GPS拟合高程测量

合集下载

浅述GPS高程拟合的几种方法

浅述GPS高程拟合的几种方法

浅述GPS高程拟合的几种方法当前我们测量中的高程系是相对于选定的某一参考面而定的,基准面有参考椭球面,大地水准面和似大地水准面,而在实际测量中,由于地球形状的不规则性,以及地球内部重力分布的不均匀性,想要得到严密的数学转换关系式是很难以实现的,高程拟合即是实现精化区域似大地水准面的一种方法,本文浅述几种高程拟合的常用方法。

标签:高程系;高程异常;GPS大地高;高程拟合;神经网络法1、高程系统1.1常见的高程系统通常应用的高程系统,主要有大地高程系统、正常高系统和正高系统。

大地高程系统是以椭球面为基准面的高程系统,由地面点沿通过该点的椭球面法线到椭球面的距离,通常以H表示。

大地高是一个几何量,它不具有物理上的意义。

利用GPS定位技术,可以直接测定观测站在WGS-84或ITRF中的大地高。

以大地水准面为基准面的高程系统,称为正高系统。

由地面点,并沿该点的铅垂线至大地水准面的距离,称为正高,通常以Hg表示。

正高实际上是无法严格确定的;正常高是指从一地面点沿过此点的正常重力线到似大地水准面的距离,似大地水准面严格说不是水准面,但接近于水准面,只是用于计算的辅助面,它与大地水准面不完全吻合,差值为正常高与正高之差。

正常高系统为我国通用的高程系统。

大地水准面与似大地水准面在海平面上是重合的,而在陆地上则既不重合也不平行。

1.2高程系统之间的关系设大地高为H,正高为Hg,正常高为Hγ,参考椭球面与大地水准面之间的差距为大地水准面差距N,参考椭球面与似大地水准面之间的差距为高程异常ξ,那么上述的3种高程系统之间存在的关系:H=Hg+N=Hγ+ξ2. GPS高程拟合原理实现方法2.1 GPS高程拟合原理由于大地水准面与椭球面一般不重合,我们把地面点P沿铅垂线投影到大地水准面P0时,P与P0间距离为正高Hg;在将点P0沿法线方向投影到椭球面上得点Q0,P0与Q0间距离称为大地水准面差距N,H=Hg+N。

似大地水准面与椭球面也不重合,它们之间的高程差称为高程异常,用ζ表示。

GPS高程拟合在工程测量中的应用探讨

GPS高程拟合在工程测量中的应用探讨

GPS高程拟合在工程测量中的应用探讨GPS技术在工程测量中的应用越来越广泛,但GPS只提供精确的平面坐标和大地高,而工程中使用正常高。

使用GPS对工程的水准高程控制测量成果进行了检核,并得出了具体的结论,对工程高程测量有一定的指导意义。

标签:高程异常高程拟合GPS 正常高0引言GPS是随着现代科学的发展而兴起的以卫星为基础的无线电导航、定位技术。

能为各类用户提供精确的3维坐标、速度和时间。

目前,大多数测绘工程的首级控制网均采用GPS测量,而其中的高程控制主要采用传统的几何水准测量方法建立高精度的水准网。

由于似大地水准面是一个不规则的曲面,它无法用一个精准的曲面来模拟,这就使得GPS只能提供给我们高精度的大地高,而不是我们工程中需要的正常高。

为了探讨GPS高程拟合精度,首先简述了GPS高程拟合的原理,其次结合控制网的具体生产实践,通过对该测区E级GPS拟合高程与四等水准高程精度的比较分析,说明在平原地区的局部GPS网中,GPS水准高程拟合可达到四等水准测量的精度。

1 GPS拟合基本原理应用比较多的高程系统有大地高系统、正常高系统。

这2种高程系统之间的关系如图1所示。

1.1大地高系统大地高系统是以参考椭球面为基准面的高程系统。

大地高的定义是:由地面点沿通过该点的椭球面法线,到参考椭球面的距离,通常以H表示。

1.2正常高系统由于gm 平均重力加速度无法直接测定,导致正高无法严格确定。

为了方便使用,根据前苏联大地测量学学者莫洛金斯基的理论,建立了正常高系统。

任意点处的大地水准面与椭球面的差值称为高程异常,正常高与大地高的转换关系为:h=H-ξ (1)其中,ξ为似大地水准面的高程异常。

由于GPS测得的是WGS-84坐标系的大地高,而工程中需要的是正常高。

由(1)式可知,正常高的精度,主要决定于大地高程差和高程异常差的精度;其中大地高程差,可利用GPS定位技术精确地测定,而高程异常差的精度,则取决其计算方法及所利用的资料。

GPS高程拟合在像片控制测量中应用论文

GPS高程拟合在像片控制测量中应用论文

GPS高程拟合在像片控制测量中的应用摘要:gps高程拟合是指在范围不大的区域内,高程异常具有一定的几何相关性这一原理,采用数学方法求解正高,正常高和高程异常。

在规定的技术指标内,满足项目设计要求、数字化内业生产要求的同时制定出若干个gps拟合工作区域,通过分解成小的拟合区域来降低高程异常带来的影响。

根据各区域地形情况设计不同的gps拟合控制网,因网而异选择多个合适的参考站,参考站一般采用水准点上布设gps点或对gps点进行水准联测的方法来实现,本次实验选择了后者,拟合网内最弱点应用水准测量施测检测。

应用静态gps拟合高程替代等外水准测量,解决水准测量中受地形空间等因素限制的困难,减少外业工作量,提高了工作效率,减少了人力物力的投入,降低了生产作业成本。

关键词:gps高程拟合测绘成果为数字化内业成图生产提供基础资料,后续成果资料对基础测绘区域内的植被、水系、道路、耕地、建筑物以及地貌特征现状进行全面的认识、分析和准确的把握,从而为交通、水利等基础设施规划建设、农业综合开发、区域经济规划、城市规划、土地管理、生态环境治理和科学发展战略的制定以及招商引资等多项工作的开展提供第一手基础资料。

通过本项目研究探索出一套切实可行的技术路线,能够提高外业测量效率,提高测绘单位市场竞争力。

像控gps高程拟合是一项“微”与“宏”工作的结合体,小到仪器的对中整平,大到方圆几百公里范围内拟合网的布设,要得到高质量的数据成果,必须对基础测绘的各个环节严格把关、科学施测、统筹安排,技术流程见下图:我们将用一套完整的实验数据论证gps高程拟合的可靠性,将收集到的数据进行整理、检查,进行综合处理,在c级gps网点的基础上施测像控gps拟合高程。

平面坐标系统采用1980西安坐标系,采用高斯-克吕格投影,本次实验项目为3°分带。

高程采用1985国家高程基准。

1 首先应划分、确定拟合区域区域的划分要求为:周围应有不少于四个gps点(其高程精度应不低于二级等外水准)作为起算点;起算点联线围拢范围不得大于600km2,被拟合像控点应全部位于起算点联线围拢范围之内,散落在起算点联线围拢范围之外的点的数量不得超过10%,并且每个点距最近起算点联线的垂直距离不得大于3km。

GPS拟合高程测量

GPS拟合高程测量

GPS 拟合高程测量一、GPS 拟合高程测量,仅适用于平原或丘陵地区的五等及以下等级高程测量。

二、GPS 拟合高程测量宜与GPS 平面控制测量一起进行。

三、GPS 拟合高程测量的主要技术要求,应符合下列规定:1 GPS 网应与四等或四等以上的水准点联测。

联测的GPS 点,宜分布在测区的四周和中央。

若测区为带状地形,则联测的GPS 点应分布于测区两端及中部。

2 联测点数,宜大于选用计算模型中未知参数个数的1.5 倍,点间距宜小于10km。

3 地形高差变化较大的地区,应适当增加联测的点数。

4 地形趋势变化明显的大面积测区,宜采取分区拟合的方法。

5 GPS 观测的技术要求,应按本规范3.2 节的有关规定执行;其天线高应在观测前后各量测一次,取其平均值作为最终高度。

四、GPS 拟合高程计算,应符合下列规定:1 充分利用当地的重力大地水准面模型或资料。

2 应对联测的已知高程点进行可靠性检验,并剔除不合格点。

3 对于地形平坦的小测区,可采用平面拟合模型;对于地形起伏较大的大面积测区,宜采用曲面拟合模型。

4 对拟合高程模型应进行优化。

5 GPS 点的高程计算,不宜超出拟合高程模型所覆盖的范围。

五、对GPS 点的拟合高程成果,应进行检验。

检测点数不少于全部高程点的10%且不少于3 个点;高差检验,可采用相应等级的水准测量方法或电磁波测距三角高程测量方法进行,其高差较差不应大于30 D mm(D 为检查路线的长度,单位为km)。

1)导线的布设 导线的布设有闭合导线、附合导线及支导线三种基本形式,如图所示。

3.支导线 从一个高级点C和CD边的已知方位角出发,延伸出去的导线C、9、10、11称为支导线。

由于支导线只具有必要的起始数据,缺少对观测数据的检核,因此,只限于在图根导线和地下工程导线中使用。

对于图根导线,支导线的点数一般规定不超过3个。

(2)导线测量外业工作 导线测量的外业工作包括踏勘选点、建立标志、量边和测角。

基于GPS的高程拟合方法研究

基于GPS的高程拟合方法研究

基于GPS的高程拟合方法研究高程拟合是基于GPS数据进行地表高程估计的一种方法。

在现代测量和导航技术中,GPS被广泛应用于三维空间定位和高程测量。

由于GPS观测数据存在误差和不确定性,导致从GPS数据直接估计高程时存在一定的误差。

需要进行高程拟合来提高高程估计的精度和可靠性。

高程拟合的基本原理是通过建立GPS观测数据与地表高程之间的数学模型,利用最小二乘法等数学方法来拟合观测数据,得到地表高程的估计值。

常用的高程拟合方法包括平差法、插值法和卡尔曼滤波法等。

平差法是一种常用的高程拟合方法,主要通过将GPS观测数据与已知高程点进行权衡,利用最小二乘法来调整观测数据的权值,从而得到更精确的高程估计值。

平差法的优点是简单易行,适用于大部分高程拟合问题。

平差法的缺点是需要预先获取一定数量的已知高程点,如果没有足够的已知高程点,拟合结果可能较差。

卡尔曼滤波法是一种基于滤波理论的高程拟合方法,主要通过建立动态状态模型和观测方程来估计地表高程,利用卡尔曼滤波算法来对GPS观测数据进行滤波和优化。

卡尔曼滤波法的优点是能够考虑观测数据的权值和误差,能够在有限的观测数据中提供更精确的高程估计值。

卡尔曼滤波法的缺点是需要预先获取一定数量的已知高程点,对初始状态的选取敏感。

除了以上方法,还可以结合其他辅助数据进行高程拟合。

可以利用DEM(Digital Elevation Model)数据作为辅助数据,通过比较GPS观测数据和DEM数据的差异,来估计地表高程。

还可以利用地形特征等辅助信息,通过建立地表高程的统计模型来进行高程拟合。

GPS高程拟合方法及其应用

GPS高程拟合方法及其应用

GPS高程拟合方法及其应用论文介绍了GPS高程拟合的原理。

介绍了多种拟合模型的拟合原理、模型参数的优化选择,给出了利用地表拟合求解较高精度高程异常的方法,将各种模型进行应用对比。

标签:大地高GPS水准高程异常拟合模型1 GPS高程异常当前GPS技术在平面控制测量工作中已经得到了广泛的应用,但在高程控制测量中却未能得到广泛应用。

原因是GPS高程测量得到的是建立在WGS-84坐标系上的大地高H,而我国测量工作中采用的是正常高H。

GPS高程测量可以获得厘米级精度的大地高,但在GPS大地高转换为正常高过程中,由于未能获得同等精度的高程异常ζ,导致转换所得的GPS正常高达不到精度要求。

2高程拟合常用方法拟合法是对GPS观测点进行几何水准联测,同一点的大地高减去正常高得到该点的高程异常,再把测区的似大地水准面假定为多项式曲面或者其他数学曲面去拟合已知高程异常的点,根据拟合的曲面内插其他GPS点的高程异常值。

拟合法进行GPS高程转换的数学模型很多,如多项式曲线拟合、最小二乘平面拟合、二次多项式曲面拟合等,归纳起来可以分为线状拟合模型、平面拟合模型和曲面线状拟合模型三类。

3高程拟合实例分析一测区,选取其中32个GPS水准高程点进行拟合,将32个水准点的X与Y值通过AutoCAD一个简短的VB加载程序展绘成图:方案一:16个起算点均匀分布选取点2,4,8,10,11,13,16,17,19,20,24,25,26,30,31,32十六个点均匀分布于分布已知水准点,经由GPS拟合程序拟合后,计算成果中得拟合高程与水准成果的互差中误差为11.820480毫米。

方案二:16个起算点分布在一侧(非均匀分布)选取点位集中于右下侧,分别为1,2,3,5,9,10,11,14,18,21,22,23,25,27,28,29十六个点。

经由GPS拟合程序拟合后,计算成果中得拟合高程与水准成果的互差中误差为14.631518毫米。

方案三:16个起算点分布在边缘(非均匀分布)选取十六点3,5,6,8,11,12,14,16,17,18,19,20,23,25,28,29分布于网形边缘,经由GPS拟合程序拟合后,计算成果中得拟合高程与水准成果的互差中误差为14.810417毫米。

GPS高程拟合代替水准测量的可行性

GPS高程拟合代替水准测量的可行性

程 , 可 以求 得 各 G S点 的 大 地 高 。为 了 找 出 就 P GP S高 程 系统 与 其 他高 程 系 统 的关 系 , 面 介 绍 下 几 种常用 的高程 系统及 它们 的关 系 [ 。 2 ] 1 大地 高高程 系 : 地高 高程系统 是 以参考椭 ) 大 球 面为基 准 面 的高 程 系统 , 面 某 点 的 大 地 高程 地
程系统是 正常高 系统 , 在 一个 高程 异 常值 , 个 存 这 值并不 是一个 常数 , 而是一个 与点 的位置 有关 系的 变量 。所谓拟合 , 就是求 解该测 区高程异 常值 的过 程, 其实 质就是 建立模型 , 解算 出拟 合方程 的系数 ,
这样 如果 知道一个 点的 坐标 , 就可 以求 出该点 在该
点 B点的正 高可表示 为

线 高 等 影 响 G S三 维 精 度 的 因 素 可 以 有 效 减 P 小[ , 1 选择 一个合 适 的 方法 和高 程 投影 面 , 范 围 ] 在
不大 的地 区 , S高 程 是 可 以到 达相 应 等 级水 准 GP 测 量 的精 度 。
J ^ _ d
H 定义 为由地面点 沿 通过 该 点 的椭球 法 线到椭 球
面 的距 离 。GP S定 位 测 量 获 得 的 是 W G 一4椭 球 S8
测 区 的高程 异 常值 。GP S能够 提供 WGS8 一4坐标 系下 的精确 三维坐标 , 通过坐标 转换 以后 也能 提供
精度相 当的平 面坐 标 。而 在 高 程 方 面 , P G S高 程
GP S高程拟 合 代替 水 准测 量 的可行 性
刘 兴春 , 健 民 , 仲 高冰 冰
(5 1 部 队 . 宁 大 连 1 63 605 辽 l 0 1)

GPS拟合高程测量

GPS拟合高程测量

GPS拟合高程测量GPS 拟合高程测量一、GPS 拟合高程测量,仅适用于平原或丘陵地区的五等及以下等级高程测量。

二、GPS 拟合高程测量宜与GPS 平面控制测量一起进行。

三、GPS 拟合高程测量的主要技术要求,应符合下列规定:1 GPS 网应与四等或四等以上的水准点联测。

联测的GPS 点,宜分布在测区的四周和中央。

若测区为带状地形,则联测的GPS 点应分布于测区两端及中部。

2 联测点数,宜大于选用计算模型中未知参数个数的1.5 倍,点间距宜小于10km。

3 地形高差变化较大的地区,应适当增加联测的点数。

4 地形趋势变化明显的大面积测区,宜采取分区拟合的方法。

5 GPS 观测的技术要求,应按本规范3.2 节的有关规定执行;其天线高应在观测前后各量测一次,取其平均值作为最终高度。

四、GPS 拟合高程计算,应符合下列规定:1 充分利用当地的重力大地水准面模型或资料。

2 应对联测的已知高程点进行可靠性检验,并剔除不合格点。

3 对于地形平坦的小测区,可采用平面拟合模型;对于地形起伏较大的大面积测区,宜采用曲面拟合模型。

4 对拟合高程模型应进行优化。

5 GPS 点的高程计算,不宜超出拟合高程模型所覆盖的范围。

五、对GPS 点的拟合高程成果,应进行检验。

检测点数不少于全部高程点的10%且不少于3 个点;高差检验,可采用相应等级的水准测量方法或电磁波测距三角高程测量方法进行,其高差较差不应大于30 D mm(D 为检查路线的长度,单位为km)。

1)导线的布设导线的布设有闭合导线、附合导线及支导线三种基本形式,如图所示。

3.支导线从一个高级点C和CD边的已知方位角出发,延伸出去的导线C、9、10、11称为支导线。

由于支导线只具有必要的起始数据,缺少对观测数据的检核,因此,只限于在图根导线和地下工程导线中使用。

对于图根导线,支导线的点数一般规定不超过3个。

(2)导线测量外业工作导线测量的外业工作包括踏勘选点、建立标志、量边和测角。

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析引言随着全球定位系统(GPS)的普及和发展,GPS技术在地球科学、工程测量和导航定位等领域得到了广泛的应用。

GPS高程的测量和拟合在地球科学研究和工程测量中扮演着重要的角色。

对GPS高程拟合方法及其精度进行深入的研究和分析具有重要的意义。

一、GPS高程拟合方法GPS高程的测量是通过GPS卫星信号和接收机接收时间的差值来计算得到的。

在GPS测量中,精确的高程测量是非常重要的。

高程拟合是指根据已知的GPS观测数据,通过一定的数学模型和算法,来拟合出地球表面上各点的高程值。

目前常用的GPS高程拟合方法主要包括差分GPS法、动态大地水准面模型法和GNSS/地球重力模型法。

1. 差分GPS法差分GPS法是基于参考站和移动站测量GPS信号的相位和码距的差值来进行高程测量的方法。

该方法可以减小大气层等误差对高程测量的影响,提高高程测量的精度。

差分GPS法广泛应用于工程测量和导航领域,具有较高的精度和实用性。

2. 动态大地水准面模型法动态大地水准面模型法是基于大地水准面模型预测的高程值和GPS观测数据进行拟合的方法。

通过使用大地水准面模型,可以对GPS测量中的大气层延迟和其他误差进行校正,提高高程测量的精度。

该方法适用于地球科学研究领域,可以得到更为精确的高程值。

二、GPS高程拟合精度分析GPS高程拟合的精度是衡量其可靠性和实用性的重要指标。

在GPS高程拟合过程中,需要对其精度进行综合分析和评估。

1. 精度影响因素GPS高程拟合的精度受到多种因素的影响,主要包括大气层延迟、接收机误差、地形和重力效应、卫星轨道误差等。

这些因素会对GPS高程拟合的精度产生影响,需要在实际应用中进行综合考虑和分析。

2. 精度评估方法针对GPS高程拟合的精度进行评估,可以采用单点定位和差分定位、统计分析和误差分析等方法。

通过对GPS观测数据和拟合结果进行综合分析和评估,可以得到GPS高程拟合的精度水平和可靠性。

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析
GPS全球卫星定位系统(Global Positioning System)是一种全球性的导航系统,它可以利用卫星进行高精度的位置定位。

然而,GPS定位的高程精度受到多种因素的影响,
包括GPS接收机本身、信号传输路径等,因此需要对GPS高程进行拟合处理以提高其精
度。

GPS高程拟合方法主要包括差值法、插值法和回归分析法三种。

差值法是根据GPS测量到的位置信息和地面标高测量值之差,通过差值运算来得到GPS高程测量值。

差值法具有计算简单、速度快的特点,但局限性较大,不能解决在GPS
定位时所遇到的某些问题,例如多径效应等。

插值法需要用周围已知高程数据进行插值计算,以得出该位置的高程。

插值法的精度
与区域内高程数据的分布稠密程度有关,一般来说,在数据较为密集的情况下,插值法的
精度较高,反之则不佳。

回归分析法将GPS测量到的位置信息与实测标高之间的相关性进行线性拟合,由此推
导出每个位置的GPS高程测量值。

回归分析法的精度受到模型的影响,模型的构建需要考
虑影响因素的相互作用和相关度。

实际应用中,GPS高程拟合方法的选择需要结合实际情况进行决策。

在拟合方法上,
一般建议采用回归分析法,因为它可以分析其他影响因素,并将其纳入模型中,从而提高
精度。

在应用上,需要结合当地的天气、地形和信号传输情况等因素进行多次测量和比对,以提高GPS高程的精度。

总体而言,在选择GPS高程拟合方法时,应考虑实际需求和精度要求,从而选择适合
自己的方法。

此外,对GPS高程的整体监测和维护也是提高其精度的重要措施。

探析GPS测量高程拟合精度

探析GPS测量高程拟合精度
1 GP S测 量
在 控 制测 量 领 域 中 G S 量 得 到 了广 泛 的应 用 , 具 有 以下 的 P测 它 优点 : 高精 度 和 高效 率 。在 实 际工 程 中实 时 G S 量 可 完成 以下 工 P测 作 。第 一 , 制大 比例 尺地 形 图 。一 般情 况 下 , 大 比例 尺 带状 地 形 绘 在 图上 进 行 高 等级 公 路选 线 。传 统 的测 图方 法 , 先 要 进行 控制 网的 首 建立 , 其次 , 碎 部 测 量 , 而进 行 大 比例 尺 寸地 形 图 的 绘 制 。其 进行 从 工 作 量 较 大 , 费 时 间较 长 , 花 速度 也 比较 慢 。 如 果测 量 时 采 用 G S P R K动 态测 量 , 得 每 点 坐标 只需 花费 几 分 钟 就 行 , 部 点 的数 据 T 获 碎 是 由输入 的点 特征 编 码及 属 性 信 息 构成 的 , 室 内可 由绘 图软 件 完 在 成 。 而使 得 测 图 的难 度 大 大降 低 了 , 省 了时 间 又节 省 了精 力 。 从 节 第 二 , 程控 制 测 量 。 P 建 立 控制 网的 最精 密 的方 法 是 静态 测 量 。 工 GS 对 于 大 型 的 建筑 物 静 态 测 量 比较 适 合 。实 时 G S动 态测 量 则 被 用 于 P 般 的公 路 工 程 的控 制 测量 。这 种 方 法 可停 止 观 测 , 得 作业 效 率 使 大 大 提 高 。而 通视 对 于 点与 点 之 间 是 被做 要 求 的 , 使 得 测量 更 加 这 快捷了。 三, 第 中线 测设 。 在大 比例 尺 带状 地形 图上 设计 人 员 进行 定 线 后 , 地 面需 将 公 路 中线 标定 出来 。 果 实 时 G S 量 被使 用 , 在 如 P测 那 么 只 需在 G S 收 机 中输 人 中线 桩 点 的坐 标 , 样 的点 位 就 会有 系 P接 放 统 定 出 。 这里 , 在 累积 误 差是 不会 产生 的 , 因为 每个 点 的测 量 的 完成 都 是 相对 独 立 完成 的 , 点 放样 精 度 一致 。 四 , 、 断 面测 量 。 各 第 纵 横 确 定 公 路 中线 后 , 过绘 图软 件 , 用 中线 桩点 坐 标 , 通 利 即路 线 断 面 和各 桩 点 的横 断面 就 可 以绘 出了 。 绘 地形 图时 采集 的数 据都 是 被 用在 测 测 量 中 , 以到 现 场 进行 纵 。 断 面测 量是 没有 必 要 的 , 使 得 外业 所 横 这 1作 大 大 的减 少 了 。也 可采 用 实 时 G S 量 进 行 现场 断 面测 量 。 二 P测 2G S 量 高 程拟 合 P 测 我 国 G S 位 中的 高程 坐 标分 量 采用 正 常 高 系统 , P定 在实 际应 用 中 , 将 G S大地 高 转 换 为 正 常高 , 要 P 主要 采 用 公 式来 进 行 (= 一 ) h H ∈。 拟 合 法 就是 在 G S网中 的一 些 点上 同时 测定 水 准 高程 ( 常 称 这些 P 通 点 为 重合 点 )结合 G S 量 和 水 准测 量 资料 , 用 内插 技 术 获 得其 , P测 采 他 各 点 的 高程 异 常 。 目前 用 于 G S高 程 拟 合 的 计算 方 法 主要 有 多 P

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析随着GPS技术的不断发展,其在地形高程测量中的应用得到了广泛的推广。

但是,由于GPS高程存在着误差和偏差,为了得到更加准确的高程数据,需要采用高程拟合方法进行处理。

本文将针对GPS高程拟合方法和精度分析进行论述。

GPS高程数据存在着两种误差:系统误差和随机误差。

系统误差主要由信号传播、电离层等因素引起,并具有一定的周期性;随机误差则由多种因素引起,包括大气效应、卫星轨道、接收机本身等。

为了得到更加准确的高程数据,需要对GPS高程数据采用高程拟合方法进行处理。

主要方法如下:1.平差方法平差方法是一种传统的高程拟合方法,其主要是通过测量数据的误差方程,利用最小二乘法对数据进行拟合计算。

对于较小的数据量,采用平差方法可以获得较高的精度。

2.滤波方法滤波方法是一种通过对数据进行平滑处理的方法,其可以消除随机误差,提高数据的精度。

常见的滤波方法包括均值滤波、中值滤波等。

其中,均值滤波较为常用,其通过对一定周期范围内的数据进行平均处理来消除随机误差。

3.差分GPS法差分GPS法是一种将基准站和移动站进行连线观测,通过差分处理来消除信号传播误差的方法。

差分GPS法可以有效地消除系统误差,但其需要在一个比较稳定、均匀的地形场地上进行观测。

4.卡尔曼滤波法卡尔曼滤波法是一种对GPS数据进行实时处理的方法,其可以实现对随机误差和系统误差的实时估计和校正。

卡尔曼滤波法对系统的数学模型有一定要求,但其可以实现对GPS高程数据的实时处理,具有较高的应用价值。

二、精度分析高程拟合方法虽然可以提高GPS高程数据的精度,但仍然存在着误差和偏差。

为了评估GPS高程数据的精度,需要进行误差分析。

1.精度指标GPS高程数据的精度通常采用水平精度、垂直精度、普通精度三个指标进行评估。

其中,水平精度指评估经度和纬度的误差,垂直精度指评估海拔高度的误差,普通精度则是综合考虑了经度、纬度和海拔等三个指标。

2.误差分析误差分析是评估GPS高程数据精度的重要手段。

GPS高程拟合在公路工程测量中的应用

GPS高程拟合在公路工程测量中的应用

3、实验评估
通过对实验结果的分析和评估,我们发现GPS高程拟合技术在公路工程测量 中具有较高的应用前景。然而,在实际应用中仍需注意以下几点:首先,需要选 择合适的测量区域,确保卫星信号的质量和数量;其次,需要选择性能稳定的接 收机和合适的拟合方法,以保证测量结果的准确性;最后,需要充分考虑地形因 素对GPS高程拟合的影响,以便于提高测量精度和可靠性。
GPS高程拟合在公路工程测量中的 应用
01 引言
目录
02 方法与步骤
03 实验结果与分析
04 结论与展望
05 参考内容
引言
全球定位系统(GPS)技术的发展为公路工程测量带来了革命性的变革。传 统的工程测量方法逐渐被GPS所取代,大大提高了测量效率和精度。然而,GPS高 程测量一直以来是工程测量的难点,由于受到多种因素的影响,如卫星信号遮挡、 地形复杂等,导致高程测量精度难以保证。为了解决这一问题,GPS高程拟合技 术应运而生。本次演示将介绍GPS高程拟合在公路工程测量中的应用方法及其优 势。
结论与展望
1、实验结论
本次演示通过实验研究了GPS高程拟合在公路工程测量中的应用方法及其优 势。实验结果表明,GPS高程拟合技术能够克服传统测量方法的局限性,具有较 高的测量精度和可靠性。在实际应用中,需要选择合适的测量区域、布置性能稳 定的接收机并采用合适的拟合方法,充分考虑地形因素对GPS高程拟合的影响。 通过合理应用GPS高程拟合技术,能够提高公路工程测量的工作效率和成果质量。
2、研究展望
尽管GPS高程拟合技术在公路工程测量中已经得到了一定的应用,但仍有许 多问题值得进一步研究和探讨。例如,如何提高GPS高程拟合的精度和可靠性、 如何将GPS高程拟合技术与其他测量技术进行集成、如何推广应用GPS高程拟合技 术在其他领域等。这些问题都需要进一步研究和探讨。

二次曲面拟合法gps高程计算的原理(一)

二次曲面拟合法gps高程计算的原理(一)

二次曲面拟合法gps高程计算的原理(一)二次曲面拟合法GPS高程计算介绍GPS(全球定位系统)是一种广泛应用的定位技术,通过接收卫星信号来确定地球表面上某一点的经纬度坐标。

然而,GPS并不能直接测量地表的高程,因此需要使用其他方法来计算高程信息。

其中,二次曲面拟合法是一种常用的方法,通过对地面采样点进行拟合,得到一个二次曲面模型来估计高程。

原理二次曲面拟合法基于以下假设:地表高程可以近似看作是一个平滑的曲面。

这意味着附近的地面采样点之间在高程上的变化应该是连续的,而且可以用一个二次方程来拟合。

拟合过程中,我们需要确定三个系数:a、b和c,这些系数可以通过最小二乘法来计算。

最小二乘法是一种优化方法,通过最小化误差的平方和,找到最佳的系数值。

过程1.收集地面采样点的GPS数据,包括经纬度和高程信息。

2.将经纬度转换为笛卡尔坐标系下的XYZ坐标。

3.拟合二次曲面模型,计算系数a、b和c。

4.根据拟合的模型,计算指定位置的高程信息。

优缺点优点•简单易懂,计算效率高。

•适用于地表高程变化较为平缓的地区。

•可以通过增加采样点的数量来提高拟合的准确性。

缺点•对地表高程变化较为陡峭的地区拟合效果不好。

•对于具有异常数据或噪声数据的采样点,拟合结果可能不准确。

应用二次曲面拟合法广泛应用于地理信息系统(GIS)、地质勘探、建筑工程等领域。

例如,在一个建筑工程项目中,可以利用该方法来估计地表的高程,帮助设计师进行建筑工程的规划和设计。

在GIS领域,二次曲面拟合法常用于数字高程模型(DEM)的生成。

DEM可以提供地表高程的立体感,对于地形分析、洪水预测等应用非常重要。

结论二次曲面拟合法是一种经济简便的计算GPS高程的方法。

虽然存在一些限制和缺点,但在许多实际应用中仍然表现出良好的效果。

通过深入理解二次曲面拟合法的原理和应用,我们可以更好地利用GPS 数据来获取地表的高程信息。

算法实现1. 准备工作首先,我们需要收集地面采样点的GPS数据。

浅析GPS高程拟合线路测量的应用

浅析GPS高程拟合线路测量的应用

浅析GPS高程拟合线路测量的应用摘要:随着GPS设备的不断改进和GPS应用技术的不断成熟,垂直分量的精度也随之提高,因此GPS高程信息在实际中将会得到更广泛的应用。

本文介绍了GPS高程拟合原理和GPS水准的方法,并以实例为证提出了GPS水准测点时的注意事项。

关键词:线路测量,GPS高程拟合,原理,GPS水准法,精度在电力线路工程的勘察设计、施工中都离不开线路测量。

其中线路控制测量是线路工程关键性的测量工作。

线路控制测量是线路工程关键性的测量工作,它分为平面控制测量和高程控制测量两部分。

近年来,随着GPS技术的广泛应用,其精度高,速度快,施工条件简单,不受距离、通视条件、天气等因素的影响,且布网灵活,经济效益显著等优点,已经被广泛应用于线路测量的平面控制。

但是高程信息没有得到充分利用。

GPS高程测量得到的高程信息是大地高,而我国常用的是正常高系统,因此如何利用GPS测量结果中的高程信息和把大地高转换成正常高是一个非常实际而又非常有意义的课题。

一、GPS高程拟合原理在一个GPS网中,经过对网进行GPS平差后,可以得到网中各点的大地高H,利用既有GPS大地高H又有正常高Hr的多个已知点(公共点),可求出这些公共点的高程异常值。

然后由公共点的平面坐标和ζ值,采用数学拟合的方法,拟合出测区内的似大地水准面。

再由其他GPS点(待求点)的平面坐标(xi,yi)拟合(内插)出该点的高程异常值ζi,则可求得GPS网中各点的正常高Hγi:Hγi=Hi-ζi。

GPS水准有两个作用:精确求定GPS点的正常高Hγi;求定高精度的似大地水准面。

在一个点上进行了GPS观测,可以得到该点的大地高H。

若能够得到该点的正高Hg,就可以根据公式计算出该点的大地水准面差距N:H=Hg+N。

其中,Hg可以通过水准测量确定。

几何内插法的基本原理就是通过一些既进行了GPS观测,又具有水准资料的点上的大地水准面差距,采用平面或曲面拟合、配置、三次样条内插方法,得到其他点上的大地水准面差距。

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析引言全球定位系统(GPS)是一种通过卫星信号来确定位置的技术,在许多应用中被广泛使用。

高程测量是GPS技术的一个重要应用领域之一。

随着GPS技术的不断发展,高程测量的精度和分辨率得到了显著的改进。

由于地球表面的复杂性,GPS高程测量仍然存在一些挑战,如大气延迟、地形遮挡和信号多径等问题。

研究GPS高程拟合方法及其精度分析具有重要的理论和实际意义。

本文将从GPS高程拟合方法和精度分析两个方面进行探讨,旨在为GPS高程测量提供更加可靠和精确的解决方案。

一、GPS高程拟合方法1. 静态测量与动态测量在实际的高程测量应用中,常用的GPS测量方式可以分为静态测量和动态测量两种。

静态测量是指在接收机固定不动的情况下进行GPS观测,通常适用于测量精度要求较高的情况,如大地水准面的建立和更新、基准点的测量等。

动态测量是指接收机和天线在移动状态下进行GPS观测,通常适用于地形测绘、航空航海、车载导航等应用。

2. RTK测量实时运动学(RTK)测量是一种高精度的GPS动态测量方法,通过使用参考站的观测数据来实现对流动接收机位置的实时校正,从而获得厘米级甚至毫米级的高程测量精度。

RTK测量在地理勘测、地质灾害监测和大规模工程测量中有着广泛的应用。

3. 差分测量差分测量是一种通过比较基准站和流动接收机之间的GPS观测数据来消除掉由于大气延迟、钟差等误差,从而提高高程测量精度的方法。

差分测量通常分为实时差分和后续差分两种方式,实时差分可以在测量过程中实时进行误差修正,后续差分则是在测量后对数据进行后处理,以获得更高精度的测量结果。

4. 高程拟合模型在GPS高程测量中,通常采用的拟合模型有椭球模型、大地水准面模型和基于大地水准面的高程格网模型等。

椭球模型是一种简化的高程测量模型,通过采用地球椭球体作为参考椭球来进行高程测量;大地水准面模型是一种更加真实的高程测量模型,考虑了地球的地形和引力畸变情况;基于大地水准面的高程格网模型是一种全球高程模型,通过采用离散的高程测量点来构建全球高程模型。

GPS高程拟合方法在工程中的应用

GPS高程拟合方法在工程中的应用

GPS高程拟合方法在工程中的应用GPS高程拟合方法是目前广泛应用于工程领域的一种测量方法。

它基于全球定位系统(GPS)技术,通过收集地面接收机接收卫星发射的信号,精确测量出实际地面高度,然后通过高精度的算法将收集到的数据进行拟合,得出最终的高程数据。

本文将重点介绍GPS高程拟合方法在工程中的应用。

首先,GPS高程拟合方法可以应用到地质勘探和建筑测量等领域。

地质勘探中,GPS高程拟合可以非常精准地测量出地表和地下岩层的高度和分布,帮助研究者更好地预测地质灾害的发生,对地质灾害的预防、管控等方面具有非常重要的意义。

而在建筑测量中,GPS高程拟合可以用于建筑物的制图、拓扑等方面,可大大提高建筑测量的效率和精度,减少人为误差。

其次,GPS高程拟合方法还可以应用到道路、桥梁等工程建设中。

在道路建设中,GPS高程拟合可以帮助工程师快速而准确地测量出土地高度和坡度,计算土方开挖量、填方量,以控制工程质量和节约成本。

在桥梁建设中,GPS高程拟合可以对桥梁的建筑和维护提供实时高精度数据和监控,大大提高了桥梁的安全性和底部维护效率。

此外,GPS高程拟合方法还可以应用到水利工程中。

水利工程为了更好地保证水资源的利用,需要对水库、水渠等进行渗透建设。

GPS高程拟合可以帮助工程师测量出水库、水渠等的高度和坡度,计算出渠道的水力特性,为水利工程的设计、施工和维护提供数据支持。

总之,GPS高程拟合方法在工程领域的应用非常广泛。

它可以为地质勘探、建筑测量、道路、桥梁和水利等领域提供实时高精度数据和监控,帮助工程师更好地掌握工程进度和质量,优化工程成本和效率,是工程测量的必备工具之一。

GPS高程拟合代替水准测量的应用以及精度分析

GPS高程拟合代替水准测量的应用以及精度分析

GPS高程拟合代替水准测量的应用以及精度分析摘要:在工程测量中,gps位置测量已得到广泛的应用,但是由于参考椭球面和似大地水准面之间的差异,用gps测量的大地高不能直接应用于测量实践中,从而需要把测量的大地高转换成所需要的正常高。

本文介绍了gps高程拟合的基本原理以及代替水准测量的可行性以及精度分析。

关键词:gps高程拟合高程异常水准测量引言在gps 测量中,一般可以获得较高的平面位置坐标精度,但测得的大地高不能直接应用于生产实践,需要对gps测得的数据进行一定的处理,如高程拟合、精化大地水准面等方法,来求解出gps 点的正常高,用此种方法在一些地区可以达到亚米级甚至厘米级精度。

gps 高程拟合就是要找一个最符合该区域的似大地水准面模型。

gps采用的坐标系是wgs-84坐标系,相对应的其椭球是wgs-84椭球,采用国际大地测量和地球物理联合会第17届大会的推荐值,用gps测得的是大地高,而平时采用的是正常高,这里存在一个高程异常值,且这个值不是固定不变的,与点的位置有关系。

高程拟合其实就是建立一个数学模型,算出拟合方程的系数,这样知道一个点的位置,就可以知道该点的高程异常值,随着现代gps接收机技术的发展以及gps 数据处理软件的进一步完善,通过合适的方法以及高程投影面,在范围小的地区, gps 高程是能达到相应等级水准测量的精度。

1、高程系统在测量中常用的高程系统有大地高系统、正高系统和正常高系统。

在这里我们介绍两种,大地高系统:大地高(h)系统是以参考椭球面为基准面的高程系统,某一点的大地高是该点沿该点的参考椭球的法线到参考椭球面的交点之间的距离。

正常高:正常高(h)系统则是以似大地水准面为基准的高程系统,某一点的正常高是该点沿该点到似大地水准面铅垂线的之间的距离,如图一所示。

其中&表示似大地水准面与参考椭球面之间的距离,一般叫做高程异常值,所以,如果我们知道了每个gps点的高程异常值&,就可以由gps点的大地高h得到该点的正常高h:h=h-&2、高程拟合方法由于很难获得高精度的gps点的高程异常值,利用上式来计算正常高h的方法是不可行的,确定高程异常一般有两种方法:直接法以及拟合法。

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析

GPS高程拟合方法及精度分析引言全球定位系统(GPS)是一种用于确定地球上任意地点位置的卫星导航系统。

GPS的精度在水平方向上通常很高,但在垂直方向上却存在一定的误差。

为了提高GPS测量的垂直精度,许多高程拟合方法被提出并不断完善。

本文将介绍GPS高程拟合方法,并对其精度进行分析。

GPS高程测量方法GPS高程测量的基本原理是通过测量卫星信号的传播时间来计算卫星和接收器之间的距离,进而确定接收器的位置。

在水平方向上,GPS使用三维距离测量技术,包括伪距测量和载波相位测量。

在伪距测量中,接收器通过测量卫星信号的传播时间来计算距离,但由于信号传播路径不确定,会导致一定的误差。

载波相位测量则通过测量信号的相位变化来计算距离,具有更高的精度,但也更加复杂和昂贵。

在垂直方向上,GPS高程测量通常使用大气压力传感器或者测量GPS信号的伪距来计算高程。

大气压力传感器可以测量大气压力变化来确定高程,但受到天气和环境条件的影响较大。

目前更多的是通过GPS信号的伪距测量来计算高程。

为了提高GPS高程测量的精度,研究者们提出了许多高程拟合方法。

其中比较常见的方法包括差分GPS、多路径效应消除、大气延迟校正和高精度的GPS接收机等。

差分GPS是一种通过在参考站和移动站之间进行距离测量,然后对移动站进行补偿来消除误差的方法。

这种方法可以提高GPS测量的精度,但需要在参考站和移动站之间连线,并且参考站与移动站必须有一定的距离。

多路径效应是指卫星信号在传播过程中受到地面或建筑物的反射,导致接收器接收到多个信号,从而产生误差。

为了消除多路径效应,研究者们尝试使用多天线组合、信号滤波和地面导航站来减少这种影响。

大气延迟是指GPS信号在穿过大气层时会受到大气折射的影响,从而产生误差。

为了校正大气延迟,研究者们尝试使用大气压力传感器、水汽传感器和气象数据来对GPS信号进行校正。

高精度的GPS接收机可以通过增加天线的数量、提高接收灵敏度和增加通道数目来提高测量的精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,

,
: l : 将 大 地 水准 面拟 合 为 办召)两 + x 千a 详 此 时要求 公共 点至 少 3 个 º 相关平 面 拟 合 a z : 人未 别为+ x 几少I+ a 夕沙 力 a + 此 时 要 求 公 共 点 至 少 4 个 » 六 参 曲 面 拟 合 l : a + a a 力J 卜丙+ x 级少I+ 夕沙相 扩+ 护 此 时要 求公共 点至 少 6 个 ¼ 移 动 多项式 法 当测 区 内水准
,
定 的点 的高程
2

P G S 网拟 合高程 平差 计算实例
在 某 区 我们采用四等水准 测量方 法在
级点 拟合
、 、
G PS 网 的周边 和 中部联测 了 1 2
,

C
级点

8 2 个
D
22
,
个 E 级点 在各 G S 网 中分别 以其高程值 作为起 算 采用 二 次曲面拟 合法进行 高程 P 以不 同个数 或不 同分布 的 四等 高程 点为起 算进 行 多次高程 拟合 对各 组 拟合 高程 进 行 比
朱 伟刚 等
:
C巧
拟 合 高程 测量 研究
Gp S
拟合高 程测 量研 究

,
朱伟 刚
勋ቤተ መጻሕፍቲ ባይዱ
姜 放
13阅 1 2 )
( 长 春工 程 学院地 测 系
吉林 长春


:
S 研 究的是 G P 高程 拟合 方 法
.
,
给 出 了拟 合数 学模型
,
并用 实例 论证其 可行 性
,

后 给 出 了 GP 拟合 高程 的结 论 S
x
i a
,
继而 求 出个 点的 H r
当测 线长
段 计算
1 2
.
已知 点 多
百 化大 时 变
,
,
= i 按 艺 R 产n t n 解 求 的
,
i a
误 差 会 增大
,
故通 常总采 取分


这 样使 曲线 在分 段点不 连续
,
也 影 响拟 合精度
故采用 三 次样 条法 来拟 合

曲面 拟合 法
当 G PS 点布成 一 定 区域 面 时
,
,
高 的关系 可 知 似大 地水准 面 与参考椭球 面 间的高差 即高程 异 常 百 有 万阵万8 4 一 省 其 中 H r : 为 正 常高 高 程拟 合方 法 的基本 思路是 在 G S 网 中联 测 一 些水 准 点 (要 求这 些 点分布 均匀 P

,
,
,


密度 充 分 )
然后 利用 这 些点上 的正 常高和 大地 高求 出它们 的高 程 异常值 再 根据这 些 点上 的 高程异常值 与坐标 的关系 用最 小二 乘 方法 拟合测 区 的似大 地水准 面 利 用拟 合 出 的似 大地 水
,

较 分析 可估 算 出 : 统计见 下 表
,
:
C
,
D
,
E

P G
S
拟合 高程 中误 差小 于 s m c

P G S
高程平差 计算 的精 度
C PS
网名
起 算点 数量
l2 2
: 高程 平差 计算的 精度统计 ( 单位 c ) n I 待求点 点 拟 合 方 法 内符合 合 数量 量 精度 度
检核 点 数量



,

,

重合点数 目较多 且分布较好
, ,
,
而地形 较复杂时 只 把似大 地水准 面拟 合成平面 或 四参
,
, ,

六参 曲
面 效果就 不 一 定理 想 这是可 采用移动 多项 式法分 区 拟合 对每 个待 定点 在其 周 围搜索多个 已 知重合点时 利用 以上 的多项 式拟合出 由这 些重合 点控 制的局 部的似大地 水 准面 进 而 求待
l
外符合 合 精度 度
士 3 11
.
C D E

61
曲面 拟合
士1 7 8
.


28
95 5
15 8
曲 拟合 面 合 曲面 拟合 合
士1 6 4
.
8
2
士17 2
.
2
. 4 士0 9
士1 4 0
.
3
.
结束 语
3 1 不 同测 区
高程 的计算需 依据实 际情 况 采 用不 同 的数 学模 型 3. 拟 合 的特 征点要 反 映高程异常的变化趋 势 2

P GS

. 33
测 区 比较大的情 况 下 采 用分 区 拟合 3. 建 立 各种拟合模 型 的数学模 型库 通 过 计算机 自动选 取模 型拟合 4
, ,

,
从而 可 以计 算测 区 内任意一 个 G S 插值 点 的高程异 常 P 程 转 换为 正 常 高 加速 测量速 度 减 轻实 际测量 工 作的难度和 强度 提 高测 量 工作 的效率
.
,
年 东北 测 绘学术与 信息 交流 会论文 集
设测 站 点的高程 异常 百与坐标
的 的趋 势值
,
x

y
间存在 以下 函 数关系
:
:
i 歹二 f x (
l

) l y ,
+

其中
,
i a 为误 差 选 用 空 间 曲面 函 数 众 ,y )二吻相 x + 洪 相尹i+ 4 x y + 5 只 + 6 a i ia a i : i i i 汁晰护洪 相 杯犷 + 内犷进 行拟合 a 为待 定 参 数 于 是 有 i 歹 a + l + 久必 相 尹 汁内 x y + a s 只 = i ea x i 尸 i i i + : ‘ (1 1 2 … , ) 式 中 m 是重合点数 当 m 大于 或 等于 待定 参 数 = m 6 a + 尸 相材认相“ 犷 相护
水准 面模 型
, , ,
,
建立每个小 区 的似大 地 并将 G S 测 定 的大 地 高 P

,
. 35
拟合 精度 可 以 满足 四等水准 要求
:

参 考文 献
1G
n r U t e 召份 b 留 卫星 大地 测童 地 展 出 版社 19 8
. .
,
2
徐 绍 锉 等石PS 侧量 原理及 应用 武汉 测绘 科技大学 出版 社 19 8
, ,

,
,

4 中有 一 点或多点具有精 确的 W G S 8 大地 坐标 的大地 高程 则 在 G PS 网平 差 后 可 求得 G S P G S 8 4 大地 高程 实 际应用 中 地 面 点的高程采 用正 常高 系统 正 常 高 H 是地面 点 延 点的 W r

,
,


,
,
铅垂 线至 似大 地水 准面 的距 离 是 通过水准 测量 的方法 来确 定 的 这 就需 要确 定大 地高与正 常
, , ,
,
准面 内插 出其 它
2
Ll
P GS
点 的高程 异 常
,
从 而 求 出各 个未 知 点 的正 常 高

高程 拟合 方法 与数 学模 型
曲线 拟合 法 当 G PS 点按 线状 布设 时
,
我们可 以根 据水 准重 合 点的平 面坐 标和 高 程异 常

,
拟 合 出 测线
方 向上 的似 大地 水准 面 曲线 若将 坐 标系 转换 成
: ‘

J y 众,
为 百

,

,
,
,
,

i a

,
二 可在 〔 勺 而 n 的条 件下
,
:
,
, i 求出参数 a 进 而求 出测 区 内任意 插值 点的高程 异常值


根据测 区 的不 同情况 也 可 以选用 不 同的参数进 行拟 合 选 用的参数 同 拟合 出的区面 的 : : 形 式也相 同 下面 给出几 种类型 ¹ 平 面拟合 在小 范围或 平原 地 区 可 以认 为水准 面趋近平
关键 词
:
GP s
拟 合 高程
模型
结论
O
引言
, ,
随着 G PS 技术 的飞 速发展 G P S 平 面 定位 精度不 断发 展 人们也 日益关心 G PS 在高 程测 量 方面 的能力 并积 极研 究 G PS 高程 测 量 因 为其效 率远 高于 水准 测量 和三 角高程测 量 由 G PS 相 对定 位得 到 的三 维 基 线 向量 通过 P G S 网平 差 可 以得到 高精度 的大地 高差 如 果 网
x
2+

,
解 求插 值点 的高程 异常
,
与测 线方 向重 合
…相 萨
,
系 歹m
:
i x 俩)户 与栩 l +
,
a

im
间 存 在下 述 函 数关 m x i 已知 点 处 的 高 差 R i 歹 ( )一 歹 在 艺 砰 二n t n 条 件下 解 各 = 在 i
, ‘
y
预 测 区 方 向垂 直
,
则 设 百和
可 采用 数 学 曲面 拟 合 法求 待定 点 的正 常 高
相关文档
最新文档