机械设计常用计算公式EXCEL集
机械设计计算公式

机械设计计算公式机械设计是指利用机械原理和机械工程学知识设计制造各种机械装置、机械零部件以及机械系统,以满足工程技术要求和使用要求的工程领域。
在机械设计中,经典的计算公式是非常重要的工具,用于解决各种设计问题和计算设计参数。
本文将介绍几个经典的机械设计计算公式,并给出详细的说明。
1.扭矩和功率计算公式扭矩和功率是机械运动过程中常用的两个参数,它们之间存在一定的关系。
对于旋转运动的机械系统,扭矩和功率的计算公式如下:扭矩T=P/(ω×n)功率P=T×ω×n其中,T表示扭矩,P表示功率,ω表示角速度,n表示转速。
根据这两个公式,我们可以根据已知条件计算扭矩和功率,或者通过已知扭矩和功率计算转速和角速度。
2.强度和刚度计算公式在机械设计中,强度和刚度是两个重要的设计参数。
强度是指机械零部件在工作过程中能够承受的最大应力,而刚度是指机械零部件在受力情况下的变形程度。
对于常见的机械零部件,强度和刚度的计算公式如下:强度S=F/A刚度K=F/Δl其中,S表示强度,F表示受力,A表示受力面积,K表示刚度,Δl 表示变形量。
根据这两个公式,我们可以根据已知条件计算出零件的强度和刚度,以确保零件在工作过程中的可靠性和稳定性。
3.速度和加速度计算公式在机械运动的设计中,速度和加速度是两个重要的参数,它们与机械系统的动态性能密切相关。
对于直线运动的机械系统,速度和加速度的计算公式如下:速度v=s/t加速度a=(v-u)/t其中,v表示速度,s表示位移,t表示时间,u表示初速度。
根据这两个公式,我们可以根据已知条件计算出机械系统的速度和加速度,从而优化机械系统的动态性能。
总结起来,机械设计中经典的计算公式涵盖了扭矩和功率、强度和刚度、速度和加速度等多个方面。
这些计算公式为机械工程师提供了有效的工具和方法,用于解决各种设计问题和计算设计参数,在机械设计过程中起到了重要的作用。
机械全部计算公式

机械全部计算公式机械计算公式是指用于描述机械运动或力学问题的数学公式。
机械计算公式基于牛顿力学和欧拉-拉格朗日原理,涵盖了很多方面的内容,比如运动学、力学、静力学、动力学、振动、刚体力学等。
1.运动学公式:-位移公式:位移(S)等于速度(v)乘以时间(t)。
S=v*t-速度公式:速度(v)等于位移(S)除以时间(t)。
v=S/t-加速度公式:加速度(a)等于速度变化(Δv)除以时间(Δt)。
a=Δv/Δt- 直线运动平均速度公式:平均速度(v_avg)等于总位移(ΔS)除以总时间(Δt)。
v_avg = ΔS / Δt2.力学公式:-牛顿第二定律:力(F)等于物体的质量(m)和加速度(a)的乘积。
F=m*a-动量公式:动量(p)等于物体的质量(m)乘以速度(v)。
p=m*v-动量变化公式:物体动量的变化(Δp)等于施加在物体上的力(F)乘以时间(Δt)。
Δp=F*Δt-能量公式:能量(E)等于物体的质量(m)乘以速度(v)的平方的二分之一E=1/2*m*v^23.静力学公式:-牛顿第一定律:当物体处于平衡状态时,合力(F)等于零。
F=0-牛顿第三定律:作用力(F)和反作用力(-F)大小相等、方向相反。
F=-F- 斜面静力学公式:斜面上的力(F)等于物体的重力(mg)与斜面夹角(θ)的正弦值的乘积。
F = mg * sin(θ)-力矩公式:力矩(T)等于力(F)乘以力臂(r),力臂是力的作用点到转轴的距离。
T=F*r4.动力学公式:-动能公式:动能(K)等于物体的质量(m)乘以速度(v)的平方的二分之一K=1/2*m*v^2-动量定理:物体的动量变化等于作用在物体上的合力的时间积分。
Δp = ∫F dt5.振动公式:- 简谐振动公式:简谐振动的位移(x)等于振幅(A)乘以正弦(sin)函数,角速度(ω)和时间(t)的乘积。
x = A * sin(ωt)6.刚体力学公式:-线速度公式:线速度(v)等于角速度(ω)乘以物体的半径(r)。
机械设计基础公式汇总

机械设计基础公式汇总机械设计基础公式大家了解吗?以下是XX为大家整理好的机械设计基础公式汇总,一起来学习吧.零件:独立的制造单元构件:独立的运动单元体机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统机器:是执行机械运动的装置,用来变换或传递能量、物料、信息机械:机器和机构的总称机构运动简图:用简单的线条和符号来代表构件和运动副,并按一定比例确定各运动副的相对位置,这种表示机构中各构件间相对运动关系的简单图形称为机构运动简图运动副:由两个构件直接接触而组成的可动的连接运动副元素:把两构件上能够参加接触而构成的运动副表面运动副的自由度和约束数的关系f=6-s运动链:构件通过运动副的连接而构成的可相对运动系统高副:两构件通过点线接触而构成的运动副低副:两构件通过面接触而构成的运动副平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副平面自由度计算公式:F=3n-2PL-PH机构可动的条件:机构的自由度大于零机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目虚约束:对机构不起限制作用的约束局部自由度:与输出机构运动无关的自由度复合铰链:两个以上构件同时在一处用转动副相连接速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。
若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是三心定理:三个彼此作平面运动的构件的三个瞬心必位于同一直线上机构的瞬心数:N=K(K-1)/2机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动曲柄:作整周定轴回转的构件;连杆:作平面运动的构件;摇杆:作定轴摆动的构件;连架杆:与机架相联的构件;周转副:能作360?相对回转的运动副摆转副:只能作有限角度摆动的运动副。
机械设计基础尺寸计算公式

机械设计基础尺寸计算公式在机械设计中,尺寸计算是非常重要的一部分,它直接影响着机械零件的设计和制造质量。
正确的尺寸计算可以保证机械零件的功能和性能,同时也可以减少制造成本和提高生产效率。
本文将介绍一些机械设计中常用的基础尺寸计算公式,希望能对机械设计工程师有所帮助。
1. 直径计算公式。
在机械设计中,经常需要计算零件的直径,比如轴承、轴等零件的直径计算。
一般来说,直径计算公式可以按照零件的受力情况和使用要求来确定。
常用的直径计算公式有以下几种:(1)轴的直径计算公式。
轴的直径计算公式一般可以按照轴的受力情况和转速来确定。
一般情况下,轴的直径计算公式可以用以下公式表示:d = c (T / (K σ))^(1/3)。
其中,d为轴的直径,c为系数(通常取1.5-2),T为轴的扭矩,K为转矩系数,σ为轴材料的抗拉强度。
(2)轴承的直径计算公式。
轴承的直径计算公式一般可以按照轴承的受力情况和使用要求来确定。
一般情况下,轴承的直径计算公式可以用以下公式表示:d = (Fr / (3.14 p L))^(1/3)。
其中,d为轴承的直径,Fr为轴承的额定动载荷,p为轴承的等效动载荷系数,L为轴承的额定寿命。
2. 长度计算公式。
在机械设计中,经常需要计算零件的长度,比如轴、销等零件的长度计算。
一般来说,长度计算公式可以按照零件的受力情况和使用要求来确定。
常用的长度计算公式有以下几种:(1)轴的长度计算公式。
轴的长度计算公式一般可以按照轴的受力情况和使用要求来确定。
一般情况下,轴的长度计算公式可以用以下公式表示:L = (T K) / (π d τ)。
其中,L为轴的长度,T为轴的扭矩,K为转矩系数,d为轴的直径,τ为轴的允许剪切应力。
(2)销的长度计算公式。
销的长度计算公式一般可以按照销的受力情况和使用要求来确定。
一般情况下,销的长度计算公式可以用以下公式表示:L = (2 F l) / (π d τ)。
其中,L为销的长度,F为销的受力,l为销的长度,d为销的直径,τ为销的允许剪切应力。
4《机械设计》重要公式及整理

ψ ≤ φv = arctg
横向载荷(摩擦力起作用,注意结合面数量:不考虑螺母与工件之间的数量) f ∙ F0 ∙ z ∙ i ≥ Ks ∙ F∑ Ks ∙ F∑ F0 ≥ ������������������ F∑——横向总载荷 f——摩擦系数 i——结合面数 z——螺栓数目 Ks ——防滑系数 受转矩的螺栓组连接(预紧力产生的摩擦力矩) fF0r1 + fF0r1 + ⋯ + fF0rz ≥ KsT ������������������ KsT F0 ≥ = ������(������1 + ������2 + ⋯ + rz) ������ ∑������ ������=1 ������������ 采用铰制孔螺栓时,变形与距离成正比 ������������������������ ������������ = ������������������������ ������������
参数名称 齿数比 锥距(最大处)
公式 u= ������2 ������2 = = ������������������������1 = tanδ2 ������1 ������1 ������1 2 ������2 ) + ( )2 2 2 = d1 √������2 + 1 2
������
M = ∑ ������������������������
������=1
Fi = Fmax
������������ Lmax Li2 ������������������������
������
M = Fmax ∑
������=1
������������0 ������ ������������������������������ ≈ + ≤ [������������] ������ ������ { ������������0 ������ ������������������������������ ≈ − >0 ������ ������ W= b 是倾覆力矩方向 松螺栓连接 d1 ≥ √ 紧螺栓连接(1.3 倍) 1.3F0 ������ = ������ ≤ [σ] 2 d1 4 预紧力+工作拉力 4������ ������[������] ������������ 3 − ������1������13 6������
(完整word版)《机械设计》公式

符号参数名称公式备注ψ螺纹升角S导程P螺距d2中径d大径d1小径ηφv当量摩擦角自锁条件横向载荷(摩擦力起作用,注意结合面数量:不考虑螺母与工件之间的数量)F∑——横向总载荷f—-摩擦系数i—-结合面数z--螺栓数目Ks——防滑系数受转矩的螺栓组连接(预紧力产生的摩擦力矩)采用铰制孔螺栓时,变形与距离成正比受轴向载荷的螺栓组连接工作载荷F不是总拉力,还要考虑F0(预紧力)受倾覆力矩的螺栓组连接b是倾覆力矩方向松螺栓连接紧螺栓连接(1.3倍)预紧力+工作拉力F2总拉力F0预紧力F1残余预紧力(1、余谐音)F工作拉力承受工作剪力的紧螺栓连接(挤压+剪切)挤压强度条件剪切强度条件键连接符号参数名称公式1备注普通平键连接的强度条件T——N∙mk=0。
5hl——键的工作长度,A圆B平C半圆d——轴的直径[σp]——许用挤压应力,多用于校核静连接导向平键连接和滑键连接[p]——许用应力,多用于校核动连接半圆键k——查表l=L花键静连接动连接ψ--载荷分配不均系数,与齿数多少有关,一般取ψ=0。
7~0。
8,齿数多取小h--花键齿侧面的工作高度,矩形花键渐开线花键α=30°:h=mα=45°:h=0。
8m dm——矩形花键渐开线花键dm=di带传动符号参数名称公式1公式2备注F1紧边拉力F2松边拉力F0初拉力Fe有效拉力可以用来校核是否打滑f应用fvα用弧度f与α同向,都是大好α1包角α2包角σ1紧边拉应力σ1=F1/Aσ2紧边拉应力σ2=F2/Aσb1弯曲应力σb2弯曲应力σc离心拉应力全长都有,一致σmax瞬时最大应力处Ld0带长a0初选中心距链传动符号参数名称公式1备注链速平均传动比分度圆直径链节数标准直齿轮符号参数名称公式1公式2备注圆周力Ft⊥过点半径径向力Fr Fr=Ft×tanα沿半径方向rt 法向载Fn Fn=Ft/cosα⊥齿面nc荷弯曲疲劳强度根据这个公式可见跟直径没关系,跟齿数也没关系左边主从都一样,右边有区别。
《机械设计》第九版-公式大全.pptx

%:斜齿抡应力校正系数,可近似按当量齿数、由表查取
Yit:螺旋角影响系数;Yf:弯曲疲惫强度计算的重合度系数
斜齿轮齿面接触疲惫强度校核计算公式%=J当,四Z∕Z,4IS[* *==
VMU
4
设计计.算公式4≥杵二.学(弟爷[
锥齿轮轮齿受力分析圆冏力匕=学•径向力EI=Etanacos4=Fa2轴向力&="IanaC。Sa=%
直径,三
带的最大应力发生在紧边绕入小带轮之处:σuι,1=σ1+σ+σft
第十章齿轮传动
直齿轮
圆周力:A=孕
径向力:F=GJana
法向力瑞=41_
dl C。Sa 斜齿轮 圆周力:Fl,=^T径向力:Pr=Ganj轴向力:ξr=ξtan∕?法向力4cosp Fn=——~~CoSarcos/7 直齿轮齿根弯曲疲惫强度校核公式:σr=Δf½2k1.>[σjbm 设计计算公式/n≥衿手.谙 Y。齿形系数;%应力校正系数:。弯曲疲惫强度计算载荷系数,Kt=KltKvKfaKefi 丫,弯曲疲惫计算的重:合度系数 宜齿圆柱齿轮齿面疲惫接触强度计算为=悟。φz,,Z1≤[%] 设计计算公式4≥j竽•.亨•(弩Z) 斜齿轮齿根弯曲疲惫强度校核公式S=2q7及八}2。(夕<[σf] 设计计算公式町,≥伊瞥亘钮 %:斜齿轮齿形系数,可近似按当殳齿数1.=-⅛由表查取
法向载荷巴=—之C。Sa
设计计算公式/4NK7;
K:载荷系数,K=KKK,,储运用系数,K#齿向载荷分布系数,K,动载系数σll∕[σll]:分别为蜗轮齿面的接触应力和 许用接触应力,MPa
蜗轮齿根弯曲疲惫强度校核公式?=空空1.Λ,sb∕ald2M
设计公式小4之若彳y明:蜗轮齿根弯曲应力,MPa
机械设计常用计算公式集

一、直线运动基本公式:(距离、速度、加速度和时间之间的关系)1)路程=初速度 x 时间+21*2加速度时间 2)平均速度=路程/时间;3)末速度-初速度=2x 加速度 x 路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度=12(初速度+末速度) 6)力与运动之间的联系:牛顿第二定律:F=ma ,[合外力(N )=物体质量(kg )x 加 速度(2/m s )] (注:重力加速度 g=9.82/m s 或 g=9.8N/kg )二、旋转运动单位对比:圆的弧长计算公式:弧长 s=r θ=圆弧的半径 x 圆弧角度(角位移)周长=C=2πr=πd ,即:圆的周长=2x3.14x 圆弧的半径=3.14x 圆弧的直径 旋转运动中角位移、弧度(rad )和公转(r )之间的关系。
1)1r (公转)=2π(弧度)=360°(角位移)2)1rad=3602π=57.3° 3)1°=2360π=0.01745rad 4)1rad=0.16r 5)1°=0.003r6)1r/min=1x2x3.14=6.28rad/min 7) 1r/min=1x360°=360°/min三、旋转运动与直线运动的联系:1)弧长计算公式(s=r θ):弧长=圆弧的半径 x 圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t ):角速度=圆弧角度/时间注:结合上式可推倒出角速度与圆周速度(即:s/t 也称切线速度)之间的关系。
3)圆周速度=角速度 x 半径,(即:v=ωr )注:角度度ω的单位一般为 rad/s ,实际应用中,旋转速度的单位大多表示为 r/min (每分钟多少转)。
可通过下式换算: 1rad/s=1x60/(2x3.14)r/min例如:电机的转速为 100rad/s 的速度运行,我们将角速度ω=100rad/s 换算成 r/min 单位,则为: ω=100rad/s=100*602π=955r/min 4)rad/s 和 r/min 的联系公式: 转速 n(r/min)=*2/60rad s ω()π,即:转速(r/min )=/*602rad s π角速度();5)角速度ω与转速 n 之间的关系(使用时须注意单位统一):ω=2πn ,(即:带单位时为角速度(rad/s )=2x3.14x 转速(r/min )/60)6)直线(切线)速度、转速和 2πr (圆的周长)之间的关系(使用时需注意单位):圆周速度 v=2πrn=(πd )n 注:线速度=圆周速度=切线速度 四、转矩计算公式: (1)普通转矩:T=Fr即:普通转矩(N*m )=力(N )x 半径(m ); (2)加速转矩:T=J α即:加速转矩(N*m )=角加速度α(2rad s)x 转动惯量 J (2*kg m ) 单位换算:转动惯量 J (2*kg cm ):12*kg cm =610 2*kg m ; 角加速度α(2rad s ):12rad s =1x2x π2rads; 单位转换过程推导:(注:kgf*m (千克力*米),1kgf*m=9.8N*m , g=9.8N/kg=9.82/m s )假设转动惯量 J =10kg*2m ,角加速度α=10rad/2s ,推导出转矩 T 的单位过程如下: T=J x α=10x (kg*2m )x10(rad/2s ) =100(kgf*m/2s )=222100(*/)*9.8(/)9.8(/)kg m s N kg m s=100N*m两个简化单位换算公式:(注:单位换算其物理含义也不同,下式仅用于单位换算过程中应用。
机械设计经典计算公式(Excel版有公式计算功能)

链条长度 计算中心距 实际中心距
L=Lp*p/1000
2.794
m
机械Ⅲ表13-2-8
0.25
ac=p(2Lp-z1-z2)*ka
1079.5
mm
0.002*ac a=ac-△a
2.159
1077.341
mm
29
1000
30 v
链条速度
v=z1n1p/60*1000
0.010583333 m/s
31 Ft
775
mm2 Mpa Mpa
满足要求
序号
1 2 3 4
5 6 7 8 9 10
代号 一 P n T K 二 Tc β1 β2
tanβ β
Tn Tf 三
定义 已知 传动功率 转速 理论转矩 工况系数 计算 计算转矩
公式/出处
T=9550*P/n 机械手册Ⅱ6-89页表6-2-22
Tc=TK
tanβ=(tan2β1+tan2β2)1/2
定义 已知 工况系数 安全系数 输入功率 输入转速 输出转速 计算 计算功率 减速比 公称输入功率 结论(验算)
公式/出处
P2m=P×KA×KS i=N/n
P2m<P1 查表得ZSY500
结果
单位
1.5 1.5 300 1200 41
kW r/min r/min
675
kW
29.26829268
840
公式/出处
结果
单位
机械手册Ⅱ表5-4-4(钢-钢)
295 100
0 50 0.14 200000 200000 0.3 0.3 295 275 11 2.5 159.16
mm mm mm mm
MPa MPa
机械设计基础公式

机械设计基础公式机械设计基础公式汇总机械设计基础公式大家了解吗?以下是小编为大家整理好的机械设计基础公式汇总,一起来学习吧.零件:独立的制造单元构件:独立的运动单元体机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统机器:是执行机械运动的装置,用来变换或传递能量、物料、信息机械:机器和机构的总称机构运动简图:用简单的线条和符号来代表构件和运动副,并按一定比例确定各运动副的相对位置,这种表示机构中各构件间相对运动关系的简单图形称为机构运动简图运动副:由两个构件直接接触而组成的可动的连接运动副元素:把两构件上能够参加接触而构成的运动副表面运动副的自由度和约束数的关系f=6-s运动链:构件通过运动副的连接而构成的可相对运动系统高副:两构件通过点线接触而构成的运动副低副:两构件通过面接触而构成的运动副平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副平面自由度计算公式:F=3n-2PL-PH机构可动的条件:机构的自由度大于零机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目虚约束:对机构不起限制作用的约束局部自由度:与输出机构运动无关的自由度复合铰链:两个以上构件同时在一处用转动副相连接速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。
若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是三心定理:三个彼此作平面运动的构件的三个瞬心必位于同一直线上机构的瞬心数:N=K(K-1)/2机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动曲柄:作整周定轴回转的构件;连杆:作平面运动的构件;摇杆:作定轴摆动的构件;连架杆:与机架相联的构件;周转副:能作360?相对回转的运动副摆转副:只能作有限角度摆动的运动副。
机械设计机械设计总论考研公式大全

机械设计机械设计总论考研公式大全机械设计是机械工程的重要分支之一,其涉及到各种机械元件的设计、计算和应用。
在考研阶段,掌握相关的机械设计公式是非常重要的。
下面将介绍一份关于机械设计的考研公式大全,以帮助考生更好地备考。
一、静力学基础公式1. 力的平衡条件ΣF=02. 力矩的平衡条件ΣM=03. 螺距公式S=πd4. 平面受力分析Fx=RcosθFy=Rsinθ5. 空间受力分析Fx=RcosαcosβFy=RcosαsinβFz=Rsinα6. 计算力矩M=Fd7. 冲击力计算F=mv/t二、材料力学公式1. 应力计算σ=F/A2. 应变计算ε=ΔL/L3. 弹性模量计算E=σ/ε4. 塑性变形计算δ=ΔL5. 疲劳强度计算σm=(σa+σm)/26. 弯曲应力计算σ=M*c/I三、轴类零件设计公式1. 轴的弯矩计算M=π/32*σ*(d^3)2. 轴的转角计算θ=TL/GJ3. 轴的循环弯曲应力计算σa=(4M)/(πd^3)4. 轴的疲劳强度计算σm=(σa+σm)/2四、联接零件设计公式1. 螺纹强度计算σt=F/(π*d^2/4)2. 螺母受力计算F=π*σt*d^2/43. 锥面连接强度计算σt=4F/(π*d^2)五、传动机构设计公式1. 齿轮传动比计算i=n1/n2=d2/d1=z2/z12. 直齿轮传动计算P=2π*ω*T3. 带传动弧长计算L=(π/2)*(D+d+2C)以上是关于机械设计的考研公式大全,希望对考生备考有所帮助。
在备考过程中,可以结合这些公式进行练习和应用,加深对机械设计知识的理解和掌握。
简单机械的计算公式

简单机械的计算公式简单机械是指由少数几个部件组成的机械装置,其原理和工作方式比较简单明了。
在实际应用中,我们常常需要使用一些计算公式来计算这些简单机械的性能参数,以便更好地设计和使用。
下面将介绍一些常见的简单机械的计算公式。
1.摩擦力计算当两个物体接触并相对移动时,会产生摩擦力。
摩擦力可以通过以下公式计算:F=μN其中,F是摩擦力,μ是摩擦系数,N是两个物体接触面上的正常力。
2.机械功率计算机械功率是指机械装置在单位时间内所进行的功。
机械功率可以通过以下公式计算:P=F×v其中,P是机械功率,F是作用力,v是作用力的速度。
3.力矩计算力矩是指力在轴上的作用产生的转动效果。
力矩可以通过以下公式计算:M=F×d其中,M是力矩,F是作用力,d是作用力在轴上的垂直距离。
4.斜面上物体的平衡计算当物体位于斜面上时,存在一正常力和一重力。
由于斜面的倾角不同,这两个力的分解也不同。
根据物体的平衡条件,可以计算出物体的平衡情况以及其所受的力。
例如,当斜面角度为θ时,物体所受的垂直分力为:N = m × g × cosθ物体所受的平行分力为:F = m × g × sinθ其中,m是物体的质量,g是重力加速度。
5.转动轴的转矩计算当转动轴上有多个力作用时,可以通过以下公式计算转动轴的总转矩:T=Σ(F×r)其中,T是转动轴的总转矩,Σ表示对所有作用力求和,F是作用力,r是作用力相对转动轴的垂直距离。
通过以上的计算公式,我们可以更好地了解和计算简单机械的性能参数,从而更好地设计和应用这些机械装置。
但需要注意的是,在实际应用过程中,还需要考虑到一些实际情况的修正因素,如摩擦力的变化、材料的强度等。
机械设计经典计算公式(Excel版有公式计算功能)

一
1T
2D
3d
4L
二
4
σp
定义 圆柱销(平面)
已知 横向力 销的直径 销的数量 计算 剪切力
许用剪切力
结论 Τ<Τp
圆柱销(圆周) 已知 转矩
轴的直径 销的直径 销的长度
计算 挤压力
公式/出处 机械Ⅱ表5-3-2(第一
种)
结果
5000 5 5
单位
N mm 个
τ=4F/πd2Z 根据销的材料查表对于销
公式/出处
手册Ⅱ5-1-53 手册Ⅱ5-1-54 手册Ⅱ5-1-55
P=m*9.8G+F PΣ=(ko+kc)P
Aa=πd2/4 σt=1.3PΣ/Aa
σtp=σs/n σt<σtp
结果
单位
240
mm
1.2
4
0.2
930
Mpa
3500000
N
0
Kg
0.15
3500000 14700000
45216 422.6380042
有效圆周力
Ft=1000P/v
396850.3937
N
序号 代号
一
1
z
2
d1
3
p
4 pt
二
5
d
6 da
7 df
8 ha
9 h2
10 dg
11 K
12 dk
13 h
14 l
15 dh
16
17 b1
18 bf
19 MR 20 bR
定义 已知 链轮齿数 滚子外径 链条节距 链条排距 计算 分度圆直径 齿顶圆直径 齿根圆直径 分度圆弦齿高 内链板高度 齿侧凸缘直径
(完整版)机械设计经典计算公式

的常用材料可取 Τ
p=80MPa
MPa MPa
满足要 满求足要
求
焊缝及键连接受力计算比较 参考书目:机械手册Ⅰ、机械手册Ⅱ
序号 一 1 2 3 4
1
代号
M R k a
τ τp
定义 焊缝计算(已知条件)
扭矩 轴径 焊缝高度
计算受力 剪切力(双面焊缝)
二
键计算(已知条件)
1
T
扭矩
2
D
轴径
3
b
键宽
4
L
键长
254
mm
有张紧装置,a0max >80p
2032
mm
19 选a0 20 a0p 21 k 22 Lp 23
以节距计的初定中心距 链条节数
a0p=a0/p 机械Ⅲ表13-2-7
Lp=(z1+z2) /2+2a0p+k/a0p
1100
mm
43.30708661 mm
0
111.6141732
节
110
24 L 25 ka 26 ac 27 △a 28 a
序号 代号
一
1T
2L
3b
4
l
5D
6h
7k
8
Ppp
9 τp
二
10 P
11 τ
三
12
13
定义 已知 转矩 键的长度 键的宽度 键的工作长度 轴的直径 键的高度 键与轮毂的接触高度 键连接的许用挤压压强 键连接的许用剪切应力 计算 工作面的挤压 键的剪切应力 结论 P<Ppp τ<τp
公式/出处
l=L-b
dh=dk+2h
189.5
机械设计机械设计总论考研公式大全

机械设计机械设计总论考研公式大全机械设计是工程科学的一个重要分支,它涉及到机械结构的设计与分析。
在机械设计的学习和研究过程中,掌握一些基本的公式和定理是非常重要的。
这些公式和定理可以帮助我们更好地理解机械设计原理,解决实际工程中的问题。
一、静力学基础公式1. 刚体平衡条件:∑F = 0∑M = 02. 力矩公式:M = F * d3. 力矩平衡条件:∑M = 04. 弹簧的胡克定律:F = k * x5. 最大摩擦力:F_max = μ * N二、材料力学基础公式1. 应力:σ = F / A2. 应变:ε = ΔL / L3. 震裂应力:σ_f = K * √(π * a)4. 疲劳破坏强度:S = S_e / (1+K_b * S_e * (1/N)^b)5. 韧性:U = Wc / Ac三、机械传动基础公式1. 齿轮传动比:i = N1 / N22. 齿轮传动效率:η = (1 - (1/εa) * (Z1/Z2)) * 100%3. 带传动速比:i = N1 / N24. 带传动效率:η = (T1 - T2) / T1五、机械设计基础公式1. 材料厚度计算:t = K * (F * L) / (σ * W * H)2. 螺栓抗拉强度:σ_a = F / A3. 螺栓抗剪强度:τ = F / A4. 轴的转矩计算:T = F * r这些公式只是机械设计中的一部分,还有很多其他重要的公式和定理。
在学习和应用中,我们需要根据具体的情况选择合适的公式,结合实际工程进行运用。
希望以上机械设计公式对你有所帮助,祝你学习进步!。