七年级数学上册有理数及其运算有理数的加减法(提高)练习北师大版

合集下载

北师大版七上期末提高复习(一)有理数及其运算

北师大版七上期末提高复习(一)有理数及其运算

有理数及其运算复习【知识回顾】1、有理数的分类:2、数轴三要素:(1)________________(2)______________(3)______________3、__________的相反数等于它本身;__________的相反数大于它本身;__________的相反数小于它本身;__________的相反数不大于它本身;__________的相反数小于它本身.4、若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .5、_________的绝对值等于它本身;__________的绝对值等于它的相反数; __________的绝对值不等于它本身;绝对值最小的数是 ;绝对值相等的两个数的关系_____________6、运算顺序:先算 ,再算 ,最后算 ,如果有 ,就先算7、有理数乘方:求n 个相同因数积的运算,叫做乘方,用字母表示: an na a a a a 个=⨯⨯⨯⨯,其中,a 为 ,n为 ,乘方的结果叫做 .乘方的符号规律:正数的任何次幂都是 ,负数的奇次幂是 .负数的偶次幂是________;正数的任何次幂都是_______.8、平方数等于它本身的数________;立方等于它本身的数________;平方相等的两个数的关系___________ 9、有理数运算的常见简便方法(1)一般把 的数加在一起. (2)遇有分数可把 结合起来相加. (3)遇有小数应当把相加得 的小数结合起来. (4)互为 两个数加在一起.(5)在有理数乘法运算中,常把小数化成 ,带分数化成 ,以简化运算.【有理数练习】一、填空题1.下列说法中,正确的是( )A 、整数集合中仅包括正整数和负整数B 、零是正整数C 、分数都是有理数D 、正整数都是自然数 2. 下列说法正确的是( )A a 表示一个正数B a 表示一个负数C a 表示一个整数D a 可以表示一个负数3 一个数的相反数是非负数,这个数是( )A 负数B 非负数C 正数D 非正数 4. 下列各式中,正确的是( )A -|-16|>0 B |0.2|>|-0.2| C -47>-57D |-6|<05、有理数22-,3)2(-,2--,)21(+-按从小到大的顺序排列是( ) A. 3)2(-<22-<2--<)21(+- B. )21(+-<2--<22-< 3)2(-C. 2--<)21(+-<22-<3)2(- D. 22-<3)2(-<)21(+-<2--6. 若|a|+|b|=0,则a 与b 的大小关系是( )A a=b=0B a 与b 不相等C a,b 异号D a,b 互为相反数 7. 绝对值等于其相反数的数一定是( )A 负数B 正数C 负数或零D 正数或零 8 下列叙述正确的是( )A 若|a|=|b|,则a=bB 若|a|>|b|,则a>bC 若a<b|,则|a|<|b|D 若|a|=|b|,则a=±b 9 绝对值大于2,而小于5的所有正整数之和为( ) A 7 B 8 C 9 D 1010. 下列说法① 如果a=-13,那么-a=13, ② 如果a=-1,那么-a=-1, ③ 如果a 是负数,那么-a 是正数, ④如果a 是负数,那么1+a 是正数, 其中正确的是( )A ①③B ①②C ②③D ③④ 11.一个数的相反数小于它本身,这个数是( )A 任意有理数B 零C 负有理数D 正有理数 12 如果a 和2b 互为相反数,且b ≠0,那么a 的倒数是( )A -12bB 12bC -2bD 2b13.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶 14、有理数c b a ,,在数轴上的位置如图所示,则化简b a c b a --++的结果是( ) A 、c B 、a C 、a c 2- D 、c b -2二 填空题1. 如果a -3与a+1互为相反数,那么a= .2. -323的相反数是 , -(-12)的相反数是 , 是13的相反数, 是13的倒数.3. 如果|2x -4|=2,则x= ;4. 绝对值小于2.5的整数有 ,它们的积为 ;5. 12的相反数的绝对值是 ,|-12|的倒数的相反数是 , -12的绝对值的相反数是 . 6. 一个点从原点开始,先向右移动1个单位,再向左移动5个单位后到达终点,这个终点表示的数是 .7. 某次数学测验共20道选择题,规则是:选对一道的5分,选错一道的-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 . 8若a 与b 互为相反数,则代数式73a+73b -5= .a bc9.小名在写作业时不甚将一滴钢笔水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为10. 如图是一个正方体盒的展开图,若在其中的三个正方形A 、B 、C 内分别添入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A 、B 、C 内的三个数之积为 .(第9题图) (第10题图)11某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出后的第n 天(n 是大于2的自然数)应收租金__________元。

北师大版七年级数学上册章节同步练习题(全册-共57页)

北师大版七年级数学上册章节同步练习题(全册-共57页)

北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。

5.⼋棱柱有个⾯,个顶点,条棱。

6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。

7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。

(2)这个棱柱共有条棱,所有棱的长度是。

提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)

一、选择题1.有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣+∣a+b∣−∣b−c∣化简结果为( )A.2a+b−c B.2a+b+c C.b+c D.3b−c2.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点A表示的数是a,则点C表示的数是( )A.2a B.−3a C.3a D.−2a3.一个点在数轴上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是( )A.6B.0C.−6D.0或64.已知a,b,c为有理数,且a+b+c=0,b≥−c>∣a∣,且a,b,c与0的大小关系是( )A.a<0,b>0,c<0B.a>0,b>0,c<0C.a≥0,b<0,c>0D.a≤0,b>0,c<05.当式子∣x+2∣+∣x−5∣取得最小值时,x的取值范围为( )A.−2≤x<5B.−2<x≤5C.x=2D.−2≤x≤56.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8⋯新运算log 22=1log 24=2log 28=3⋯指数运算31=332=933=27⋯新运算log 33=1log 39=2log 327=3⋯根据上表规律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 212=−1,其中正确的是 ( ) A .①② B .①③ C .②③ D .①②③9. 【例 9−2 】已知 ∠AOB =60∘,∠AOC =13∠AOB ,射线 OD 平分 ∠BOC ,则 ∠COD 的度数为( ) A . 20∘ B . 40∘ C . 20∘ 或 30∘ D . 20∘ 或 40∘10. 下面四个数中,最大的数为 ( ) A . (−1)2021B . −∣−2∣C . (−2)3D . −12二、填空题11. 若 a +b +c >0,且 abc <0 则 a ,b ,c ,中有 个正数.12. 电子跳蚤落在数轴上的某点 k 0,第一步从 k 0 向左跳 1 个单位到 k 1,第二步由 k 1 向右跳 2个单位到 k 2,第三步由 k 2 向左跳 3 个单位到 k 3,第四步由 k 3 向右跳 4 个单位到 k 4,⋯,按以上规律跳了 140 步时,电子跳蚤落在数轴上的点 k 140 所表示的数恰是 2019.则电子跳蚤的初始位置 k 0 点所表示的数是 .13. 现定义某种运算“∗”,对给定的两个有理数 a ,b (a ≠0),有 a ∗b =a −a b ,则 (−3)∗2= .14. 如图所示是计算机程序计算,若开始输入 x =−1,则最后输出的结果是 .15. 已知实数 a ,b ,定义运算:a ⋇b ={a b ,a >b 且 a ≠0b a,a ≤b 且 a ≠0,若 a ⋇(a −3)=1,则 a = .16. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯根据你发现的规律写出272019的末位数字是.17.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.计算下列各式的值.(1) −3−(−8)−(+7)+5.(2) 49÷74×(−47)÷(−16).(3) 7−(156−23−34)÷124.(4) −32÷(−3)2+3×(−2)+∣−1∣.20.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.21.已知两点A,B在数轴上,AB=9,点A表示的数是a,且a与(−1)3互为相反数.(1) 写出点B表示的数;(2) 如图1,当点A,B位于原点O的同侧时,动点P,Q分别从点A,B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P,Q所表示的数;(3) 如图2,当点A,B位于原点O的异侧时,动点P,Q分别从点A,B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当∣OM−ON∣=2时,求动点P,Q运动的速度.22.【背景知识】数轴上A点,B点表示的数为a,b,则A,B两点之间的距离AB=∣a−b∣,.若a>b,则可简化为AB=a−b,线段AB的中点M表示的数为a+b2【问题情境】已知数轴上有A,B两点,分别表示的数为−10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) A,B两点的距离为,线段AB的中点C所表示的数;(2) 点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3) P,Q两点经过多少秒会相遇?23.探究规律,完成相关题目.定义“∗”运算:(+2)∗(+4)=+(22+42),(−4)∗(−7)=+[(−4)2+(−7)2],(−2)∗(+4)=−[(−2)2+(+4)2],(+5)∗(−7)=−[(+5)2+(−7)2],0∗(−5)=+(−5)∗0=(−5)2,(+3)∗0=0∗(+3)=(+3)2,0∗0=02+02=0.归纳∗运算的法则(用文字语言叙述):(1) 两数进行∗运算时,.特别地,0和任何数进行∗运算,或任何数和0进行∗运算,.(2) 计算:(−3)∗[0∗(+2)]=.(3) 是否存在有理数m,n,使得(m+1)∗(n−2)=0,若存在,求出m,n的值,若不存在,请说明理由.24.若有理数x,y满足∣x∣=5,∣y∣=2,且∣x+y∣=x+y,求x−y的值.25.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1) 对于数阵A,2∗3的值为.若2∗3=2∗x,则x的值为.(2) 若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:(a∗b)∗c=a∗c.则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”你的结论:(填“是”或“否”).②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值.③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案一、选择题1. 【答案】D【解析】观察数轴可得:−1<a<0<b<c,∣a∣<∣b∣<∣c∣,∴∣a∣+∣b∣+∣a+b∣−∣b−c∣=−a+b+a+b−(c−b)=3b−c.【知识点】绝对值的化简、利用数轴比较大小2. 【答案】B【解析】∵OA=OB,点A表示的数是a,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a.【知识点】数轴的概念3. 【答案】D【解析】∵该点距离原点3个单位,∴该点表示的数是3或−3,①若该点表示的数是3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=6;②若该点表示的数是−3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=0;故选D.【知识点】绝对值的几何意义4. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.【知识点】绝对值的几何意义、利用数轴比较大小、有理数的加法法则及计算5. 【答案】D【解析】利用数轴,设A点表示的数为−2,B点表示的数为5,P点表示的数为x,则∣x+2∣+∣x−5∣=PA+PB,∴当P在A,B之间时,PA+PB最小,∴当−2≤x≤5时,∣x+2∣+∣x−5∣取得最小值.【知识点】绝对值的几何意义6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.【知识点】绝对值的几何意义7. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简8. 【答案】B【知识点】有理数的乘方9. 【答案】D【解析】当OC在∠AOB内时,如图1,则∠BOC=∠AOB−∠AOC=60∘−13×60∘=40∘,∴∠COD=12∠BOC=20∘;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60∘+13×60∘=80∘,∴∠COD=12∠BOC=40∘.综上,∠COD=20∘或40∘.故选:D.【知识点】角的计算10. 【答案】D【解析】 (−1)2021=−1;−∣−2∣=−2;(−2)3=−8;且 −8<−∣−2∣<(−1)2021<−12, ∴ 最大的数是 −12,故选D .【知识点】有理数的乘方、绝对值的化简二、填空题 11. 【答案】 2【解析】 ∵ 有理数 a ,b ,c 满足 a +b +c >0,且 abc <0, ∴a ,b ,c 中负数有 1 个,正数有 2 个. 【知识点】有理数的加法法则及计算、有理数的乘法12. 【答案】 1949【解析】由题意可知:k 140=k 0−1+2−3+4−⋯−139+140=2019, 即 k 0+(−1+2)+(−3+4)+⋯+(−139+140)=2019, k 0+1+1+⋯+1⏟70 个 1=2019,∴k 0+70=2019,解得:k 0=1949.则电子跳蚤的初始位置 k 0 点所表示的数是 1949. 【知识点】有理数的加法法则及计算13. 【答案】 −12【解析】 ∵a ∗b =a −a b , ∴(−3)∗2=(−3)−(−3)2=(−3)−9=−12.【知识点】有理数的乘方14. 【答案】−22【解析】把x=−1代入计算程序中得:(−1)×6−(−2)=−6+2=−4>−5,把x=−4代入计算程序中得:(−4)×6−(−2)=−24+2=−22<−5,则最后输出的结果是−22.【知识点】有理数的乘法15. 【答案】3或±1【解析】∵a>a−3,a⋇(a−3)=1,根据题中的新定义得:a a−3=1,∴a−3=0或a=1或a=−1,∴a=3或±1.【知识点】有理数的乘方16. 【答案】3【解析】272019=(33)2019=36057,末位的循环为3,9,7,1,6057÷4=1514⋯1,所以末位为3.【知识点】有理数的乘方17. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8,第二次输出结果为:4,第三次输出结果为:2,第四次输出结果为:1,第五次输出结果为:4,第六次输出结果为:2,第7次输出结果为:1,第8次输出结果为:4,由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的加法法则及计算、有理数的乘法三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 原式=−3+8−7+5=5−7+5=−2+5=3.(2) 原式=49×47×47×116=1.(3) 原式=7−(116−23−34)×24=7−(116×24−23×24−34×24) =7−(44−16−18)=7−10=−3.(4) 原式=−9÷9+(−6)+1 =−1−6+1=−6.【知识点】有理数的除法、有理数的加减乘除乘方混合运算、有理数的乘法20. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所到的点表示为−17,3秒钟P点运动距离为3×1=3,又−10+3=−7,PQ两点距离为−7−(−17)=10,∴Q点出发3秒后所到点表示数为−17,此时P,Q两点的距离为10.【知识点】数轴的概念21. 【答案】(1) ∵a与(−1)3互为相反数,∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示;②当点A、点B在原点的异侧时,点B所表示的数为1−9=−8,如图2所示.故点B所表示的数为10或−8.(2) 当点A,B位于原点O的同侧时,点B表示的数是10.设点Q的运动速度为x,则点P的速度为2x.∵3秒后两动点相遇,∴3(x+2x)=9,解得:x=1.∴点Q的运动速度为1,则点P的速度为2.运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9,解得:t=73;∴点P表示的数为:1+2×73=173,点Q表示的数为:10−73=233;②相遇后,再运动y秒,P,Q两点相距2,由题意有:y+2y=2,解得:y=23.∴点P表示的数为:1+3×2+23×2=253,点Q表示的数为:10−3×1−23×1=193.(3) 根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度.∴点Q的运动速度为:9÷5=1.8.设点P的速度为v,∵∣OM−ON∣=2,∴∣9+1−(5v+1)∣=2,解得:v=75或115.∴点P的速度为75或115.【知识点】数轴的概念、相遇问题22. 【答案】(1) 18;−1(2) −10+5t;8−3t(3) 依题意有5t+3t=18,解得t=94.故P,Q两点经过94秒会相遇.【解析】(1) A,B两点的距离为8−(−10)=18,线段AB的中点C所表示的数[8+(−10)]÷2=−1.(2) 点P所在的位置的点表示的数为−10+5t,点Q所在位置的点表示的数为8−3t(用含t的代数式表示).【知识点】绝对值的几何意义23. 【答案】(1) 同号得正、异号得负,并把两数的平方相加;等于这个数得平方(2) −25(3) ∵(m+1)∗(n−2)=0,∴±[(m+1)2+(n−2)2]=0,∴m+1=0,n−2=0,解得m=−1,n=2,即m=−1,n=2即为所求.【解析】(1) 由题意可得:两数进行∗运算时,同号得正,异号得负,并把两数的平方相加0和任何数进行运算,或任何数和0迸行∗运算,等于这个数的平方.(2) (−3)∗[0∗(+2)]=(−3)∗(+2)2=(−3)∗(+4)=−[(−3)2+(+4)2]=−25.【知识点】有理数的乘方24. 【答案】∵∣x∣=5,∴x=±5,又∣y∣=2,∴y=±2,又∵∣x+y∣=x+y,∴x+y≥0,∴x=5,y=±2,当x=5,y=2时,x−y=5−2=3,当x=5,y=−2时,x−y=5−(−2)=7.【知识点】有理数的减法法则及计算25. 【答案】(1) 2;1或2或3(2) ①是.② ∵1∗2=2∴2∗1=(1∗2)∗1,∵(a∗b)∗c=a∗c,∴(1∗2)∗1=1∗1,∵a∗a=a,∴1∗1=1,∴2∗1=1.③方法一:不存在理由如下:若存在满足交换律的"有趣的”数阵,依题意,对任意的a,b,c有:a∗c=(a∗b)∗c=(b∗a)∗c=b∗c,这说明数阵每一列的数均相同.∵1∗1=1,2∗2=2,3∗3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1∗2=2;2∗1=1,与交换律相矛盾,因此,不存在满足交换律的“有趣的”数阵.【解析】(1) 由题意可知:2∗3表示数阵,第2行第3列所对应的数是2,∴2∗3=2.∵2∗3=2∗x,∴2∗x=2,由题意可知:数阵第1行中3列数均为1,∴x=1,2,3.(2) 方法二:不存在理由如下:由条件二可知,a∗b只能取1,2或3,由此可以考虑a∗b取值的不同情形.例如考虑1∗2:情形一:1∗2=1.若满足交换律,则2∗1=1,再次计算1∗2可知:1∗2=(2∗1)∗2=2∗2=2,矛盾.情形二:1∗2=2,由(2)可知,2∗1=1,1∗2≠2∗1,不满足交换律,矛盾.情形三:1∗2=3,若满足交换律,即2∗1=3,再次计算2∗2可知:2∗2=(2∗1)∗2=3∗2=(1∗2)∗2=1∗2=3,与2∗2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.【知识点】有理数的乘法。

2024年北师大版七年级上册数学第二章有理数及其运算培优提升专题5:有理数的混合运算

2024年北师大版七年级上册数学第二章有理数及其运算培优提升专题5:有理数的混合运算

·数学
13.(2023珠海期末)某市出租车采取“时距并计”的方式收费, 具体收费标准如下表:
起步价(3千米 超过3千米部分每千米费 等候费(不足1分钟以1分钟
以内)
用(不足1千米以1千米计) 计)
10元
2.6元
等候的前4分钟不收费,之 后每2分钟1元
某日上午,出租车司机小李的运营线路全是在某条东西走向
1 2 024
-f(2 024)=
1
.
·数学
8.(创新题)若“三角”
表示运算a-b+c,“方框”
表示运算x-y+z+w,求: × 表示的运算,并计
算结果.
解:根据题意,得
×

1 4

1 2

1 6
×(-2-3-6+3)
=-112×(-8)=23.
9.(创新题)规定运算:a★b=-3ab-1. (1)求2★(-3)的值;
A.a+b
B.b-a
C.ba
D.ab
·数学
5.(创新题)规定符号(a,b)表示a,b两个数中较小的一个,符
号[a,b]表示a,b两个数中较大的一个.例如(2,1)=1,
[2,1]=2.请计算:(-2,3)+

2 3
,-
3 4

-83
.
·数学
6.(创新题)有个填写运算符号的游戏:在“1□2 □ 6 □ 9” 中的每个□内,填入+,-,×,÷中的某一个(可重复使 用),然后计算结果. (1)计算:1+2-6-9;
第二章 有理数及其运算
培优提升专题5:有理数的混合运算
◆类型1 有理数中的直接计算
1.(2023广州期末)下列有理数计算正确的是( B )

北师大版数学七年级上册《2.4有理数的加法》同步练习含答案

北师大版数学七年级上册《2.4有理数的加法》同步练习含答案

北师大版数学七年级上册 第二章 有理数及其运算 2.4 有理数的加法同步练习题1. 若a 与1互为相反数,则|a +1|等于()A .-1B .0C .1D .22. 计算:|-5+3|的结果是( )A .-2B .2C .-8D .83. 下列运算正确的有( )①(-2)+(-2)=0;②(-6)+(+4)=-10;③0+(-5)=-5; ④(+56)+(-16)=23;⑤-(-34)+(-734)=-7.A .1个B .2个C .3个D .4个4. 在一条东西方向的跑道上,小亮先向东走了8 m ,记作“+8 m ”,又向西走了10 m ,此时他的位置可记作()A .+2 mB .-2 mC .+18 mD .-18 m5. 一天早晨的气温是-7 ℃,中午的气温比早晨上升了11 ℃,中午的气温是()A .11 ℃ B.4 ℃ C.18 ℃ D.-11 ℃6. 在5,-5,-6这三个数中,任意两数之和的最大值是()A .0B .-1C .11D .-117. 若两个有理数的和为负数,那么这两个有理数()A .一定是负数B .一正一负,且负数的绝对值大C .一个为零,另一个为负数D .至少有一个为负数8. 有理数a ,b 在数轴上的位置如图所示,则a +b 的值()A.大于0 B.小于0 C.小于a D.大于b9. 两个有理数相加,如果和比其中任何加数都小,那么这两个加数()A.都是正数 B.都是负数C.互为相反数 D.异号10. 若b=-5,则a,a+(-b),a+b中最大的是()A.a B.a+(-b) C.a+b D.还要看a的符号才能确定11. 一个数是-10,另一个数比-10的相反数小2,则这两个数的和为() A.18 B.-2 C.-18 D.212. 下列结论不正确的是()A.若a>0,b>0,则a+b>0B.若a<0,b<0,则a+b<0C.若a>0,b<0,且|a|>|b|,则a+b>0D.若a<0,b>0,且|a|>|b|,则a+b>013. 已知a>b且a+b=0,则()A.a<0 B.b>0 C.b≤0 D.a>014. 计算:(1)(+2)+(+3)=____;(2)(-3)+(-5)=____.15. 如图,数轴上点A,B所表示的两个数的和的绝对值是____.16. 已知两个数是15和-21,那么这两个数和的绝对值是____,绝对值的和是____.17. 计算:|-2|+2=____.18. 已知a,b在数轴上的位置如图所示,且|a|=2,|b|=1,求a+b的值.19. 下表列出了几个城市与北京的时差(带“+”号的数表示同一时刻比北京时间早的小时数).城市时差(小时)伦敦-8华盛顿-13东京+1开罗-6列式计算解答下列问题:(1)如果现在北京时间是8:00时,那么现在东京是什么时间?(2)如果现在北京时间是15:00时,那么现在华盛顿是什么时间?(3)如果现在伦敦时间是12:00时,那么现在北京是什么时间?20. 若|a-2|与|b+5|互为相反数,求a+b的值.参考答案:1---13 BBCBB ADADB BDD14. (1) +5(2)-815. 116. 6 3617. 418. 解:由数轴可知,a<0,b>0.而|a|=2,|b|=1.所以a=-2,b=1.所以a+b=(-2)+1=-119. 解:(1)8+1=9.东京是9:00(2)15+(-13)=2.华盛顿是凌晨2:00(3)12+8=20,北京是20:0020. 解:因为|a-2|≥0,|b+5|≥0,所以:a-2=0,b+5=0,即:a=2,b=-5,a+b=2+(-5)=-3。

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章  有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)2.1 有理数基础题知识点1 认识正数与负数1.(连云港中考)下列各数中;为正数的是(A)A .3B .-12C .-2D .02.(临沂中考)四个数-3;0;1;2;其中负数是(A)A .-3B .0C .1D .2 3.在-1;0;1;2这四个数中;既不是正数也不是负数的是(B) A .-1 B .0 C .1 D .24.下列各数:-101.2;+18;0.002;-60;0;-45;+3.2;属于正数的有+18;0.002;+3.2;属于负数的有-101.2;-60;-45.知识点2 用正、负数表示具有相反意义的量5.(咸宁中考)冰箱冷藏室的温度零上5 ℃;记作+5 ℃;保鲜室的温度零下7 ℃;记作(B) A .7 ℃ B .-7 ℃ C .2 ℃ D .-12 ℃ 6.下列不具有相反意义的是(C) A .前进5 m 和后退5 m B .节约3 t 和浪费3 tC .身高增加2 cm 和体重减少2 kgD .超过5 g 和不足5 g7.若火箭发射点火前5秒记作-5秒;则火箭发射点火后10秒应记作(D) A .-10秒 B .-5秒 C .+5秒 D .+10秒8.如果+80 m 表示向东走80 m;那么-60 m 表示向西走60__m . 知识点3 有理数的概念及分类9.在0;1;-2;-3.5这四个数中;为负整数的是(C) A .0 B .1 C .-2 D .-3.510.有理数可按正、负性质分类;也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数 11.下列各数:3;-5;-12;0;2;0.97;-0.21;-6;9;23;85;1;其中正数有7个;负数有4个;正分数有2个;负分数有2个.12.如图是数学果园里的一棵“有理数”知识树;请仔细辨别分类;把各类数填在它所属的相应横线上.中档题13.在数-5;3;0;-32;100;0.4中;非负数有(A)A .4个B .3个C .2个D .1个 14.下列说法正确的是(D) A .+2是正数;但3不是正数 B .一个数不是正数就是负数 C .含有负号的数就是负数 D .-0.25是负分数15.请按要求填出相应的两个有理数:(1)既是正数也是分数:212;34(答案不唯一);(2)既不是负数也不是分数:2;0(答案不唯一). 16.“一只闹钟;一昼夜误差不超过±12秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况: 赵力减少25% 肖刚增加10% 王辉减少17% 李玉增加5% 田红增加8% 陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率. 解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%;肖刚+10%;王辉-17%;李玉+5%;田红+8%;陈佳-12%.18.请用两种不同的分类标准将下列各数分类:-15;+6;-2;-0.9;1;35;0;314;0.63;-4.95.解:分类一:整数:-15;+6;-2;1;0;分数:-0.9;35;314;0.63;-4.95.分类二:正数:+6;1;35;314;0.63;0;负数:-15;-2;-0.9;-4.95.19.小米家住黄河边的某市;黄河大堤高出某市区20米;另有铁塔高约58米;是该市的一大景观;小米和好朋友小华、玲玲出去玩;小米站在黄河大堤上;玲玲站在地面放风筝;顽皮的小华则爬上了铁塔顶;小米说:“以大堤为基准;记为0米;则玲玲所在的位置高为-20米;小华所在位置高为+58米.”小华说:“以铁塔顶为基准;记为0米;则玲玲所在的位置高为-58米;小米所在的位置高为-38米.”玲玲说:“小华的位置比我高58米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时;由于“基准”(0米点)的选法不同;表示的结果也不同;小米以大堤为基准;玲玲所在的位置高为-20米;小华所在位置高为38米.综合题20.将一串有理数按下列规律排列;回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2 017个数是正数还是负数?排在对应于A、B、C、D中的什么位置?解:(1)在A处的数是正数.(2)B和D位置是负数.(3)第2 017个数是负数;排在对应于B的位置.2.2 数轴基础题知识点1 认识数轴1.关于数轴;下列说法最准确的是(D) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列各图中;所画数轴正确的是(D)知识点2 在数轴上表示数 3.如图;在数轴上点A 表示(A)A .-2B .2C .±2D .04.在如图的数轴上;表示-2.75的点是(D)A .点EB .点FC .点GD .点H5.在数轴上表示数-3;0;5;2;-1的点中;在原点右边的有(C) A .0个 B .1个 C .2个 D .3个6.在数轴上;表示-2的点在原点的左侧;它到原点的距离是2个单位长度. 7.画数轴;并在数轴上表示下列各数:2;-2.5;0;13;-4.解:如图:知识点3 利用数轴比较有理数的大小 8.如图;下列说法中正确的是(B)A .a >bB .b >aC .a >0D .b >09.(成都中考)在-3;-1;1;3四个数中;比-2小的数是(A)A .-3B .-1C .1D .310.已知有理数x;y 在数轴上的位置如图所示;则下列结论正确的是(C)A .x>0>yB .y>x>0C .x<0<yD .y<x<011.把下列各数在数轴上表示出来;并用“<”把各数连接起来:-212;4;-4;0;412.解:如图;大小关系为:-4<-212<0<4<412.中档题12.下列语句中;错误的是(B)A .数轴上;原点位置的确定是任意的B .数轴上;正方向可以是从原点向右;也可以是从原点向左C .数轴上;单位长度可根据需要任意选取D .数轴上;与原点的距离等于8的点有两个13.(济宁中考)在0;-2;1;12这四个数中;最小的数是(B)A. 0 B .-2 C. 1 D.1214.数轴上的点A;B;C;D 分别表示a;b;c;d 四个数;已知A 在B 的左侧;C 在A;B 之间;D 在B 的右侧;则下列式子成立的是(A)A .a<c<b<dB .a<b<c<dC .a<d<c<bD .a<c<d<b15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm);刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的-3.6和x;则(C)A .9<x <10B .10<x <11C .11<x <12D .12<x <1316.若数轴上的点A 表示+3;点B 表示-4.2;点C 表示-1;则点A 和点B 中离点C 较远的是点A . 17.如图所示;数轴上的点A 向左移动2个单位长度得到点B;则点B 表示的数是-1.18.小红在做作业时;不小心将墨水洒在一个数轴上;如图所示;根据图中标出的数值;判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12;-8<-7.4<-7;所以此段整数有-12;-11;-10;-9;-8共5个;同理10<10.6<11;17<17.8<18;所以此段整数有11;12;13;14;15;16;17共7个;所以被墨迹盖住的整数共有5+7=12(个).19.如图;点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 所表示的数;(3)在数轴上找一点C;它与点B 的距离为2个单位长度;那么点C 表示什么数? 解:(1)如图. (2)点B 表示3. (3)点C 表示1或5.综合题20.(1)借助数轴;回答下列问题.①从-1到1有3个整数;分别是-1、0、1;②从-2到2有5个整数;分别是-2、-1、0、1、2;③从-3到3有7个整数;分别是-3、-2、-1、0、1、2、3; ④从-200到200有401个整数;⑤从-n 到n(n 为正整数)有(2n +1)个整数;(2)根据以上规律;直接写出:从-2.9到2.9有5个整数;从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB;求线段AB 盖住的整点的个数.解:1 000个或1 001个.2.3 绝对值基础题知识点1 相反数的概念1.(河南中考)-13的相反数是(B)A .-13 B.13C .-3D .32.相反数等于本身的数为(C)A .正数B .负数C .0D .非负数 3.下列各组数中互为相反数的是(D) A .2与-3B .-3与-13C .2 016与-2 015D .-0.25与144.下列说法中正确的是(C) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点;可以在原点的同一侧 5.16和-16互为相反数;-2 017的相反数是2__017;1的相反数是-1. 知识点2 绝对值的意义及计算6.在数轴上表示-2的点到原点的距离等于(A) A .2 B .-2 C .±2 D .4 7.(安徽中考)-2的绝对值是(B)A .-2B .2C .±2 D.128.若|-a|=5;则a 的值是(D)A .-5B .5 C.15D .±59.-3的绝对值是3;-|-2.5|=-2.5;绝对值是6的数是±6. 10.计算:|4|+|0|-|-3|=1. 知识点3 绝对值的性质11.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .不大于0 D .不小于0 12.在有理数中;绝对值等于它本身的数有(D) A .一个 B .两个 C .三个 D .无数个 13.(1)①正数:|+5|=5;|12|=12; ②负数:|-7|=7;|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零;它们的绝对值一定是非负数;即|a|≥0. 知识点4 利用绝对值比较有理数的大小 14.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .|-89|>-91015.用“>”或“<”填空: (1)-7<-6.5; (2)-3>-4;(3)-5<-4.中档题16.如果a 与1互为相反数;那么|a|等于(C) A .2 B .-2 C .1 D .-1 17.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|;则a 与b 相等D .若一个数小于它的绝对值;则这个数为负数18.(南京中考)数轴上点A;B 表示的数分别是5;-3;它们之间的距离可以表示为(D) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5|19.如果a>0;b<0;a<|b|;那么a 、b 、-a 、-b 的大小顺序是(A) A .-b>a>-a>b B .a>b>-a>-b C .-b>a>b>-a D .b>a>-b>-a20.绝对值小于6的整数有11个;它们分别是±5;±4;±3;±2;±1;0;绝对值大于3且小于6的整数是±5;±4.21.(河北中考改编)若有理数m;n 满足|m -2|+|2 017-n|=0;则m +n =2__019. 22.比较下列各对数的大小: (1)0和|-2|; 解:0<|-2|.(2)-45和-23;解:-45<-23.(3)-(-4)和|-4|. 解:-(-4)=|-4|.23.计算:(1)|+223|×|-9|;解:原式=83×9=24.(2)|-34|÷|-178|.解:原式=34×815=25.24.光明奶粉每袋质量为500克;在质量检测中;若质量超出标准质量2克记作+2克;若质量低于标准质量3克以上;(1)这10(2)质量最大的是哪袋?它的实际质量是多少? 解:(1)第4袋和第6袋不合格.(2)质量最大的是第9袋;实际质量是505克.综合题25.已知a;b;c为有理数;且它们在数轴上的位置如图所示.(1)试判断a;b;c的正负性;(2)在数轴上分别标出a;b;c的相反数的位置;(3)根据数轴化简:①|a|=-a;②|b|=b;③|c|=c;④|-a|=-a;⑤|-b|=b;⑥|-c|=c.(4)若|a|=5.5;|b|=2.5;|c|=7;求a;b;c的值.解:(1)a为负;b为正;c为正.(2)如图.(4)a=-5.5;b=2.5;c=7.小专题(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1;|-0.2|=0.2;且0.1<0.2;所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430;|-56|=56=2530;且2430<2530; 所以-45>-56.2.比较下列各对数的大小:(1)-821与-|-17|;解:-|-17|=-17;因为|-821|=821;|-17|=17=321;且821>17;所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为⎪⎪⎪⎪⎪⎪-2 0152 016=2 0152 016;⎪⎪⎪⎪⎪⎪-2 0162 017=2 0162 017;且2 0152 016<2 0162 017; 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|x -3|+|y -5|=0;求x +y 的值. 解:由|x -3|+|y -5|=0;得 x -3=0;y -5=0. 解得x =3;y =5. 所以x +y =3+5=8.4.若x 的相反数是-3;|y|=5;且x <y;求y -x 的值. 解:因为x 的相反数是-3;所以x =3. 因为|y|=5;所以y =±5. 因为x <y;所以x =3;y =5. 所以y -x =5-3=2.类型3 绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正;向北为负;他这天下午行车里程如下(单位:千米):+15;-3;+14;-11;+10;+4;-26.若汽车耗油量为0.1 L/km;这天下午汽车共耗油多少升?解:0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).6.在活动课上;有6名学生用橡皮泥做了6个乒乓球;直径可以有0.02毫米的误差;超过规定直径的毫米数记(1)(2)指出哪个同学做的乒乓球质量最好;哪个同学做的质量最差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用;对误差来说绝对值越小越好.小专题(二) 三种方法比较有理数的大小方法1 利用数轴比较大小1.如图;在数轴上有a;b;c;d 四个点;则下列说法正确的是(C)A .a>bB .c<0C .b<cD .-1>d2.有理数a 在数轴上对应的点如图所示;则a;-a;-1的大小关系是(C)A .-a<a<-1B .-a<-1<aC .a<-1<-aD .a<-a<-1 3.大于-2.5而小于3.5的整数共有(A) A .6个 B .5个 C .4个 D .3个4.在数轴上表示下列各数;并把这些数用“>”连接起来.3.5;3.5的相反数;-12;绝对值等于3的数;最大的负整数.解:各数分别为:3.5;-3.5;-12;±3;-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12>-1>-3>-3.5.5.点A 、B 在数轴上的位置如图所示;它们分别表示数a 、b.(1)请将a;b;1;-1四个数按从小到大的顺序排列起来;(2)若将点B 向右移动3个单位长度;请将a 、b 、-1三个数按从小到大的顺序排列起来. 解:(1)b<-1<a<1. (2)-1<a<b.方法2 利用比较大小的法则比较大小 6.下列各式成立的是(B)A .-1>0B .3>-2C .-2<-5D .1<-27.(安徽中考)在-4;2;-1;3这四个数中;比-2小的数是(A) A .-4 B .2 C .-1 D .38.(西双版纳中考)若a =-78;b =-58;则a;b 的大小关系是a <b(填“>”“<”或“=”).9.已知数:0;-2;1;-3;5. (1)用“>”把各数连接起来; 解:5>1>0>-2>-3.(2)用“<”把各数的相反数连接起来; 解:-5<-1<0<2<3.(3)用“>”把各数的绝对值连接起来. 解:|5|>|-3|>|-2|>|1|>|0|. 方法3 利用特殊值比较大小10.如图;数轴上的点表示的有理数是a;b;则下列式子正确的是(B)A .-a <bB .a <bC .|a|<|b|D .-a <-b11.a;b 两数在数轴上的对应点的位置如图;下列各式正确的是(D)A.b>a B.-a<bC.|a|>|b| D.b<-a<a<-b2.4 有理数的加法第1课时 有理数的加法法则基础题知识点1 有理数的加法法则1.下列各式的结果;符号为正的是(C)A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+5 2.(天津中考)计算(-3)+(-9)的结果是(B) A .12 B .-12 C .6 D .-6 3.(梅州中考)计算(-3)+4的结果是(C) A .-7 B .-1 C .1 D .7 4.已知a;b 两数互为相反数;则a +b =(C) A .2a B .2b C .0 D .1 5.下列结论不正确的是(D) A .若a>0;b>0;则a +b>0 B .若a<0;b<0;则a +b<0C .若a>0;b<0;且|a|>|b|;则a +b>0D .若a<0;b>0;且|a|>|b|;则a +b>06.在每题的横线上填写和的符号或结果. (1)(+3)+(+5)=+(3+5)=8; (2)(-3)+(-5)=-(3+5)=-8; (3)(-16)+6=-(16-6)=-10; (4)(-6)+8=+(8-6)=2; (5)(-2 015)+0=-2__015. 7.计算:(1)(-4)+(-6); 解:原式=-10.(2)(-12)+5; 解:原式=-7.(3)0+(-12);解:原式=-12.(4)(-2.5)+(-3.5). 解:原式=-6.知识点2 有理数加法的应用8.小明家冰箱冷冻室的温度为-5 ℃;调高4 ℃后的温度为(C) A .4 ℃ B .9 ℃ C .-1 ℃ D .-9 ℃9.一个物体在数轴上做左右运动;规定向右为正;按下列方式运动;列出算式表示其运动后的结果: (1)先向左运动2个单位长度;再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度;再向左运动7个单位长度.列式:-5+(-7). 10.某人某天收入265元;支出200元;则该天节余65元.11.已知飞机的飞行高度为10 000 m;上升3 000 m 后;又上升了-5 000 m;此时飞机的高度是8__000m.中档题12.(玉林、防城港中考)下面的数中;与-2的和为0的是(A) A .2 B .-2 C.12 D .-1213.有理数a 、b 在数轴上对应的位置如图所示;则a +b 的值(A)A .大于0B .小于0C .小于aD .大于b 14.如果两个数的和是正数;那么(D) A .这两个数都是正数 B .一个为正;一个为零C .这两个数一正一负;且正数的绝对值较大D .必属上面三种情况之一15.一个数是25;另一个数比25的相反数大-7;则这两个数的和为(B) A .7 B .-7 C .57 D .-5716.若x 是-3的相反数;|y|=5;则x +y 的值为(D) A .2 B .8C .-8或2D .8或-217.已知A 地的海拔高度为-53米;而B 地比A 地高30米;则B 地的海拔高度为-23米. 18.如图;三个小球上的有理数之和等于-2.19.计算: (1)32+(-32); 解:原式=0.(2)116+(-4);解:原式=-256.(3)715+(-235);解:原式=+(715-235)=435.(4)-8.75+(-314).解:原式=-(8.75+314)=-12.20.已知有理数a;b;c 在数轴上的位置如图所示;请根据有理数的加法法则判断下列各式的正负性:①a ;②b ;③-c ;④a +b ;⑤a +c ;⑥b +c ;⑦a +(-b). 解:①③⑦为正;②④⑤⑥为负.综合题21.若|a -2|与|b +5|互为相反数;求a +b 的值.解:因为|a-2|与|b+5|互为相反数; 所以|a-2|+|b+5|=0.所以a=2;b=-5.所以a+b=2+(-5)=-3.第2课时 有理数的加法运算律基础题知识点1 有理数的加法运算律1.计算314+(-235)+534+(-825)时;用运算律最为恰当的是(B)A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .[(-235)+534]+[314+(-825)]2.计算512+(+4.71)+712+(-6.71)的结果为(D)A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律) =(-7)+(+7) =0.4.在计算323+(-2.53)+(-235)+3.53+(-23)时;比较简便的计算方法是先计算323+(-23)和(-2.53)+3.53. 5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2 =-3.6+1.2=-2.4; (2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56. 6.运用加法的运算律计算下列各题: (1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)] =31+(-35) =-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12] =0+0 =0.(3)137+(-213)+247+(-123).解:原式=(137+247)+[(-213)+(-123)]=4+(-4) =0.知识点2 有理数加法运算律的应用7.李老师的银行卡中有5 500元;取出1 800元;又存入1 500元;又取出2 200元;这时银行卡中还有3__000元钱.。

初一数学《有理数及其运算》例题加练习(北师大版)

初一数学《有理数及其运算》例题加练习(北师大版)

第二章:有理数及其运算知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。

知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。

考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。

知识点:一、有理数的基础知识 1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。

2、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 3、数轴数轴有三要素:原点、正方向、单位长度。

画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。

4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。

0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。

5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。

(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:(3)两个负数比较大小,绝对值大的反而小。

二、有理数的运算 1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。

(2)有理数加法的运算律:加法的交换律 :a+b=b+a ;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。

北师大版(2024)七年级数学上册 第二章 习题课件 第13课 有理数的加减乘除混合运算

北师大版(2024)七年级数学上册 第二章 习题课件 第13课 有理数的加减乘除混合运算
解: 依题意,得[(-1)-20]÷(-6)×1 000=3 500(m). 答:热气球的高度是3 500 m.
6. (应用意识·核心素养)今抽查10袋精盐,每袋精盐的标 准质量是500 g,超过部分记为正,不足部分记为负, 统计数据如下表:
(1)这10袋精盐的平均质量比标准质量多或少几克? 解:(1)2×1+3×(-0.5)+1×1.5+1×(-2)=0(g). 答:这10袋精盐的平均质量与标准质量相等. (2)这10袋精盐一共有多重? (2)500×10=5 000(g). 答:这10袋精盐一共重5 000 g.

3 4
÷(-0.25).
解:原式=-4+3
=-1.
2. 外卖送餐为我们的生活带来了许多便利,某学习小组 调查了一名外卖小哥一周的送餐情况,规定每天送餐 量超过50单(送一次外卖称为一单)的部分记为“+”, 低于50单的部分记为“-”,下表是该外卖小哥一周 的送餐量:
(1)该外卖小哥这一周送餐量最多的一天比最少的一天多 多少单?
例如:(-3)※4=(-3)×4-1=-13.试计算: (1)3※(-6); 解:(1)依题意,得原式=3×(-6)-1=-18-1=-19.
(2)[3※(-6)]※(-2). (2)依题意,得原式 =(-19)×(-2)-1=38-1=37.
5.(应用意识·核心素养)某物理实验室用热气球开展科学 实验,已知海拔每升高1 000 m,气温下降6 ℃,热 气球在地面时测得温度是20 ℃, 当热气球升空后, 某一时刻根据回传数据测得高空温度是-1 ℃.求热气 球的高度.
=(-10-5-2) 3 =(-17) 3 =(-17)×3-(-17)+3 =-51+17+3=-31.
7.对于有理数a,b,定义一种新的运算:a b=a×b -a+b.例如:1 2=1×2-1+2. (1)计算(-3) 4的值;

中考数学七年级数学有理数加减法同步练习和答案北师大版

中考数学七年级数学有理数加减法同步练习和答案北师大版

七年级数学有理数加减法同步练习题1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。

2.直接写出答案(1)(-2.8)+(+1.9)= ,(2)10.75(3)4--= ,(3)0(12.19)--= ,(4)3(2)---=3. 已知两个数556和283-,这两个数的相反数的和是 。

4. 将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 。

5. 已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。

6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 。

7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .二.选择:8.下列交换加数的位置的变形中,正确的是( ) A 、14541445-+-=-+- B 、1311131134644436-+--=+-- C 、12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-9. 下列计算结果中等于3的是( )A. 74-++B. ()()74-++C. 74++-D. ()()74+-- 10. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 A. 在家 B. 在学校 C. 在书店 D. 不在上述地方12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 319 13. 计算: ①-57+(+101) ②90-(-3)③-0.5-(-341)+2.75-(+721) ④712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⑤ ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑥ ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O 地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5 (1)问收工时距O 地多远?(2)若每千米耗油0.2升,从O 地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。

七年级数学上册 第二章 有理数及其运算 2.6 有理数的加减混合运算作业设计 (新版)北师大版-(新

七年级数学上册 第二章 有理数及其运算 2.6 有理数的加减混合运算作业设计 (新版)北师大版-(新

有理数的加减混合运算一.选择题1. 计算结果是()A. -7B. -9C. 5D. -342. 把 -2+(+3)-(-5)+(-4)-(+3)写成省略括号和的形式,正确的是()A. -2+3-5-4-3B. -2+3+5-4+3C. -2+3+5+4-3D. -2+3+5-4-33. 水池中的水位在某天7个时间测得的数据记录如下(设开始时为0,规定上升为正,下降为负,单位:cm):+3,-6,-1,+5,-4,+2,-3;那么这某某池水位最终为()A. 上升了4cmB. 下降了4cmC. 上升了5cmD. 下降了5 cm4. 一个人在南北方向的路上行走,若规定向北为正,这个人走了+25米,接着走了-10米,又走了-20米,那么他实际上()A. 向北走了5米B. 向南走了10米C. 向南走了5米D. 向北走了10米5. 某地某天早晨的气温是-7℃,中午上升了11℃,晚上又下降了9℃,那么晚上的气温是()A. -5℃B. -6℃C. -7℃D. -8℃6. 某银行的一个蓄储所某天上午在一段时间内办理了5件蓄储业务(存入为正,取出为负):+1080元,-900元,+990元,+1000元,-1100元;这时银行现款增加了()A. .1080元B. 1070元C. 1060元D. 1050元二.填空题7. 填空:(1)-12+11=______;(2)19+(-8)=______;(3)-18+(-7)=______;(4)12-18=_______;(5)-13-5=_________;(6)0-(-6)=_______.8. 将下列省略加号和括号的形式添上加号和括号,并计算出结果:(1)30-20-10+15=____________________=_______;(2)-4-28+25-22=____________________=_______.9. 将下面式子写成省略加号和括号的“代数和”的形式:(-3.1)-(-4.5)+(+4.4)-(+1.3)+(-2.5)=____________________.10. 计算:-1+2-3+4-5+6-7+8-9+10=______.三.解答题11. 计算:(1)7-(-4)+(-5);(2)12-(-18)+(-7)-15;(3);(4)-7.2-0.8-5.6+11.6;(5);(6)-(+2.7)-(-1.6)-(-2.7)+(+2.4).12. 已知某水库的正常水位是25m,下表是该水库9月第一周的水位记录情况(高于正常水位记为正,低于正常水位记为负).星期一二三四五六日水位变化(2)本周的最高水位、最低水位分别出现在哪一天,分别是多少米?13. 某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):星期一二三四五六日增减+6 ﹣3 ﹣7 +14 ﹣10 +16 ﹣4(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(3)根据记录的数据可知该厂本周实际共生产自行车多少辆?14. 粮库三天内发生粮食进出库的吨数如下:+26,-32,-15,+34,-38,-20.(其中“+”表示进库,“-”表示出库)(1)经过这三天,库里的粮食是增多(或是减少)了多少?(2)经过这三天,仓库管理员结算发现库里还存粮480吨,那么三天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这三天要付多少装卸费?15.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+200,﹣30,+75,﹣20,+50.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在全程中都使用了氧气,且每人每米要消耗氧气升,他们共消耗了氧气多少升?答案一.选择题1. 【答案】C【解析】=6-3+7-5=5.故选C.2. 【答案】D【解析】原式故选D.点睛:这个题目考查的是去括号法则:当括号前面是时,把括号和它前面的去掉,括号里的各项都不改变正负号,当括号前面是时,把括号和它前面的去掉,括号里的各项都改变正负号.3. 【答案】B【解析】+3-6-1+5-4+2-3=-4(cm).故选B.4. 【答案】C【解析】+25+(-10)+(-20)=-5m.C.5. 【答案】A【解析】晚上的气温是故选A.6. 【答案】B【解析】规定存入为正,取出为负,∴+1080+(-900)+(+990)+(+1000)+(-1100)=1070(元).故选B.二.填空题7. 【答案】 (1). -1 (2). 11 (3). -25 (4). -6 (5). -18 (6). 6【解析】(1)-12+11=-1;(2)19+(-8)=11;(3)-18+(-7)=-25;(4)12-18=-6;(5)-13-5=-18;(6)0-(-6)=6.8. 【答案】(1)30+(-20)+(-10)+15,15;(2)(-4)+(-28)+25+(-22),-29.【解析】(1)30-20-10+15=30+(-20)+(-10)+15= 15;(2)-4-28+25-22=(-4)+(-28)+25+(-22)=-29.故答案为:(1). 30+(-20)+(-10)+15;15;(2). (-4)+(-28)+25+(-22);-29.9.【答案】【解析】()-()+()-()+()10. 【答案】5【解析】先结合相邻的两项,再计算.-1+2-3+4-5+6-7+8-9+10=-1-1-1-1-1=-5.考点:加减法中的巧算.三.解答题11.【答案】(1)6;(2)8;(3)30;(4)-2;(5);(6)4【解析】(1)先化简,再运用有理数的加法法则进行计算即可;(2)先化简,再运用加法的结合律进行计算即可;(3)运用加法的交换律和结合律进行计算即可;(4)运用加法的结合律进行计算即可;(5)运用加法的交换律和结合律进行计算即可;(6)先化简,再运用加法的交换律和结合律进行计算即可.解:(1)7-(-4)+(-5)=7+4-5=6.(2)12-(-18)+(-7)-15=12+18-7-15=30-22=8.(3)=(-12-8)+(11+39)=-20+50=30.(4)---+=-2.(5)=(+)+(-)=.(6)-()-()-()+();=(-2.7+2.7)+(1.6+2.4)=0+4=4.12. 【答案】(1)本周三的水位是m;(2)最高水位是周四,27m;最低水位是周日,m.【解析】(1)根据已知先求出星期一的水位,再求出星期二的水位,再加0即可;(2)根据已知分别计算出每天的水位,通过计算确定最高和最低水位.解:(1)25+(+1.5)+(-3)+0=23.5(m).(2)星期一的水位为:25+1.5=26.5(m),星期二的水位为:26.5+(-3)=23.5(m),星期三的水位为:23.5+0=23.5(m),星期四的水位为:23.5+3.5=27(m),星期五的水位为:27-2.3=24.7(m),星期六的水位为:24.7-1.5=23.2(m),星期日的水位为:23.2-3.5=19.7(m),所以最高水位是周四,27m;最低水位是周日,m.13.【答案】(1) 193辆;(2) 26辆;(3) 1412辆【解析】 (1)﹣7表示当天生产量比平均值200少7辆,故用200减去7即可,(2)分别找出产量最多那天和产量最少那天,求差值即可求解,(3)该厂一周的产量等于总的平均产量加上总的超产量.解:(1)由题意可得,该厂星期三生产自行车是:200﹣7=193(辆),即该厂星期三生产自行车是193辆.(2)由表格可知,产量最多的一天是周六,最少的一天是周五,16﹣(﹣10)=16+10=26(辆),即产量最多的一天比产量最少的一天多生产自行车多26辆.(3)由题意可得,该厂本周实际共生产自行车的数量是:200×7+(6﹣3﹣7+14﹣10+16﹣4)=1400+12=1412(辆),即该厂本周实际共生产自行车1412辆.14. 【答案】(1)库里的粮食减少了45吨;(2)3天前库里存粮食是525吨;(3)3天要付装卸费825元.【解析】(1)把记录的数字求和,其结果为正数说明增加,为负数则说明减少,该数的绝对值就是增多或减少的量;(2)利用480吨减去(1)的结果即可求解;(3)正数的绝对值为进仓的吨数,负数的绝对值为出仓的吨数,分别再乘相应的运费即可算出结果.解:(1)26+(-32)+(-15)+34+(-38)+(-20)=-45(吨).答:库里的粮食减少了.(2)480-(-45)=525(吨).答:3天前库里存粮食是525吨.(3)(26+32+15+34+38+20)×5=825(元).答:3天要付装卸费825元.15.【答案】(1)他们最终没有登上顶峰,离顶峰还差150米;(2)他们共消耗了氧气120升.【解析】(1)约定前进为正,后退为负,依题意列式求出和,再与500比较即可;(2)要消耗的氧气,需求他共走了多少路程,这与方向无关.解:(1)根据题意得:150﹣32﹣43+200﹣30+75﹣20+50=350(米),500﹣350=150(米).(2)根据题意得:150+32+43+200+30+75+20+50=600(米),600×0.04×5=120(升).。

2024年北师大版七年级上册数学第二章有理数及其运算培优提升专题1:认识有理数

2024年北师大版七年级上册数学第二章有理数及其运算培优提升专题1:认识有理数

·数学
【解决问题】(1)哪些同学做的乒乓球符合要求? (2)这6个乒乓球中,哪名同学做的质量最好?哪名同学做的质量最差? 【实践分析】(3)请你对6名同学做的乒乓球质量按照最好到最差排名.
解:(1)张兵和蔡伟做的乒乓球符合要求. (2)蔡伟做的质量最好,李明做的质量最差. (3)由|-0.011|<|-0.017|<|-0.021|<|+0.022|<|+0.023|<|+0.031|, 得到6名同学做的乒乓球质量按照最好到最差排名为:蔡伟、张兵、 余佳、赵平、王芳、李明.
7.(2023汕头期末)已知有理数a,b,其中数a在如图所示的数 轴上对应点M,b是负数,且b在数轴上对应的点与原点的距 离为3.5.
(1)a= 2 ,b= -3.5 ; (2)直接写出大于b的所有负整数; (3)在数轴上标出表示-12,0,-2,b的点,并用“<”连接 起来.
解:(2)-3,-2,-1. (3)数轴上表示如图所示,-3.5<-2<-12<0.
·ቤተ መጻሕፍቲ ባይዱ学
6.(创新题)如图,已知A是整数集合,B是正数集合,C是分 数集合,D是A和B的重叠部分,E是B和C的重叠部分. (1)D是 正整数 集合,E是 正分数 集合;
(2)给出下列各数:10,-0.72,-98,25, 83 ,63%,-3.14, 请将它们填入图中相应的集合中去. 如图:
·数学
·数学
5.(跨学科融合)第33届夏季奥林匹克运动会在法国巴黎举行. 如图,将5个城市的国际标准时间(单位:时)在数轴上表示, 那么开幕式的巴黎时间7月26日19时30分对应的是汉城时间 7月27日3时30分 ,北京时间 7月27日2时30分 ,伦敦时 间 7月26日18时30分 ,纽约时间 7月26日13时30分 .

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。

北师大版数学七年级上册第二章有理数及其运算第2节数轴课后练习

北师大版数学七年级上册第二章有理数及其运算第2节数轴课后练习

第二章有理数及其运算第2节数轴课后练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.已知a ,b ,c 三个数的位置如图所示.则下列结论不正确的是( )A.a+b<0B .b ﹣a >0C .a+b >0D .a+c <02.实数a 、b 在数轴上的位置如图所示用下列结论正确的是( )A .a +b >a >b >a −bB .a >a +b >b >a −bC .a −b >a >b >a +bD .a −b >a >a +b >b3.已知a b ,两数在数轴上对应的点如图所示,下列结论正确的是( )A .0ab >B .a b <-C .0b a ->D .0a b +>4.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c5.已知m <2<﹣m ,若有理数m 在数轴上对应的点为M ,则点M 在数轴上可能的位置是( ) A . B . C . D .6.在数轴上,点A 对应的数是2-,点B 对应的数是1,点P 数轴上动点,则PA PB +的最小值为( ) A .0 B .1C .2D .37.如图,边长为1的正方形ABCD ,沿着数轴顺时针连续滚动.起点A 和−2重合,则数轴上数2019所对应的字母是( )A .AB .BC .CD .D8.在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2019次,此时蚂蚁在数轴上的位置表示的数是( ) A .﹣1009B .1009C .﹣1010D .10109.如图,数轴上一点A 向左移动2个单位长度到达达点B ,再向右移动5个单位长度到达点C . 若点A 表示的数为1,则点C 表示的数为( )A .5B .4C .3D .1-10.有理数a 、b 在数轴上的对应位置如图所示,则下列四个选项正确的是( )A .a <b <﹣b <﹣aB .a <﹣b <﹣a <bC .a ﹣b >0D .a b -+>0评卷人 得分二、填空题 11.如图,在数轴上点A 表示数1,现将A 沿x 轴作如下移动:第一次点A 向左移动3个单位长度到点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种规律移动下去,则点13A ,点14A 之间的长度是_______.12.已知a 、b 、c 三个数在数轴上对应点的位置如图所示,下列几个判断: ①a <c <b ;①﹣a <b ;①a+b >0;①c ﹣a <0中,错误的是_____(写序号)13.在数轴上,点0表示原点,现将点A从0点开始沿x轴如下移动,第一次点A向左移动1个单位长度到达点A,第二次将点A1向右移动2个单位长度到达点A2,第三次讲点A2向左移动3个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,当n=2016时,点A与原点的距离是________个单位.14.一动点P从数轴上的原点出发,按下列规则运动:(1)沿数轴的正方向先前进5个单位,然后后退3个单位,如此反复进行;(2)已知点P每秒只能前进或后退1个单位.设X n表示第n秒点P在数轴上的位置所对应的数,则X2018为__________.15.数轴上A、B两点离开原点的距离分别为2和3,则AB两点间的距离为______. 16.数轴上A、B、C、D四点对应的数都是整数,若点A对应的数为a,点B对应的数为b,且b-2a=7,则数轴上的原点应是点_____________.17.下列各数:﹣2.5,12,18,﹣313,﹣1,0,+0.07,其中比﹣3大的负数是_____.18.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____19.如果物体从A点出发,按照A→B(第1步)→C(第二步)→D→A→E→F→G→A→B…的顺序循环运动,则经过第2013步后物体共经过B处_____次.评卷人得分三、解答题20.如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?(2)A、B两点间的距离是多少?A、C两点间的距离是多少?(3)若将点A向右移动5个单位后,则A、B、C这三个点所表示的数谁最大?(4)应怎样移动点B的位置,使点B到点A和点C的距离相等?21.如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出A B中点M所对应的数;(2)现有一只电子蚂蚊P从B点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C点对应的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D点对应的数.22.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2cm,BC=4cm,设点A,B,C所对应的数的和是p.(1)若以B为原点,2cm长为一个单位长度,写出点A、C所对应的数,并计算p的值;(2)若原点O为BC的中点,以1cm长为一个单位长度,求p.23.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运22t t>秒.动时间为()0(1)数轴上点B表示的数是___________;点P表示的数是___________(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q、同时出发,问多少秒时P Q、之间的距离恰好等于2?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.24.(1)将数-2,+1,0,122,134在数轴上表示出来.(2)将(1)中各数用“<”连接起来.(3)将(1)中各数的相反数用“>”连接起来.25.有理数a在数轴上的位置如图所示,试比较21a aa、、的大小参考答案:1.C【解析】【详解】试题解析:①从数轴可知:a<b<0<c,|a|>|c|>|b|,①A、a+b<0,正确,故本选项错误;B、b-a>0,正确,故本选项错误;C、a+b>0,错误,故本选项正确;D、a+c<0,正确,故本选项错误;故选C.2.D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,①b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又①-2<4<6<8,①a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴一一对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.3.B【解析】【分析】先根据数轴判断b<0<a且b>a,再根据有理数的加法、乘法、减法进行判断即可.解:观察数轴可知,b<0<a且b>a,所以,ab<0,a b<-,b-a<0,a+b<0,因此只有B正确,故选:B【点睛】本题考查在数轴上比较数的大小,解题的关键是能根据数轴判断出b<0<a且b>a.4.C【解析】【分析】根据数轴上的数,右边的总比左边的大写出后即可选择答案.【详解】根据题意得,a<c<b.故选C.【点睛】本题考查了利用数轴比较有理数的大小,熟记数轴上的数右边的总比左边的大是解题的关键.5.B【解析】【分析】首先根据m<2<-m,可得m<-2;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判断出点M在数轴上可能的位置即可.【详解】m<2<-m,∴m<-2,∴点M在数轴上可能的位置是:故答案选B.【点睛】本题考查的知识点是数轴,解题的关键是熟练的掌握数轴.6.D【解析】因为点P的位置不确定,需要分为三种情况进行讨论:①点P在A、B之间,①点P在A 点左边,①点P在B点右边,进行分析判断即可得出答案.【详解】解:分三种情况:①点P在A、B之间,①点P在A点左边,①点P在B点右边①PA PB+的最小值①点P在A、B之间有最小值①PA PB+=1-(﹣2)=3故答案为D【点睛】本题主要考查了数轴上点的距离,熟练掌握并进行分类讨论是解题的关键.7.B【解析】【分析】正方形ABCD沿着数轴顺时针每滚动一周,B、C、D、A依次循环一次,2019与-2之间÷=,也就是对应B点.有2021个单位长度,即转动202145051【详解】解:2019-(-2)=2021,÷=,202145051数轴上数2019所对应的字母是B.故答案为:B.【点睛】此题考查了数轴,以及循环的有关知识,关键是把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.8.D【解析】【分析】根据蚂蚁前四次爬的轨迹总结出每次在数轴上表示的数的规律,利用规律即可得出答案.【详解】根据题意,蚂蚁第一次在数轴上表示的数为1,第二次在数轴上表示的数为-1, 第三次在数轴上表示的数为2,第四次在数轴上表示的数为-2 ……所以第2019次在数轴上表示的数为2019110102+= 故选:D . 【点睛】本题主要考查数轴上点的移动,能够找到规律是解题的关键. 9.B 【解析】 【分析】根据平移时坐标的变化规律:左减右加,即可得出结果. 【详解】解:根据题意,点C 表示的数为:1-2+5=4. 故选:B . 【点睛】本题考查数轴上点的坐标变化和平移规律:左减右加. 10.D 【解析】 【分析】先在数轴上利用相反数的特点描出,b a --,利用数轴比较,,,a b b a --的大小,结合加减法的法则可得答案. 【详解】解:如图,利用相反数的特点在数轴上描出,b a --,观察图形可知a <b -<b <a - 故选项A 、B 都错误; 又①a <0<b ,①-a b <0,a b -+>0, 故C 错误,D 正确,故选:D.【点睛】本题考查的是相反数的特点,利用数轴比较数的大小,考查对有理数的加法与减法法则的理解,掌握以上知识是解题的关键.11.42【解析】【分析】根据题意分别找出序号为奇数和偶数的点所表示的数的规律,从而得出A13和A14所表示的数,从而求出其长度.【详解】根据观察可知,奇数点在A点的左侧,且根据A1=-2=1+(-3),A3=-5=1+(-3)×2,故A13=1+(-3)×7=-20;偶数点在A点的右侧,且根据A2=4=1+3,A4= -5+12=7=1+3×2,故A14=1+7×3=22;故A13和A14的长度为|22-(-20)|=42.【点睛】本题考查数轴、绝对值和有理数的加减法,本题解题的关键在于①分奇数、偶数点得出各点之间数的规律(奇数点:1(3)12+⋅-+n,偶数点:312⋅+n);①在数轴上两点之间的距离等于它们所表示数的差的绝对值.12.①①①.【解析】【分析】由数轴分别得出a、b、c三个数的范围,再根据有理数的运算法则对四个结论一一判断即可.【详解】由数轴可得:﹣3<a<﹣2,0<b<1,﹣1<c<0,①数轴上右边的点表示的数总比左边的点表示的数大,所以a<c<b,此结论正确;①由数轴图不难得出2<﹣a<3,所以﹣a>b,此结论错误;①异号两数相加,取绝对值大的加数的符号,很明显,|a|>|b|,所以a+b<0,此结论错误;①正数减去负数所得差必为正数,所以c﹣a>0,此结论错误.故答案为①①①.【点睛】本题主要考查数轴、有理数的加减运算法则.13.1008【解析】【分析】观察发现奇数次移动为向左移动,偶数次移动为向右移动,然后再观察每两次平移,点A 实际移动的距离,然后计算,即可解答.【详解】解:观察发现奇数次移动为向左移动,偶数次移动为向右移动;第一次向左平移一个单位,第二次向右平移两个单位,实际向右平移-1+2个单位;第三次向左平移三个单位,第四次向右平移四个单位,实际向右平移-3+4个单位;第2015次向左平移一个单位,第2016次向右平移两个单位,实际向右平移-2015+2016单位;则第n次A点距远点距离为:-1+2-3+4+…-2015+2016=(-1+2)+(-3+4)+…(-2015+2016)=1008.故答案为1008.【点睛】本题是一道规律型试题,通过观察、思考寻找解题思路,其中找出点表示的数的变化规律是解决本题的关键.14.506【解析】【分析】本题应先解出点P每8秒完成一个循环,解出对应的数值,再根据规律推导出答案.【详解】依题意得,点P每8秒完成一个前进和后退,即前8个对应的数是1、2、3、4、5、4、3、2;9~16是3、4、5、6、7、6、5、4.根据此规律可推导出,2018=8×252+2,故x2018=252×2+2=506.故答案为506.【点睛】本题主要考查了数字变化的规律,解答此题的关键是找出循环的规律.15.1或5【解析】【分析】根据数轴上A 、B 两点离开原点的距离分别是2和3可得出点A 表示2±,点B 表示3±,再根据数轴上两点间的距离公式即可得出结论.【详解】解:①数轴上A 、B 两点离开原点的距离分别是2和3可得出点A 表示2±,点B 表示3±,①当点A 、B 在原点同侧时,AB=32-=1;当点A 、B 在原点的异侧时,AB=23--=5故答案为:5或1.【点睛】 本题考查了数轴上两点间的距离,明确离开原点的距离分为左右两个方向;数轴上两点间的距离指的是相应数的差的绝对值是解题的关键.16.C【解析】【分析】根据数轴可知,4b a -=,联系已知条件中的b -2a =7,即可求出a 、b 的值,进而找到原点.【详解】根据数轴可知,4b a -=,① b -2a =7,①3,1a b =-=则点B 对应的实数是1①点C 对应的实数是0,即数轴上的原点是C 点故答案为C【点睛】本题考查了对数轴的理解,熟练掌握数轴的相关知识点是解题关键.17.﹣2.5,﹣1.【解析】【分析】根据负数的定义,负数小于0,找出负数后绝对值大于0,小于3的数即为所求.【详解】题中负数有﹣2.5,﹣313,﹣1,其中﹣2.5,﹣1绝对值大于0,小于3,即为所求.【点睛】本题主要考查负数的定义,小于0的数是负数,熟记定义是解本题的关键.并且同为负数,绝对值越小的数实际越大.18.﹣6 或8【解析】【详解】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.19.252【解析】【分析】先求出由A点开始按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,再用2013除以此步数即可.【详解】解:①如图物体从点A出发,按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动,此时一个循环为8步,即一个循环经过B一次,①2013÷8=251…5.即2013=251×8+5①经过第2013步后物体共经过B处252次.故答案为:252.【点睛】本题考查的是根据运动顺序找规律的题目,理解题意是解题的关键,找到规律是本题的重点.20.(1)A:-6,B:1,C:4;(2)AB距离为7,AC距离为10;(3)C;(4)向左移动2个单位【解析】【分析】(1)直接读图即可得到;(2)用右侧数字减左侧数字即为两点间的距离;(3)先得出A移动后的数字,再比较着3个数字的大小;(4)AC间的距离为10,故只需AB、BC间的距离都是5即可【详解】(1)观察数轴得:A:-6,B:1,C:4;(2)AB的距离为:1-(-6)=-7;AC的距离为:4-(-6)=-10;(3)A向右移动5个单位变为:-1则A、B、C此刻分别为:-1、1、4,其中4最大,即点C;(4)①AC的距离为10①要使得AB、BC距离相等,则AB、BC都为5①只需将点B向左移动2个单位即可【点睛】本题是数轴的考查,解题关键是先读懂数轴,得出对应数值,然后根据向左移动为减,向右移动为加,按照题干变换求解21.(1)40;(2)28;(3)-260.【解析】【分析】(1)直接根据中点坐标公式求出M点对应的数;(2)①先求出AB的长,再设t秒后P、Q相遇即可得出关于t的一元一次方程, 求出t的值即可; ①由①中t的值可求出P、Q相遇时点P移动的距离,进而可得出C点对应的数;(3)此题是追及问题,可先求出P追上Q所需的时间, 然后可求出Q所走的路程,根据左减右加的原则,可求出点D所对应的数.【详解】法一:(1)()10020120AB =--=,点M 表示的数为:()12022040÷+-=,(2)它们的相遇时间是()1206412÷+=(秒),即相遇时Q 点运动的路程为:12448⨯=,因此点C 表示的数为:204828-+=.(3)两只蚂蚁相遇时的运动时间为:()1206460÷-=(秒),即相遇时Q 点运动的路程为:460240⨯=,因此点D 表示的数为:20240260--=-,方法二:(1)()201004022A B M -++===, (2)动点:1006P t -,:204Q t -+,相遇,则P Q =,1006204t t -=-+,12t =,:10061228C -⨯=,(3)动点:1006P t '-;:204Q t '--,相遇,则P Q =, 1006204t t ''-=--,60t '=,:100660260D -⨯=-.【点睛】本题主要考查的是数轴上点的运动,还有相遇问题与追及问题,解决本题的关键是要熟练掌握行程问题的等量关系.22.(1)1;(2)-4.【解析】【分析】(1)根据以B 为原点,2cm 长为一个单位长度,AB =2cm ,BC =4cm ,求出A ,C 对应的数,进而得到p 的值;(2)先根据题意求出A 、B 、C 对应的数,再求出p 即可.【详解】(1)若以 B 为原点,2cm 长为一个单位长度,则A 所对应的数为-1,B 所对应的数为0,C 所对应的数为2,此时,p =-1+0+2=1;(2)若原点O 为BC 的中点,①OB =OC =2cm ,OA =4cm ,以1cm 长为一个单位长度,则A 所对应的数为-4,B 所对应为-2,C 所对应的数为2,此时,p =-4-2+2=-4.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【解析】【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;①点P Q 、相遇之后,分别列式求解即可.(3)分两种情况:①当点P 在点AB 、两点之间运动时;①当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.①点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=;①当点P运动到点B的左侧时,1111()112222MN MP NP AP BP AP BP AB=-=-=-==;∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.24.(1)详情见解析;(2)112201324--+<<<<;(3)112201324-->>>>【解析】【分析】(1)画出数轴,然后在数轴上找出各数对应的点即可;(2)根据所画数轴,把各数从左至右依次用“<”连接起来即可;(3)将各数相反数依次求出来,然后进行大小比较即可.【详解】(1)如图所示:(2)由(1)中数轴可知,数轴上的数从左至右依次增大,所以各数用“<”连接如下:112201324--+<<<<(3)1111 2222001133 2244--+--的相反数为;的相反数为;的相反数为;的相反数为;的相反数为;①各数用“>”连接为:112201324-->>>>.【点睛】本题主要考查了数轴的画法以及有理数的大小比较,熟练掌握相关概念是解题关键.25.21a aa>>【解析】【分析】根据a的取值范围取特殊值即可比较出a、1a、a2的大小.【详解】①−1<a<0,取a=-12,故a2=14,1a=-2①14>-12>-2①21a aa>>.【点睛】本题考查了数轴,有理数大小比较,理清a的取值范围是解答本题的关键.。

北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]

北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题 1.(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 2. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ).A .A 点B .B 点C .C 点D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.(2015春•万州区期末)绝对值小于4,而不小于2的所有整数有 . 11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•燕山区一模)为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D 【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确.8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, < 【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元),则共付车费48元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,ba a=化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克)答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。

北师大版七年级数学上册第二章有理数及其运算练习题及答案全套

北师大版七年级数学上册第二章有理数及其运算练习题及答案全套

北师大版七年级数学上第二章有理数及其运算同步练习1.数怎么不够用了一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米B.+50米C.可能是+50米,也可能是-50米D.以上都不对3.下面的说法错误的是().A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数B.负数C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧B.右侧C.左侧或者右侧D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数B.大于另一个数的相反数C.等于另一个数的相反数D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05(2)(3)(4)-10004.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?3.绝对值:一、选择题1.如果,则()A.B.C.D.2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5 B.这一点表示的数的绝对值是5C.这一点表示的数是5 D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37,0,,-385.7.2.把下列一组数用“>”连起来-999,,,0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.和的大小由两个加数的符号而定D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A.B.(-2)+(+2)=4C.D.(-71)+0=-713.如图,下列结论中错误的是()A.B.C.D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数B.两个负数的差一定是负数C.正数减去负数差是正数D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23)D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________ ;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003.4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加(1)小胖1~6月中哪个月的体重最重,是多少?(2)小胖1~6月中哪个月的体重最轻,是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?6.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6 B.任何数和0相乘都等于0C.若,则D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0B.小于0C.大于或等于0D.小于或等于03.若,其a、b、c()A.都大于0B.都小于0C.至少有一个大于0D.至少有一个小于0二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________,12×(-7)-2=_________,98×(-9)+2=_________,123×(-7)-3=_________.987×(-9)+3=_________.__________________________.__________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2)2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30(2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以()2.( )3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算: 一、选择题1.若,,则有( ) .A.B.C.D.2.已知,当时,,当时,的值是( ) .A.B.44 C.28 D.173.如果,那么的值为( ) A.0 B.4 C.-4 D.2 4.代数式取最小值时,值为( ) .A.B.C.D.无法确定5.六个整数的积,互不相等,则( ) A.0 B.4 C.6 D.86.计算所得结果为( ) .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()(3)表示数和的位置由下图所确定,若使,则表示数c的点的位置应在原点的右侧.()2.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系..3.分别表示数和的点在数轴上的位置如图所示.(1);(2)表示数的点在数轴上运动时,将发生怎样的变化..。

北师版七年级数学上册作业课件 第二章 有理数及其运算 第1课时 有理数的加减混合运算

北师版七年级数学上册作业课件 第二章 有理数及其运算 第1课时 有理数的加减混合运算
数学 七年级上册 北师版
第二章 有理数及其运算
2.减混合运算
1.(3 分)计算 2-3+(-4)的结果为( A ) A.-5 B.-2 C.0 D.2 2.(3 分)下列运算结果错误的是( C ) A.(-20)+3-5-(-7)=-15 B.9-10+(-2)-(-8)+3=8 C.13 -12 -43 +23 =14 D.(-8)-4+(-6)-(-1)=-17
7.若a=6,b=-2,c=-4,并且a-b+(-c)-(-d)=1,则d的值是( D )
A.10
B.-10
C.11
D.-11
8.如图,乐乐将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,使
每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个
数,则a-b+c的值为( C )
A-C 90 m
C-D 80 m
E-D -60 m
F-E 50 m
G-F -70 m
B-G 40 m
10.a 的相反数是它本身,b 的相反数是最大的负整数,c 的绝对值等于 3,则 a-b-c 的值是__-__4_或__2__.
11.若|a-2|+|b+12 |=0,则 b+a-21 的值为__1__.
12.(12分)计算: (1)(-18)+5-(+12)+(-16)-(-19); 解:原式=-22
(2)(-23 )-(-23 )-(+34 )-(+34 ); 解:原式=-23 (3) (-52 )+(-65 )-(-4.9)-0.6. 解:原式=4165
13.(10分)(沈阳沈北新区期中)如图,小明和小红各有四张形状不同的卡片,他 们利用这些卡片做游戏,在游戏中规定:正方形表示加,圆形表示减,结果小者 获胜.请通过列式计算,判断小明和小红谁为胜者.

七年级数学上册2.6有理数的加减混合运算教案+学案+练习北师大版

七年级数学上册2.6有理数的加减混合运算教案+学案+练习北师大版

有理数的加减混合运算学习目的:对有理数的加减混合运算进行灵活计算。

重点:如何使有理数的加减混全运算更准确更灵活。

学习过程: 一、知识导向:本节课主要是利用上节课的知识点来进一步学习有关有理数的加减混合运算,以求学生对其运算的合理性及准确性的更高水平的掌握。

二、新课拆析: 1、复习:其一:有理数的加法法则、减法法则;其二:把有理数的加减混合运算统一成加法的方法与步骤。

例:把)8()3()11()6()4(+---+--++写成省略加号的和的形式,并把它读出来(两种读法)。

2、知识应用:在有理数加法运算中,通常适当应用加法运算律,可使计算简化,有理数的加减混合运算统一成加法后,一般也应注意运算的合理性。

例:计算:(1) 3.05.3162.324+--+-(2) )25.0()32()433(32210+---++-三、巩固训练: P47 exc1、2四、知识小结:本节通过对有理数的加法法则与减法法则的灵活运用,通过灵活运用加法运算律,对有理数混合运算进行合理性,灵活性的处理,从而准确解决有关加减的混合运算。

五、家庭作业:P48 A:exc4B:exc5六、每日预题:1、小学中如何得到两数相乘的结果?2、如何确定两个有理数相乘的结果(符号与绝对值)?有理数的加减混合运算及运算律在其中的应用1教学目标1.理解有理数加减混合运算统一成加法运算的意义,掌握有理数加减混合运算的方法,并能熟练运算.2.能根据具体问题,适当运用运算律简化运算. 教学过程 一、情境导入甲、乙两队进行拔河比赛,规定标志物向某队方向移动2米,该队即可获胜.比赛开始后,标志物先向乙队方向移动0.2米,又向甲队方向移动0.5米,相持一会儿后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家欢呼声鼓励中,标志物又向甲队移动了0.9米,请你通过计算判断哪队获胜.就让我们带着这一问题去学习有理数的加减混合运算. 二、合作探究探究点一:有理数的加减混合运算计算:12+(-23)-(-45).解析:先将减法统一为加法,再按有理数的加法运算法则进行计算. 解:原式=12+(-23)+(+45)=-16+45=1930.方法总结:有理数加减混合运算的步骤是:(1)用减法法则将减法转化为加法;(2)写成省略加号的和的形式;(3)进行有理数的加法运算. 探究点二:利用加法运算律进行计算计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38). 解析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后运用加法运算律简化运算,求出结果.其中互为相反数的两数先结合,能凑成整数的各数先结合.另外,同号各数先结合,同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便. 三、板书设计教学反思本课时在学习了有理数加减法运算的基础上,通过对同一具体情境两种算法的比较,让学生体会加减混合运算可以统一成加法运算,以及加法运算可以写成省略括号及前面加括号的形式,渗透“转化”思想.通过师生、生生之间的交流,培养学生的口头表达能力和计算能力.有理数的加减混合运算及运算律在其中的应用2教学目标使学生熟练地进行有理数的加减混合运算;并利用运算律简化运算。

有理数的加减混合运算【北师大版】七年级数学(上册)-【完整版】

有理数的加减混合运算【北师大版】七年级数学(上册)-【完整版】
10. 已知|a|=1,|b|=2,|c|=4,且a>b>c,则a-b+c= -1或-3.
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
11.d是最大的负整数,e是最小的正整数,f的相反数等
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
谢谢!
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
一级基础巩固练
7. 将式子(-20)+(+3)-(-5)-(+7)省略括号后变
形正确的是( C )
A. 20-3+5-7
B. -20+3-5-7
C. -20+3+5-7
D. -20-3+5-7
8. 计算: (1)(-7)-(+5)+(-4)-(-10); (2)
解:(1)原式=-7-5-4+10=-6. (2)原式=
(1)这时升降机在初始位置的上方还是下方?相距多 少米? 解:(1)(+6)+(+4)+(-5)+(-7)=-2(m). 即这时升降机在初始位置的下方,相距2 m.
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
(1) 解:(1)原式=(-1-2+7-4)+
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)
有理数的加减混合运算北师大版七年 级数学 上册-精 品课件 ppt(实 用版)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (23)

北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (23)

一、选择题1.下列各组数中,互为相反数的是( )A.−(−1)与1B.(−1)2与1 C.∣−1∣与1D.−12与12.有理数−3的倒数是( )A.13B.3C.−13D.−33.下列计算正确的是( )A.49−32÷8=40÷8=5B.6÷(2×3)=6÷2×3=9C.32−(−2)2=9+4=13D.23−(13−12)=23−13+12=564.为纪念中华人民共和国成立70周年,某市各中小学开展了以“祖国在我心中”为主题的各类教育活动,该市约有1100000名中小学生参加,其中数据1100000用科学记数法表示为( ) A.11×106B.1.1×106C.1.1×105D.0.11×1065.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.∣a∣>4B.c−b>0C.ac>0D.a+c>06.对有理数a,b规定运算如下:a⋇b=a+a b,则−2⋇3的值为( )A.−10B.−8C.−6D.−47.面对突如其来的疫情,全国广大医务工作者以白衣为战袍,义无反顾的冲在抗疫战争的一线,用生命捍卫人民的安全.据统计,全国共有346支医疗队,将近42600名医护工作者加入到支援湖北武汉的抗疫队伍,将42600用科学计数法表示为( )A.0.426×105B.4.26×104C.42.6×103D.426×1028.环境污染刻不容缓,据统计,全球每分钟约有8521000吨污水排出,把8521000用科学记数法表示( )A.0.8521×106B.0.8521×107C.8.521×106D.8.521×1079.由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为( )元.A.0.5×1010B.5×108C.5×109D.5×101010.美国约翰斯·霍普金斯大学实时统计数据显示,截至北京时间5月10日8时,全球新冠肺炎确诊病例超4000000例.其中4000000科学记数法可以表示为( )A.0.4×107B.4×106C.4×107D.40×105二、填空题11.−2的相反数是,−2的倒数是.12.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.13.x,y表示两个数,规定新运算“⋇”及“△”如下:x⋇y=6x+5y,x△y=3xy,那么(−2⋇3)△(−4)=.14.德国数学家莱布尼兹证明了π=4×(1−13+15−17+19−111+113−115+⋯),由此可知:13−15+1 7−19+111−113+1154−π4(填“>”“<”).15.计算(−5)+3的结果是.16.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”如图,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.(1)如图,用“格子乘法”表示25×81,则m的值为.(2)如图,用“格子乘法”表示两个两位数相乘,则a的值为.17.为了求1+2+22+23+⋯+2100的值,可令S=1+2+22+23+⋯+2100,则2S=2+22+23+24+⋯+2101,因此2S−S=2101−1,即1+2+22+23+⋯+2100=2101−1.仿照以上推理计算 1+3+32+33+⋯+32019 的值是 .三、解答题18. 有理数 x ,y 在数轴上对应点如图所示:(1) 在数轴上表示 −x ,−y .(2) 试把 x ,y ,0,−x ,−y 这五个数从大到小用“>”号连接起来.19. 某景区的部分景点和游览路径恰好都在一条直线上,一电瓶小客车接到任务从景区大门出发,向东走 2 千米到达 A 景点,继续向东走 2.5 千米到达 B 景点,然后又回头向西走 8.5 千米到达 C 景点,最后回到景区大门.(1) 以景区大门为原点,向东为正方向,以 1 个单位长表示 1 千米,建立如图所示的数轴,请在数轴上表示出上述 A ,B ,C 三个景点的位置,并直接写出 A ,C 两景点之间的距离;(2) 若电瓶车充足一次电能行走 15 千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?(3) 十一黄金周的某一天,小明和小阳一同去该景区游玩,由于人太多,他们在景区内走散了,在电话中,小阳说:“我在 B 景区”,小明说:“我在离 C 景区 2 千米的地方”,于是他们决定相向步行会合.如果他们行走的速度相同,则他们会合的地点距景区大门多少千米?(直接回答则可)20. 读一读:式子“1+2+3+4+5+⋯+100”表示 1 开始的 100 个连续自然数的和,由于上述式子比较长,书写也不方便,我们可以将“1+2+3+4+5+⋯+100”简记为 ∑n 100n=1,这里“∑”是求和符号.例如:1+3+5+7+9+⋯+99,是从 1 开始的 100 以内的连续奇数的和,可表示为 ∑(2n −1)50n=1;又如:13+23+33+43+53+63+73+83+93+103 可表示为 ∑n 310n=1.通过对以上材料的阅读,请解答下列问题:(1) 2+4+6+8+10+⋯+100(即从 2 开始的 100 以内的连续偶数的和)用求和符号可表示为 .(2) 计算:∑(n 2−1)5n=1= .(填写最后的计算结果)21. 计算:(1) −5−11+213−(−23); (2) (−16+34−512)×12;(3) −14+∣3−5∣+16÷(−2)×12; (4) (−12)2+[−8−(−3)×2]÷4.22. 如图,在数轴上 A 点表示的数 a ,B 点表示的数 b ,C 点表示的数 c ,b 是最大的负整数,且a ,c 满足 ∣a +3∣+∣c −6∣=0.(1) 求 a ,b ,c 的值.(2) 若将数轴折叠,使得 A 点与 B 点重合,求与 C 点重合的点对应的数.(3) 点 A ,B ,C 在数轴上同时开始运动,其中 B 以 1 单位每秒的速度向右运动,C 以 2 单位每秒的速度向左运动,点 A 以 3 单位每秒的速度向右运动,当 B ,C 相遇时,A 停止运动,求此时 AC 两点之间的距离.23. 某食品厂从生产的袋装食品中抽出样品 10 袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克)−3−10+2袋数1432(1) 这 10 袋样品的总重量比 10 袋的标准总重量多还是少?偏差几克? (2) 若每袋标准质量为 50 克,则抽样检测这 10 袋的总质量是多少?24. 计算:(1) 11+(−13)+(−10)−∣−6∣; (2) (12+56−712)×(−36).25. 结合数轴与绝对值的知识回答下列问题:(1) 探究:①数轴上表示 5 和 2 的两点之间的距离是 ; ②数轴上表示 −2 和 −6 的两点之间的距离是 ; ③数轴上表示 −4 和 3 的两点之间的距离是 . (2) 归纳:一般的,数轴上表示数 m 和数 n 的两点之间的距离等于 ∣m −n∣. 应用:①如果表示数 a 和 3 的两点之间的距离是 7,则可记为:∣a −3∣=7,那么 a = . ②若数轴上表示数 a 的点位于 −4 与 3 之间,求 ∣a +4∣+∣a −3∣ 的值.③当 a 取何值时,∣a +4∣+∣a −1∣+∣a −3∣ 的值最小,最小值是多少?请说明理由.(3) 拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1,A2,A3,A4,A5,⋯,A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在,才能使这2014户居民到点P的距离总和最小.答案一、选择题1. 【答案】D【知识点】实数的绝对值、相反数、有理数的乘方2. 【答案】C)=1,【解析】(−3)×(−13.所以有理数−3的倒数是−13故选:C.【知识点】倒数3. 【答案】D【知识点】有理数加减混合运算4. 【答案】B【知识点】正指数科学记数法5. 【答案】B【解析】A.应为3<∣a∣<4,故A错误.B.应为ac<0,异号两数相乘,积为负,故C错误.C.应为a+c<0,异号两数相加,符号与绝对值大的数相同,∵∣a∣>∣c∣,∴a+c<0,故D错误.【知识点】有理数的乘法、有理数的减法法则及计算6. 【答案】A【解析】根据题中的新定义得:原式=−2−8=−10.【知识点】有理数的乘方7. 【答案】B【知识点】正指数科学记数法8. 【答案】C【知识点】正指数科学记数法9. 【答案】C【解析】50亿元=5×109元.【知识点】正指数科学记数法10. 【答案】B【知识点】正指数科学记数法二、填空题11. 【答案】2;−12【解析】−2的相反数是2;−2的倒数是−12.【知识点】倒数、实数的相反数12. 【答案】−6或6【解析】∵数轴上的点A,B是互为相反数,其中A对应的点是2,∴B是−2,∵C是距离点A为6的点,∴C是−4或8,∴点B和C所表示的数的和为−2−4=−6或−2+8=6.【知识点】绝对值的几何意义13. 【答案】−36【解析】(−2⋇3)△(−4)=(−2×6+5×3)△(−4) =3△(−4)=3×3×(−4)=−36.【知识点】有理数的乘法14. 【答案】>【解析】π=4×(1−13+15−17+19−111+113−115+⋯),1−(13−15+17−19+111−113+115⋯)=π4,∴13−15+17−19+111−113+115−⋯=1−π4=4−π4,∵13−15+17−19+111−113+115>13−15+17−19+111−113+115−⋯,∴13−15+17−19+111−113+115>4−π4.【知识点】有理数的加法法则及计算、有理数的乘法15. 【答案】−2【解析】(−5)+3=−(5−3)=−2.【知识点】有理数的加法法则及计算16. 【答案】2;3【解析】(1)如图所示:∴m=2.(2)如图所示:∵1≤a≤9且a为整数,∴A=0,B=a,又0+B+C=2a−2,∴C=a−2,又10C+D=4a,∴D=20−6a,又1+0+D=−a+6,即1+0+20−6a=−a+6,−6a+a=6−1−20,−5a=−15,a=3.【知识点】解常规一元一次方程、有理数的乘法17. 【答案】32020−12【解析】依题意,可令:S=1+3+32+33+⋯+32019,则3S=3+32+33+⋯+32020,∴3S−S=32020−1,∴S=32020−12.【知识点】有理数的乘方三、解答题 18. 【答案】(1) 如图所示:(2) 在数轴上,从左到右由小到大. ∴x >−y >0>y >−x .【知识点】在数轴上表示实数、实数的相反数、利用数轴比较大小19. 【答案】(1) 如图,A ,C 两景点之间的距离是 2−(−4)=6 千米;(2) 不能完成此次任务.理由如下:电瓶车一共走的路程为:∣+2∣+∣2.5∣+∣−8.5∣+∣+4∣=17(千米), 因为 17>15,所以不能完成此次任务;(3) 他们会合的地点距景区大门 0.75 千米或 1.25 千米. 【解析】(3) ①小明在离 C 景区西边 2 千米的地方, (4.5−4−2)÷2=−1.5÷2=−0.75;②小明在离 C 景区东边 2 千米的地方, (4.5−4+2)÷2= 2.5÷2= 1.25.答:他们会合的地点距景区大门 0.75 千米或 1.25 千米. 【知识点】有理数加法的应用、绝对值的几何意义、数轴的概念20. 【答案】(1) ∑2n 50i=1 (2) 50【知识点】有理数的加法法则及计算21. 【答案】(1) 原式=−5−11+213+23=−13.(2) 原式=−16×12+34×12−512×12=−2+9−5=2.(3) 原式=−1+2−4=−3.(4) 原式=14+[−8−(−6)]×14=14×(1−8+6)=−14.【知识点】有理数加减混合运算、有理数的加减乘除乘方混合运算、有理数的乘法22. 【答案】(1) ∵∣a+3∣+∣c−6∣2=0,b是最大的负整数,∴a+3=0,解得a=−3,b=−1,c−6=0.解得c=6.(2) (−3−1)÷2=−2,对称点为6−(−2)=8,−2−8=−10.故与C点重合的点对应的数是−10.(3) 设当B,C相遇时用了t秒,依题意有t+2t=6−(−1),解得t=73,∴点C表示的数为:6−2t=6−2×73=43,点A表示的数为:−3+3×73=4.故此时AC两点之间的距离是4−43=223.【知识点】数轴的概念、绝对值的性质、有理数的乘方、相遇问题23. 【答案】(1)(−3)×1+(−1)×4+0×3+(−2)×2 =−3+(−4)+0+4=−3(克).答:这10袋样品的总质量比标准质量少,少3克.(2) 10×50+(−3)=497(克).答:抽样检测这10袋的总质量是497克.【知识点】绝对值的几何意义、有理数加法的应用24. 【答案】(1)11+(−13)+(−10)−∣−6∣=11−13−10−6=11−29=−18.(2)(12+56−712)×(−36)=12×(−36)+56×(−36)−712×(−36) =−18−30+21=−48+21=−27.【知识点】有理数的乘法、有理数加减混合运算25. 【答案】(1) 3;4;7(2) ① 10或−4②若数轴上表示数a的点位于−4与3之间,∣a+4∣+∣a−3∣=a+4+3−a=7;③当a=1时,∣a+4∣+∣a−1∣+∣a−3∣取最小值,∣a+4∣+∣a−1∣+∣a−3∣最小=5+0+2=7,理由是:a=1时,正好是3与−4两点间的距离.(3) A1007A1008这条线段上【解析】(1) ①数轴上表示5和2的两点之间的距离是∣5−2∣=3;②数轴上表示−2和−6的两点之间的距离是∣−2−(−6)∣=4;③数轴上表示−4和3的两点之间的距离是∣3−(−4)∣=7.(3) 点P选在A1007A1008这条线段上.【知识点】绝对值的几何意义、绝对值的化简11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加减法(提高)【学习目标】1掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2•掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系,体会其中蕴含的转化的思想;3 •熟练地将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并且会解决简单的实际问题•【要点梳理】要点一、有理数的加法1. 定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2. 法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值•互为相反数的两个数相加得0;(3) 一个数同0相加,仍得这个数.要点诠释:禾U用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是"+”还是"一”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3. 运算律:要点诠释:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+? =7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的 绝对值. 2.法则:减去一个数,等于加这个数的相反数,即有: a 「b = a - (「b ).要点诠释: 将减法转化为加法时,注意冋时进行的两变,一变是减法变加法;二变是把减数变为它的r 门'•、'卩■6 丄(-2)=6* 构L _____ | 质数变为相反数要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算 【典型例题】类型一、有理数的加法运算=■'+: 「=门一二 一 一 --■--上面这种解题方法叫做拆项法,按此方法计算:【思路点拨】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法, 可得答案.【答案与解析】减号变加号(一 2}乎刁戚数变为相反数相反数” •如:.(2018秋?江都市月考)阅读下题的计算方法.十(17帶+[(-3) + ( —寺)]原式=[(-2011) +(—_)]+[6(-2010) + (- )]+[4022+—]+[计算2解:原式=m -的数一起先加 = ( 23.55)(-31.55^-8.(一3.3) ( 3) (-6) ( 0.3) ( 8) ( 6) (-16)门 6~V 4.丿=[(-2011) + (- 2010) +4022+ (- 1) ]+[(—5)+ (-2)止6 3 34=0+「一)【总结升华】本题考查了有理数的加法,拆项法是解题关键. 举一反三:111【变式1】计算: ⑴-7+10;⑵(-)+(-7.3);26 2+(-2+(-3.8)+(-7.2)【答案】(1)原式=(10- -7丄)=(9 -7) (1丄-丄)=22 ;6 26 2 31 1(2)原式=_(0.5 7.3) - -7.8 ; (3)原式=_(2 1_) = _1 一 ; 3 4 12(4)原式=7.2-7.2-3.8=0-3.8 = —3.8 【变式2】计算:_11123 I 6丿1 1 ,■ 5 【答案】_1丄+1丄+ | =_1 1.1 丄 52 3 62丿3 I 6丿」【变式3】计算:(-3.3)( 3) (-6) ( 0.3) ( 8) ( 6)(-16)门 6-.V 4丿【答案】解法一:-(-3.3) ( 3) (-6) ( 0.3) ( 8) ( 6) (-16)门 6V 4丿二(6)ng 呜一同号+ ( -丄)] (3) ( 0.3) ( 8) ( 6)=(6) £-6-1 [(-3.3) ( 3) ( 0.3)] [(-6) ( 6)] [(-16) ( 8)]IL — 4T同分母,互为相反数的数,或几个数可以凑整的数分别结合相加类型二、有理数的减法运算;(2)0-(-3.72)-(+2.72)-(-4)【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】本题可直接利用有理数的减法法则进行计算.⑴2-(-3) = 2+3= 5 (2) 原式=0+3.72+(272)+4 = (0+4)+(3.72272) = 4+1 = 5(3)原式斗.31)…3}》—2^【总结升华】算式中的“ +”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算类型三、有理数的加减混合运算3. 计算:(1) -3.72-1.23+4.18-2.93-1.25+3.72 ;1 1 1(2) 11-12+13-15+16-18+17 ; (3) 3.76 -39 -5 68 -4.76 -2 13 6 25 1 1 3(4) 3.46 4 3.87 -2 1.54 3.37 -6 3 4 4心1 1 3 1 5 5 丄1 3 1(5)-3— 5- 4 6; (6) 2.25 3 2- 1.8752 4 6 18 8 4【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便.解:-3.72-1.23+4.18-2.93-1.25+3.72=(-3.72+3.72)+(4.18-2.93-1.25)-1.23=0+0-1.23 = -1.23(2 )把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18)=57+(-45) = 12后也不难算•故把整数、分数、小数分别分为一组.111解:3.76 -39 -568-4.76 -2 1 3621 1 1= (3.76 -4.76) (-52 1 —) (-39 68) = -1 (-6) 29 = 223 62(4) 3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5 ,把它们分为组;45与-1易于通分,把它们分为一组;-2丄与3同分母,把它们分为一组. 63 4 4 5 113解:3.46 4 3.87 -2— 1.54 3.37 —6 3 4 45 1 1 3=(3.46 1.54) (-3.87 3.37) (4 ) (-2 )6 3 4 41 1=5 (-0.5) 4 (-1 ) =4.5 3=7.52 2(5) 先把整数分离后再分组.解:-31 5- 4 — 6 —2 46 18135 5十3 5 4-6)(二 3 5-池)2 4 6 18-18 27 30 -10=03629 36注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数1 1都是负数,例如 -3丄=-3 -—.2 2(6) 如果按小数、整数分组,效果似乎不是很好•可先将小数和分数统一后再考虑分组.13 解:2.25 3—- 21.8758 4= (2.25 -2.75)(3.125 1.875)=-0.5 5 =4.5【总结升华】计算多个有理数相加时, 必须先审题,分析特点,寻找规律,然后再去计算. 意在交换加数的位置时,要连同符号一起交换 .举一反三:(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是 29,三个分数通分〔 5 3 4 5_6_? 24 618【变式】(2018?甘肃模拟)5.6+[0.9+4.4 -( - 8.1 )].【答案】解:原式=5.6+0.9+4.4+8.1=19 .类型四、有理数的加减混合运算在实际中的应用C^4.(2018秋?郑州期末)“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1) 现有1, 2, 3, 4, 5, 6, 7, 8, 9共九个数字,请将它们分别填入图1的九个方格中, 使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2) 通过研究问题(1),利用你发现的规律,将3, 5, - 7, 1, 7,- 3, 9,- 5,- 1 这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.圉丄【答案与解析】解:(1) 15-3=5,•••最中间的数是5,其它空格填写如图1;(2)如图2所示.图1【总结升华】本题考查了有理数加法,熟知“九宫图”的填法是解题的关键. 举一反三:【变式】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197, 202, 197, 203, 200, 196, 201, 198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8 个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2) = -6V3J丄□E□E□200 X 8+(-6) = 1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201 + 198= 1594(千克)答:出售的粮食共1594千克.【巩固练习】一、选择题1. (2018?怀化)某地一天的最高气温是12C,最低气温是2C,则该地这天的温差是()A. - 10CB. 10 CC. 14 CD. - 14C2. (2019?仪征市一模)比-1小2018的数是()A.- 2018 B . 2019 C . - 2019 D. 20183. 如果三个数的和为零,那么这三个数一定是().A.两个正数,一个负数 B •两个负数,一个正数C.三个都是零 D .其中两个数之和等于第三个数的相反数4. 若an0, bv0,avb,则a与b的和是()A. -hl-HB. 恥C.同+同D. -御-妙.5. 下列判断正确的是()A .两数之差一定小于被减数.B. 若两数的差为正数,则两数都为正数.C. 零减去一个数仍得这个数.D. —个数减去一个负数,差一定大于被减数.6. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25 ± 0.1)kg , (25 ± 0.2)kg , (25± 0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kg B . 0.6kg C . 0.5kg D . 0.4kg二、填空题7. 有理数a,b,c在数轴上对应点位置如图所示,用“〉”或“v”填空:b a(1)1 a | _____ |b I;(2)a+ b+ c _____ 0:(3) a — b + c _____ 0; (4) a + c _____ b ;(5) c — b ___ a .8. (2018春?广饶县校级月考)小明存折中原有 450元,取出260元,又存入150元,现在 存折中还有 _______ 元.9. 若 a , b 为整数,且 |a-2|+| a -b| = 1,则 a+b = ________ .10. 某地的冬天,半夜的温度是 -5 C ,早晨的温度是-1 C,中午的温度是4 C.则(1) ______________________________ 早晨的温度比半夜的温度高 度; (2) ______________________________ 早晨的温度比中午的温度低 度. 11.北京与纽约的时差为-13 (负号表示同一时刻纽约时间比北京时间晚) .如果现在是北京时间15: 00,那么纽约时间是 __________________ 12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ^ b = a-b+1,请你根据新运算,计算 (2 ☆ 3) ☆ 2的值是. 三、解答题(3) 94 994 9994 9999- 99999 -5 5 5 552 1 31 2 (6)-一— 一一(一325514. (2018秋?万州区校级月考)数轴上到原点的距离小于15. (2019?南海区校级模拟)股民李星星在上周星期五以每股为本周星期一到星期五该股票的涨跌情况 求:(1)本周星期(4) 1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100 的值.(5)1丄丄丄丄8 24 48 80 1203的整数的个数为 x ,不大于3 的正整数的个数为 y ,绝对值等于3的整数的个数为z ,求:x+y+z 的值.11.2元买了一批股票,下表13.计算题三收盘时,每股的钱数.(2)【答案与解析】一、选择题1. 【答案】B.2. 【答案】C【解析】解:根据题意得:- 1 - 2018=- 2019,故选C.3. 【答案】D【解析】若a b ^0,则a,b--c或b,c--a或a,c = -c,所以D正确•4. 【答案】D【解析】(a • b)的符号与绝对值较大的 b 一致为负的,并用较大的绝对值减去较小的绝对值,即有- (b-a).5. 【答案】D【解析】A错误,反例:2- (-3 ) =5,而5> 2; B不对,反例:2- (-3 ) =5,而-3为负数;C错误,0-2=-2 , 0- (-2 ) =2,所以零减去一个数得这个数的相反数.6. 【答案】B【解析】因为最低重量为24.7kg,最大重量为25.3kg,故质量最多相差25.3-24.7 = 0.6kg .二、填空题7. 【答案】V,V,>,>,>【解析】由图可知:b > a| >|c,且bvac0, c>0,再根据有理数的加法法则可得答案.8. 【答案】340【解析】450 - 260+150=290+150=340 (元).9. 【答案】2,6,3或5【解析】当|a-2| = 1, | a -b| = 0 时,得:a+b= 6 或2 ;当|a-2| = 0, | a -b| = 1 时,得:a+b= 3 或5;10.【答案】(1)4 (2) 5【解析】(1)-1- (-5 ) =4 ⑵-1- (+4) = -511.【答案】2: 00【解析】15: 00+(-13)=2 : 00.12.【答案】-1【解析】(2 ☆ 3) ☆ 2= (2 ☆ 3)-2+1 = 2-3+1-2+1 = -1三、解答题3 41)原式=1 -[-1 — -5 • —] 4 = 5-(-5) =107 7 (3) 原式= (10 + 100 + 1000 + 10000+100000) + |L 1〕+(―11+ 1丄 + ‘―1〕+ ‘一1A 5丿I 5丿I 5丿I 5八5丿一-111110 (-1)=111109 .(4) 1+(-2)+(-3)+4+5+(-6)+(-7)+8+ =[1+(-2) + (-3)+4]+[5+(-6) + (-7)+8]+ =0+0++…+0= 0.11111111 1 1 1 11 1 5—/ — 一 — ■ — — — ■ — — — ■ — — --------- ■ — '二—(—— )二 2 2 4 4 6 6 8 8 10 10 12 2 2 12 2414.【解析】13.【解析】( 421? 31 — 一丄 3 1 4八3八4丿 一 21? 3丄3 4( 2 2 1 1-21 3-—— 1 3 3 . 4 4 =10— 1 5 1000 二 10000 -〕 100000] 1 …+97+(-98)+(-99)+100…+[97+(-98) + (-99)+100](5) 8 24 48 80 120 2 4 4 6 6 8 8 10 10 12(6)原式二 2 3 1 2["2[F )]83 30 (2)原式 --21 3 _ -181解:根据数轴,到原点的距离小于3的整数为0, 土1,土2,即x=5,不大于3的正整数为1, 2, 3,即y=3,绝对值等于3的整数为3,- 3,即z=2,所以x+y+z=10.15.【解析】解:(1)根据题意得:11.2+0.4+0.45+ (- 0.2 ) =11.85 (元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+ (- 0.2 ) +0.25=12.1 (元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.。

相关文档
最新文档