大公约数.78-60=18,18和60的最大公约数是6,所以78和60的最大公约数是6.
如果两个数相差较大,可以用大数减去小数的若干倍,一直减到差比小数小为止,差和小数的最大公约数就是原来两数的最大公约数.例如:求92和16的最大公约数.92-16=76,76-16=60,60-16=44,44-16=28,28-16=12,12和16的最大公约数是4,所以92和16的最大公约数就是4.
九、辗转相除法.
当两个数都较大时,采用辗转相除法比较方便.其方法是:
以小数除大数,如果能整除,那么小数就是所求的最大公约数.否则就用余数来除刚才的除数;再用这新除法的余数去除刚才的余数.依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数.
例如:求4453和5767的最大公约数时,可作如下除法.
5767÷4453=1余1314
4453÷1314=3余511
1314÷511=2余292
511÷292=1余219
292÷219=1余73
219÷73=3
最大公约数和最小公倍数的求法
一、观察法.
运用能被2、3、5整除的数的特征进行观察.
例如,求225和105的最大公约数.因为225、105都能被3和5整除,所以225和105至少含有公约数(3×5)15.因为225÷15=15,105÷15=7.15与7互质,所以225和105的最大公约数是15.
二、查找约数法.
先分别找出每个数的所有约数,再从两个数的约数中找出公有的约数,其中最大的一个就是最大公约数.
例如,求12和30的最大公约数.
12的约数有:1、2、3、4、6、12;
30的约数有:1、2、3、5、6、10、15、30.
12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数.
三、分解因式法.
先分别把两个数分解质因数,再找出它们全部公有的质因数,然后把这些公有质因数相乘,得到的积就是这两个数的最大公约数.
例如:求125和300的最大公约数.因为125=5×5×5,300=2×2×3×5×5,所以125和300的最大公约数是5×5=25.
四、关系判断法.
当两个数关系特殊时,可直接判断两个数的最大公约数.例如,两个数互质时,它们的最大公约数就是这两个数的乘积;两个数成倍数关系时,它们的最大公约数就是其中较小的那个数.
五、短除法.
为了简便,将两个数的分解过程用同一个短除法来表示,那么最大公约数就是所有除数的乘积.
例如:求180和324的最大公约数.
5和9互质,所以180和324的最大公约数是4×9=36.
六、除法法.
当两个数中较小的数是质数时,可采用除法求解.即用较大的数除以较小的数,如果能够整除,则较小的数是这两个数的最大公约数.
例如:求19和152,13和273的最大公约数.因为152÷19=8,273÷13=21.(19和13都是质数.)所以19和152的最大公约数是19,13和273的最大公约数是13.
七、缩倍法.
如果两个数没有之间没有倍数关系,可以把较小的数依次除以2、3、4……直到求得的商是较大数的约数为止,这时的商就是两个数的最大公约数.例如:求30和24的最大公约数.24÷4=6,6是30的约数,所以30和24的最大公约数是6.
八、求差判定法.
如果两个数相差不大,可以用大数减去小数,所得的差与小数的最大公约数就是原来两个数的最大公约数.例如:求78和60的最大公约数.78-60=18,18和60的最大公约数是6,所以78和60的最大公约数是6.
如果两个数相差较大,可以用大数减去小数的若干倍,一直减到差比小数小为止,差和小数的最大公约数就是原来两数的最大公约数.例如:求92和16的最大公约数.92-16=76,76-16=60,60-16=44,44-16=28,28-16=12,12和16的最大公约数是4,所以92和16的最大公约数就是4.
九、辗转相除法.
当两个数都较大时,采用辗转相除法比较方便.其方法是:
以小数除大数,如果能整除,那么小数就是所求的最大公约数.否则就用余数来除刚才的除数;再用这新除法的余数去除刚才的余数.依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数.
例如:求4453和5767的最大公约数时,可作如下除法.
5767÷4453=1余1314
4453÷1314=3余511
1314÷511=2余292
511÷292=1余219
292÷219=1余73