动力定位PPT

合集下载

动力定位系统发展状况及研究方法

动力定位系统发展状况及研究方法

四、结论与建议
3、加强人才培养和队伍建设。通过加强人才培养和引进高素质人才,建立专 业化的研发和运维团队,为动力定位系统的可持续发展提供有力保障。
四、结论与建议
4、拓展应用领域和市场。积极探索动力定位系统在其他领域的应用,如水上 运动、环保工程等,拓展新的市场和应用领域。
参考内容
内容摘要
随着全球定位系统(GPS)的不断发展,船舶动力定位系统(Dynamic Positioning System,DPS)已经成为海洋工程领域中不可或缺的一部分。然而, 船舶在复杂海况下易受风、浪、流等多种因素影响,使船舶位置和姿态难以保持。 为了解决这个问题,多传感器信息融合技术被引入到船舶动力定位系统中,以提 高船舶定位和姿态控制的精度。
2、基于神经网络的信息融合方 法
2、基于神经网络的信息融合方法
神经网络是一种模拟人脑神经元结构的计算模型,具有强大的非线性映射能 力和自学习能力。在船舶动力定位系统中,神经网络可以用于实现对船舶位置、 姿态等参数的估计和预测。常用的神经网络包括多层感知器(MLP)、递归神经 网络(RNN)和卷积神经网络(CNN)等。
二、动力定位系统的发展过程
1、初期发展
1、初期发展
动力定位系统的初期发展始于20世纪60年代,当时该技术主要应用于海洋石 油钻井平台。随着技术的不断发展,动力定位系统的应用范围也逐渐扩大,包括 海洋工程、海洋科学、水下考古等多个领域。
2、技术更新换代
2、技术更新换代
随着技术的不断进步,动力定位系统的性能得到了大幅提升。从最初的机械 式稳定平台到现在的计算机控制的动力定位系统,其技术更新换代迅速。近年来, 随着人工智能、物联网等技术的不断发展,动力定位系统的智能化、自动化程度 也越来越高。

DYNAMIC POSITIONING动力定位介绍

DYNAMIC POSITIONING动力定位介绍

∙海洋三用工作船动力定位DYNAMIC POSITIONINGOffshore Support Vessel Toisa Perseus with, in the background, the fifth-generation deepwater drillship Discoverer Enterprise, at the Thunder Horse location. Both are equipped with DPsystems.DYNAMIC POSITIONINGDynamic posi tioning (DP) is a system to automatically maintain a ship’s position and heading by using her own propellers and thrusters. This allows operations at sea where mooring oranchoring is not feasible due to deep water, congestion on the sea bottom (pipelines, templates) or other problems.Dynamic positioning may either be absolute in that the position is locked to a fixed point over the bottom, or relative to a moving object like another ship or an underwater vehicle. One may also position the ship at a favourable angle towards wind, waves and current, called weathervaning.Dynamic positioning is much used in the offshore oil industry, for example in the North Sea, Persian Gulf, Gulf of Mexico, West Africa and off Brazil. Nowadays there are more than 1000 DP ships.HistoryClass 1Dynamic positioning started in the 1960’s for offshore drilling. With drilling moving into ever deeper waters, Jack-up barges could not be used any more and anchoring became lesseconomical.In 1961 the drillship Cuss 1 was fitted with four steerable propellers, in an attempt to drill the first Moho well. It was possible to keep the ship in position above the well off La Jolla, California, at a depth of 948 meter.After this, off the coast of Guadalupe, Mexico, five holes were drilled, the deepest at 183 m (601 ft) below the sea floor in 3,500 m (11,700 ft) of water, while maintaining a position within a radius of 180 meter. The ship's position was determined by radar ranging to buoys and sonar ranging from subsea beacons.Whereas the Cuss 1 was kept in position manually, later in the same year Shell launched the drilling ship Eureka that had an analogue control system interfaced with a taut wire, making it the first true DP ship.While the first DP ships had analogue controllers and lacked redundancy, since then vastimprovements have been made. Besides that, DP nowadays is not only used in the oil industry any more, but on various other types of ships. In addition, DP is not limited to maintaining a fixed position any more. One of the possibilities is sailing an exact track, useful for cablelay, pipelay, survey and other tasks.Comparison between position-keeping optionsOther methods of position-keeping are the use of an anchor spread and the use of a jack-up barge. All have their own advantages and disadvantages.Comparison position-keeping optionsJack-up Barge Anchoring Dynamic PositioningAdvantages:No complex" systems with thrusters, extra generators and controllers.No chance" of running off position by system failures or blackouts.No" underwater hazards from thrusters. Advantages:No complex" systems with thrusters, extra generators and controllers.No chance" of running off position by system failures or blackouts.No" underwater hazards from thrusters. Advantages:Manoeuvring" is excellent; it is easy to change position.No anchor handling" tugs are required.Not dependent on waterdepth."Quick" set-up.Not limited by obstructed seabed."Disadvantages:" No manoeuvrability once positioned.Limited to water depths" of ~150 meters. Disadvantages:Limited manoeuvrability once" anchored.Anchor handling tugs are required."Less" suitable in deep water.Time to anchor out varies between several" hours to several days.Limited by obstructed seabed (pipelines," seabed). Disadvantages:Complex systems with thrusters," extra generators and controllers.High initial costs of" installation.High fuel costs."Chance of running off" position by system failures or blackouts.Underwater hazards from" thrusters for divers and ROVs.Higher maintenance of the mechanical" systems.Although all methods have their own advantages, dynamic positioning has made many operations possible that were not feasible before.The costs are falling due to newer and cheaper technologies and the advantages are becoming more compelling as offshore work enters ever deeper water and the environment (coral) is given more respect. With container operations, crowded ports can be made more efficient by quicker and more accurate berthing techniques. Cruise ship operations benefit from faster berthing and non-anchored "moorings" off beaches or inaccessible ports.ApplicationsImportant applications include:SBX underwayServicing Aids toλ Navigation (ATON)Cable-layingλCrane vesselsλλ Cruise shipsDiving support vesselsλDredgingλλ DrillshipsFPSOsλFlotelsλLandingλ Platform DocksMaritime researchλMine sweepersλλ Pipe-layingPlatform supply vesselsλRockdumpingλSea LaunchλSea-based X-band RadarλShuttleλ tankersSurvey shipsλScope of dynamic positioningA ship can be considered to have six degrees of freedom in its motion, i.e. it can move in any of six axes.Three of these involve translation:surgeλ (forward/astern)sway (starboard/port)λheaveλ (up/down)and the other three rotation:roll (rotation aboutλ surge axis)pitch (rotation about sway axis)λyawλ (rotation about heave axis)Dynamic positioning is concerned primarily with control of the ship in the horizontal plane, i.e. the three axis surge, sway and yaw.Requirements for dynamic positioningA ship that is to be used for DP requires:to maintain position and heading, first of all theλ position and heading need to be known.a control computer toλ calculate the required control actions to maintain position and correct for position errors.thrust elements to apply forces to the ship asλ demanded by the control system.For most applications, the positionλ reference systems and thrust elements must be carefully considered when designing a DP ship. In particular, for good control of position in adverse weather, the thrust capability of the ship in three axes must be adequate. The main manufacturers of DP systems are Kongsberg Maritime, Converteam (formerly a part of Alstom), L-3 Communications (formerly Nautronix), Rolls-Royce Marine, Marine Technologies and Navis Engineering OY.Reference systemsPosition reference systemsThere are several means to determine a ship's position at sea. Most traditional methods used for ships navigation are not accurate enough. For that reason, several systems have been developed during the past decades. The availability depends on the type of work and water depth. The most common Position reference systems (PRS) are:GPS satellite in orbit, image courtesy NASADGPS, Differential GPS. The position obtained by GPSλ is not accurate enough for use by DP. The position is improved by use of a fixed ground based reference station (differential station) that compares the GPS position to the known position of the station. The correction is sent to the DGPS receiver by long wave radio frequency. For use in DP an even higher accuracy and reliability is needed. Companies as Fugro supply differential signals via satellite, enabling the combination of several differential stations. The advantage of DGPS is that it is almost always available. Disadvantages are degrading of the signal because of sunspots or atmospheric disturbances, blockage of satellites by cranes or structures and deterioration of the signal at high altitudes.[1]Hydroacoustic Positionλ Reference, HPR. This system consists of one or more transponders placed on the seabed and a transducer placed in the ship's hull. The transducer sends an acoustic signal (by means of piezoelectric elements) to the transponder, which is triggered to reply. As the velocity of sound through water is known (preferably a soundprofile is taken regularly), the distance is known. Because there are many elements on the transducer, the direction of the signal from the transponder can be determined. Now the position of the ship relative to the transponder can be calculated. Disadvantages are the vulnerability to noise by thrusters or other acoustic systems. Furthermore, the use is limited in shallow waters because of ray bending that occurs when sound travels through water horizontally. Main manufacturers are Kongsberg Maritime, Sonardyne and Nautronix. Three types of HPR systems are commonly used:• Ultra- or Super- Short Base Line, USBL or SSBL. This works as described above. Because the angle to the transponder is measured, a correction needs to be made for the ship's roll and pitch. These are determined by Motion Reference Units. Because of the nature of angle measurement, the accuracy deteriorates with increasing water depth.• Long Base Line, LBL. This consists of an array of at least three transponders. The initial position of the transponders is determined by USBL and/ or by measuring the baselines between the transponders. Once that is done, only the ranges to the transponders need to be measured to determine a relative position. The position should theoretically be located at the intersection of imaginary spheres, one around each transponder, with a radius equal to the time between transmission and reception multiplied by the speed of sound through water. Because angle measurement is not necessary, the accuracy in large water depths is better than USBL. • Short Baseline, SBL. This works with an array of transducers in the ship's hull. These determine their position to a transponder, so a solution is found in the same way as with LBL. As the array is located on the ship, it needs to be corrected for roll and pitch.[2] Riser Angle Monitoring. On drillships, riser angleλ monitoring can be fed into the DP system. It may be an electrical inclinometer or based on USBL, where a riser angle monitoring transponder is fitted to the riser and a remote inclinometer unit is installed on the Blow Out Preventer (BOP) and interrogated through the ship’s HPR.Light Taut Wire,λ LTW. The oldest position reference system used for DP is still very accurate in relative shallow water. A clump weight is lowered to the seabed. By measuring the amount of wire paid out and the angle of the wire by a gimbal head, the relative position can be calculated. Care should be taken not to let the wire angle become too large to avoid dragging. For deeper water the system is less favourable, as current will curve the wire. There arehowever systems that counteract this with a gimbal head on the clumpweight. Horizontal LTW’s are also used when operating close to a structure. Objects falling on the wire are a risk here.Fanbeam/ CyScan. Both are laser based position referenceλ systems. A very straightforward system, as only a small prism needs to be installed on a nearby structure. Risks are the fanbeam locking on other reflecting objects and blocking of the signal. Range depends on the weather, but is typically more than 500 meters. CyScan has the added advantage of an Auto-Tilt mechanism which compensates for waves motion by the use of actuators and gyro's.[3] Artemis. A radar based system. A unit is placed on aλ nearby structure and aimed at the unit on board the ship. The range is several kilometres. The disadvantage of this method is that the unit is rather heavy.[4]DARPS, Differential, Absolute and Relative Positioning System.λ Commonly used on shuttle tankers while loading from a FPSO. Both will have a GPS receiver. As the errors are the same for the both of them, the signal does not need to be corrected. The position from the FPSO is transmitted to the shuttle tanker, so a range and bearing can be calculated and fed into the DP system.RADius. A radar based system, but no moving parts as Artemis.λ Another advantage is that the transponders are much smaller than the Artemis unit. Disadvantage is the short range of 100-200 meters and a limited 90 degree coverage. The manufacturer is Kongsberg Seatex a subsidiary of Kongsberg Maritime.RadaScan. A radar based system similar to RADius.λ Advantage is the target tracking distance up to 1000 meter and 360 degree coverage.Inertial navigation is used in combination with GPSλ (Seapath) and Hydroacoustics (HAIN).Heading reference systemsλ Gyrocompasses are normally used to determine heading.More advanced methods are:Ring-Laser gyroscopesλFibre opticλ gyroscopesSeapath, a combination of GPS and inertialλ sensors.Reference systemsBesides position and heading, other variables are fed into the DP system through sensors: Motion Reference Units,λ MRUs, determine the ship's roll, pitch and heave.Wind sensors areλ fed into the DP system feed-forward, so the system can anticipate wind gusts before the ship is blown off position.Draught sensors, since aλ change of draught influences the effect of wind and current on the hull.λ Other sensors depend on the kind of ship. A pipelay ship may measure the force needed to pull on the pipe, large crane vessels will have sensors to determine the cranes position, as this changes the wind model, enabling the calculation of a more accurate model (see Control systems).Control systemsIn the beginning PID controllers were used and today are still used in the simpler DP systems. But modern controllers use a mathematical model of the ship that is based on a hydrodynamic and aerodynamic description concerning some of the ship's characteristics such as mass and drag. Of course, this model is not entirely correct. The ship's position and heading are fed into the system and compared with the prediction made by the model. This difference is used to update the model by using Kalman filtering technique. For this reason, the model also has input from the windsensors and feedback from the thrusters. This method even allows not having input from any PRS for some time, depending on the quality of the model and the weather.The accuracy and precision of the different PRS’s is not the same. While a DGPS has ahigh accuracy and precision, a USBL can have a much lower precision. For this reason, the PRS’s are weighed. Based on variance a PRS receives a weight between 0 and 1.Power and propulsion systemsTo maintain position azimuth thrusters, bow thrusters, stern thrusters, water jets, rudders and propellors are used. DP ships are usually at least partially diesel-electric, as this allows a more flexible set-up and is better able to handle the large changes in power demand, typical for DP operations.The set-up depends on the DP class of the ship. A Class 1 can be relatively simple, whereas the system of a Class 3 ship is quite complex.On Class 2 and 3 ships, all computers and reference systems should be powered through a UPS.Class RequirementsBased on IMO (International Maritime Organization) publication 645[5] the Classification Societies have issued rules for Dynamic Positioned Ships described as Class 1, Class 2 and Class 3.Equipment Class 1 has no redundancy.λLoss of position may occur in the event of a single fault.Equipment Class 2 hasλ redundancy so that no single fault in an active system will cause the system to fail.Loss of position should not occur from a single fault of an active component or system such as generators, thruster, switchboards, remote controlled valves etc. But may occur after failure of a static component such as cables, pipes, manual valves etc.Equipment Class 3 which also hasλ to withstand fire or flood in any one compartment without the system failing.Loss of position should not occur from any single failure including a completely burnt fire sub division or flooded watertight compartment.Classification Societies have their own Class notations:Description IMOEquipment Class LREquipment Class DnVEquipment Class GLEquipment Class ABSEquipment ClassManual position control and automatic heading control under specified maximum environmental conditions - DP(CM) DNV-T - DPS-0Automatic and manual position and heading control under specified maximum environmental conditions Class 1 DP(AM) DNV-AUT DNV-AUTS DP 1 DPS-1 Automatic and manual position and heading control under specified maximum environmental conditions, during and following any single fault excluding loss of a compartment. (Two independent computer systems). Class 2 DP(AA) DNV-AUTR DP2 DPS-2Automatic and manual position and heading control under specified maximum environmental conditions, during and following any single fault including loss of a compartment due to fire or flood. (At least two independent computer systems with a separate backup system separated by A60 class division). Class 3 DP(AAA) DNV-AUTRO DP 3 DPS-3 NMDWhere IMO leaves the decision of which Class applies to what kind of operation to the operator of the DP ship and its client, the Norwegian Maritime Directorate (NMD) has specified what Class should be used in regard to the risk of an operation. In the NMD Guidelines and Notes No. 28, enclosure A four classes are defined:Class 0 Operations where loss of positionλ keeping capability is not considered to endanger human lives, or cause damage.Class 1 Operations where loss of position keeping capability mayλ cause damage or pollution of small consequence.Class 2 Operationsλ where loss of position keeping capability may cause personnel injury, pollution, or damage with large economic consequences.Class 3 Operationsλ where loss of position keeping capability may cause fatal accidents, or severe pollution or damage with major economic consequences.Based on thisλ the type of ship is specified for each operation:Class 1 DP unitsλ with equipment class 1 should be used during operations where loss of position is not considered to endanger human lives, cause significant damage or cause more than minimal pollution.Class 2 DP units with equipment classλ 2 should be used during operations where loss of position could cause personnel injury, pollution or damage with great economic consequences.Classλ 3 DP units with equipment class 3 should be used during operations where loss of position could cause fatal accidents, severe pollution or damage with major economic consequences.Redundancy is the ability to cope with a single failure without loss of position. A single failure can be, amongst others:λ Thruster failureGenerator failureλPowerbusλ failure (when generators are combined on one powerbus)Controlλ computer failurePosition reference system failureλλ Reference system failureFor certain operations redundancy is not required. For instance, if a survey ship loses its DP capability, there is normally no risk of damage or injuries. These operations will normally be done in Class 1.For other operations, such as diving and heavy lifting, there is a risk of damage or injuries. Depending on the risk, the operation is done in Class 2 or 3. This means at least three Position reference systems should be selected. This allows the principle of voting logic, so the failing PRS can be found. For this reason, there are also three DP control computers, three gyrocompasses, three MRU’s and three wind sens ors on Class 3 ships. If a single fault occurs that jeopardizes the redundancy, i.e. failing of a thruster, generator or a PRS, and this cannot be resolved immediately, the operation should be abandoned as quickly as possible.To have enough redundancy, enough generators and thrusters should be on-line so the failure of one does not result in a loss of position. This is to the judgement of the DP operator. For Class 2 and Class 3 a Consequence Analyses should be incorporated in the system to assist the DPO in this process.Disadvantage is that a generator can never operate at full load, resulting in less economy and fouling of the engines.The redundancy of a DP ship should be judged by a FMEA study and proved by FMEA trials.[6] Besides that, annual trials are done and normally DP function tests are completed prior to each project.RedundancyRedundancy is the ability to cope with a single failure without loss of position. A single failure can be, amongst others:Thruster failureλλ Generator failurePowerbus failure (when generators are combinedλ on one powerbus)Control computer failureλPositionλ reference system failureReference system failureλFor certain operations redundancy is not required. For instance, if a survey ship loses its DP capability, there is normally no risk of damage or injuries. These operations will normally be done in Class 1.For other operations, such as diving and heavy lifting, there is a risk of damage or injuries. Depending on the risk, the operation is done in Class 2 or 3. This means at least three Position reference systems should be selected. This allows the principle of voting logic, so the failing PRS can be found. For this reason, there are also three DP control computers, three gyrocompasses, three MRU’s and three wind sensors on Class 3 ships. If a single fault occurs that jeopardizes the redundancy, i.e. failing of a thruster, generator or a PRS, and this cannot be resolved immediately, the operation should be abandoned as quickly as possible.To have enough redundancy, enough generators and thrusters should be on-line so the failure of one does not result in a loss of position. This is to the judgement of the DP operator. For Class 2 and Class 3 a Consequence Analyses should be incorporated in the system to assist the DPO in this process.Disadvantage is that a generator can never operate at full load, resulting in less economy and fouling of the engines.The redundancy of a DP ship should be judged by a FMEA study and proved by FMEA trials.[7] Besides that, annual trials are done and normally DP function tests are completed prior to each project.IMCAThe International Marine Contractors Association was formed in April 1995 from theamalgamation of AODC (originally the International Association of Offshore Diving Contractors), founded in 1972, and DPVOA (the Dynamic Positioning Vessel Owners Association), founded in 1990.[8] It represents offshore, marine and underwater engineering contractors. Acergy, Allseas, Heerema Marine Contractors, Helix Energy Solutions Group, Saipem, Subsea 7 and Technip have representation on IMCA's Council and provide the president. Previous presidents are: λ 1995-6 - Derek Leach, Coflexip Stena Offshore1997-8 - Heinλ Mulder, Heerema Marine Contractors1999/2000 - Donald Carmichael,λ Coflexip Stena Offshore2001-2 - John Smith, Halliburtonλ Subsea/Subsea 72003-4 - Steve Preston, - Heerema Marineλ Contractors2005 - Frits Janmaat, Allseas Groupλ(2005 Vice-President - Knut Boe, Technip)While it started with the collection and analysis of DP Incidents,[9] since then it has produced publications on different subjects to improve DP standards. It also works with IMO and other regulatory bodies.References1. ^ IMCA M 141, Guidelines on the Use of DGPS as a Position Reference in DP ControlSystems.2. ^ IMCA M 151, The Basic Principles and Use of Hydroacoustic Position ReferenceSystems in the Offshore Environment.3. ^ IMCA M 170, A Review of Marine Laser Positioning Systems.4. ^ IMCA M 174, A Review of the Artemis Mk V Positioning System.5. ^ IMO MSC/Circ.645, Guidelines for vessels with dynamic positioning systems.6. ^ IMCA M 166, Guidelines on Failure Modes & Effects Analyses (FMEAs).7. ^ IMCA M 166, Guidelines on Failure Modes & Effects Analyses (FMEAs).8. ^ IMCA DP History.9. ^ IMCA M 181, Analysis of Station Keeping Incident Data 1994-2003.External linksIMO, International Maritimeλ OrganizationIMCA, International Marine Contractors AssociationλIMCA DP IntroλNMD, Norwegian Maritime DirectorateλOPL Oilfield Seamanship Series - Volume 9: Dynamic Positioning -λ 2nd Edition by David BrayKongsberg MaritimeλSymmetry,λ Ltd. IDP - Intelligent Dynamic PositioningMarine Technologiesλ LLC∙landho (2008-3-07 13:53:24)動態定位系統設計條件簡介船舶於海上執行任務時,隨時會遭受到風力、洋流力、及海浪力等變化外力的影響而偏離既定的工作範圍,因而必須安置動態定位系統將船舶維持在既定的範圍或航線上。

知识更新第四章船舶通信与导航PPT课件

知识更新第四章船舶通信与导航PPT课件

2021
ห้องสมุดไป่ตู้
11
(三)船舶动力定位 船舶动力定位是一项高新而成熟的技术,是海洋石油和天然气勘探工业快速发 展的必然结果。 动力定位是一种可以不用锚泊而自动保持海上浮动装置固定船位的定位方法, 主要由测量系统、控制系统和推进系统三个主要部分组成,综合利用传感器(陀螺 罗经、风传感器和垂直运动参考系统)、位置参考系统与船舶模型的相关信息进行 运动控制。对于控制器给出的合力、力矩指令,通过推力分配计算以转速、方向角 以及螺距等指令控制安装在船首尾的推进器来固定船位。 动力定位法的优点是不受水深限制,适合于深水海域使用。
2021
3
第三节 船体结构与设备
一、船舶发展趋势(绿色船舶和智能船舶) 随着科学技术的发展,新技术、环境保护意识的提高的将被应用到造船领域, 绿色船舶和智能船舶是船舶发展的趋势。 (一)绿色船舶 绿色船舶系指采用相对先进技术(绿色技术)在其生命周期内能经济地满足其 预定功能和性能,同时实现提高能源使用效率、减少或消除环境污染,并对操作和 使用人员具有良好保护的船舶。 绿色船舶的目标是: (1)环境保护目标是减少船舶对海洋、陆地、大气环境造成污染或破坏; (2)能效目标是减少船舶营运所产生的CO2排放量,提高船舶能效水平; (2)工作环境目标是改善船员工作和居住条件、降低船员劳动强度。
2021
6
二、船型的发展趋势
2021
7
半潜船
地效船
2021
8
三、船舶新设备 (一)散货船舱内水位探测系统 1、规定 总吨位500以上国际航行的所有散货船,均应在货舱、压载舱和干燥处所安装符 合规定要求和型式认可的水位探测器。
2021
9
2、要求 (1)每一货舱内安装水位探测器,当水位达到或高出货舱内底0.5m时应发出一 个声光报警,并在水位高度达到不小于货舱深度15%但不超过2m时也应发出一个声 光报警; (2)对于用作水压舱的货舱,可安装一个报警越控装置; (3)视觉报警器应能将每一货舱中探测到的2种不同的水位明显区分开; (4)防撞舱壁前方的任一压载舱,当舱内的液面达到不超过舱容的10%时发出 声光报警,但应有报警越控装置; (5)除锚链舱以外,任何干燥处所或空舱,延伸至首货舱前方的任何部位,在 水位高出甲板0.1m时应发出声光报警; (6)声光报警器应设于驾驶台; (7)水位探测系统的供电由2个独立电源供应,并有故障报警指示; (8)水位探测的安装应符合规定要求。

动力定位系统介绍

动力定位系统介绍

动力定位系统介绍1、动力定位系统的产生和发展动力定位系统于上世纪70年代后期由美国海军研制成功,起初主要应用于潜水艇支持船、军用海底电缆铺设等作业。

从上世纪80年代初开始,随着北海油田、墨西哥湾油田的大规模开发,动力定位系统被广泛应用于油田守护、平台避碰、水下工程施工、海底管线检修、水下机器人(ROV)跟踪等作业。

尤其是90年代以来,随着海上勘探开发逐步向深水(500m~1500m)和超深水(1500m以上)发展,几乎所有的深水钻井船、油田守护船都装备了动力定位系统。

据初步估计,目前全世界装备动力定位系统的各类船只已超过1 000艘。

2、动力定位系统简述海洋中的船舶因不可避免的受到风、波浪与水流产生的力的影响,船舶在这些环境外力的干扰作用下,将产生六个自由度(纵荡、横荡、升沉、纵摇、横摇、艏摇)运动,而对于定位船舶而言,需要控制的只是水平面内的三个运动,即纵荡(Surge)、横荡(Sway)和艏摇(Yaw)运动。

使用动力定位控制系统能够抵消那些作用在船体上不断变化的阻力,维持操作员指定的位置与航向,或者使船舶沿着需要的轨迹移动。

动力定位控制系统使用来自一个或多个电罗经的数据来控制船舶航向;至少使用一个位置参考系统(如DGPS或声纳)的数据来控制船舶位置,从而进行船舶定位。

风传感可以测量船舶受到的风阻力的大小和方向,但是海流力和波浪力不是测量出来的,而是由船舶数学模型计算得出。

动力定位中的船舶数学模型是由扩展卡尔曼滤波算法建立的,该算法用于估计船舶航向、位置以及在各个方向运动的自由度:纵荡,横荡与艏摇,它合并了估计海洋水流与波浪影响的算法。

但是该数学模型是无法100%准确代表真正的船舶,因此根据位置参考系与传感器的测量值来不断修正该船舶数学模型,这是一个闭环控制过程。

下图是动力定位系统的控制原理图:动力定位系统可以检测与显示船舶的实际航向和位置与期望的航向和位置之间发生偏离的情况,控制器基于这些信息来控制船舶。

动力定位能力评估方法对比分析

动力定位能力评估方法对比分析

基于数学模型和物理原理的分析方法,通过对动力定位系统 的数学模型进行求解,得到动力定位能力的各项指标和参数 。
需要详细的动力定位系统数学模型和准确的参数估计,对系 统的复杂性和精度要求较高。
理论分析方法的优缺点
优点
可以精确评估动力定位系统的性能,对系统的复杂性和精度要求较低。
缺点
需要详细的动力定位系统数学模型和准确的参数估计,对系统的复杂性和精度要求较高,计算量大,需要较高的 理论知识和计算能力。
动力定位能力评估方法对比 分析
汇报人:
日期:
• 动力定位能力评估方法概述 • 数值模拟评估方法 • 实船试验评估方法 • 理论分析评估方法 • 三种评估方法的对比分析 • 实际应用及建议
01
动力定位能力评估方法概述
动力定位能力的定义
动力定位能力是指船舶或海洋工程结构物在环境条件变化下,通过自身动力系统,对位置、姿态等进 行调整的能力。
三种评估方法的应用场景选择
在进行动力定位能力评估时 ,应根据实际需求和海域条 件选择合适的评估方法。
对于需要获取海底地形信息 的场合,如海洋地质调查、 海底资源开发等,侧扫声呐 方法较为适用。
对于一般性的船舶定位和导 航,如海上运输、海上救援 等,DGPS和DR均可以满足 需求。
在一些特殊情况下,如狭水 道、港口航道等需要高精度 定位的区域,DGPS的适用 性更强。而在一些复杂海底 地形区域,如峡谷、礁石等 ,侧扫声呐则更具优势。
建议
建议未来的研究应注重跨学科合作,结合心 理学、生理学、计算机科学等多个领域的知 识和方法,以推动动力定位能力评估方法的 改进和完善。此外,还应对实际应用中的问 题和挑战进行深入研究,为实际应用提供更
加准确、可靠的评估方法。

动力定位系统简介

动力定位系统简介

动力定位系统简介船舶的动力定位系统从70 年代逐渐发展起来,在海洋工程、科学考察等领域有着重要的用途。

随着船舶电力推进的成熟和自动控制理论的发展,动力定位系统的性能也不断提高。

动力定位系统的组成:动力定位系统包括3 个分系统:动力系统、推力器系统和动力定位控制系统。

1.动力系统动力系统一般来说是给整个动力定位系统提供电力的。

一般的船舶电站可兼作动力系统,但应满足一些特殊要求。

输入(船位、控制器推力器; 输出(船位、推力器系统2.推力器系统作为动力定位系统执行部分,常用电动机或柴油机驱动的推进器。

主推进装置(包括其舵系统)可兼作动力定位系统的推力器,在船舶进入动力定位运作模式时,由动力定位系统的控制器进行控制。

为提高定位能力,主推进装置可设计为全回转推进器,例如Z 型推进、SSP 推进等。

一般各推力器的工作组合应产生横向、纵向推力及回转力矩。

3.动力定位控制系统包括控制器和测量系统。

a控制器指的是动力定位系统总的控制部分,一般采用计算机控制的方法。

b测量系统包括位置参照系统、电罗经、风向风速仪、倾角仪等,测量船舶的船位、艏向、纵倾横倾角等船舶状态,以及风向、风力、流速等环境条件,通过接口输入到控制器中。

控制器根据人工输入的船位和艏向,对测量系统提供的数据进行分析和运算,给出推力器的控制指令。

动力定位控制系统执行的功能可总结如下:(1)给出推力器的控制指令。

(2)测量船舶的船位、艏向等船舶状态。

(3)测量风向、风力等环境条件。

(4)接收各种操纵指令的人工输入。

(5)动力定位系统的故障检测及报警。

(6)动力定位系统工作状态的显示。

动力定位系统的系泊试验动力定位系统在进行系泊试验之前,应确认已取得本社颁发的产品证书,并确认布置和安装已严格按本社审批的图纸进行,采用的工艺满足本社有关规定。

动力系统系泊试验动力系统的各组成部分,如发电机、发电机原动机、主配电板等,应满足船舶建造检验的一般要求。

另外还应进行下列检验:a发电机组:一台发电机组不投入运行,并联运行其他发电机组,逐个启动几台功率较大的推力器电动机。

DP_动力定位系统

DP_动力定位系统

先讲DP的介绍:动力定位系统首先在海洋钻井船、平台支持船、潜水器支持船、管道和电缆敷设船、科学考查船和深海救生船上得到了应用,其主要原理是利用计算机对采集来的环境参数(风、浪、流),根据位置参照系统提供的位置,自动地进行计算,控制各推力器的推力大小,使船舶保持艏向和船位。

近年来,随着中国海洋开发事业的不断发展,具有动力定位性能的船舶在国内需求逐步增大。

为了更好地做好船级服务工作,满足国内需求,中国船级社于2000年开始立项对动力定位系统进行专题研究,目前已完成了《动力定位系统检验指南》(以下简称CCS指南)的编写工作。

下面就对CCS指南和世界上主要船级社的动力定位系统规范的内容作一个简单介绍。

一、规范的发展过程自1977年挪威船级社(DNV)出版了第一本动力定位系统试行规范后,英国劳氏船级社(LR)随后也出版了动力定位系统规范。

为了指导船东正确地操作动力定位系统船舶,英国能源部和挪威石油理事会于1983年联合出版了《Guidel ines for the specification and operation of dynamically positioned di ving support vessels》。

至此,动力定位系统方面的技术文件已比较完整。

由于大量的动力定位船舶的使用,而且动力定位系统的操作与船舶的作业安全密切相关,因此引起了IMO海安会的重视,在1994年的IMO 63届海安会上通过了M SC/Circ.645 《Guidelines for Vessels with Dynamic positioning system s》,该通函自1994年7月1日对新船生效。

此后,美国船级社(ABS)、德国船级社(GL)、法国船级社(BV)也相继出版了动力定位规范。

中国船级社于2 002年正式出版第一本动力定位规范。

二、船级符号船级符号是船级社授予船舶的一个等级标志,是保险公司对船舶及货物、工程作业等进行保险的重要依据。

动力定位模型试验-深水钻井船-资料

动力定位模型试验-深水钻井船-资料

试验结果
此次模型试验是成功的,试验结果为详细设计 和今后平台的操作提供了可靠的依据,尤其是 推进器禁用方位角的确定,是其他方法所不可 替代的 。
39
39
谢谢!
40
40
3
3
概述
为了验证平台的自动定位系统的有效性,深水半 潜式钻井船项目组于2019年7月委托荷兰船舶及 海 洋 工 程 研 究 院 ( Maritime ResearchInstitute, 简称MARIN)进行动力定 位水池模型试验。这种用真实的模型螺旋桨安装 在模型平台下,在计算机程序控制下进行动力定 位模型试验,目前在世界上只有荷兰、瑞典等少 数几个国家能够进行,我国目前还没有开展这种 试验。
21
21
试验模型
22
22
CNOOC DDU 动力定位模型试验
概述 试验设施 试验模型 试验工况 试验结果
23
23
试验工况
DDU的动力定位模型试验共做了12种工况: 在钻井作业环境条件下(有效波高6m, 风速45
节,流1.8节,风、浪、流同向),做了3种6 台推进器工作(2台失效)工况和3种8台推进 器工作工况。
10
10
试验设施
11
11
试验设施
12
12
试验设施
13
13
试验设施
Offshore Basin 也可以模拟从各个方向来的风 速。风浪、流可以同向,也可以不同向。总之, 可以模拟各种不同的海洋环境条件。
试验所使用的传感器、模拟元件和测试设备都 是世界一流的。
14
14
试验设施
15
15
CNOOC DDU 动力定位模型试验
24

动力定位系统概况汇总

动力定位系统概况汇总

船舶动力定位概况一、船舶为什么需要“动力定位系统”?长期以来,船舶在近浅海和内陆水域里,人们都是采用抛锚技术来保持船位在水面上相对稳定。

这种定位技术的最大特点就是:锚必须牢固地抓住水下的固定物体(陆基),并且一旦锚通过锚链将船舶的位置固定后,船上的推进设备及其辅助设施和相应的控制系统便停止运行,完全处于停电(电力推进)和停油、停气(柴油机推进)工况。

但是,随着地球上人口的急剧增加,科学技术的飞速发展,人们的生活水平日益提高,世界对能源的需求量越来越大。

陆地上资源的开采和供应日趋极限,甚至出现紧缺的态势。

这就迫使世界各国必须把经济发展的重点转移到海洋上。

因为占地球总面积2/3以上的浩瀚大海里,有极其丰富的海水化学资源、海底矿产资源、海洋大量资源和海洋生物资源。

可以预料,21世纪将是人类全面步入海洋经济的时代,人们对海洋的探索和开发的范围将越来越广,对海洋的探索和开发的手段也越来越先进,对海洋探索和开发的领域由近海浅海日趋向远海深海发展。

目的只有一个,就是将浩瀚大海里的资源开发出来,供人类充分使用。

因而,世界各国便随之研究开发出各式各样的、不同类型的深远海作业的浮式生产系统,诸如半潜式钻井平台、多用途石油钻井平台供应船、科学考察船和海洋资源调查船等等。

这些浮式生产作业系统有一个共同的特点:就是在浩瀚深邃的大海上,能够按照人们的要求将其位置稳定在地球的某个坐标范围里;就像抛锚定位那样,将这些浮动的作业体牢牢地锁定在人们期望的浩瀚深邃的大海的某个位置上。

这便进一步诱发了世界各国对深远海作业的浮式生产系统的定位技术和系泊方式的研究。

在一般的近浅海水深情况下,浮式生产系统的系泊定位主要采用锚泊系统。

但是,随着水深的增加,锚泊系统的抓底力减小,抛锚的困难程度增加。

同时,锚泊系统的锚链长度和强度都要增加,进而使其重量剧增,这必然使海上布链抛锚作业变得更加复杂,其定位功能也会受到很大的限制,定位的效果也不尽人意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
艏向测量设备:一般用来测量艏向 常见的艏向测量设备有磁罗经和电罗经,现在又在 发展以激光陀螺为传感器的新型导航设备。
罗经的基本原理
结构及原理(测量系统)
• 位置参考系统:
全球定位(GPS) 过接收卫星所发射的信号,得到卫星所处的位簧并计算出卫星与 用户的相对位置,从而最终确定接收机本身的位置。 世界上的卫星系统:GPS,俄罗斯的GLONASS卫星定位系统 , 北斗卫星导航定位系统,伽利略卫星导航定位系统。
结构及原理(动力系统)
• 主要由动力机、分配网络和控制系统组成 ,提供执行部分对抗环境
扰动需要的能量。
• 动力机主要是柴油机、燃气轮机。 • 动力定位系统通常还配备一个不间断电源来预防电力故障,该电源
具有不受船舶交流电短期终端或波动影响,可以为动力定位系统中 的计算机、控制台、报警器和测量系统供电。
发展及现状

第1代动力定位系统的控制器有模拟式和数字式两种,一般无冗 余技术和风前馈控制技术,位置传感器单一。
环境因素: 风、浪、流 位置与艏 向指令
控制器
推力器
船舶特性
位置测量系统
动力定位系统原理图
发展及现状

发展及现状

第2代动力定位系统,主要采用16位数字计算机作为数字控制器, 系统中普遍采用了抗风前馈控制和冗余技术,位置传感器由单一型 发展成综合型,增加了多个测量装置。
动方法将转速/螺距设置到零。
• 对于DP-2,当船舶出现严重故障,控制系统应自动转换至备用计算机系统。 • 对于DP-3 系统应设有一个自动备用系统,该备用系统的位置与主系统之间
采用A-60级分隔隔离。至少应有一个位置参照系统和一台罗经与备用系统 相连接,并独立于主控制系统。备用系统应由操作者在主动力定位控制站 或备用控制站启动,这种转换应确保任何单个故障不会使主控制系统和备 用系统都不能工作。(也就是说,DP-3可以简单的理解为,2套系统,如果 一套系统失效,另外一套系统可以继续工作)
结构及原理(测量系统)
• 环境参考系统:
风传感器:主要测量风速和风向
既可以用模拟量输出,也可以用数字量输出。 模拟信号可以是电压也可以是电流。
新的风速风向仪
结构及原理(测量系统)
• 环境参考系统:
垂直参考单元(垂直基准传感器):主要测量当地垂线和船舶基准面之间的夹角。
结构及原理(测量系统)
• 环境参考系统:
发展及现状
• 我国对DP系统的研究开展得较晚,研究力量集中在高校和科研院所。 • 我国自主研制和建造的‚大洋一号‛科考船(下图),是我国首艘安
装DP系统的船舶。
发展及现状
• 2014年10月,哈尔滨工程大学牵头研发的‚DP3 动力定位系统研制‛
项目通过了工信部验收。
目录
• 动力定位系统简述 • 发展及现状 • 结构及原理 • 主要应用领域 • 展望
结构及原理(推力系统)
槽道推进器
主推进器
全回转推进器
结构及原理(推力系统)
推力器 方位指令 方位 控制器 方位 电动机 方位 传感器 机械联接
r
螺旋桨
全回转推进器涉及推力大小和方向控制
结构及原理(推力系统)
• 推力系统是动力定位系统的执行部分。 • 要考虑推进器的许多因素,如反应速度、推力器尺寸、可靠性、效
控制系统
位置参考系统: 1、差分全球定位 2、激光定位 3、水声定位 4、张紧绳定位
计算机
动力系统: 1、柴油机 2、交流发电机 3、配电板 4、电站管理系统 5、不间断电源
推力系统: 1、主推进器 2、侧推进器 3、全回转推进器
结构及原理(测量系统)
• 环境参考系统:
风传感器:主要测量风速和风向(在动力定位系统中通过前馈控制技术补偿补偿风的扰动) 有一个楔形风标指示,与风标相连的环 形电位器上的电压将风向转换为电信号输出, 输出的电压与风速成正比。 缺点:精度通常不能满足动力定位的需要 DPS需要能提供连续变化的风向及在DPS工 作环境中全范围风速风向仪 风速风向仪
结构及原理(测量系统)
• 位置参考系统:
激光定位 能够实现近距离、高精度的定位与跟踪。
结构及原理(测量系统)
• 位置参考系统:
水声探测系统 利用船底换能器与海底应答器在水中发射、接收、转发声信号来进行水下定位。 由于声能在水中的传播特性在很大程度上影响着水声定位系统的性能。这类系统 在较长的一段时间内有比较好的精确度,但会有瞬时或短时间段的干扰。 依据声学位置基准形式的不同,可分为短基线系统 、长基线系统 、超短基线系 统等。
操作台
结构及原理(控制系统)
动力定位系统框图
环境因素: 风 波浪 海流
环境力
位置与艏 向指令 自动控制器 推力 指令 推力器系统 推力 器力
+
×
+
船舶动 力特性
推力器状态 位置与艏 向传感器
位置与艏向
目录
• 动力定位系统简述 • 发展及现状 • 结构及原理 • 主要应用领域 • 展望
主要应用领域
率、维护是否方便以及噪声高低等。
• 由动力源、推力机构、推力控制系统、反馈或性能传感器等组成。
结构及原理(推力系统)
推进器布局 • 船舶所受的外界作用力,要求推进器的作用来平衡。 • 推进器的数目一般多于5 个。但不是越多越好,这要考虑到推进器
与船体以及推进器之间的互相影响等因素。
结构及原理(推力系统)
结构及原理(测量系统)
• 位置参考系统:
张紧绳系统示意图
结构及原理(测量系统)
• 位置参考系统:
张紧绳系统框图
绳索储存 动力定 位系统 测得的角 角度传 感器 索位跟踪器和传 感器万向机构 横张力系统
弦外滑车 控制盘 船
海水
张紧索
海底
结构及原理(测量系统)
• 位置参考系统:
张紧绳系统特点 适用于静态工作位置 受张紧索长度限制 电液绞车控制 甲板安装,船舷90° 重物用于稳定到海床的绳索 测量垂直角在30°范围内(船舶移动位置)
结构及原理
• • • • •
动力定位系统分如下四个部分: 1、测量系统(环境参考系统,位置参考系统) 2、控制系统 3、动力系统
4、推力系统
结构及原理
全球 卫星 定位 无线 电定 位 水声 定位 系统 电 罗 经 运动 参考 单元 风向 风速 仪 张 绳 测量部分
控制台,控制柜 控制部分 执行部分
• 动力定位系统简述 • 发展及现状 • 结构及原理 • 主要应用领域 • 展望
发展及现状
• 第1代DP系统的研发始于1960年。 • 钻井船‘Eureka’号是世界上第一艘基于自动控制原理设计的DP船
舶。
• 该船配备的DP模拟系统与外界张紧绳系统相连。该船除装有主推力
系统外,在还在船首和船尾装有侧推力系统,在船身底部也安装有 多台推进器。
• 包括操作台和控制柜 • 操作台提供动力定位系统的人机操作接口,含操纵杆、键盘、显示
器、计算机等。负责动力定位系统的操纵和控制。
• 控制柜一般配备动力定位系统必要的实时处理器,负责测量信号的
采集和处理,通过相应的算法,对船舶六个自由度运动分量以及风 力风向进行计算,并对船舶各主副推力器的推力进行分配,从而控 制船舶的运动 。
• 推进器包括主推进螺旋桨、舵、艏艉辅助推力装置(通常用侧向推进
器和回转推进器)。
• 辅助推力装置一般有侧向推进器和全回转推进器两种,两者各有其
特点。侧向推进器和全回转推进器均有固定螺距与可调螺距两种, 均可通过改变螺距或改变转速来改变推力。
结构及原理(推力系统)
• 对于DP-1,当船舶出现严重故障,控制系统应停止工作,并通过自动或手
目录
• 动力定位系统简述 • 发展及现状 • 结构及原理 • 主要应用领域 • 展望
动力定位系统简述
• 定义:动力定位就是船舶或海上平台不借助于锚泊系统的作用,而
是利用自身装备的各类传感器测出船舶的运动状态与位置变化,以 及外界风力、波浪、海流等扰动力的大小与方向,再采用现代控制 理论,建立船舶与推力器的数学模型,并采用多种控制方法,利用 计算机进行复杂的实时计算,对船舶各主副推力器的推力进行分配, 控制船舶推进螺旋桨和推力器产生适当的推力与力矩,以抵消海洋 扰动力和力矩,减少船舶的横荡、纵荡和艏向角,保持船舶在海面 某一位置的控制技术。
资料提到的动力定位 船舶推力器布置
操作台 环境参考系统: 1、风传感器 2、垂直参考单元 3、电罗经
控制系统
位置参考系统: 1、差分全球定位 2、激光定位 3、水声定位 4、张紧绳定位
计算机
动力系统: 1、柴油机 2、交流发电机 3、配电板 4、电站管理系统 5、不间断电源
推力系统: 1、主推进器 2、侧推进器 3、全回转推进器
发展及现状

发展及现状
• 从20世纪80年代开始,动力定位系统已广泛应用于海洋考察船、钻
探船、打捞船、采矿船、布缆船、敷管船、挖泥船、消防船、起重 船、潜水支持船、浮式采储油系统(FPSO)、海上供应船、特种工作 船、高级游船、穿梭油轮等特种船舶,在军事方面也应用于布雷舰、 扫雷舰、侦察船、航海保障调查船、潜艇母船、救助船、海上补给 船等各类船舶上。
结构及原理(测量系统)
• 位置参考系统:
水声探测系统示意图
结构及原理(测量系统)
• 位置参考系统:
张紧绳系统 张紧绳系统基本上是一种机械系统。此系统在海底固定点与船上绞车之间设有恒张力的张绳。 通过测量张紧绳的倾角与长度来确定船舶水平位移,然后将测量值,作为位置信号传递给动力 定位系统。 张紧绳系统中三个最重要的基本元件是张紧绳,绳位跟踪器和传感器万向机构,倾斜仪(角度 传感器) 张紧绳是早期动力定位系统采用的一种位置基准系统,一般在船舶定位模式或小范围运动时使用。
相关文档
最新文档