湖南省长郡中学2019届高三月考(一)数学理试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学2019届高三月考试卷(一)
数 学(理科)
总分:150分 时量:120分钟
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目
要求的,请将所选答案填在答题卡中对应位置.
1.如果复数
212bi
i
-+(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b = ( )
A. B. 23 C. 2
3
- D. 2
【解】选
由222(4)125bi b b i i ---+=
+,依题有2240b b ---=,即2
3
b =-. 2.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体
m 被抽到的概率为( )
A.
1
100 B.
120 C.
1
99
D.
150 【解】选 由抽样的公平性可知,每个个体入样的概率均为51
10020
P ==
. 3.设偶函数满足()24(0)x f x x =-≥,则{|()0}x f x >=( ) A. {|24}x x x <->或 B. {|04}x x x <>或 C. {|22}x x x <->或
D. {|06}x x x <>或
【解】选 当0x ≥时,由()240x f x =->,得2x >,由图象对称性可知选C. 4.若21()n x x
-展开式中的所有二项式系数之和为512,则该开式中常数项为( ) A. 84-
B. 84
C. 36-
D. 36
【解】选 由二项式系数之和为2512n =,即9n =,又18319(1),r r r r T C x -+=- 令1830r -=,则6r =故常数项为784T =.
5.设条件:|2|3p x -<,条件:0q x a <<,其中a 为正常数.若p 是q 的必要不充分条件,则a
的取值范围是( ) A. (0,5]
B. (0,5)
C.[5,+∞)
D. (5,+∞) 【解】选 由条件p 对应的集合为(1,5)A =-
,
条件q 对应(0,)(0)B a a =>.且依题意A B =≠=⊃, 可知5a ≤,又0a >,故05a <≤.
否 开始 输入x
6.按照如图所示的程序运行,已知输入的x 的值为21log 3+, 则输出y 的值为( )
A. 1
12 B.
38 C. 712
D. 1124
【解】选
由于输入的初始值为21log 34+<,故 221log 312log 3x =++=+,即2log 3211111
()()2243
12
y =⨯=⨯=.故选A.
7.已知一个几何体的三视图及有关数据如图所示
, 则该几何体的体积为( )
A.
B.
C.
D.
【解】选 由该几何体的
三视图可以借用长方体将其还原 为直观图如右所示,(
由简到繁)
由俯视图→侧视图→正视图→直观图, 其为四棱锥P ABCD -, 所以13P ABCD ABCD V S -==矩选B.
8.设2(),0,()1
,0x a x f x x a x x -≤⎧⎪
=⎨++>⎪⎩
,若(0)f 是()f x 的最小值,则a 的取值范围为( ) A. [-1,2]
B. [-1,0]
C. [1,2]
D. [0,2]
【解】选
当0a <时,显然(0)f 不是()f x 的最小值,当0a ≥时,可知0x ≤时, 2()(0)f x f a ≥=,而当0x >时,1
()2f x x a a x
=++≥+,依题意22a a +≥,得12a -≤≤, 所以02a ≤≤即求.
9.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221
sin cos 2
A A -=,则下列各式正确的是( ) A. 2b c a +=
B. 2b c a +<
C. 2b c a +≤
D. 2b c a +≥
【解】选
由221sin cos 2A A -=得,1
cos22
A =-,又A 为锐角,故02A π<<, 于是223A π=
,即3
A π
=.于是由余弦定理有2222()3a b c bc b c bc =+-=+-, 正视图
1
1
2
2
2
2
侧视图
俯视图
即22
2
2
3()()()44
b c a b c b c +≥+-+=,解得2a b c ≥+,选C.
【一点开心】事实上在ABC ∆中,如果三边,,a b c 成等差或等比数列,即22b a c b ac =+=或, 那么我们都可以结合重要不等式知识得到60B ≤.
10.如图,圆O 的半径为1,A
是圆上的定点,P 是圆上的动点,
角x 的始边为射线OA ,终边为射线OP ,过点P 作直线 OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示
为x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )
【解】选 由OP HM PM OM ⋅=⋅,于是HM PM OM =⋅,由三角函数线有,
1
|s i n ||c o s |
|s i n 2|2H M x x x =⋅=,于是1()|sin2|2f x x =的最大值为1,22
T π
=,故选C.
二、填空题:本大题共5小题,共25分,把答案填在答题卡中对应题号后的横线上. 11.已知直线的极坐标方程为sin()4
π
ρθ+=
则极点到直线的距离为 . 【解】填
2 由sin()42
πρθ+=化为直角坐标方程为1x y +=,于是极点 (0,0)O 到该直线的距离为d =
=
即求. 12.设,,x y z 均为正数,满足230x y z -+=,则2
y xz
的最小值是 .
由230x y z -+=可化为23y x z =+,得224(3)43y x z x z =+≥⋅,
其中运用了重要不等式的变形式2
()4,,a b ab a b R +≥∈,故2
3y xz
≥(当3x z =时取等号). 13.数列{}n a 的前n 项和为n S ,若*111,3,n n a a S n N +==∈,则2014a = . 若填为201234⋅形式则视为错误,0.
由*111,3,n n a a S n N +==∈……①,可推出,21133,3,2n n a a a S n -===≥……② ①-②式得,14,2n n a a n +=≥,于是224n n a a -=⨯,2n ≥,故2012201434a =⨯. 注意定义域了吗?
A y
B y
C y D