非参数统计第二章

合集下载

chapter2非参数统计详解

chapter2非参数统计详解

将样本显示的特点作为对总体的猜想,并优先选作 备择假设,零假设是相对于备择假设而出现的.
(2) 检验的 p 值和显著性水平的作用 p 值:在一个假设检验中拒绝零假设的最小显著水平. 判断法则:
(3) 两类错误 第一类错误(弃真错误): H0为真,拒绝H0 一般由检验显著性水平控制 第二类错误(取伪错误): H0为假,接受H0 两类错误相互制衡,不能同时都减到很小. 检验的势

置信区间和假设检验的关系
就单变量位置参数而言,置信区间和双边假设检验有 密切的联系. (1) 检验显著水平 a 和置信水平 1-a 是两个对立事件的概 率 (2) 若水平为 a的拒绝域为 W,则其对立事件是置信水平 为 1-a 的置信区间; (3) 若 H0在1-a的置信区间内则接受 H0,否则拒绝 H0. 置信区间和假设检验的这种关系成为对偶关系. 例:正态总体在方差已知情况下对均值的U检验.
d
又由F ( X i ) 是来自U(0,1)上的iid样本,则有
F ( X1 ).F ( X 2 )...F ( X n ) Wi,Wi U (0,1), iid 样本
i 1 d n
2 n 所以 U1,U2 ,...,Un
为来自(0, 1)上均匀分布的iid样本。
证明
(2)
证明 最大与最小次顺统计量的分布:在上式中分别取r=n和r=1. (3)
这里 s>r。 容量为n的样本最大顺序统计量x(n)与样本最小顺序统计 量x(1)之差称为样本极差,简称极差,常用R=x(n)-x(1)表示。
2.分位数 (1) 样本分位数
(2) 分布分位数
例如标准正态分布
3.分位数的估计
第二章
基本概念
§2.1 非参数统计概念与产生 1.非参数统计的概念

《非参数统计》课程教学大纲

《非参数统计》课程教学大纲

非参数统计Non-parametricStatistics一、课程基本信息学时:48(含实验8学时)学分:3考核方式:考试,平时成绩占总成绩30%。

中文简介:非参数统计为有效地分析试验设计及其实际问题中所获得的数据提供了丰富的统计工具。

本课程从问题背景与动机、方法引进、理论基础、计算机实现、应用实例等诸多方面介绍了非参数统计方法,其内容包括:基于二项分布的检验、列联表、秩检验、Ko1mogorov-Smirnov 型统计量等。

本课程在强调实用性的同时,突出了应用方法与理论的结合。

在人才培养体系中,该课程属于选修课程,但建议每个统计学专业的学生必须掌握若干种非参数统计方法,以其作为其他重要统计方法的补充。

特别是针对名义数据分析及有序数据分析时相当有用。

二、教学目的与要求非参数统计是研究随机现象存在的统计规律的学科,其在经济、工农业生产和科学技术等领域有广泛的应用,是一门应用性很强的一门课程。

本课程(1)使学生掌握非参数理论的基本原理和方法,重点掌握单样本,多样本的位置检验和尺度检验,以及相关检验和分布检验。

注意与参数统计的区别;(2)结合实际例子,运用非参数理论,提高学生运用该工具解决实际问题的能力。

(3)使学生进一步掌握具体与抽象、偶然与必然、特殊与一般等辨证关系,培养学生辨证唯物主义观点。

三、教学方法与手段教学中主要采用课堂教学的方法,当中穿插大量的案例,同时预留课堂讨论与练习的时间让学生进行实际的操作。

本课程同时设立计算机上机课程,由老师自编实验指导书详细指导学生进行上机实践,强调动脑与动手相结合,理论与实践相结合。

o五、推荐教材和教学参考资源教材:非参数统计:基于R语言案例分析,柳向东编,暨南大学出版社,2010年12月(第1版)参考资料:1)非参数统计,王星编著,北京:中国人民大学出版社,2(X)5年1月(第一版)2)非参数统计方法,吴喜之等,北京:高等教育出版社,1996年(第1版)3)孙山泽.非参数统计讲义.北京:北京大学出版社,2000。

非参数统计·王星_第二章课后习题答案

非参数统计·王星_第二章课后习题答案

非参数统计 第 次作业第二章习题 2.1 解:(1)0110001000H :h H :h μ≥↔μ<建立的猜想应该与样本表现一致。

换句话说,正是样本表现使我们对总体的均值产生怀疑,进而才有了假设检验。

因此,0H 是我们就与样本想要推翻的假设,所以才要检验。

(2)由上一问,这样的假设脱离样本,样本呈现出落后于旧过程的情形,而非要用一种优于旧过程的假设,这样的假设是毫无意义的,也并不会带来好的结果。

2.2 解:(1)有问题。

假设检验在原假设条件成立下,得到拒绝域1645x .>,意思是拒绝0θ=,接受0θ≠。

而1000θ=只是其中的一种情况,故不能接受1000θ=。

改进方法:可直接提出假设对均值为1000进行检验。

即0110001000H :H :θ=↔θ≠(2)不合理。

样本2的样本量太小,不具备代表性,用其进行假设检验风险太大。

改进方法:若样本来自同一总体,独立观察,且需要对总体样本均值做出判断,可将两样本合并后再进行假设检验;若样本来自两个总体,需对两总体的均值做出比较,可取(12x x ---)作为检验统计量进行检验。

(3)t -=x -为样本均值,μ为总体均值,s 为样本标准差 01p Pr(t(n )t )=-≤,其中0t -=p 值是拒绝原假设0H 的最小显著水平。

若p α≥,则拒绝0H ;反之,接受0H(4)对总体均值进行双侧检验:00012112211111-H :|t(n )t (n )|(x t (n t (n α---αα--μ=μ↔μ≠μ⎧⎫->-⎨⎬⎩⎭α--+-拒绝域:故,置信区间为:(5)双侧检验:00101211221122''H :H :|u |u u u [x u ,x u α--αα----αα--μ=μ↔μ≠μ⎧⎫≥⎨⎬⎩⎭≤≤-+拒绝域:故置信区间为:- 当样本量很大时,依然可以用上法:222212211111_n i i _s (x x )[n(x (x ))]n n n [(x (x ))]n --=-=-=---=--∑由矩估计的相合性可知,2_x 是2E(x )的相合估计,2(x )-是2E(x )的相合估计 故2s 是2δ的相合估计。

非参数统计讲义通用课件

非参数统计讲义通用课件

假设检验方法
总结词
假设检验方法用于检验一个关于总体 参数的假设是否成立。
详细描述
假设检验方法包括提出假设、构造检 验统计量、确定临界值和做出决策等 步骤。常见的假设检验方法有t检验、 卡方检验、F检验等,用于判断样本数 据是否支持假设。
关联性分析方法
总结词
关联性分析方法用于研究变量之间的相关性。
02
非参数统计方法
描述性统计方法
总结词
描述性统计方法用于收集、整理、描述数据,并从数据中提取有意义的信息。
详细描述
描述性统计方法包括数据的收集、整理、描述和可视化,例如均值、中位数、 众数、标准差等统计量,以及直方图、箱线图等图形化表示。这些方法可以帮 助我们了解数据的分布、中心趋势和离散程度。
非数统计与机器学习算法的结 合将有助于解决复杂的数据分析 问题。
02
与大数据技术的融 合
非参数统计将借助大数据技术处 理海量数据,挖掘数据背后的规 律和模式。
03
与社会科学研究的 互动
非参数统计方法将为社会科学研 究提供更有效的研究工具和方法 。
决策树分析方法
总结词
决策树分析方法是一种基于树形结构的非参 数统计学习方法。
详细描述
决策树分析方法通过递归地将数据集划分为 更小的子集,构建出一棵决策树。决策树的 每个节点表示一个特征属性上的判断条件, 每个分支代表一个可能的属性值,每个叶子 节点表示一个分类结果。决策树分析可以帮 助我们进行分类、预测和特征选择等任务。
非参数统计的发展趋势
多元化发展
非参数统计将不断拓展其应用领域,从传统的医学、生物 、经济领域向金融、环境、社会学等领域延伸。
01
算法优化
随着计算能力的提升,非参数统计的算 法将进一步优化,提高计算效率和准确 性。

数学建模优秀课件非参数统计

数学建模优秀课件非参数统计

0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1

问病户的分布排列是呈聚集趋势,还是随机分布?
实验步骤
1.建立数据文件。 (定义住户变量为epi。按住户顺序输入数据,发病的 住户为1 ,非发病的住户为0。) 2.选择菜单“Analyze→Nonparametric Tests→Runs Test”,弹出 “Runs Test”对话框。在 对话框左侧的变量列表中选择变量epi,使之进入 Test Variable List框。在临界割点“Cut Point”框中 选“Custom”项,在其方框中键入1(根据需要选项, 本例是0、1二分变量,故临界割点值用1)。 3.单击“OK”按钮,得到输出结果。
非参数检验的概念
非参数检验是指在总体不服从正态分布且分 布情况不明时,用来检验数据资料是否来自同 一个总体假设的一类检验方法。由于这些方法 一般不涉及总体参数故得名。
注:这类方法的假定前提比参数性假设检验方 法少的多,也容易满足,适用于计量信息较弱 的资料且计算方法也简单易行,所以在实际中 有广泛的应用。

结果分析

K-S正态性检验的结果显示,Z值=0.718,双侧P值 =0.681,可认为该地正常成年男子的红细胞计数符 合正态分布
5. 2 independent Samples Test 两个独立样本检验
例题

调查某厂的铅作业工人7人和非铅作业工人10 人的血铅值(μg / 100g)如下,问两组工人的 血铅值有无差别?
结果分析

二项分布检验表明,女婴12名,男婴28名,观察概 率为0.70(即男婴占70%),检验概率为0.50,二 项分布检验的结果是双侧概率为0.018,可认为男女 比例的差异有高度显著性,即与通常0.5的性比例相 比,该地男婴比女婴明显为多。

非参数统计学讲义(第二章)讲稿

非参数统计学讲义(第二章)讲稿

非参数统计学讲义第二章 单样本模型 §1 符号检验和有关的置信区间在有了一个样本n X X ,,1 之后,很自然地想要知道它所代表的总体的“中心”在哪里.例如,在对人们的收入进行了抽样之后,就自然要涉及“人均收入”和“中间收入”等概念.这就与统计中的对总体的均值(mean),中位数(median)和众数(mode)等位置参数的推断有关。

例如,在知道总体是正态分布时,要检验其均值是否为μ;一个传统的基于正态理论的典型方法是t 检验.它的检验统计量定义为ns X t /μ-=这里X 为样本均值,而211)(X X n S -∑-=为样本标准差。

t —检验的统计量在零假设下有n —1个自由度的t —分布。

检验统计量是用样本标准差s 代替了有标准正态分布的检验统计量的总体标准差后而产生的在大样本时,二者几乎相等。

t —检验也许是世界上用得最广泛的检验之一。

但是,t —检验并不稳健,在不知总体分布时,特别是小样本时,应用t —检验就可能有风险。

这时就要考虑使用非参数方法。

对于本章所要介绍的数据趋势或随机性检验,就不存在简单的参数方法.非参数方法总是简单实用的。

本章所介绍的一些检验有代表性,因此这里的讨论将比其它章节更为仔细.一旦熟悉了非参数方法的一些基本思路,后面的内容就很容易理解了.一、问题的提出【例2-1】联合国人员在世界上66个大城市生活花费指数(以纽约市1962年12为100)按自小至大的次序排列如下(这里北京的指数为99):表2-1 生活花费指数数据66 75 78 80 81 81 82 83 83 83 83 84 85 85 86 86 86 86 87 87 88 88 88 88 88 89 89 89 89 90 90 91 91 91 91 92 93 93 96 96 96 97 99 100 101 102 103 103 104 104 104 105 106 109 109 110110110111113115116117118155192在例子中,人们可能会问:①总体的平均(或者中间)水平1是多少?②北京是在该水平之上还是之下?可以假定这个样本是从世界许多大城市中随机抽样而得的所有大城市的指数组成总体.可能出现的问题是:这个总体的平均(或者中间)水平是多少?北京是在该水平之上还是之下?这里的平均(或中间)水平是一个位置参数。

《非参数统计》教学大纲

《非参数统计》教学大纲

《非参数统计》课程教学大纲课程代码:090531007课程英文名称:Non-parametric Statistics课程总学时:40 讲课:32 实验:8 上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标《非参数统计》是应用统计学专业的一门专业基础课,是统计学的一个重要分支。

课程主要研究非参数统计的基本概念、基本方法和基本理论。

本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,着重培养学生的统计思想、统计推断和决策能力。

通过本课程的学习,学生将达到以下要求:1.掌握非参数统计方法原理、方法,具有统计分析问题的能力;2.具有根据具体情况正确选用非参数统计方法,正确运用非参数统计方法处理实际数据资料的能力;3.具有运用统计软件分析问题,对计算结果给出合理解释,从而作出科学的定论的能力;4.了解非参数统计的新发展。

(二)知识、能力及技能方面的基本要求1.基本知识:掌握符号检验、Wilcoxon符号秩检验、Cox-Stuart趋势检验、游程检验、Brown-Mood中位数检验、Wilcoxon秩和检验、Kruskal-Wallis检验、Jonckheere-Terpstra检验、Friedman检验、Page检验、Siegel-Tukey检验、Mood检验、Ansari-Bradley检验、Fligner-Killeen检验等非参数统计方法。

2.基本理论和方法:掌握单样本模型、两样本位置模型、多样本数据模型中的位置参数非参数统计检验方法,掌握检验尺度参数是否相等的各种非参数方法,掌握各种回归的方法,掌握分布检验的各种方法,要求能在真实案例中应用相应的方法。

3.基本技能:掌握非参数统计方法的计算机实现。

(三)实施说明1. 本大纲主要依据应用统计学专业2017版教学计划、应用统计学专业建设和特色发展规划和沈阳理工大学编写本科教学大纲的有关规定并根据我校实际情况进行编写。

非参数统计讲义通用课件

非参数统计讲义通用课件
案例分析
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,

非参数-第二章

非参数-第二章

第二章描述性统计描述性统计是在对产生数据的总体的分布不作任何假设的情况下,整理数据、显示数据和分析数据,将数据中有用的信息提取出来的统计方法。

常用的描述性统计方法有表格法、图形法和数值方法。

§2.1表格法和图形法表格法主要有列频数分布表和频率分布表。

看下面的例子。

例2.1某电子公司测试新灯丝的燃烧寿命,表2.1列出了200个灯泡样本的可使用小时数。

表2.1 灯丝寿命数据107 73 68 97 76 79 94 59 98 57 73 81 54 65 71 80 84 88 62 6179 98 63 65 66 62 79 86 68 74 61 82 65 98 63 71 62 116 65 8864 79 78 79 77 86 89 76 74 85 73 80 68 78 89 72 58 69 82 7292 78 88 77 103 88 63 68 88 81 64 73 75 90 62 89 71 71 74 7074 70 85 61 65 81 75 62 94 71 85 84 83 63 92 68 81 62 79 8393 61 65 62 92 65 64 66 83 70 70 81 77 72 84 67 59 58 73 8378 66 66 94 77 63 66 75 68 76 73 76 90 78 71 101 78 43 59 6761 71 77 91 96 75 64 76 72 77 74 65 82 86 79 74 66 86 96 8981 71 85 99 59 92 94 62 68 72 77 60 87 84 75 77 51 45 63 10285 67 87 80 84 93 69 76 89 75 59 77 83 68 72 67 92 89 82 96这200个数杂乱无章,不经过整理难以发现其内在的规律。

非参数统计第二章 单样本检验

非参数统计第二章 单样本检验

第二节 Wilcoxon符号秩检验
基本概念及性质 对称分布的中心一定是中位数,在非对称分布情况下,中
位数不唯一,研究对称中心比中位数更有意义。 例:下面的数据中,O是对称中心吗?
0
检验步骤
Ex.某公司为减少加工费用,决定若铸件重量的中位数超过 25公斤,就转包加工;若不超过25公斤则不转包。现从这 批铸件中随机抽取8件,每件的重量分别为:24.3,25.8, 25.4,24.8,25.2,25.1,25.0,25.5。使用这些数据,能 否作出这批铸件是否转包的决定。
在0.05的水平下,拒绝前面的两个假设.
中位数的置信区间
根据顺序统计量构造置信区间:
P(X(i) M X( j) ) 1 P(M X(i) ) P(M X( j) )
n ki
Ckn
1 n 2
n
Ckn
kj
1 n 2
1 i j n
由于得到的区域是以中位数对称的,
P
定义, s
n
I(xi M0 )
n
, s I(xi M0 ) ,则 s s
n , K min{s ,s}
i1
i1
在零假设情况下 K ~ B(n,0.5),在显著性水平为 的拒绝域为
Pbinom (K k | n, p 0.5)
其中k是满足上式最大的k值。
结果讨论
结果讨论
H0:M=84,H1:M≠84
按照传统的参数方法,假设房屋价格服从正态分布N(84, σ2),
则检验统计量为
,t其值X为1.384,结论呢? s/ n
第一节 符号检验和置信区间
假设总体 F(x) ,Me是总体的中位数,对于假设检验问题:
H0 : Me M0 H1 : Me M0

非参数统计(non-parametricstatistics)又称任意分布检验(.

非参数统计(non-parametricstatistics)又称任意分布检验(.

2
0.05(2)
=5.99
P 0.05
按=0.05水准,拒绝H 0,接受H1,可认为小白鼠接 种三种不同菌型伤寒杆 菌后存活日数有差别。
四、等级资料的比较
适用范围:完全随机设计分组的两个、以及两个以 上样本等级程度比较,目的在于判断两个以及多个总体 分布是否相同。
注意:等级资料对程度的比较不应选检验。

T
在上下界值范围外时,则 P 。
n 9
T 的界值范围是5-40 0.05
P 0.05
按=0.05水准,不拒绝 H 0,故不能认为两法测定 空气中 CS 2的含量有差别。
2、正态近似法
当对子数n 50时,计算统计量 u值。
T n(n 1) / 4 0.5 u n(n 1)(2n 1) / 24
2
0.05(2)
=5.99
P 0.05
按=0.05水准,拒绝H 0,接受H1,可认为三组病人 血浆总皮质醇含量有差别(不同或不全同)。
若还希望分析具体哪些组之间有差别,需进一步两两组 间比较。方法见《卫生统计学》第五版P196,《医学统计学》 第二版P183等。
当相同秩次较多(超过25%)时,需进行如下校正。
H 0:血浆总皮质醇含量的三个总体分布相同 H1:血浆总皮质醇含量的三个总体分布不同或不全同 0.05
(二)计算统计量H值 1、编秩
先将各组数据分别由小到大排列,统一编秩,不同组的
相同数据取平均秩次。 2、求各组秩和 R
i 本例 R1=96.5 R2= 117.5 R3=251 3、计算统计量 H 值 2 n 为各组例数 R i 12 i H ( ) 3( N 1) N n N ( N 1) n i i 12 96.52 117.52 2512 H ( ) 3(30 1) 18.12 30(301) 10 10 10

非参数统计第二章习题

非参数统计第二章习题

乘机服务机上服务到达机场服务
列1 列1 列1
平均79.78 平均54.46 平均58.48 标准误差 1.174661 标准误差 2.08556 标准误差 2.262605 中位数82 中位数55.5 中位数58.5 众数72 众数60 众数52 标准差8.306108 标准差14.74713 标准差15.99903 方差68.99143 方差217.478 方差255.969 峰度-1.05913 峰度0.083147 峰度0.41167 偏度-0.16402 偏度0.264118 偏度-0.26232 区域32 区域65 区域76 最小值63 最小值25 最小值16 最大值95 最大值90 最大值92 求和3989 求和2723 求和2924 观测数50 观测数50 观测数50 最大(1) 95 最大(1) 90 最大(1) 92 最小(1) 63 最小(1) 25 最小(1) 16
置信度(95.0%) 2.36057 置信度(95.0%) 4.191089 置信度
(95.0%) 4.546874
由上表知,表一的平均数最大,标准误差最小,中位数最大,方差最小,等等,所以乘客对乘机服务的满意度最高。

非参数统计课件 精华版

非参数统计课件  精华版

非参数统计目录⏹第一章绪论⏹第二章S-Plus基础⏹第三章单一样本的推断问题⏹第四章两样本位置和尺度检验⏹第五章多总体的统计检验⏹第六章分类数据的关联分析⏹第七章秩相关分析和秩回归第一章绪论主要内容1. 统计的实践2. 非参数统计方法简介3. 参数统计过程与非参数统计的比较4. 非参数统计的历史5. 必要的准备知识1. 统计的实践我们周围的世界⏹符号和数据就是整个世界。

⏹数据繁衍,信息匮乏:观察数据激增,设计数据细分。

⏹数据的复杂性和不确定性的特点更为突出。

⏹数据分析方法和手段不足。

统计的方法论⏹就方法论而言,统计分析主要解决两方面的问题:–寻找数据内部差异中共同的特征。

–寻找数据之间本质的差异。

⏹统计分析的目标是从数据中发现比数据本身更为有用的知识2. 非参数统计方法简介参数方法⏹定义:样本被视为从分布族的某个参数族抽取出来的总体的代表,而未知的仅仅是总体分布具体的参数值,推断问题就转化为对分布族的若干个未知参数的估计问题,用样本对这些参数做出估计或者进行某种形式的假设检验,这类推断方法称为参数方法。

⏹比如:(1)研究保险公司的索赔请求数时,可能假定索赔请求数来自泊松分布P(a);(2)研究化肥对农作物产量的影响效果时,平均意义之下,每测量单元(可能是)产量服从正态分布N(a,b).一个典型的参数检验过程1. 总体参数Example: Population Mean2. 假定数据的形态为Whole Numbers or FractionsExample: Height in Inches (72, 60.5, 54.7) 3. 有很强的假定Example: 正态分布4. 例子: Z Test, t Test, 2Test一个例子:对两组学生进行语法测试,如何比较两组学生的成绩是否存在差异?RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group1F r e q u e n c y6543210Std. Dev = 6.28 M ean = 13.0N = 12.00原始数据秩2530293424251332243032379.514.012.021.07.59.52.017.57.514.017.524.04433228473140303335182135282226.019.55.51.027.016.025.014.019.522.53.04.022.511.05.5RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group2F r e q u e n c y6543210Std. Dev = 9.17 Mean = 14.8N = 15.00非参数检验过程⏹1.不涉及总体的分布–Example: Probability Distributions, Independence⏹2. 数据的形态各异–定量数据–定序数据–Example: Good-Better-Best–名义数据–Example: Male-Female⏹3.例子: Wilcoxon Rank Sum Test/Run TestF, F, F, F, F, F, F, F, M, M, M, M, M, M, MF, M, F, M, F, M, F, M, F, M, F, M, F, M, F3. 参数统计与非参数统计比较非参数检验的优点⏹对总体假定较少,有广泛的适用性,结果稳定性较好。

第二章非参数统计的分析

第二章非参数统计的分析
zB0.5n(n足够大) 0.25n
2021/2/22
第二章非参数统计的分析
13
第二节 Cox-Stuart趋势检验
人们经常要看某项发展的趋势.但是从图表上很难看出是 递增,递减,还是大致持平.
【例5】我国自1985年到1996年出口和进口的差额(balance) 为(以亿美元为单位)
—149.0 119.7 37.7 43.5 122.2 54.0
49.9,48.2,47.6,46,45.8,45.2,41.9,38.8,37.7,37.
5,36.5, 36.4,32.7,32.7,32.2,29.1,27.8,27.8
2021/2/22
第二章非参数统计的分析
6
Histogram of x
10
8
6
Frequency
4
2
0
20
40
60
80
100
2021/2/22
第二章非参数统计的分析
8
符号检验的思路,记
成功:X-0大于零,即大于中位数M,记为“+”; 失败:X-0小于零,即小于中位数M,记为“-”。 令 S+=得正符号的数目
S-=得负符号得数目 可以知道S+或S— 均服从二项分布B(65,0.5)。则可以 用来作检验的统计量。其假设为:
H 0 : 0 :H 1 : 0 H 0 : 0
2021/2/22
第二章非参数统计的分析
9
关于非参数检验统计量需要说明的问题
在非参数检验中,可以得到两个相互等价的统计量, 比如在符号检验中,得负号与得正好的个数,就是一对 等价的统计量,因为S++S-=N。那么我们在检验时应该 用那个呢?约定选择统计量

非参数统计教学大纲

非参数统计教学大纲

遵义师范学院课程教学大纲非参数统计教学大纲(试行)课程编号:280020 适用专业:统计学学时数:64 学分数: 4执笔人:黄建文审核人:系别:数学教研室:统计学教研室编印日期:二〇一五年七月课程名称:非参数统计课程编码:学分:4总学时:64课堂教学学时:64实践学时:适用专业:统计学先修课程:高等数学、线性代数、概率论、数理统计一、课程的性质与目标:(一)该课程的性质本课程属专业方向选修课程。

非参数统计形成于二十世纪四十年代,是与参数统计相比较而存在的统计学一个年轻、活跃而前沿的分支,含有丰富的统计思想并在实践中有着广泛的应用。

非参数统计方法不依赖于总体分布及其参数,适用于多种类型的数据,进行统计推断时仅需要一些非常一般性的假设,因而具有良好的稳健型,在总体分布未知的情况下往往比参数统计方法有效。

(二)该课程的教学目标本课程的教学目的是使学生了解非参数统计在推断统计体系中日益重要的作用,理解非参数统计方法和参数统计方法的区别。

要求学生掌握本课程的基本知识、基本概念、基本原理和基本方法,能应用非参数统计方法解决一些简单的实际问题;注重学生统计思维能力和实践能力的培养,进一步培养学生重视原始资料的完整性与准确性、对数据处理持严肃认真态度的专业素质。

二、教学进程安排课外学习时数原则上按课堂教学时数1:1安排。

三、教学内容与要求第一章引言【教学目标】通过本章学习,使学生清楚非参数统计的研究对象,了解非参数统计的历史,明白非参数统计方法和参数统计方法的区别,认识学习非参数统计方法的必要性,了解非参数统计的一些基本概念与基本工具;通过对初等推断统计的简单回顾,要求学生提炼并把握推断统计思想的实质,为后续章节学习非参数统计的分析技巧和主要思想打下基础。

【教学内容和要求】主要教学内容:非参数统计研究内容;非参数统计小史;初等推断统计回顾;非参数统计基本概念。

教学重点与难点:教学重点是通过与参数统计异同的比较,介绍非参数统计的研究内容与研究方法;教学难点是对检验的相对效率、秩检验统计量、U统计量等非参数统计基本概念的理解。

非参数统计分析教学课件

非参数统计分析教学课件

Python
介绍
Python是一种通用编程语 言,因其易读性和易用性 而被广泛用于数据分析和 科学计算。
特点
Python拥有强大的科学计 算库,如NumPy、 Pandas和SciPy等,可进 行数据清洗、统分析等 多种任务。
教程资源
Python的在线教程和书籍 资源丰富,同时还有大量 的科学计算社区和论坛可 供交流。
数据流处理
数据流处理技术可以实时处理大规模数据,为非参数统计分析提供 新的可能性。
云计算
云计算平台可以提供弹性可扩展的计算资源,方便非参数统计分析 的进行。
THANKS
感谢观看
洗和校验。
高维数据的非参数统计分析挑战
维度诅咒
高维数据可能导致传统的非参数统计分析方法失 效,需要开发新的方法。
数据稀疏性
高维数据可能导致数据稀疏,使得统计分析结果 不稳定。
特征选择
高维数据需要进行特征选择,以减少噪声和冗余 ,提高分析效率。
大数据处理技术在非参数统计分析中的应用前景
并行计算
利用并行计算技术可以提高非参数统计分析的效率和准确性。
应用场景与优势
应用场景
适用于数据类型复杂、分布不明确或 数据量较小的情况;例如,生物医学 研究、金融数据分析、社会学调查等 领域。
优势
能够更好地揭示数据的内在结构和关 系;对数据的假设较少,避免过度拟 合和误判;同时具有较高的灵活性和 普适性,能够适用于多种场景。
02
CATALOGUE
非参数统计方法
聚类分析
01
聚类分析是一种非参数统计方法 ,用于将相似的对象归为同一类 ,将不相似的对象归为不同类。
02
聚类分析通过计算对象之间的距 离或相似性来将它们分组,常见 的聚类分析方法有层次聚类、K均 值聚类和DBSCAN聚类等。

《非参数统计分析》PPT课件

《非参数统计分析》PPT课件

0.011014 0.034733 3.263554 -3.207570 0.928736 -0.043640 3.458105
9.061568 0.010772
此数据的正态性检验是非正态。
非参数统计归纳起来有如下的三点优点:
1. 对总体的假定少; 2. 可以处理许多有问题数据,比如污染的正 态分布,有奇异值的情形;
组别 1 1 1 1 1 2 1 1 1 1
2
负债率 80 80 82 82 83 84 84 86 91 91 93

12 13 14 15 16 17 18 19 20 21 22
组别 2 2 1 1 1 2 2 2 2 2
2
如果我们将12家工业企业的秩相加是94,其平均秩是7.88,将 10家商业企业的秩相加得159,其平均秩为15.9,这就给我们一个 可以考虑的信息,两种企业的资产负债是有差异的。他们的平均秩 不同。
然而,在实际生活中,那种对总体分布的假定并不是 能随便做出的。有时,数据并不是来自所假定分布的总体。 或者数据根本不是来自一个总体,数据因为种种原因被严 重污染。这样,在假定总体分布的情况下进行推断的做法 就可能产生错误的结论。于是,人们希望在不假定总体分 布的情况下,尽量从数据本身来获得所需要的信息。这就 是非参数统计的宗旨。因为非参数统计方法不利用关于总 体分布的相关信息,所以,就是在对于总体分布的任何信 息都没有的情况下,它也能很容易而又较为可靠地获得结 论。这时非参数方法往往优于参数方法。在台湾这种方法 称为“无母数统计”,即不知到总体信息的统计方法。
120
Series: JUNZHI
Sample 1 1000
100
Observations 1000

非参数统计第二章

非参数统计第二章
H1 : Q q0、H1 : Q q0或H1:Q q0
记样本中小于 q0 的点数为 S , 大于 q0 的点数为 S 。 s s 并用小写的 和 分别代表 S 和 S 的实现值。 n s s 记 按照零假设, s 与 n 之比应该约为 左右,或 s 大约等于 n , 而 s 与 n 之比应该约为 1 左右,或者说 s 大约等于 n(1 ) 。 s 如果 与 s 与此相差的很远,那么零假设可能有 问题 。
例2.2 下面是随机抽取的22个企业的纳税额(单位 :万元)。数据已经按照升幂排列
1.00 1.35 1.99 2.05 2.06 2.10 2.30 2.61 2.86 2.95 2.98 3.23 3.73 4.03 4.82 5.24 6.10 6.64 6.81 6.86 7.11 9.00
54379 45461 55408 59712 60776 57635 63335 71296 70250 76866 75561 66427 61330 58186 67799 76360 86207 75509 83020 89614 75791 80835 72179 61520 66726 60629 68549 73310 80719 67759 70352 82825 70541 74631 68938 53318 62653 58578 63292 69535 73379 62859 72873 87260 67559 76647 70590 58935 58161 64057 63051 58807 63663 57367 70854 79949 66992 80140 62260 55942 58367 56673 61039 74958 85859 67263 87183 97575 79988 88501 68600 58442 68955 56835 67021 81547 85118 70145 95080 106186 86103 88548 70090 65550 69223 85138 89799 99513 98114 68172 97366 116820 95665 109881 87068 75362 88268 85183 87909 79976 27687 50178 100878 131788 116293 120770 104958 109603
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大样本时,有
n(n 1) n(n 1)(2n 1) k Z / 2 4 24
回看例2.3欧洲人酒精人均消费 Walsh平均有 n(n 1) / 2 55
中位数10.390是 的估计量。再求 的 (1 ) 置信区间 0.05( / 2 0.025) 时,查表有,对于
54379 45461 55408 59712 60776 57635 63335 71296 70250 76866 75561 66427 61330 58186 67799 76360 86207 75509 83020 89614 75791 80835 72179 61520 66726 60629 68549 73310 80719 67759 70352 82825 70541 74631 68938 53318 62653 58578 63292 69535 73379 62859 72873 87260 67559 76647 70590 58935 58161 64057 63051 58807 63663 57367 70854 79949 66992 80140 62260 55942 58367 56673 61039 74958 85859 67263 87183 97575 79988 88501 68600 58442 68955 56835 67021 81547 85118 70145 95080 106186 86103 88548 70090 65550 69223 85138 89799 99513 98114 68172 97366 116820 95665 109881 87068 75362 88268 85183 87909 79976 27687 50178 100878 131788 116293 120770 104958 109603

1. 2.
趋势检验(不依赖于趋势结构): Cox-Stuart 趋势检验 趋势的秩检验。(多样本问题)
Cox-Stuart 趋势检验的理论基础是符号检 验,可认为是符号检验的一个应用。

例2.4 天津机场从1995年1月到2003年12月的108个 月旅客吞吐量(人次)如下表.从这些数据,我们能 否说明这个差额总的趋势是增长,还是减少,还是 都不明显呢?
2.2.2 基于Wilcoxon符号秩检验的点估计和置信区间 样本:n个 寻找对称中心,样本中位数即可 为了利用更多的信息,可以扩大样本数目: n(n 1) / 2 个) 求每两个数的平均 ( X i X j ) / 2, i j (共有 这样的平均称为Walsh平均。则
W #{

Xi X j 2
0, i j}
这里符号#{ }是满足符号{ }内条件的表达式的个数 (“#”相当于the number of)
若X1 ,, X n ~ F ( x ) ,即有位移 则有
W ( ) #{

Xi X j 2
, i j}
来做Wilcoxon符号秩检验。则
从图中很难说这是什么分布,我们根据 分位点的定义,并通过与分位点相关的 Bernoulli试验及二项分布的性质得到需要的 结果。 如果 Q 是总体的 分位点,那么意味 着总体中约有比例 那么多的个体小于Q 。 显然,关于 分位点的推断等价于关于比 例 的推断。
2.1.1 广义符号检验:对分位点进行的检验 广义符号检验:对连续变量 分位点 Q 进行 的检验。 狭义符号检验:仅针对中位数(或0.5分位点) 0.5 进行的检验。 假定检验的假设是: H 0 : Q q0 备择假设可能是:
问题: (1)样本中位数M是否大于64.或者说是否 指数小于64的城市的比例少于0.5(或指数 大于64的比例是否大于0.5) (2)样本下四分位点(0.25分位点) 是否小于64,。等价的说,是否指数小于64 的城市的比例大于0.25(或指数小于64城 市的比例是否小于0.75)
由于中位数也是分位点(0.5分位点)。 所以,这两个问题实际上都是关于分位点 的检验问题,只不过一个是关于 0.5 分位 点,另一个是关于 0.25 分位点。这里面 也出现了求 分位点 Q 的100(1 )% 置信区间 问题。 本例中,分布未知,观察直方图

(4)对双边检验 H0 : M M 0 H1 : M M 0 在零假设下, W 与 W 应差不多。因而,当其中之 一很小时,应怀疑零假设。取检验统计量
W min( W ,W )
类似地,对 H0 : M M 0 H1 : M M 0 ,取 W W 对 H0 : M M 0 H1 : M M 0 ,取 W W W W 9 例2.3,取 (5)根据得到的W的值,得到零假设下的 p 值。 如果n 很大要用正态近似 如果 n 不是很大,可以通过软件或者查Wilcoxon 符号秩检验的分布表,得到 p 值 (6)比较 p 与 ,若 p 则拒绝零假设。
例2.2 下面是随机抽取的22个企业的纳税额(单位 :万元)。数据已经按照升幂排列
1.00 1.35 1.99 2.05 2.06 2.10 2.30 2.61 2.86 2.95 2.98 3.23 3.73 4.03 4.82 5.24 6.10 6.64 6.81 6.86 7.11 9.00
2.1 广义符号检验和有关的置信区间
例2.1 下面是世界上71个大城市的花费指数(包括租 金),按递增次序牌类如下(这里上海是44位, 指数为63.5) 27.8 27.8 29.1 32.2 32.7 32.7 36.4 36.5 37.5 37.7 38.8 41.9 45.2 45.8 46 47.6 48.2 49.9 51.8 52.7 54.9 55 55.3 55.5 58.2 60.8 62.7 63.5 64.6 65.3 65.3 65.3 65.4 66.2 66.7 67.7 71.2 71.7 73.9 74.3 74.5 76.2 76.6 76.8 77.7 77.9 79.1 80.9 81 82.6 85.7 86.2 86.4 89.4 89.5 90.3 90.8 91.8 92.8 95.2 97.5 98.2 99.1 99.3 100 100.6 104.1 104.6 105 109.4 122.4
大样本正态近似 比较小时,可以用二项分布的公式来 计算精确 值。但当 比较大时,也可以 用正态分布来近似。 如果在零假设 H 0 : Q q0 下, K ~ Bin(n, ) 那么当 n 较大时,则可以认为
K n Z ~ N (0,1) n (1 )
2.1.2 基于符号检验的中位数及分位点的置信 区间
n 10, P(W 9) P(W 8) 0.024 / 2
所以 k 9 ,置信区间为 [W(91) ,W(559) ) [8.02,12.73)
§2.4 Cox-Staut 趋势检验
在客观世界中会有许多各种各样随时间变动的数据序 列,我们通常关心这些数据随时间变化的规律,也就是进 行趋势分析。例如:依据病患人数判断疫情是否已经得到 控制,或者是否还在增长等等。 回归分析是常用的趋势分析工具,说明数据是否存在着线性 趋势,存在着怎样的线性趋势。但用回归分析也有其局限 性,问题在于: 如果模型不能通过检验,那么趋势是否存在? 是否应该将所有可能的检验穷尽才能回答这个问题? 即使模型通过检验,也只能说在模型的假设下,数据的趋 势是存在的。
W 和W 的Wilcoxon分布有关系为 注意
P(W k 1) P(W n(n 1) / 2 k ) 1 P(W k ) P(W n(n 1) / 2 k 1) 1
由于Wilcoxon符号秩检验要求总体分布对称,我们 现在将 H 0 : M 8 H1 8 与 H0 : M 12.5 H1 12.5 的检验结果进行比较.
在零假设 应该服从二项分 布 Bin(n, ) 。 下面就在二项分布变量的检验中如何计算p值 的问题给出一个表
H 0 : Q q0
S 下,
这类检验之所以叫做“符号检验”,是因为 S 为用所有样本点减去 q0之后,差为正的个数,而 S 为用所有样本点减去 q0 之后,差为负的个数。
第二章 单样本问题
经典统计关心的问题:已知总体 均值——位置变量 方差、标准差、极差——尺度变量
非参数统计关心的问题: 已知:样本 X1,, X n 位置变量? 尺度变量?
例如:在对人们的收入进行抽样之后,自然 要对“人均收入”和“中间收入”等概念 感兴趣。这就与统计中的对总体的均值 (mean),中位数(median)和众数(mode)等位 置参数的推断有关。 也可能想要知道收入多少才能够算“最富 的百分之五”之类的问题。这与分位点的 推断有关系。 除了位置,我们也希望通过数据知道它的 趋势和走向,这都是本章要研究的内容。
时 绝对值的秩只有1,2和3,共有8种可能的符号排列
秩 1 2 3 0 1/8 + 1 1/8 + 2 1/8 符号的8种组合 + 3 1/8 + + 3 1/8 + + 4 1/8 + + 5 1/8 + + + 6 1/8
W 在零假设下的分布并不复杂。例如 n 3
W
概率

W 3 出现了2次,因而 PH0 (W 3) 2 / 8
2.2 Wilcoxon 符号秩检验,点估计和区间估计 Wilcoxon 符号秩检验 符号检验利用率观察值与零假设的中心位置 之差的符号来检验,但没有利用这些差的大小(距 M 0 的远近)的信息。 已知信息越多,结论越有效,所以把已知距离 考虑进去更好,即Wilcoxon符号秩检验。 宗旨:把观测值和零假设的中心位置之差的绝对值 的秩分别按照不同的符号相加作为其检验统计量。 注意:假定样本点 X1 ,, X n 来自连续对称总体分布。 此时,总体中位数=均值 其目的与符号检验一致,即检验 H0 : M M 0
相关文档
最新文档