几何中添加辅助线的一般原则
初中数学-几何辅助线做法要点
![初中数学-几何辅助线做法要点](https://img.taocdn.com/s3/m/7cc836add4d8d15abe234efd.png)
线、角、相交线、平行线规律1.如果平面上有n (n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出12n (n -1)条. 规律2.平面上的n 条直线最多可把平面分成〔12n (n +1)+1〕个部分. 规律3.如果一条直线上有n 个点,那么在这个图形中共有线段的条数为12n (n -1)条. 规律 4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.例:如图,B 在线段AC 上,M 是AB 的中点,N 是BC 的中点.求证:MN =12AC 证明:∵M 是AB 的中点,N 是BC 的中点∴AM = BM =12AB ,BN = CN = 12BC ∴MN = MB +BN = 12AB + 12BC = 12(AB + BC )∴MN =12AC练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点.求证:AM =12(AB + BC )2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点.求证:MN =12BC3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点. 求证:MN = 12AB规律5.有公共端点的n 条射线所构成的交点的个数一共有12n (n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1)个. 规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角.规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出16n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o . 规律10.平面上有n 条直线相交,最多交点的个数为12n (n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.N M CB AM C BAN M CB AN MCB A规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知AB ∥DE ,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半. 例:已知,BE 、DE 分别平分∠ABC 和∠ADC ,若∠A = 45o ,∠C = 55o ,求∠E 的度数.解:∠A +∠ABE =∠E +∠ADE ①∠C +∠CDE =∠E +∠CBE ②①+②得 ∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE ∵BE 平分∠ABC 、DE 平分∠ADC , ∴∠ABE =∠CBE ,∠CDE =∠ADE ∴2∠E =∠A +∠C∴∠E =12(∠A +∠C ) 1()∠ABC+∠BCD+∠CDE=360︒E D C BA +=∠CDE ∠ABC ∠BCD 2()E D C BA -=∠CDE ∠ABC ∠BCD 3()ED C BA -=∠CDE ∠ABC ∠BCD 4()ED CBA +=∠CDE ∠ABC ∠BCD 5()E DCB A+=∠CDE ∠ABC ∠BCD 6()E DCBANME DBCAH G FE D B C A H GFE D B C A H GFE D BC A∵∠A =45o,∠C =55o,∴∠E =50o三角形部分规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.证法(一):将DE向两边延长,分别交AB、AC于M、N在△AMN中,AM+AN>MD+DE+NE①在△BDM中,MB+MD>BD②在△CEN中,CN+NE>CE③①+②+③得AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+CE证法(二)延长BD交AC于F,延长CE交BF于G,在△ABF和△GFC和△GDE中有,①AB+AF>BD+DG+GF②GF+FC>GE+CE③DG+GE>DE∴①+②+③有AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+CE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为△ABC内任一点,求证:12(AB+BC+AC)<P A+PB+PC<AB+BC+AC规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.例:如图,已知BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它与BD 的延长线交于D.求证:∠A = 2∠D证明:∵BD、CD分别是∠ABC、∠ACE的平分线∴∠ACE =2∠1, ∠ABC =2∠2∵∠A = ∠ACE-∠ABC∴∠A = 2∠1-2∠2又∵∠D =∠1-∠2∴∠A =2∠D规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.例:如图,BD、CD分别平分∠ABC、∠ACB,求证:∠BDC = 90o+12∠A证明:∵BD、CD分别平分∠ABC、∠ACBFGNMEDCBA21C EDBA∴∠A+2∠1+2∠2 = 180o∴2(∠1+∠2)= 180o-∠A①∵∠BDC = 180o-(∠1+∠2) ∴(∠1+∠2) = 180o-∠BDC②把②式代入①式得2(180o-∠BDC)= 180o-∠A 即:360o-2∠BDC =180o-∠A ∴2∠BDC = 180o+∠A∴∠BDC = 90o+12∠A规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.例:如图,BD、CD分别平分∠EBC、∠FCB,求证:∠BDC = 90o-12∠A证明:∵BD、CD分别平分∠EBC、∠FCB∴∠EBC = 2∠1、∠FCB = 2∠2∴2∠1 =∠A+∠ACB①2∠2 =∠A+∠ABC②①+②得2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A2(∠1+∠2)= 180o+∠A∴(∠1+∠2)= 90o+12∠A∵∠BDC = 180o-(∠1+∠2)∴∠BDC = 180o-(90o+12∠A)∴∠BDC = 90o-12∠A规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.例:已知,如图,在△ABC中,∠C>∠B,AD⊥BC于D,AE平分∠BAC.求证:∠EAD = 12(∠C-∠B)证明:∵AE平分∠BAC∴∠BAE =∠CAE =12∠BAC∵∠BAC =180o-(∠B+∠C)∴∠EAC = 12〔180o-(∠B+∠C)〕∵AD⊥BC∴∠DAC = 90o-∠C∵∠EAD = ∠EAC-∠DAC∴∠EAD = 12〔180o-(∠B+∠C)〕-(90o-∠C)DCBA2121FEDCBAE D CBAAB CDEFFE D CBA= 90o -12(∠B +∠C )-90o +∠C = 12(∠C -∠B )如果把AD 平移可以得到如下两图,FD ⊥BC 其它条件不变,结论为∠EFD =12(∠C -∠B ).注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC 在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED∴△BDE ≌△NDE ∴BE = NE 同理可证:CF = NF 在△EFN 中,EN +FN >EF ∴BE +CF >EF规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CDFABC DE D C B A4321NFE D C BAED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o ∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o △EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2MABC D E F12345 12E DC B AP12N DCBA∴△APN ≌△APC ∴PC = PN∵△BPN 中有PB -PC <BN ∴PB -PC <AB -AC ⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
(完整版)三角形全等添加辅助线口诀
![(完整版)三角形全等添加辅助线口诀](https://img.taocdn.com/s3/m/eed599760029bd64783e2cd9.png)
三角形全等添加辅助线口诀人说几何很困难点就在辅助线,辅助线,如何添加?把握定理和概念,还要刻苦加钻研,找出规律凭经验,图中有角平分线,可向两边引垂线,也可将图对折看,对称以后关系现,角平分线平行线,等腰三角形来添,角平分线加垂线,三线合一试试看,线段垂直平分线,常向两边把线连,要证线段倍与半,延长缩短可试验,三角形中两中点,连接则成中位线,三角形中有中线,延长中线等中线。
几何,不谈战术谈战略学而思中考研究中心施佳辰作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。
话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。
实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想,这种思想的集中体现,便是模型(变形金刚的原力所在)对于几何,我们不仅仅要在战术上坚定执行,在战略层面上也要对几何在初中三年的整体学习有一个明确的了解。
得模型者得几何,而模型思想的建立又并非一朝一夕,是需要同学们在大量的实战做题和不断总结方法中培养出来的。
对于模型的理解和认识,分为很多层面,最浅的是基本的形似,看到图形相仿或相似的题目,能够有意识的联想以前学过的题型并加以运用,套用,这是最简单的模型思想。
高一些的是神似,看到一些关键点,关键线段或是题目所给条件的相似便能够联想到所学知识点,通过推理和演绎逐步取得正确的解法,记住的是一些具体模型,这,是第二种层次。
最高的境界是,心中只有很少几种基本模型,这些模型就像种子,看到一道题目就会发芽,开花结果,随着对于题目的深入理解,不断地寻找适合的花朵,每一朵花上面都有着一种具体的模型,而每种模型之间,都会有树枝相连,相互间并不是孤立的,而是借由其他条件贯穿连接的。
达到这样的理解才能算是包罗万象,驾轻就熟。
我们对于模型的把控能不应当仅限于会用于具有明显模型特征的题目,对于一些特征并不明显的题目,我们要有能力添加辅助线去挖掘图形当中的隐藏属性。
数学几何问题添加辅助线方法大全
![数学几何问题添加辅助线方法大全](https://img.taocdn.com/s3/m/f44c72dc27284b73f3425003.png)
数学几何问题添加辅助线方法大全规律1.如果平面上有n(n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出12n(n -1)条. 规律2.平面上的n 条直线最多可把平面分成〔12n(n+1)+1〕个部分.规律3.如果一条直线上有n 个点,那么在这个图形中共有线段的条数为12n(n -1)条. 规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.例:如图,B 在线段AC 上,M 是AB 的中点,N 是BC 的中点.求证:MN =12AC 证明:∵M 是AB 的中点,N 是BC 的中点∴AM = BM =12AB ,BN = CN = 12BC ∴MN = MB+BN =12AB + 12BC = 12(AB + BC) ∴MN =12AC 练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点.求证:AM =12(AB + BC) 2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点.求证:MN =12BC 3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点.N M CB AM C BAN M CB A求证:MN =12AB 规律5.有公共端点的n 条射线所构成的交点的个数一共有12n(n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1)个.规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角.规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出16n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o. 规律10.平面上有n 条直线相交,最多交点的个数为12n(n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律13.已知AB ∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半. 例:已知,BE 、DE 分别平分∠ABC 和∠ADC ,若∠A = 45o ,∠C = 55o,求∠E 的度数.解:∠A +∠ABE =∠E +∠ADE ①1()∠ABC+∠BCD+∠CDE=360︒E D C BA+=∠CDE ∠ABC ∠BCD 2()E D C BA -=∠CDE ∠ABC ∠BCD 3()E D CB A -=∠CDE ∠ABC ∠BCD 4()E D CB A +=∠CDE ∠ABC ∠BCD 5()E DC B A+=∠CDE ∠ABC ∠BCD 6()E DC B AMBAH G F E D B C A H GFE D B C A H GFE D BC A N MCB A∠C +∠CDE =∠E +∠CBE ② ①+②得∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE ∵BE 平分∠ABC 、DE 平分∠ADC , ∴∠ABE =∠CBE ,∠CDE =∠ADE ∴2∠E =∠A +∠C ∴∠E =12(∠A +∠C) ∵∠A =45o,∠C =55o,∴∠E =50o三角形部分规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N在△AMN 中, AM + AN >MD +DE +NE ①在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE∴AB +AC >BD +DE +CE证法(二)延长BD 交AC 于F ,延长CE 交BF 于G, 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P 为△ABC 内任一点,F GN M EDCBA求证:12(AB+BC+AC)<PA+PB+PC<AB+BC+AC规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.例:如图,已知BD为△ABC的角平分线,CD为△ABC 的外角∠ACE的平分线,它与BD 的延长线交于D.求证:∠A = 2∠D证明:∵BD、CD分别是∠ABC、∠ACE的平分线∴∠ACE =2∠1, ∠ABC =2∠2∵∠A = ∠ACE -∠ABC∴∠A = 2∠1-2∠2又∵∠D =∠1-∠2∴∠A =2∠D规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.例:如图,BD、CD分别平分∠ABC、∠ACB,求证:∠BDC = 90o+12∠A证明:∵BD、CD分别平分∠ABC、∠ACB ∴∠A+2∠1+2∠2 = 180o∴2(∠1+∠2)= 180o-∠A①∵∠BDC = 180o-(∠1+∠2)∴(∠1+∠2) = 180o-∠BDC②把②式代入①式得2(180o-∠BDC)= 180o-∠A即:360o-2∠BDC =180o-∠A∴2∠BDC = 180o+∠A∴∠BDC = 90o+12∠A规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.例:如图,BD、CD分别平分∠EBC、∠FCB,求证:∠BDC = 90o-12∠A证明:∵BD、CD分别平分∠EBC、∠FCB∴∠EBC = 2∠1、∠FCB = 2∠2∴2∠1 =∠A+∠ACB ①2∠2 =∠A+∠ABC ②①+②得2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A2(∠1+∠2)= 180o+∠A21C EDBADC BA21∴(∠1+∠2)= 90o+12∠A∵∠BDC = 180o-(∠1+∠2)∴∠BDC = 180o-(90o+12∠A)∴∠BDC = 90o-12∠A规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.例:已知,如图,在△ABC中,∠C>∠B, AD⊥BC于D, AE平分∠BAC.求证:∠EAD = 12(∠C-∠B)证明:∵AE平分∠BAC∴∠BAE =∠CAE =12∠BAC∵∠BAC =180o-(∠B+∠C)∴∠EAC = 12〔180o-(∠B+∠C)〕∵AD⊥BC∴∠DAC = 90o-∠C∵∠EAD = ∠EAC-∠DAC∴∠EAD = 12〔180o-(∠B+∠C)〕-(90o-∠C)= 90o-12(∠B+∠C)-90o+∠C= 12(∠C-∠B)21FEDCBACBAAB CDEFFCBA如果把AD 平移可以得到如下两图,FD ⊥BC 其它条件不变,结论为∠EFD =12(∠C -∠B).注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF 证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EFFABC DE D C B A4321NF E B A证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180o∴∠3 +∠2 = 90o即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.MA BC D E F12345 12DC B A当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b②a±b = c ③a±b = c±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BN ∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD 2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4.求证:BC = AB +CD规律25.证明两条线段相等的步骤: ①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
初中几何二倍角问题辅助线的添加规律
![初中几何二倍角问题辅助线的添加规律](https://img.taocdn.com/s3/m/3d8473e55acfa1c7ab00cc61.png)
初中几何二倍角问题辅助线的添加规律一些几何题中常含有一个角是另一个角的二倍的条件,处理这类问题常用如下的方法添加辅助线:(1)作二倍角的平分线,构成等腰三角形.如下图,在△ABC中,∠ABC=2∠C,作∠ABC的角平分线交AC于点D,则∠DBC=∠C,△DBC是等腰三角形.(2)延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形,利用等腰三角形的性质证题.如下图,在△ABC中,∠B=2∠C,可延长CB到D,使BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.【典例】已知,如下图所示,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90°.思路一:要证∠B=90°,可设法证∠B等于某个直角.由∠C=2∠A,可联想作∠C 的角平分线CE,则△ACE是等腰三角形,如果作这个等腰三角形底边上的高ED,则出现直角,再证∠B=∠CDE即可.【证法一】如下图,作∠C的平分线CE交AB于点E,过E作ED⊥AC于D.则∠ACE=∠A,∴AE=CE.∵ED⊥AC,∴CD=1/2AC.∵AC=2BC,∴CD=CB.则可证得△CDE≌△CBE.即∠B=∠CDE=90°.思路二:作∠C的平分线CD,将△CDA沿CD翻折过来,得△CDE.要证∠ABC=90°,需证CD=ED,BC=BE.【证法二】如下图,作∠C的平分线CD,延长CB到E,使CE=AC,∴AC=BC+BE.∵AC=2BC,∴BC=BE.在△ACD和△ECD中,AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD.∴∠A=∠E,又∠DCB=∠DCA=∠A,∴∠E=∠DCB.∴DC=DE.∴∠ABC=90°.思路三:延长AC到D,使CD=BC,连接BD,则△CBD和△ABD都是等腰三角形,由条件AC=2BC,可联想到取AC的中点E,连接BE,则∠DBE=90°.要证∠ABC=90°,只需证∠ABE=∠DBC.【证法三】延长AC到D,使CD=CB,连接BD.取AC的中点E,连接BE,如下图则EC=CD=BC,∴∠DBE=90°.∵CD=CB,∴∠D=∠CBD∴∠ACB=2∠D∵∠ACB=2∠A,∴∠A=∠D∴AB=BD 又∵AE=DC∴△ABE≌△DBC.∴∠ABE=∠DBC∴∠ABC=∠EBD=90°.总结关于二倍角问题,上面介绍了两种添加辅助线的方法,其主要目的都是为了构造等腰三角形和全等三角形,然后利用它们的相关性质探求解题途径.应试小技巧一、进入考场,首先要做的是让自己冷静下来。
初中几何添加辅助线的99条规律
![初中几何添加辅助线的99条规律](https://img.taocdn.com/s3/m/dfba3b03443610661ed9ad51f01dc281e53a5694.png)
初中几何添加辅助线的99条规律规律1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
规律2平面上的n条直线最多可把平面分成〔n(n+1)/2+1〕个部分。
规律3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
规律4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
规律5有公共端点的n条射线所构成的角的个数一共有n(n-1)个。
规律6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n -1)个。
规律7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
规律8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。
规律9互为邻补角的两个角平分线所成的角的度数为90°。
规律10平面上有n条直线相交,最多交点的个数为n(n-1)个。
规律11互为补角中较小角的余角等于这两个互为补角的角的差的一半。
规律12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。
规律13在证明直线和圆相切时,常有以下两种引辅助线方法:(1)当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可。
(2)如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可。
规律14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。
规律15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。
辅助线
![辅助线](https://img.taocdn.com/s3/m/8c703eeb6294dd88d0d26ba1.png)
辅助线人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.辅助线的数学定义:在几何学中用来帮助解答疑难几何图形问题时在原图基础之上另外所作的具有极大价值的直线或线段称为辅助线。
二.添辅助线的作用1揭示图形中隐含的性质当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的2聚拢集中原则通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,使他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论3化繁为简原则对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而达到化繁为简,化难为易的目的4发挥特殊点,线的作用在题设条件所给的图形中,对尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点,特殊线,特殊图形性质恰当揭示出来,并充分发挥这些特殊点,线的作用,达到化难为易,导出结论的目的5构造图形的作用对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等三.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
几何题添加辅助线的标准
![几何题添加辅助线的标准](https://img.taocdn.com/s3/m/e5898e9132d4b14e852458fb770bf78a65293a15.png)
几何题添加辅助线的标准在解几何题时,添加辅助线是常用的方法之一,用于连接已知条件和未知条件,以便更容易找到解题思路和求解方法。
下面介绍几种常见的添加辅助线的方法。
1. 定义法定义法是指根据题目所给的条件和结论,结合几何图形的性质和定义,直接在图形上画出满足条件的辅助线。
这种方法比较简单,但需要熟练掌握几何图形的性质和定义。
例如,在解直角三角形时,可以根据直角三角形的定义,直接在图形上画出直角三角形的高、中线和角平分线等辅助线。
2. 构造法构造法是指根据题目所给的条件和结论,构造一个满足条件的新的几何图形,并在该图形上画出需要的辅助线。
这种方法比较灵活,但需要充分了解各种几何图形的性质和特点。
例如,在解圆的问题时,可以通过构造一个直径、半径或圆心角等辅助线,将已知条件和未知条件连接起来。
3. 归纳法归纳法是指通过对一些特殊情况的观察和分析,总结归纳出一般规律,并在此基础上画出需要的辅助线。
这种方法比较抽象,但可以帮助我们发现新的规律和解题方法。
例如,在解多边形的问题时,可以通过归纳总结出多边形的内角和公式,并在此基础上画出需要的辅助线。
4. 反证法反证法是指先假设题目中的结论不成立,然后推导出矛盾的结论,从而证明结论的正确性。
这种方法比较间接,但可以帮助我们找到解题的突破口。
例如,在解平行线的问题时,可以通过反证法证明一条直线和另外两条平行线相交时所得到的同位角相等。
具体做法是先假设同位角不相等,然后推导出矛盾的结论,从而证明同位角相等。
5. 转化法添加辅助线的目的是为了将复杂的问题转化为简单的问题进行处理。
转化法是指通过添加辅助线将题目中的复杂图形转化为简单图形,以便更容易求解。
这种方法比较灵活,需要熟练掌握各种几何图形的性质和特点。
例如,在解四边形的问题时,可以通过添加辅助线将四边形转化为三角形、平行四边形或矩形等简单图形进行处理。
又如,在解圆的问题时,可以通过添加辅助线将圆转化为三角形、矩形或椭圆等简单图形进行处理。
初中数学关于添加辅助线的方法总结
![初中数学关于添加辅助线的方法总结](https://img.taocdn.com/s3/m/7755149203d276a20029bd64783e0912a2167c28.png)
初中数学关于添加辅助线的方法总结辅助线关于同学们来说都不生疏,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
因此我们要学会巧妙的添加辅助线。
添加辅助线的几种方法。
添辅助线有二种情形:▌1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
▌2、按差不多图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做差不多图形,添辅助线往往是具有差不多图形的性质而差不多图形不完整时补完整差不多图形,因此“添线”应该叫做“补图”!如此可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个差不多图形:当几何中显现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的差不多图形:当几何问题中显现一点发出的二条相等线段时往往要补完整等腰三角形。
显现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的差不多图形:显现等腰三角形底边上的中点添底边上的中线;显现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的差不多图形。
(4)直角三角形斜边上中线差不多图形显现直角三角形斜边上的中点往往添斜边上的中线。
显现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线差不多图形。
(5)三角形中位线差不多图形几何问题中显现多个中点时往往添加三角形中位线差不多图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当显现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线差不多图形;当显现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线差不多图形。
几何中添加辅助线的一般原则
![几何中添加辅助线的一般原则](https://img.taocdn.com/s3/m/b005fe3703020740be1e650e52ea551810a6c90f.png)
几何中添加辅助线的一般原则第一篇:几何中添加辅助线的一般原则添线原则:一把分散的几何元素转化为相对集中的几何元素(如把分散的元素集中在一个三角形或两个全等的三角形中,以使定理能够针对应用)二把不规则的图形转化为规则的图形,把复杂图形转化为简单的基本图形。
常见方法:1.遇到等腰三角形时,添底边中线,或已知底边中线添两腰,应用等腰三角形三线合一性质;2.遇到直角三角形时,添斜边中线,应用直角三角形性质解题;3.遇到三角形中线时,将中线延长一倍;4.遇到两条线段的和等于第三条线段,可在长的线段上截取,也可延长短的线段;5.遇到证明圆中的弧、弦、圆心角、弦心距之间的关系时,常添半径或弦心距;6.遇到一些常见的几何基本图形残缺不全时,利用添线补全基本图形。
例题:如图,已知△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于点F。
求证:AF=EF(4)本阶段涉及的证明类型及方法:①证明两线段相等方法1.利用全等三角形性质证明;2.利用等腰三角形性质及判定证明;3.利用直角三角形性质及度量关系证明;4.利用平行四边形性质证明;5.利用线段的中垂线、角平分线性质证明;6.利用图形翻折证明;7.通过计算线段证明; 8.利用第三线段过渡证明。
例1:如图,已知RT△ABC中,∠C=90°,M是AB的中点,AM=AN, MN∥AC.求证:MN=AC ②证明两角相等方法1.利用全等三角形性质证明;2.利用平行四边形性质证明;3.利用等腰三角形性质证明; 4.利用平行线性质证明;5.利用计算角度证明;6.利用常用定理证明(如对顶角相等、同角或等角的余角或补角相等、圆的性质等)例2:如图:已知在△ABC中,AB=AC, E是AB的中点,以点E 为圆心,EB为半径画弧,交BC于D, 连结ED并延长ED到点F, 使DF=DE,连FC.求证:③证明两直线平行方法1.利用平行线的判定证明;2.利用平行四边形性质证明;例3:如图:已知∠1与∠23.利用平行线的传递性证明;互补,∠A=∠D求证:AB∥CD ④证明两直线垂直方法 1.利用垂直定义证明;2.利用邻补角的两角的平分线互相垂直证明;3.利用三角形内角和证明;4.利用等腰三角形性质证明;5.利用垂径定理证明;例4:如图:已知在△ABC中,AD⊥BC,M为BC的中点,且∠BAD=∠DAM=∠MAC 求证:∠BAC=90°⑤证明线段的和差倍分方法 1.通过代数方法证明;2.利用直角三角形斜边上的中线等于斜边的一半证明;3.利用在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半证明;4.利用截长补短法证明; 5.利用延短等长法证明;例5:如图:已知在△ABC中,AD是BC上的高,∠B=2∠C, 求证:AB+BD=DC⑥证明角的和差倍分方法1.利用三角形外角等于不相邻的两个内角和证明;2.利用平行线性质证明;3.通过代数方法证明;4.通过题中的平行线、垂线中隐含的角与角间的联系证明。
略谈添加辅助线的原理和技巧
![略谈添加辅助线的原理和技巧](https://img.taocdn.com/s3/m/a59b456c25c52cc58bd6bee9.png)
略谈辅助线的添加原理与技巧几何问题是困扰学生的一大难题,尤其是需要添加辅助线的几何问题.科学、准确地引导学生添加每一条辅助线,能帮助学生揭开辅助线的神秘面纱,攻克几何难题.1.把握基本图形是科学添加辅助线的前提(1)把握基本图形的特征.初中几何问题是由有限的几种基本图形演绎而来.学生只有熟悉了基本图形组成的线条及其条件和结论的特征,把握了基本图形的总体轮廓,就能在解决几何问题时联想到科学合理的辅助线.一个定理、概念就有一个基本图形.在概念和定理的教学中教师不必过于追究文字的描述,而应突出其基本图形的特征,把定理的条件和结论直观地表述在图形中,使之成为一个整体,成为基本图形的符号标志,通过观察图形,培养学生的视觉美感.教师还可以给基本图形取一个直观的名字,便于学生记忆,如双垂图(如图1)、角平分线图(如图2)、垂直平分线图(如图3)等等,也有利于学生把握基本图形的特征.图1 图2 图3(2)关注基本图形的变形.几何定理和概念描述的是具有某些共同属性的几何图形所具有的共同的性质.组成这些图形的线条和基本条件相同,但线条的位置和长度却千变万化.在概念和定理教学中,图4 图5教师要对基本图形的位置和形状进行各种变式训练.如遇到涉及角的图形要画出锐角、直角、钝角的各种变式让学生辨认,不断变换角度大小、几何元素间的相互位置,对一个基本图形作翻折、旋转等变化,让学生从各个角度去认识图形,提高学生对图形的欣赏、鉴别能力.如图4就是三合一图的三种不同形状,各种形状还可以变化出各种不同位置的图形.(3)学会几何图形的分解.几何图形由若干基本图形组成.把一个几何图形分解为基本图形是解决几何问题的关键.在分析过程中,可用不同颜色的笔勾画出基本图形,也可把基本图形从复杂图形中抽出来,如图5可分解为角平分线图(图6(1))、等腰三角形图(图6(2))、双垂图(图6(3))三个基本图形.(1)(2)(3)图62.捕捉辅助线的信号是快捷添加辅助线的思维起点学生添加辅助线往往是盲目的、试探性的.究竟从哪里入手添加辅助线才既快捷又准确?(1)从题设入手添加辅助线题设是添加辅助线的第一信号来源.为了应用已知条件,必须把条件涉及的几何元素归到基本图形中,如果基本图形不全,就要添加辅助线,构成完整的基本图形.例1 如图7,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD,垂足为D,AB=12,AC=18,求DM的长.图7 图8分析:本题有非常明显的图形特征:AD是∠A的平分线,BD⊥AD,自然联想起三合一图,从而延长BD,与AC相交于点N.这条辅助线的思维起点就是题目中的题设条件.从题设出发添加辅助线的情况很多,如在梯形中已知两腰的关系,可以平移腰;在圆中已知直径,可以作出直径所对的圆周角等.(2)从结论入手添加辅助线结论是添加辅助线的第二信号来源.通过添加辅助线可以把结论涉及的几何元素还原到基本图形中,或者让基本图形显现出来.例2 如图8,△ABC 中,∠B =2∠C ,AD 为BC 边上的高,点E 为BC 的中点,求证:12D E A B =.(1) (2)图9 分析:本题常用的辅助线有两种:取AC 的中点G 点,连结EG 、DG (如图9(1));取AB 的中点F ,连结EF 、DF (如图9(2)),添加这两种辅助线的出发点都来自题目的结论.例3 如图10,E 、F 分别为正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,求证:EF =BE +DF .图10 图11 分析:本题的常规辅助线是延长CB 到点G ,使BG =FD ,这样添加的出发点就是题目的结论:EF =BE +DF .根据题目结论涉及的线段或角寻找基本图形,通过添加辅助线让这些几何元素归位“回家”是一般的思考模式.(3)两者兼顾,才是科学的选择.从题设入手添加辅助线方便进行综合推理,但不一定就能完成推理;从结论入手添加辅助线易于进行逆向分析,但不一定就能完成证明.二者兼顾,才是科学的选择.例4 如图11,在梯形ABCD 中,AB ∥CD ,∠A +∠B =90°,M 、N 分别是DC 、AB 的中点.求证:()12M N A B C D =- .(1) (2) (3)图12分析:本题若从已知条件出发,第一方案就是延长AD 和BC ,构建直角三角形(如图12(1)),可是这样对处理()12M N A B C D =-是不明朗的;第二个方案就是平移梯形的腰(如图12(2)),集中聚拢∠A 和∠B ,也形成了A B C D -,可是此方案没有联系题目中的中点条件.所以需要同时平移梯形的腰AD 、BC (如图12(3)),这样既能考虑题设条件,也能兼顾结论.例5 如图13,M 为正方形A B C D 边A B 的中点,E 是A B 延长线上的一点,M N D M ⊥,且交C B E ∠的平分线于N .求证:M D M N =.图13分析:在本题的解答过程中,大部分学生过点N 作N F B E ⊥,然后证明△DAM ≌△MFN ,最终没能成功.原因是这条辅助线没有利用题设中的中点条件.如果取AD 的中点G ,连接MG ,这样就能两者兼顾,从而顺利解决问题.3. 掌握辅助线的添加原则是合理添加辅助线的依据(1)难点优先添加辅助线可以化繁为简,化难为易,所以优先处理题中繁难的式子,可以将其抽象出基本图形.例6 如图14(1),△ABC 中,AB =AC ,D 为△ABC 外一点,且∠ABD =60°,1902A D B B D C ∠=︒-∠,求证:AB =BD +CD .图14(1) 图14(2) 图15(1) 图15(2) 分析:本题添加辅助线有两个难点:一是1902A D B B D C ∠=︒-∠,二是AB=BD+CD.基于“难点优先”的原则,想到了作这样的辅助线:延长AD和延长BD至点E,使DE=CD这样的辅助线(如图14(2)).(2)结论优先添加辅助线的最终目的是证明结论,从题设出发添加辅助线往往有多种可能,并不是每一条都能很快得到命题的结论,故通常优先考虑根据结论添加辅助线.例7如图15(1),BC为半圆O的直径,F是半圆上异于B、C的一点,A是 B F的中点,AD⊥BC垂足为D,与BF相交于点E.求证:BE·BF=BD·BC.分析:本题若从题设出发,考虑添加的辅助线就是由直径构建直径所对的圆周角,可连结AB、AC或连结FC,但是选择连结AB、AC并不能出现与结论有关的线段.考虑到构造与结论BE·BF=BD·BC有关的线段比例关系,我们可选择连结FC(如图15(2)).(3)能不分就不分有些辅助线添加后,会把图中的线段或角分割成几部分,这样对线段或角的处理就比较麻烦,一般的原则是“能不分就不分”.再谈前面例3的辅助线作法,一些学生会试作AG⊥EF(如图16),然后试图证明BE=EG,DF=GF.看上去这是个不错的选择,可是难以证明.这是因为辅助线AG把∠EAF 分成了两部分,不便于应用条件∠EAF=45°.图16 图17 图18再看例4中图12(2)的辅助线,正是因为把线段MN分成了两条线段,而这两条线段又不能独立处理,所以证明就难以进行.(4)能“天然”不“人为”辅助线具有构造图形的功能,常见的有构造线段或角的和差倍分、新的三角形、直角三角形、等腰三角形等.这些构造有些是人为得,有些是通过作平行线、作垂线或直接延长相交而得(姑且称之为“天然”).通常情况下,我们能“天然”不“人为”.例8如图17,梯形ABCD中,AD∥BC,点E、F分别为腰AB和腰CD的中点,求证:EF ∥BC ,()12E F B C A D =+.分析:本题的难点是对B C A D +的处理,若延长BC 到点G ,使得CG =AD , “人为”形成B C A D +,也是可以证明的.但这时候必须证明A 、F 、G 三点共线,学生要么不会证明,要么就不证明.所以本题还是延长AF 、BC 相交于点G ,“天然”形成B C A D +,比较易于问题的解决.4. 吃透辅助线的灵魂实质,应对千变万化的几何问题例9 如图18,△ABC 的角平分线AD 交BC 边于D ,E 为BC 上一点,且DE =DC ,过E 点作EF ∥AB 交AD 于点F ,求证:EF =AC .本题辅助线的作法:延长AD 到点G ,使DG =AD ,连结EG ; 或延长AD 到点H ,使DH =DF ,连结CH .图19 图20 图21例10 如图19,M 、N 分别为正方形ABCD 的边AD 和AB 的中点,连结CM 、DN 相交于点P ,连结BP ,求证:BP =BC .本题辅助线的作法:延长DN ,交CB 的延长线于点Q .例11 如图20,梯形ABCD 中,AD ∥BC ,点E 、F 分别为对角线AC 、BD 的中点,求证:EF ∥BC ,()12E F B C A D =-.本题辅助线的作法:连结DF 并延长,与BC 相交于G 点.这几个问题的图形各不相同,添加的线条和添加的方式也不一样,研究发现所构建的基本图形一样(如图21).从本质上来说属于“倍长中线”.“倍长中线”是一种较为常见的添加辅助线的方法,其作法是遇到中线就延长.可是这几个问题中,没有涉及中线,甚至没有三角形,学生根本想不到“倍长中线”.其实,“倍长中线”的实质是利用中点构建全等三角形.这几个几何图形中都应用了中点条件构建全等三角形,只是添加的部位或添加的方式不同.学生掌握了“倍长中线”的实质,就能正确添加辅助线.任何一种辅助线不可能是单一的,添加的部位和叙述方式也许不一样,但构建基本图形的实质是一致的.几何问题和几何图形是千变万化的,所以怎样添加辅助线也就成为了一道难题.辅助线最科学的添加方法既要与各个原则不发生冲突,又要考虑图形的合理性,也就是美感.只有合理的才是最美的.。
初一下册 几何中的重点—辅助线添加相关知识点
![初一下册 几何中的重点—辅助线添加相关知识点](https://img.taocdn.com/s3/m/32fdac5aa517866fb84ae45c3b3567ec112ddc51.png)
初一下册几何中的重点—辅助线添加相关知识
点
初一下册几何中的重点—辅助线添加相关知识点:
平行于同一直线的两条直线互相平行;
垂直于同一直线的两条直线互相平行;
从直线外一点到这条直线所画的垂直线段最短。
与角平分线有关的:
可向两边作垂线。
可作平行线,构造等腰三角形。
在角的两边截取相等的线段,构造全等三角形。
与线段长度有关的:
截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可。
补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可。
倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
遇到中点,考虑中位线或等腰等边中的三线合一。
与等腰等边三角形相关的:
考虑三线合一。
旋转一定的度数,构造全等三角形,等腰一般旋转顶角的度数,等边旋转60度。
数学添加辅助线口诀
![数学添加辅助线口诀](https://img.taocdn.com/s3/m/869b6781680203d8ce2f2480.png)
平面几何添加辅助线口诀口决一遇中点,配中点,连点添边中位线口决二遇到一边有中线,只需将其一倍延,口决三遇到垂线、角分线,绕轴翻转来变换口决四遇到图中有等边,绕点旋转来变换口决一遇中点,配中点,连点添边中位线理论依据:三角形的中位线平行于第三边,并且等于第三边的一半。
使用方法:如图,已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于BC/2法一:过C作AB的平行线交DE的延长线于F点。
∵CF∥AD∴∠A=∠ACF∵AE=CE、∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵D为AB中点∴AD=BD∴BD=CF∴BCFD是平行四边形∴DF∥BC且DF=BC∴DE=BC/2∴三角形的中位线定理成立.例题:经典例题1:在△ABC中,AB=2AC,AF= 四分之一AB,D、E分别为AB、BC的中点,EF与CA的延长线交于点G,求证:AF=AG.证明:取AC的中点M,连接EM,∵E,M,分别是BC,AC的中点,∴EM是△ABC的中位线,又∵EM=二分之一AB,AF=四分之一AB,∴AF=二分之一EM又∵EM∥AB,∴GA:GM=AF:EM=1:2即AG=AM=二分之一AC∵AC=二分之一AB∴AG=四分之一AB∵AF=四分之一AB∴AG=AF.经典例题2:已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,BD=2BO.由已知BD=2AD,∴BO=BC.又E是OC中点,∴BE⊥AC.(2)由(1)BE⊥AC,又G是AB中点,∴EG是Rt△ABE斜边上的中线.∴EG=二分之一AB又∵EF是△OCD的中位线,∴EF=二分之一CD又AB=CD,∴EG=EF.练习:1:已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.求:AE:AC的值2:如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.求证:GE:CE,GD:AD,的值是多少3:如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B 重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=四分之一DA ,并说明理由口决二遇到一边有中线,只需将其一倍延理论依据:全等三角形判定与性质或者平行四边形判定与性质使用方法:有中线时,一般作加倍中线构造全等三角形或者平行四边形,使分散的条件集中;例题:1.如图1,已知ΔABC中,D是BC的中点,DE⊥DF.求证:BE+CF>EF.方法一:如图2,延长ED到M,使DM=DE,连结MC和MF,易证ΔMCD≌ΔEBD,∴BE=CM.∵DE⊥DF, DM=DE,∴EF=MF.在ΔFCM中,∵CF+CM>MF.图1AB CME FD图2∴BE+CF>EF.说明:延长FD 到N,使DN=DF,连结BN 和NE 也可以.方法二:如图3,连结BF ,取BF 的中点M, 取EF 的中点H ,连结DM 、DH 、MH ,∴DM ,MH 为中位线. ∴DM=12CF ,MH=12BE.在Rt △EDF 中,H 为EF 的中点, ∴DH=12EF.在ΔDMH 中,MH+MD>DH, ∴BE+CF>EF.说明:连结CE ,取CE 的中点M, 取EF 的中点H ,连结DM 、MH 、DH也可以.2. 如图1,已知ΔABC 中,AB=5,AC=3,BC 上的中线AD=2。
初中几何辅助线归纳
![初中几何辅助线归纳](https://img.taocdn.com/s3/m/7c4c37ffdd36a32d727581d7.png)
初中数学知识归纳添辅助线的规律一添辅助线的目的:解证几何问题的基本思路就是要利用已知几何条件求得所求几何关系。
这往往需要将已知条件与所求条件集中到一个或两个几何关系十分明确的简单的几何图形之中。
如一个三角形(特别是直角三角形、等腰三角形),一个平行四边形(特别是矩形、菱形、正方形),一个圆,或两个全等三角形,两个相似三角形之中。
这种思路可称为条件集中法。
为了达到条件集中的目标,我们需要将远离的、分散的已知条件和所求条件,通过连线、作线、平移、翻转、旋转等方法来补全或构造一个三角形、一个平行四边形、一个圆、或两个全等三角形、两个相似三角形。
以便于运用这些图形的几何关系(性质定理)解题,这就需要添加辅助线。
添加什么样的辅助线,总由以下三方面决定:⑴由所求决定:问什么,先要作什么。
⑵由已知决定:已知什么,作出什么,并为充分运用已知条件提供的性质定理添加辅助线。
⑶由条件集中的需要决定:为补全或构造几何关系十分明确的一个三角形、一个平行四边形、一个圆,或两个全等三角形、两个相似三角形而添加辅助线。
二添辅助线的规律:(1)三角形中:①等腰Δ:常连底边上的中线或高或顶角的平分线(构造两个全等的直角Δ,或便于运用等腰Δ三线合一的性质。
如图1)②直角Δ斜边上有中点:连中线(构造两个等腰Δ,或便于运用直角Δ斜边上的中线的特殊性质。
如图2)③斜Δ有中点或中线:连中线(构造两个等底同高的等积Δ。
如图3);或自左右两顶点分别作中线的垂线(构造两个全等直角三角形。
如图4);或连中位线、或过一中点作另一边的平行线(构造两个相似比为1:2的相似Δ,或便于运用Δ中位线定理。
如图5、6);或延长中位线或中线的一倍(构造两个全等Δ或补全为一个平行四边形。
如图7、8)。
或延长中线的1/3(构造两个全等Δ或补全为一个平行四边形。
如图9)。
④有角平分线:过其上某一交点作角两边的垂线(构造两全等的直角Δ。
如图10)或一边或两边的平行线(构造一个或两个等腰Δ或一菱形。
做辅助线的基本原则
![做辅助线的基本原则](https://img.taocdn.com/s3/m/e29a267e3d1ec5da50e2524de518964bcf84d2e9.png)
做辅助线的基本原则
如何添加辅助线——基本原则
原则1:集中条件
添加的辅助线应有利于将已知条件和待求、待证结论的有关因素集中到同一个三角形中、两个相关(全等)的三角形中,只有有关因素相对集中,才好便于联系与比较,才能充分应用有关的几何定理,使推理过程取得突破。
原则2:补全图形
添加的辅助线应当构成新图形,利于挖掘隐含的已知条件,以便应用某一基本图形,充分发挥已知条件作用。
每个几何定理都有与它相对应的几何图形,我们把它叫作基本图形,添辅助线往往是把不完整的基本图形补完整。
因此“添线"也可以叫作“补图"。
如基本图形如:平行线,等腰三角形,出现等腰三角形底边上的中点添底边上的中线出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
直角三角形斜边上中线基本图形,出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线的直角三角形斜边上中线基本图形。
出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径。
平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
原则3:构造条件
如作平行线、作垂线、作角平分线、作中线、截取线段相等、构造
角相等。
作辅助线遵循的几个原则
![作辅助线遵循的几个原则](https://img.taocdn.com/s3/m/87044200b7360b4c2f3f6414.png)
作辅助线遵循的几个原则
在几何中作辅助线有着重要的作用。
1.充分利用条件转化结论;2.联系图象位置关系与数量关系;3.将图象扩充或分解成基本图形;4.对图形进行适当的几何变换。
那么就应该遵循以下原则:
一、必须有明确的目的,这样的目的有两种,即充分运用条件和恰当的转化结论。
按这
两种目的之一作出了正确的辅助线之后,它必然会与另一目的发生联系,作辅助线时必须考察新图形的特征,看是否具有一箭双雕的作用。
二、在作充分运用条件的辅助线时,往往要作出那些可以显示图形的特征的几何元素,
或某些原素的代表。
三、必须使所作辅助线与已知元素有位置关系,只有这种位置关系才能保证产生有助于
进一步探索的新图形。
四、常用的辅助线大体上有两类,即全等图形和相似图形。
五、辅助线往往逐步作出,体现了思考的逐步深入,不必一气呵成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
添线原则:
一把分散的几何元素转化为相对集中的几何元素(如把分散的元素集中在一个三角形或两个全等的三角形中,以使定理能够针对应用)二把不规则的图形转化为规则的图形,把复杂图形转化为简单的基本图形。
常见方法:
1.遇到等腰三角形时,添底边中线,或已知底边中线添两腰,应用等腰三角形三线合一性质;
2.遇到直角三角形时,添斜边中线,应用直角三角形性质解题;
3.遇到三角形中线时,将中线延长一倍;
4.遇到两条线段的和等于第三条线段,可在长的线段上截取,也可延长短的线段;
5.遇到证明圆中的弧、弦、圆心角、弦心距之间的关系时,常添半径或弦心距;
6.遇到一些常见的几何基本图形残缺不全时,利用添线补全基本图形。
例题:如图,已知△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,
延长BE交AC于点F。
求证:AF=EF
(4)本阶段涉及的证明类型及方法:
①证明两线段相等方法
1.利用全等三角形性质证明;
2.利用等腰三角形性质及判定证明;
3.利用直角三角形性质及度量关系证明;
4.利用平行四边形性质证明;
5.利用线段的中垂线、角平分线性质证明;
6.利用图形翻折证明;
7.通过计算线段证明;
8.利用第三线段过渡证明。
例1:如图,已知RT△ABC中,∠C=90°,M是AB的中点,AM=AN,
MN∥AC. 求证:MN=AC ②证明两角相等方法
1.利用全等三角形性质证明;
2.利用平行四边形性质证明;
3.利用等腰三角形性质证明;
4.利用平行线性质证明;
5.利用计算角度证明;
6.利用常用定理证明(如对顶角相等、同角或等角的余角或补角相等、圆的性质等)
例2:如图:已知在△ABC中,AB=AC, E是AB的中点,以点E为圆心,EB 为半径画弧,交BC于D, 连结ED并延长ED到点F, 使DF=DE,连FC. 求证:<F=<A
③证明两直线平行方法
1.利用平行线的判定证明;
2.利用平行四边形性质证明;
3.利用平行线的传递性证明;
例3:如图:已知∠1与∠2互补,∠A=∠ D
求证:AB ∥CD ④证明两直线垂直方法 1.利用垂直定义证明;
2.利用邻补角的两角的平分线互相垂直证明;
3.利用三角形内角和证明;
4.利用等腰三角形性质证明;
5.利用垂径定理证明;
例4:如图:已知在△ABC 中,AD ⊥BC,M 为BC 的中点, 且∠BAD=∠DAM=∠MAC 求证:∠BAC=90°
⑤证明线段的和差倍分方法 1.通过代数方法证明;
2.利用直角三角形斜边上的中线等于斜边的一半证明;
3.利用在直角三角形中,如果有一个锐
角等于30,那么它所对的直角边等于斜边的一半证明; 4.利用截长补短法证明; 5.利用延短等长法证明;
例5:如图:已知在△ABC 中,AD 是BC 上的高,∠B=2∠C, 求证:
AB+BD=DC
⑥证明角的和差倍分方法
1.利用三角形外角等于不相邻的两个内角和证明;
2.利用平行线性质证明;
3.通过代数方法证明;
4.通过题中的平行线、垂线中隐含的角与角间的联系证明。
例6:如图:已知MN ∥PQ, AC ⊥PQ, BD 和AC 交于点E ,且 DE=2AB. 求证:∠ABC=3∠DBC。