国内外锂离子动力电池发展概况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
锂离子动力电池具有比能量高、重量轻、绿色环保无污染等优点,应用范围广泛,其应用领域包括数码产品、家用电器、电动工具、电动汽车、航空、航天和武器装备等。随着技术的不断进步,锂动力电池安全性不断提高,锂电池单体容量越来越大,其应用于潜艇等大型军事装备的可行性也不断提高。
2 锂离子电池发展历程
二十世纪六十、七十年代发生的石油危机促使人们寻找新的替代能源。1962 年,美国军方的“锂非水电解质体系”研究报告,最早提出了把活泼金属锂引入到电池设计中的构想。1973 年,氟化碳锂原电池在日本松下电器公司实现量产,商品化锂电池面世。1978 年,日本三洋公司的锂/二氧化锰电池实现量产,锂电池价格下降,市场占有率上升。锂一次电池的成功刺激了锂二次电池的研究热潮。80 年代末,加拿大MoLi 能源公司研发的Li/Mo2 锂金属二次电池面世,第一块商品化锂二次电池诞生。1991 年6 月,日本索尼公司将液态电解液锂离子电池成功实现了商品化。自此之后,锂离子电池在便携式电源领域的市场份额不断扩展。近年来,随着一些无人电子装备(如无人水下航行器、无人机)、电动工具、电动汽车等发展的需要,锂离子电池以其高比能、长寿命、自放电小、无记忆效应和绿色环保等优点备受青睐,在动力电源领域得到迅速发展。
3 国外锂离子动力电池发展概况
日本索尼公司对锂离子电池的研究开展较早,生产的锂离子电池在性能上和品种上已经具备相当高的水平。该公司生产的圆柱型单体电池分为高能型和高功率型。其中高能型电池的比能量为110 Wh/kg,80%DOD 的比功率300 W/kg,充放电次数1200 次。高功率型的圆柱电池80%DOD 的比功率高达800 W/kg。日本三井造船生产的磷酸铁锂动力电池能以20C 的倍率放电,10C 左右的倍率进行快速充电,在3C 充放电条件下循环500 次,容量保持90%以上。日本汤潜公司(YAUSA)生产的锰酸锂电池,比能量是铅酸电池的3 倍,计划取代潜艇用铅酸电池。装有该公司锂离子电池的无人试验小潜艇已于1999年10 月完成了水下试验。法国SAFT 公司是世界著名的锂电池生产公司,其各种型号锂离子电池已广泛应用于卫星、UUV(无人水下航行器)以及各类便携式电子设备上。据美国能源杂志报道,上世纪末,SAFT英国分公司就曾与英军合作研制过一款24 V,12Ah 容量的锂电池。目前该公司生产的圆柱型单体锂离子电池比能量达到143 Wh/kg,80%DOD 的比功率为345 W/kg,为装备潜艇而制造的锂离子动力电池,单体容量为3000 Ah 级。德国瓦尔塔公司也在研制高能量密度型和高功率密度型电池。其高能密度型电池为方型,容量为60 Ah,比能量为115 Wh/kg,使用寿命达900 次(100%DOD)。在上世纪末,美军也在商品化的锂离子电池基础上展开了军事化应用。据美国能源杂志介绍,美国YARDNEY 公司已为水下军事装备研制了三款锂离子动力电池,包括:①水下无人作战平台(UUV)电池系统,总能量10 kWh,360 块单体容量8 Ah(4 并90 串),电压324 V。②全电动鱼雷高功率锂离子电池系统,由100 块单体容量25 Ah 的锂动力电池组成电池组,最大功率密度650 W/kg。③袖珍潜艇装置(ASDS-1)的高能量锂离子电池系统,2005 年首次安装于ASDS-1 艇,锂离子电池总能量1.2 MWh,单体电池能量密度170 ~200 Wh/kg[1] 。美军在水下自动航行器(AUV)中已应用锂离子电池,其功率密度达到100 Wh/kg[2]。据美国能源杂志介绍,HUGIN1000型AUV 的电池系统为聚合物锂离子电池与燃料电池组合而成[3],该系统性能先进,HUGIN1000型AUV 总
航程已达500 海里。
4 国内锂离子动力电池发展概况
我国锂离子动力电池研制始于二十世纪,起步较晚。但自2000 年以来,随着我国投入十多亿资金用于支持发展电动车和相关电池技术,以及“863”电动汽车重大专项的实施,有实力的国营、民营企业对锂离子动力电池进行了开发研究,生产的锂离子电池性能与国外产品相当,某些方面甚至优于国外产品,对外出口量不断上升。目前我国锂离子动力电池主要包括电动工具电池、电动自行车电池、特种车用电池和电动汽车用电池等,各种锂离子动力电池均处于产业化起步阶段。其中电动自行车用锂离子电池和电动工具用锂离子电池产业化基础相对较好,电动汽车电池仍处于研发和配车路试阶段[3]。比亚迪公司2008 年12 月份推出的F3DM 双模式纯电动车是该公司的代表产品,曾一度引起国内外轰动,其搭载的锂电池,输出功率为125 kW,达到3.0 升发动机功率水平,启动瞬间加速能力超过3.0 升发动机水平,锂电池续驶里程达100 公里,它比丰田研制的同类产品早一年时间。该公司生产的E6 纯电动轿车采用自行生产的磷酸铁锂电池,用220V 民用电源15 min 可充电80%,100 km 能耗为20 kWh,现已上市。奇瑞的S18 纯电动汽车已经下线。该车应用40 Ah 磷酸铁锂动力电池,可以在半小时内充电80%。深圳雷天公司在其网页上显示的TS-LFP7000 AHC 型锂离子动力电池容量为7000 AH,为目前已知的单体容量最大的锂离子动力电池,但其安全性未知。我国某型蛙人运载器采用100 Ah 锂离子动力电池。某型操雷应用聚合物锂离子动力电池,其单体电池容量为45Ah。
5 锂离子动力电池发展趋势
分析国内外锂离子动力电池发展现状,呈现出以下发展趋势:
⑴锂离子动力电池容量已突破500 Ah 大关。国外报道的锂离子动力电池单体容量多为几十至200 Ah 以下的电动汽车用电池,艇用大容量锂离子动力电池鲜有相关报道。国内单体容量已突破500 Ah,并通过了国家电动汽车安全性测试项目,性能良好。
⑵目前国内外已商品化的锂离子动力电池正极材料普遍采用磷酸铁锂,以提高锂电池正极材料的稳定性和安全性。国外在继续研发现有材料的基础上还重点研发磷酸钒锂正极材料,对钴酸锂、锰酸锂材料的改进性研究也从未间断过。国内电动汽车用锂离子动力电池正极材料普遍采用了磷酸铁锂。而某些厂家为了兼顾锂电池的能量比和安全性,采用三元材料作为锂电池正极材料。锰酸锂为正极材料的锂动力电池电动客车也进行过路试,对其它正极材料的开发也在进行。例如,某公司正在探索采用稀土元素(钇等)作为锂电池正极材料,现已有相关样品投放市场试V),由图6 和图7 可见,虽然转速不断降低,直流电压不断下降,但是变流器1 输出的电压维持在400 V 不变。
4 结束语
本文按照飞轮储能系统实际组成搭建了飞轮储能系统的全系统模型。仿真模型中变流器采用SPWM 控制,飞轮转子利用具有大转动惯量、小摩擦系数和小阻力转矩的负载模拟。为分析飞轮储能系统在独立电力系统中对于大功率负载的影响,仿真给出了系统在储能状态、放能状态及两者之间的转换过渡时刻的转速、转矩、电流及母线直流电压响应曲线,经过对仿真结果进行分析表明,转速、转矩、电流及母线直流电压的匹配关系与理论情况完全一致,证明了本文利用特殊负载模拟飞轮转子的方法是可行的,建立的飞轮储能负载仿真模型是正