数学应用实践数学建模论文写作

合集下载

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。

叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。

_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。

同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。

因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。

我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

关于数学建模的论文范文2篇

关于数学建模的论文范文2篇

关于数学建模的论文范文2篇关于数学建模的论文范文一:数学建模思想下高等数学论文1高等数学教学中数学建模思想应用的优势1.1有助于调动学生学习的兴趣在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。

在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。

与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。

2.2有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。

高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。

在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。

同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。

1.3有助于培养学生的创新能力和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。

数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。

在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。

在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模论文(最新9篇)

数学建模论文(最新9篇)

数学建模论文(最新9篇)大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1、准备阶段主要分析问题背景,已知条件,建模目的等问题。

2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中一些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

数学建模及应用论文范文

数学建模及应用论文范文

数学建模及应用论文范文数学建模及应用是指将数学理论与现实问题相结合,通过建立数学模型来描述和分析现实问题,并通过运用数学方法解决问题的一门学科。

下面是一篇关于数学建模及应用的论文范文:标题:基于微分方程的货车调度模型及应用摘要:货车调度是物流领域中一个重要而复杂的问题。

本文通过建立微分方程模型,解决了货车调度中的一些核心问题,并提出了一种基于数学建模的调度方法。

首先,我们从货车的速度和运输容量出发,建立了一维的微分方程模型,描述了货车在不同条件下的运行情况。

然后,我们考虑货车的装货和卸货时间,引入了带有限制条件的微分方程模型,描述了货车的装卸过程。

最后,我们通过数值计算的方法,求解了微分方程模型,并结合具体的案例分析,验证了我们的模型的有效性和可行性。

实际应用表明,我们提出的调度方法可以显著提高货车的运输效率,降低运输成本。

关键词:货车调度、微分方程模型、装卸过程、数值计算1. 引言货车调度是物流运输领域中一个极具挑战性的问题。

随着物流需求的日益增长,货车调度的效率和准确性对于降低运输成本和提高客户满意度来说越来越重要。

然而,由于货车调度问题的复杂性和不确定性,传统的方法已经无法满足实际需求。

因此,开展数学建模及应用研究具有重要的理论和实践意义。

2. 模型建立2.1 货车速度模型货车的速度是货车调度中一个重要的参数,它直接影响着货车的运输效率。

我们假设货车的速度满足一维的匀加速运动模型,即\[v(t)=at+b\]其中,v(t)为货车在时间t时的速度,a为加速度,b为初速度。

2.2 货车运输容量模型货车的运输容量是货车调度中另一个重要的参数,它决定着货车能够装载的货物数量。

我们假设货车的运输容量满足一维的线性函数关系,即\[Q(t)=kt+c\]其中,Q(t)为货车在时间t时的运输容量,k为斜率,c为常数。

2.3 货车装卸过程模型货车的装卸过程是货车调度中的一个关键环节,它直接影响着货车的装卸效率。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

数学建模论文(7篇)

数学建模论文(7篇)

数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。

如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。

计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。

数学建模所解决的问题不止现实的,还包括对未来的一种预见。

数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。

数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。

1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。

教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。

以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。

因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。

1.2数学建模在大学数学教学中的运用。

大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。

再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。

不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。

2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。

数学建模教学实践(3篇)

数学建模教学实践(3篇)

第1篇摘要:数学建模作为一种将实际问题转化为数学问题,并运用数学方法求解的方法,在高等教育中具有重要作用。

本文以某高校数学建模课程为例,探讨数学建模教学实践中的方法、策略和效果,旨在为提高数学建模教学质量和学生创新能力提供参考。

一、引言数学建模教学是培养学生运用数学知识解决实际问题的能力,提高学生创新意识和实践能力的重要途径。

近年来,随着我国高等教育的快速发展,数学建模教学在高校中得到了广泛关注。

本文以某高校数学建模课程为例,分析数学建模教学实践中的方法、策略和效果。

二、数学建模教学实践方法1. 理论教学与实践教学相结合在数学建模教学中,理论教学与实践教学相结合是提高教学效果的关键。

教师应注重讲解数学建模的基本概念、原理和方法,同时结合实际问题进行案例分析,让学生在实践中掌握数学建模技巧。

2. 逐步引导,循序渐进数学建模教学应遵循循序渐进的原则,从简单问题入手,逐步引导学生接触复杂问题。

教师可以根据学生的实际情况,将实际问题分解为若干小问题,让学生逐个解决,逐步提高学生的数学建模能力。

3. 鼓励学生自主探究,培养创新意识在数学建模教学中,教师应鼓励学生自主探究,发挥学生的主观能动性。

教师可以提出一些具有挑战性的问题,让学生在解决问题的过程中发挥创新思维,培养创新意识。

4. 案例教学,激发学习兴趣案例教学是数学建模教学中的一种有效方法。

教师可以选取一些具有代表性的数学建模案例,让学生分析案例中的问题和解决方法,激发学生的学习兴趣。

三、数学建模教学实践策略1. 建立数学建模教学团队为了提高数学建模教学效果,高校应建立一支具有丰富教学经验和实践能力的数学建模教学团队。

团队成员应包括数学、计算机、工程等领域的专家,共同研究和探讨数学建模教学问题。

2. 完善教学资源,丰富教学内容高校应完善数学建模教学资源,包括教材、课件、案例库等。

同时,教师应不断丰富教学内容,引入最新的数学建模理论和技术,提高教学水平。

数学与应用数学 数学建模 大学期末论文

数学与应用数学 数学建模 大学期末论文

数学与应用数学数学建模大学期末论文摘要:本文探讨了数学与应用数学在数学建模中的重要性,并通过实例分析,阐述了数学建模在现实问题中的应用。

论文分为三个主要部分,分别是数学建模的基本概念与方法、数学建模在自然科学领域的应用以及数学建模在社会科学领域的应用。

第一部分数学建模的基本概念与方法数学建模是现代科学与技术发展中的一门重要学科。

它通过运用数学的理论与方法,对现实世界中的问题进行量化描述、模拟分析和预测预测。

数学建模的方法包括建立模型、求解模型以及对模型的精确性和合理性进行验证。

数学建模的过程呈现出了观察现象、提出问题、分析问题、建立模型、求解模型、验证模型几个关键步骤。

第二部分数学建模在自然科学领域的应用数学建模在自然科学领域中有着广泛的应用。

以生态学为例,数学建模可以帮助我们预测种群的数量及其动态变化规律,对生态平衡进行研究。

在物理学领域,数学建模可以帮助我们研究物体受力情况、电路中电流分布、相对论效应等问题。

在化学领域,数学建模可以用于分析化学反应动力学、化学平衡等问题。

这些应用都显示了数学建模在自然科学领域中不可或缺的作用。

第三部分数学建模在社会科学领域的应用数学建模在社会科学领域中也有着重要的应用价值。

以经济学为例,数学建模可以帮助我们提前预测经济走势、分析经济政策的效果、研究市场供求关系等。

在管理学领域,数学建模可以帮助我们优化管理决策、提高生产效率、分析市场竞争等。

在社会学领域,数学建模可以用于分析人群行为规律、社会网络的形成等问题。

这些应用展示了数学建模在社会科学领域中的潜力和应用前景。

结论:综上所述,数学与应用数学在数学建模中起着重要的作用。

通过数学建模,我们可以更好地理解现实世界中的问题,预测和解决实际问题。

数学建模在自然科学领域和社会科学领域都有广泛的应用和发展空间。

随着技术的进步和理论的深入,数学建模必将在更多领域发挥重要作用,为人类社会的发展做出更大的贡献。

数学建模论文模板(10篇)

数学建模论文模板(10篇)

数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。

2.数学教学中渗透数学建模思想是大学数学教学的必然要求。

目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。

为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。

3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。

数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。

另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。

二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。

1.从教学内容上改进以促进数学建模思想的普及和深入。

科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。

为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。

(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。

数学建模论文六篇

数学建模论文六篇

数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。

题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。

本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。

(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。

(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。

本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。

同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。

有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。

数学建模论文范文免费(必备14篇)

数学建模论文范文免费(必备14篇)

数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。

【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。

数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。

因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。

然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。

1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。

按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。

因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。

通过收集历史空气质量数据,构建空气质量预测模型。

运用机器学习算法对模型进行训练和优化,提高预测精度。

通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。

二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。

建立物流配送模型,考虑配送成本、时间、距离等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。

三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。

构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。

运用风险度量方法对模型进行评估。

通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。

四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。

建立能源消耗模型,考虑设备运行、生产计划等因素。

运用优化算法对模型进行求解。

通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。

五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。

收集历史交通流量数据,构建交通流量预测模型。

运用时间序列分析方法对模型进行训练和优化。

通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。

数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。

建立医疗资源需求模型,考虑人口分布、疾病类型等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。

数学实践与建模论文范文

数学实践与建模论文范文

数学建模论文数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。

数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

第三、数学应用题涉及的知识点多。

是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。

往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。

因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题审题题设条件代入数学模型求解选定可直接运用的数学模型第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。

对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。

如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

解析高校数学教学中数学建模思想方法的研究论文(优秀4篇)

解析高校数学教学中数学建模思想方法的研究论文(优秀4篇)

解析高校数学教学中数学建模思想方法的研究论文(优秀4篇)数学教学中应用数学建模的具体方法和措施篇一在数学教学中引入数学建模思想需要以实例为中心,让学生在学习体验过程中掌握数学建模的中心思想和步骤,老师应丰富数学课堂的教学内容,将学生视为课堂主体,采用启发式教学为主、实践教学为辅的多种形式相结合的教学模式,充分让学生体验用数学知识解决实际问题的全部过程,并感受其中的学习乐趣。

(一)从实例的应用开始学习学生对数学的学习不能只局限于对数学概念、解题方法和结论的学习,而更应该学习数学的思想方法,领会数学的精神实质,了解数学的来源以及应用,充分接受数学文化的熏陶。

为了达到教学目的,高校数学老师应结合教学课程,让学生认识到平时他们所学的枯燥无味的教学概念、定理及公式并非空穴来风,而都是从现实问题中经过总结、归纳、推理出来的具有科学依据的智慧成果。

将教学实例引入课堂,从教学成果来看,数学建模思想可以充分的让学生理解数学理论来源于实际,而学习数学的最终目的却是将数学理论回归到实际生活应用中去,学生明白了学习数学的实际意义,有助于提高学习数学的兴趣,促进创新意识的培养。

(二)在实际生活中对数学定理进行验证高校数学教材中的很多定理是经过实际问题抽象化才得出来的,但正是因为定理和公式过于抽象使得学生们在学习时特别枯燥和乏味。

因此数学老师在讲授定理时,首先要联合实际应用对数学定理进行大概的讲解,让学生们有个直观的印象,然后结合数学建模的思想和方法,把定理当中的条件当作是模型的假设,根据先前设置的问题情境一步步引导学生推导出最终结论,学生经过运用定理解决实际问题切实的感受到了定理运用的实际价值。

例如,作为连续函数在闭区间上性质之一的零点存在定理,在高等数学的学习中有着非常重要的意义。

零点定理的应用主要有两个方面:其一是为了验证其他定理而存在,其二是为了验证方程是否在某区间上有根。

学生学习这个定理时会有这样的疑问:一个定理是为了验证另一个定理而存在,那么这个定理还有没有实际的应用价值呢?所以我们高校数学老师在讲完定理证明之后,最好能够结合现实生活中的问题来验证定理的实际应用。

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。

本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。

实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。

三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。

本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。

实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。

四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。

本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。

实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。

五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。

本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。

实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。

精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。

本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。

实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。

《数学建模,应用实践活动》

《数学建模,应用实践活动》

摘要:随着科技的飞速发展,数学建模作为一种将实际问题转化为数学问题的有效方法,越来越受到重视。

本文旨在探讨数学建模在应用实践活动中的重要性、实践步骤及实例分析,以期为我国数学建模教育与实践提供参考。

一、引言数学建模是将实际问题转化为数学问题的过程,通过数学工具和方法对现实世界进行定量分析和预测。

在当前社会,数学建模在各个领域都发挥着重要作用,如工程、经济、医学、环境等。

本文将从以下几个方面展开论述:数学建模在应用实践活动中的重要性、实践步骤及实例分析。

二、数学建模在应用实践活动中的重要性1. 提高解决实际问题的能力数学建模将实际问题转化为数学问题,有助于我们从数学角度分析和解决实际问题。

通过数学建模,我们可以更深入地了解问题的本质,提高解决实际问题的能力。

2. 培养创新思维和团队协作能力数学建模过程中,需要运用多种数学工具和方法,这有助于培养我们的创新思维。

同时,数学建模往往需要团队合作,通过分工合作,我们可以提高团队协作能力。

3. 促进跨学科交流与合作数学建模涉及多个学科领域,如数学、物理、化学、生物学等。

在数学建模过程中,不同学科背景的人可以相互学习、交流,促进跨学科交流与合作。

4. 提高实践能力数学建模是一个实践性很强的过程,通过实践,我们可以提高自己的动手能力和实际问题解决能力。

三、数学建模实践步骤1. 确定问题背景首先,要明确要解决的问题,了解问题的背景、目标、约束条件等。

2. 收集和分析数据根据问题背景,收集相关数据,对数据进行整理和分析,为建模提供依据。

3. 建立模型根据问题背景和数据分析结果,运用数学工具和方法建立数学模型。

4. 求解模型运用数学方法求解模型,得到问题的最优解或近似解。

5. 模型验证与改进将求解结果应用于实际问题,验证模型的准确性,并根据实际情况对模型进行改进。

6. 撰写报告将数学建模过程、结果和分析撰写成报告,以便与他人交流和分享。

四、实例分析1. 实例一:电力系统优化调度背景:随着能源需求的不断增长,电力系统优化调度问题越来越受到关注。

数学与应用数学毕业论文范文(精选)

数学与应用数学毕业论文范文(精选)

数学与应用数学毕业论文范文(精选)毕业论文题目:数学模型在社会经济中的应用摘要随着社会的发展和经济的进步,人们越来越多地将数学模型应用到各个领域,改善人们的生活质量。

这篇文章将探讨数学模型在社会经济领域的应用,包括在商业管理、决策分析、金融市场、价格发放、核心技术研发、预测分析等方面的应用。

本文重点介绍了数学模型在商业管理领域的应用,例如投资分析,企业成本分析,以及在金融市场的应用,包括股票价格预测,投资组合管理,风险管理等。

本文最后介绍了人们在不同领域用数学模型解决实际问题的若干实例,以及可能发展的方向。

关键词:数学模型;商业管理;金融市场;实例AbstractWith the development of society and economic progress, more and more mathematical models are adopted in various fields, thus improving the quality of people's life. This paper will explore the application of mathematical models in social and economic fields, including business management, decision analysis, financial markets, price issue, core technology research and development, prediction analysis and so on. This paper mainly introduces the application of mathematical models in the field of business management, such as investment analysis, enterprise cost analysis, and in the field of financial market, includingstock price prediction, portfolio management, risk management and so on. Finally, this paper introduces several examples of people using mathematical models to solve practical problems in different fields, as well as the possible direction of development.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市个人购车指标调控分析
研究什么问题,
摘 用了什么数学方法, 要 得到什么结果,
结论是什么?
强调难点和特色,体现方法的新 颖和结论的可靠性。文字表达要 求,扼要、精炼、准确、完整、 规范。一般不出现公式,图表。
关 研究的对象、研究的方法。 键 词
三峡永久船闸分层开挖角的优化及预测模型
摘要
针对问题 3,我们定义水质污染的发展趋势为经过若干 年后,长江中排污量的多少和各个级别的江流长占总长度的 比例,即水比例。以此,我们分两步解决本问题:第一步建 立长江排污量与时间(年)的灰色模型预测模型;第二建立各 级别水比例与总流量和排污量的二元线性回归预测模型。 根据这两个模型预测长江未来 10 年水质污染的发展趋势的 情况。
关 键 词: 三峡工程; 陡高边坡; 刚体平衡法; 灵敏度分析;优化 模型;
摘要 联点可策国合,信问Sh国 其 度 题ap安 投 和 的ley理 票 执 研-S数 数 数 的 增 高会 规 行 究hu值 量 相 势 加 安改 则 力 ,bi计增应力非理k革的。并势算加减指常会一公本通力结,少数任投直正文过指果常,基理票是性分计数表任而本事的近也析算,明理非稳国公年决了现与,事常定的平来定现在增随国任。数度联着有安加着每理所量。合联的理常非 票 事 以 ,国 对 会合任常 对 国 , 进改 于 规国理任 应 每 应 而革 群 制决事理 的 票 当 能的 体 下议国事 势 对 适 够焦 决 各的和国 力 当 提应 非常任理事国两种情况下各国Shapley-Shubik势力 指数进行对比,建立随国家数增加Shapley-Shubik 势力指数的变化模型,为提高联加合标国点安理会公平 性和安理会改革提供建议。
储油罐的变位识别与罐容表标定 摘要
本文主要解决了储油罐的变位识别和罐容表的标定问题 。基于相对运动的观点,我们将油罐的变位等效为油面相 对于油罐的转动,建立固连于油罐的直角坐标系,用数值 积分的方法求解油量。由坐标变换知识得到转动后的油面 方程,同时结合油罐的几何形状确定积分区域后,使用 Matlab 软件数值积分函数对积分区域的示性函数进行积分 ,避开了传统积分方法对积分限的繁琐讨论,最后得到罐 内储油量与油位高度h、纵向倾斜角α、横向转动角 的一 般关系v(α,,h)。
数学应用实践 数学建模论文写作
2012-7-4 实践周
开 从普特南数学竞赛到数学建模竞赛,
展 计算机、网络…
数 普及数学与计算机的应用。
学 建
数学应用面临的是已有模型无法描述 解决的实际问题,…
增强创新意识和逻辑思维。
模 数学思维不等同于解题技巧,…
竞 写作风格反映思维特征,…
赛 提高科技论文写作能力。
关键词: 联合国安理会改革 Shapley-Shubik势力 指数 加权投票系统
长江水质的评价预测模型
摘要
本问题是一个长江水质评价、预测和控制问题。
针对问题 1,首先用谷形数据处理、模糊隶属度函 数和极差变换法分别处理附件 3 给出的 17 个地区 四项标准物的检测值;其次建立变权函数,确定四 项标准物的污染度权值;然后根据水质综合指标大 小,对长江从上游到下游的 17个观测点给出每个 月的水质排序;再用决策分析方法中的Borda法对 28 个月进行水质综合排序, 在进行综合评价时充 分考虑了六类水质的类别差异和同一类别的数量差 异;最后根据综合排序分析各地区 17 个点位水质 的污染状况。
问题 2 是关于污染源分布的问题, 也就是根据 7 个长江干流观测站的观测数据,寻求污染物来源 的问题。通常认为一个观测站(地区)的水质污 染主要来自于本地区的排污和上游的污水。这样 可以把 7 个观测站点分为 6 个江段,在一维多河 段分析的基础上建立起一维单河段模型, 并运 用经典的一维对流扩散方程来刻画 6 个河段的平 均排污量,利用Matlab软件计算得到每个江段中 污染物浓度变化。再通过假定排污口的位置,结 合流量,计算各江段的单位时间排污量,以此来 确定主要污染源所在江段。



论文 写作 是科 学研 究的 基本

撰写科技学术论文有助于锻炼逻 辑思维能力,写作过程将会促进 研究工作明朗化与进一步深化, 使很多模糊朦胧的认识通过论文 写作过程的调整、清理逐渐清晰 起来。
--周立伟《科学研究的途径》
MCM/ICM以提升参赛者的写作 能力为根本目的之一,另一个目 的是为了提升参赛者解决问题的 能力。
问题 4 是在问题 3 的基础上,加上两个约束条件。利用 问题 3 的模型求解得出长江的极限载污量,与预测排污量作 差,求得每年需要处理的污水量。
最后,针对上述 4 个问题的回答,对解决长江水质污染问题 提出切实可行的建议和意见,归纳为:水污染问题解决的关 键在于无害化,目标在于生态平衡与经济发展的协调。
本文依据现有的公开数据,研究了三峡高陡坡的开挖方案,及 其改进方案和预测模型;首先,通过对陡高边坡简化模型的分 析, 在安全系数不低于某一临界值时,以工程代价最低构建岩体 边坡的优化模型,利用已经提出的分层开挖的模型,对南坡开 挖坡角进行了优化。然后,对其中有重大影响意义的的变量进 行灵敏度分析,由此提出在岩体地形地质条件复杂的情况下, 更为安全的开挖角的确定方案。最后,利用回归分析的知识, 对南坡的分层开挖角进行回归分析,对开挖角进行进一步的修 正, 并由此对北坡的分层开挖角作出预测。改进及预测模型的 结果表明:开挖角与实际的相对误差在进一步减小,这种确定 开挖角的方案有一定的参考意义。同时灵敏度分析的结果表明 ,在开挖角确定的过程中,粘聚力的减少会导致开挖角的降低 ,因此在施工时,必须按照粘聚力的最低值进行估算。
如 以优秀论文为范文。 何 看一遍不如抄一篇,抄一遍不如 提 写一遍,写一遍不如讲一遍。 高 “老想着它。” 写 作 能 力
一句话说明:研究的问题。可以 强调研究角度或方法的独到之处。
题 例: 目 宿舍环境对大学生学业影响分析
北师大后主楼电梯停靠方法优化
我国“热钱”规模估计及其对中国股市 的影响研究
相关文档
最新文档