湖南省长郡中学2019届高三月考(一)数学理试题
2019年湖南长郡中学高三理科数学月考高考模拟试卷(附答案)
*
0
& (
123
(6)0
& (
123(451)6451(123)整理
可
得
783(
0'783)则
783(!)0"786378(3!(778833))
0"6&7'87383)#)
0
'783)&6783")"
& '
当且仅当783)0
" #
时等号成立!故选
/!
"$!,!解析由题意可得"+#0##6#%#!#在
为!!!!!
三%解答题#本大题共7$分!解答应写出文字说明&证明过程或演算步骤!第
!7#!题为必考题&每个试题考生都必须作答!第##%#)题为选考题&考
生根据要求作答!
!一"必考题#共'$分!
!7!!本小题满分!#分"
在)"%) 中&角 "&%&) 所对的边长分别为,&-&.&且满足.:;<%(槡)-=3:)& ,#*.#(#-#! !!"求) 的大小.
理科数学试题!长郡版"第!" 页!共"页"
长郡中学#$"%届高三月考试卷二
数学理科参考答案
一选择题
题!号 "
#
&
'
(
)
*
+
% "$ "" "#
答!案 ,
-
.
/
-
湖南省长郡中学2019届高三月考试卷(一)理科数学
长郡中学2019届高三月考试卷(一)数学(理科)(考试时间:120分钟,满分150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1.设复数,则()A. B. C. D.【答案】D【解析】【分析】根据复数除法运算,分子分母同时乘以分母的共轭复数,化简即可。
【详解】所以所以选D【点睛】本题考查了复数的除法运算,复数模的定义,属于基础题。
2.2.已知集合,,,则()A. B. C. D.【答案】C【解析】集合,故,集合表示非负的偶数,故,故选C.3.3.若定义在上的偶函数满足且时,,则方程的零点个数是()A. 个B. 个C. 个D. 个【答案】C【解析】【分析】根据函数的周期性和奇偶性,画出函数图像,根据函数图像的交点个数确定零点个数即可。
【详解】因为数满足,所以周期当时,,且为偶函数,所以函数图像如下图所示学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...学。
科。
网...由图像可知,方程有四个零点所以选C【点睛】本题考查了函数的奇偶性和周期性,绝对值函数图像的画法和函数零点的概念,关键是根据函数解析式能够正确画出函数的图像,属于基础题。
4.4.计算的结果为()A. B. C. D.【答案】B【解析】【分析】根据诱导公式,化简三角函数值;再根据正弦的差角公式合并即可得到解。
2019-2020学年人教A版湖南省长沙市长郡中学高三第二学期(3月份)第一次段考(理科)数学试卷 含解析
2019-2020学年高三第二学期段考数学试卷(理科)(3月份)一、选择题1.若i为虚数单位,复数z满足z(1+i)=|1﹣i|+i,则z的虚部为()A.B.C.D.2.设集合A={x|<0},B={x|x≤﹣3},则集合{x/x≥1}=()A.A∩B B.A∪B C.(∁R A)∪(∁R B}D.(∁R A)∩(∁R B} 3.中国古代数学著作《九章算术》中有这样一个问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱),3月入25贯,全年(按12个月计)共入510贯”,则该人12月营收贯数为()A.35B.65C.70D.604.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是()A.B.C.D.5.已知a=log0.62,b=log20.6,c=0.62,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b6.椭圆C:+=1,F1,F2是其焦点,点P是椭圆C上一点,若△F1PF2是直角三角形,则点P到x轴的距离为()A.B.C.D.27.若α为锐角,且(4cos50°﹣tan40°)tanα=1,则α=()A.60°B.50°C.40°D.30°8.设等比数列{a n}的前n项和为S n,公比为q,且S3,S9,S6成等差数列,则8q3等于()A.﹣4B.﹣2C.2D.49.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.B.C.D.10.已知函数的图象关于直线对称,若f(x1)f(x2)=﹣4,则|x1﹣x2|的最小值为()A.B.C.D.11.如图,在梯形ABCD中已知|AB|=2|CD|,=,双曲线过C,D,E三点,且以A,B为焦点,则双曲线的离心率为()A.B.2C.3D.12.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)二、填空题13.已知n=(﹣2x)dx,则x(1﹣)n的展开式中的常数项为.14.某封闭几何体的三视图如图所示,则该几何体的表面积为15.对于数列{a n},若∀m,n∈N*(m≠n),都有成立,则称数列{a n}具有性质P(t).若数列{a n}的通项公式为,且具有性质P(10),则实数a的取值范围是.16.若∀x∈[e,+∞),满足恒成立,则实数m的取值范围为.三.解答题17.已知在△ABC中,a,b,c分别为角A,B,C的对应边,点D为BC边的中点,△ABC 的面积为.(1)求sin∠BAD•sin∠BDA的值;(2)若BC=6AB,AD=2,求b.18.如图,矩形ABCD中,AB=6,,点F是AC上的动点.现将矩形ABCD沿着对角线AC折成二面角D'﹣AC﹣B,使得.(Ⅰ)求证:当时,D'F⊥BC;(Ⅱ)试求CF的长,使得二面角A﹣D'F﹣B的大小为.19.已知F为抛物线C:y2=2px(p>0)的焦点,过F的动直线交抛物线C于A,B两点.当直线与x轴垂直时,|AB|=4.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线l相交于点M,抛物线C上存在点P使得直线PA,PM,PB的斜率成等差数列,求点P的坐标.20.已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.21.如图,直角坐标系中,圆的方程为x2+y2=1,A(1,0),B(﹣,),C(﹣,﹣)为圆上三个定点,某同学从A点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子n次时,棋子移动到A,B,C处的概率分别为P n(A),P n(B),P n(C).例如:掷骰子一次时,棋子移动到A,B,C处的概率分别为P1(A)=0,P1(B)=,P1(C)=(1)分别掷骰子二次,三次时,求棋子分别移动到A,B,C处的概率;(2)掷骰子n次时,若以x轴非负半轴为始边,以射线OA,OB,OC为终边的角的余弦值记为随机变量X n,求X4的分布列和数学期望;(3)记P n(A)=a n,P n(B)=b n,P n(C)=c n.,其中a n+b n+c n=1.证明:数列{b n ﹣}是等比数列,并求a2020.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q 两点,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).参考答案一.选择题1.若i为虚数单位,复数z满足z(1+i)=|1﹣i|+i,则z的虚部为()A.B.C.D.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1+i)=|1﹣i|+i=,得z=.∴z的虚部为.故选:D.2.设集合A={x|<0},B={x|x≤﹣3},则集合{x/x≥1}=()A.A∩B B.A∪B C.(∁R A)∪(∁R B}D.(∁R A)∩(∁R B}【分析】解不等式得集合A,根据补集的定义写出∁R A、∁R B,即可得出结论解:集合A={x|<0}={x|﹣3<x<1},B={x|x≤﹣3},则∁R A={x|x≤﹣3或x≥1},∁R B={x|x>﹣3};∴(∁R A)∩(∁R B}={x|x≥1}.故选:D.3.中国古代数学著作《九章算术》中有这样一个问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱),3月入25贯,全年(按12个月计)共入510贯”,则该人12月营收贯数为()A.35B.65C.70D.60【分析】设每个月的收入为等差数列{a n}.公差为d.由a3=25,S12=510.可得a1+2d =25,12a1+d=510,联立解出即可得出.解:设每个月的收入为等差数列{a n}.公差为d.则a3=25,S12=510.∴a1+2d=25,12a1+d=510,解得a1=15,d=5,∴a12=15+11×5=70.故选:C.4.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是()A.B.C.D.【分析】小千和大年比赛至第四局小千胜出,由指前3局中小千胜2局,有1局不胜,第四局小千胜,由此能求出小千和大年比赛至第四局小千胜出的概率.解:根据“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”,可得每局比赛中小千胜大年、小千与大年和局和小千输给大年的概率都为,∴小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出,由指前3局中小千胜2局,有1局不胜,第四局小千胜,∴小千和大年比赛至第四局小千胜出的概率是:p==.故选:B.5.已知a=log0.62,b=log20.6,c=0.62,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】a=log0.62=﹣1,又ab=1.可得b=log20.6∈(﹣1,0),而c >0,即可得出大小关系.解:a=log0.62=﹣1,又ab=×=1.∴b=log20.6∈(﹣1,0),c=0.62>0,则c>b>a.故选:C.6.椭圆C:+=1,F1,F2是其焦点,点P是椭圆C上一点,若△F1PF2是直角三角形,则点P到x轴的距离为()A.B.C.D.2【分析】分两种情况讨论,是∠P为90°还是∠F1或∠F2为90°,注意P的纵坐标的取值范围,将P的坐标代入椭圆中,再由角为90°可得P的纵坐标的绝对值,即是P 到x轴的距离.解:设P(m,n),|n|2≤5,由题意可得:+=1,m2=9(1﹣),a2=9,b2=5,所以c2=a2﹣b2=9﹣5=4,所以c=2,F1(﹣2,0),F2(2,0),△F1PF2是直角三角形,当∠PF2F1=90°,或∠PF1F2=90°结果一样的,则m=c=2,代入椭圆可得|n|==;当∠F1PF2=90°时,而=(m+2,n),=(m﹣2,n),所以=0,即(m+2)(m﹣2)+n2=0,m2+n2=4,即9(1﹣)+n2=4,解得n2=>5,不成立,综上所述|n|=,故选:A.7.若α为锐角,且(4cos50°﹣tan40°)tanα=1,则α=()A.60°B.50°C.40°D.30°【分析】先利用三角函数公式化简4cos50°﹣tan40°=,则tan,从而求出α的值.解:4cos50°﹣tan40°=4sin40°﹣tan40°======,∴,又∵α为锐角,∴α=300,故选:D.8.设等比数列{a n}的前n项和为S n,公比为q,且S3,S9,S6成等差数列,则8q3等于()A.﹣4B.﹣2C.2D.4【分析】利用等差数列的性质、等比数列的通项公式即可得出.解:)∵S3,S9,S6成等差数列,∴2S9=S3+S6,∴(S9﹣S6)+(S9﹣S3)=0,即(a7+a8+a9)+(a7+a8+a9)+(a4+a5+a6)=0,∴2q3(a4+a5+a6)+(a4+a5+a6)=0,∵,∴q3=﹣,∴8q3=﹣4.故选:A.9.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.B.C.D.【分析】化圆C的方程为(x﹣4)2+y2=1,求出圆心与半径,由题意,只需(x﹣4)2+y2=4与直线y=kx+2有公共点即可.解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx+2有公共点即可.设圆心C(4,0)到直线y=kx+2的距离为d,则d=≤2,即3k2≤﹣4k,∴﹣≤k≤0.∴k的最小值是.故选:A.10.已知函数的图象关于直线对称,若f(x1)f(x2)=﹣4,则|x1﹣x2|的最小值为()A.B.C.D.【分析】根据函数的对称性,利用f(0)=f(﹣),建立方程求出a的值,然后利用辅助角公式求出f(x)的解析式,利用最值性质转化为周期关系进行求解即可.解:∵f(x)的图象关于直线对称,∴f(0)=f(﹣),即﹣=a sin(﹣)﹣cos(﹣)=﹣a﹣,得a=,得a=1,则f(x)=sin2x﹣cos2x=2sin(2x﹣),∵f(x1)f(x2)=﹣4,∴f(x1)=2,f(x2)=﹣2或f(x1)=﹣2,f(x2)=4,即f(x1),f(x2)一个为最大值,一个为最小值,则|x1﹣x2|的最小值为,∵T==π,∴=,即|x1﹣x2|的最小值为,故选:D.11.如图,在梯形ABCD中已知|AB|=2|CD|,=,双曲线过C,D,E三点,且以A,B为焦点,则双曲线的离心率为()A.B.2C.3D.【分析】以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立如图所示的坐标系,求出C的坐标,根据向量的运算求出点E的坐标,代入双曲线方程即可求出解:由|AB|=2|CD|,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立如图所示的坐标系,设双曲线的方程为﹣=1,由双曲线是以A,B为焦点,∴A(﹣c,0),B(c,0),把x=c,代入﹣=1,可得y=b,即有C(c,b),又设A(﹣c,0),∴=(c,b),设E(x,y),∴=(x+c,y),∵=,∴(x+c,y)=(c,b),解得x=﹣c,y=b•),可得E(﹣c,b•),代入双曲线的方程可得﹣(﹣1)=1,即e2﹣(﹣1)=,即e2=7,即e=,故选:A.12.如图,棱长为4的正方体ABCD﹣A1B1C1D1,点A在平面α内,平面ABCD与平面α所成的二面角为30°,则顶点C1到平面α的距离的最大值是()A.2(2+)B.2(+)C.2(+1)D.2(+1)【分析】如图所示,O在AC上,C1O⊥α,垂足为E,则C1E为所求,∠OAE=30°,由题意,设CO=x,则AO=4﹣x,由此可得顶点C1到平面α的距离的最大值.解:如图所示,AC的中点为O,C1O⊥α,垂足为E,则C1E为所求,∠AOE=30°由题意,设CO=x,则AO=4﹣x,C1O=,OE=OA=2﹣x,∴C1E=+2﹣x,令y=+2﹣x,则y′=﹣=0,可得x=,∴x=,顶点C1到平面α的距离的最大值是2(+).故选:B.二、填空题13.已知n=(﹣2x)dx,则x(1﹣)n的展开式中的常数项为60.【分析】根据题意,由定积分计算公式可得n的值,进而由二项式定理分析(1﹣)6的展开式含x﹣1次方的项,据此分析可得答案.解:根据题意,n=(﹣2x)dx=()dx﹣(2x)dx=××π﹣(x2)=6,(1﹣)6的展开式通项为T r+1=C6r(﹣)r,当r=2时,有T3=C62(﹣)2=,则x(1﹣)n的展开式中的常数项为60;故答案为:6014.某封闭几何体的三视图如图所示,则该几何体的表面积为222+6【分析】由已知中的三视图可得该几何体是一个三棱柱切去一个三棱锥所得的组合体,画出直观图,计算各个面的面积,相加可得答案.解:由已知中的三视图可得该几何体是一个三棱柱切去一个三棱锥所得的组合体,其直观图如图所示:底面△ABC的面积为:×8×6=24;侧面ACDE的面积为:×10=100,侧面ABFE的面积为:(4+10)×6=42,侧面CBFD的面积为:(4+10)×8=56,面EFD中,EF=6,FD=10,ED=10,故面积为:×6×=6,故几何体的表面积S=222+6,故答案为:222+615.对于数列{a n},若∀m,n∈N*(m≠n),都有成立,则称数列{a n}具有性质P(t).若数列{a n}的通项公式为,且具有性质P(10),则实数a的取值范围是[36,+∞).【分析】由题意知恒成立,从而可得数列为单调递增数列,从而可得恒成立,即a≥﹣n(n+1)(2n﹣9),从而解得.解:∵数列通项公式且数列具有性质P(10),∴,∴恒成立,∴数列为单调递增数列,∴恒成立,即a≥﹣n(n+1)(2n﹣9),由数轴标根法作图如下,故最大值在n=1,2,3或4上取得,当n=1时,﹣n(n+1)(2n﹣9)=14,当n=2时,﹣n(n+1)(2n﹣9)=30,当n=3时,﹣n(n+1)(2n﹣9)=36,当n=4时,﹣n(n+1)(2n﹣9)=20,故a≥36.故答案为:[36,+∞).16.若∀x∈[e,+∞),满足恒成立,则实数m的取值范围为(﹣∞,2e].【分析】通过①m≤0,判断是否满足题意;②m>0时,由,利用函数的单调性转化求解即可.解:①m≤0,恒成立,所以满足恒成立,显然成立;②m>0时,由,由f(x)=xe x在[e,+∞)为增⇒m≤2xlnx在[e,+∞)恒成立,由g(x)=2xlnx在[e,+∞)为增函数,g(x)min=2e,0<m≤2e,综上,m≤2e,故答案为:(﹣∞,2e].三.解答题17.已知在△ABC中,a,b,c分别为角A,B,C的对应边,点D为BC边的中点,△ABC 的面积为.(1)求sin∠BAD•sin∠BDA的值;(2)若BC=6AB,AD=2,求b.【分析】(1)由ABC的面积为且D为BC的中点可得△ABD的面积为,再由三角形的面积公式及正弦定理可求sin∠BAD•sin∠BDA;(2)由(1)可得BC=6AB,可求sin∠BAD,3sin∠BDA,再由余弦定理可求.解:(1)∵D为BC边的中点,△ABC的面积为,∴△ABD的面积为,∴,∴3AB•BD=,由正弦定理可得,=∴3AB•BD==,∴sin∠BAD•sin∠BDA=(2)∵BC=6AB,且D为BC的中点,∴BC=2BD=6AB,即BD=3AB,△ABD中,由正弦定理可得,,∴sin∠BAD=3sin∠BDA,由(1)可知,sin∠BAD•sin∠BDA=∴sin∠BAD=1,sin∠BDA=,∴∠BAD=90°,Rt△ABD中,AD=2,∴AB=1,BD=3,∴BC=2BD=6,△ABC中,由余弦定理可得,b2=a2+c2﹣2ac cos B=1+36﹣2×1×6×=33,∴b=.18.如图,矩形ABCD中,AB=6,,点F是AC上的动点.现将矩形ABCD沿着对角线AC折成二面角D'﹣AC﹣B,使得.(Ⅰ)求证:当时,D'F⊥BC;(Ⅱ)试求CF的长,使得二面角A﹣D'F﹣B的大小为.【分析】(Ⅰ)连结DF,BF.通过计算DF2+AF2=9+3=DA2,推出DF⊥AC,得到D'F⊥AC,证明BF⊥D'F,然后证明D'F⊥平面ABC.推出D'F⊥BC.(Ⅱ)说明OE,OC,OD'两两垂直,以O为原点,的方向为x轴的正方向建立空间直角坐标系O﹣xyz,求出平面AD'F的一个法向量.平面BD'F的法向量通过向量的数量积求解二面角的平面角的余弦值即可.【解答】满分.(Ⅰ)证明:连结DF,BF.在矩形ABCD中,,∴,∠DAC=60°.…(1分)在△ADF中,∵,∴DF2=DA2+AF2﹣2DA•AF•cos∠DAC=9,.…∵DF2+AF2=9+3=DA2,∴DF⊥AC,即D'F⊥AC.…又在△ABF中,BF2=AB2+AF2﹣2AB•AF•cos∠CAB=21,…∴在△D'FB中,,∴BF⊥D'F,…又∵AC∩FB=F,∴D'F⊥平面ABC.∴D'F⊥BC.…(Ⅱ)解:在矩形ABCD中,过D作DE⊥AC于O,并延长交AB于E.沿着对角线AC翻折后,由(Ⅰ)可知,OE,OC,OD'两两垂直,以O为原点,的方向为x轴的正方向建立空间直角坐标系O﹣xyz,则O(0,0,0),E(1,0,0),, (7))k AB=﹣1平面AD'F,∴为平面AD'F的一个法向量.…设平面BD'F的法向量为=(x,y,z),∵F(0,t,0),∴,由得取y=3,则,∴.…∴,即,∴.∴当时,二面角A﹣D'F﹣B的大小是.…19.已知F为抛物线C:y2=2px(p>0)的焦点,过F的动直线交抛物线C于A,B两点.当直线与x轴垂直时,|AB|=4.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线l相交于点M,抛物线C上存在点P使得直线PA,PM,PB的斜率成等差数列,求点P的坐标.【分析】(1)由题意可得|AB|=2p=4,即可求出抛物线的方程,(2)设直线AB的方程为y=x﹣1,联立消去x,得y2﹣4y﹣4=0,根据韦达定理结合直线PA,PM,PB的斜率成等差数列,即可求出点P的坐标解:(1)因为,在抛物线方程y2=2px中,令,可得y=±p.于是当直线与x轴垂直时,|AB|=2p=4,解得p=2.所以抛物线的方程为y2=4x.(2)因为抛物线y2=4x的准线方程为x=﹣1,所以M(﹣1,﹣2).设直线AB的方程为y=x﹣1,联立消去x,得y2﹣4y﹣4=0.设A(x1,y1),B(x2,y2),则y1+y2=4,y1y2=﹣4.若点P(x0,y0)满足条件,则2k PM=k PA+k PB,即,因为点P,A,B均在抛物线上,所以.代入化简可得,将y1+y2=4,y1y2=﹣4代入,解得y0=±2.将y0=±2代入抛物线方程,可得x0=1.于是点P(1,±2)为满足题意的点.20.已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(2)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a 的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).21.如图,直角坐标系中,圆的方程为x2+y2=1,A(1,0),B(﹣,),C(﹣,﹣)为圆上三个定点,某同学从A点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子n次时,棋子移动到A,B,C处的概率分别为P n(A),P n(B),P n(C).例如:掷骰子一次时,棋子移动到A,B,C处的概率分别为P1(A)=0,P1(B)=,P1(C)=(1)分别掷骰子二次,三次时,求棋子分别移动到A,B,C处的概率;(2)掷骰子n次时,若以x轴非负半轴为始边,以射线OA,OB,OC为终边的角的余弦值记为随机变量X n,求X4的分布列和数学期望;(3)记P n(A)=a n,P n(B)=b n,P n(C)=c n.,其中a n+b n+c n=1.证明:数列{b n ﹣}是等比数列,并求a2020.【分析】(1)由概率的乘法公式,可得所求值;(2)随机变量X4的可能取值为1,﹣,结合(1)运用概率乘法公式,可得随机变量的分布列和期望;(3)易得b n=c n,即b n﹣1=c n﹣1,n≥2,由条件推得2b n+b n﹣1=1,由构造等比数列,可得b n=+•(﹣)n﹣1,即可得到所求值.解:(1)P2(A)=•+•=,P2(B)=•=,P2(C)=•=,P3(A)=••+••=,P3(B)=(+)•=,P3(C)=(+)•=;(2)随机变量X4的可能取值为1,﹣,由(1)可得P(x4=1)=(P3(B)+P3(C))•=(+)•=,P(x4=﹣)=(P3(A)+P3(C))•+(P3(A)+P3(B))•=,则X4的分布列为x41﹣PE(X4)=1•+(﹣)•=;(3)证明:易得b n=c n,即b n﹣1=c n﹣1,n≥2,n≥2时,b n=(a n﹣1+c n﹣1)=(a n﹣1+b n﹣1),又a n﹣1+b n﹣1+c n﹣1=1,可得2b n+b n﹣1=1,由b n﹣=﹣b n﹣1+﹣=﹣(b n﹣1﹣),可得数列{b n﹣}是首项为,公比为﹣的等比数列,则b n﹣=•(﹣)n﹣1,即b n=+•(﹣)n﹣1,又a n=1﹣b n=1﹣2[+•(﹣)n﹣1]=[1﹣(﹣)n﹣1],故a2020=[1+()2019].[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C1:(a为参数)经过伸缩变换后的曲线为C2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρsin(﹣θ)=1,且曲线C3与曲线C2相交于P,Q 两点,求|PQ|的值.【分析】(Ⅰ)求出C2的参数方程,即可求C2的极坐标方程;(Ⅱ)C2是以(1,0)为圆心,1为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,求出圆心到直线的距离,即可求|PQ|的值.解:(Ⅰ)C2的参数方程为(α为参数),普通方程为(x′﹣1)2+y′2=1,∴C2的极坐标方程为ρ=2cosθ;(Ⅱ)C2是以(1,0)为圆心,1为半径的圆,曲线C3的极坐标方程为ρsin(﹣θ)=1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d==,∴|PQ|=2=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+b2|﹣|﹣x+1|,g(x)=|x+a2+c2|+|x﹣2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;(Ⅱ)当x∈R时,求证f(x)≤g(x).【分析】(Ⅰ)当b=1时,把f(x)用分段函数来表示,分类讨论,求得f(x)≥1的解集.(Ⅱ)当x∈R时,先求得f(x)的最大值为b2+1,再求得g(x)的最小值,根据g(x)的最小值减去f(x)的最大值大于或等于零,可得f(x)≤g(x)成立.解:(Ⅰ)由题意,当b=1时,f(x)=|x+b2|﹣|﹣x+1|=,当x≤﹣1时,f(x)=﹣2<1,不等式f(x)≥1无解,不等式f(x)≥1的解集为∅;当﹣1<x<1时,f(x)=2x,由不等式f(x)≥1,解得x≥,所以≤x<1;当x≥1时,f(x)=2≥1恒成立,所以不等式f(x)≥1的解集为[,+∞).(Ⅱ)(Ⅱ)当x∈R时,f(x)=|x+b2|﹣|﹣x+1|≤|x+b2 +(﹣x+1)|=|b2+1|=b2+1;g(x)=|x+a2+c2|+|x﹣2b2|=≥|x+a2+c2﹣(x﹣2b2)|=|a2+c2+2b2|=a2+c2+2b2.而a2+c2+2b2﹣(b2+1)=a2+c2+b2﹣1=(a2+c2+b2+a2+c2+b2)﹣1≥ab+bc+ac﹣1=0,当且仅当a=b=c=时,等号成立,即a2+c2+2b2≥b2+1,即f(x)≤g(x).。
湖南省长郡中学2019届高三上学期第一次月考(开学考试)数学(理)(PDF版)
长郡中学2019届高三月考试卷(一)数学(理科)得分: _____________本试卷共8页。
时暈120分钟。
满分150分。
一、选择题:本大题共12小题•每小题5分,共6()分.在每小题给出的四个选 项中,只有一项是符合题目要求的.1.设复数尸闿+2i,则旧=A. 0B. 1C. 2D. 3★2.已知集合 A=&|—疋+4 心 0} J3={jr| 讦 V3y27},C={m = 2〃,IX {m=2w?€N} ★ 3.若定义在R 上的偶函数/Cr )满足/Cr+2)=/Cr )冃时,/Cr )=久,则方程/3 = log 小・|的零点个数是A. 2个B. 3个C. 4个D. 6个4. 计算 sin 133°cos 197°+cos 47°cos 73°的结果为A.*5. 已知A 、"、P 是双曲线手一君=1上不同的三点,且人、"连线经过坐标原点•若直线PA.PB 的斜率乘积虹、・如=3,则该双曲线的离心率为6. 某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的H 标,先 调查了用电量V (单位:千瓦•时)与气温川单位:°C )之间的关系,随机选取了 4天的用电量与当天气温,并制作了以下对照表:2(单位:°C )17 14 10 -1 y (单位:千瓦•时)24 34 38 64 由表中数据得线性回归方程6= —2乂+方,则由此估计:当某天气温为2°C 时,当天用电量约为A. 56千瓦•时B. 62千瓦•时 C 64千瓦•时 IX 68千瓦•时•:®I. M €N},则(AUB )C1C=A. {2,4}B. {0,2}C.{0,2,4}B.V3 1).3★7•某空间几何体的三视图如图所示,则该几何体的外接球的体积为★&已知平面向量满足a • (a+b ) = 3弓且\a\=29 \b\=l,则向量a 与b夹角的止弦值为A —丄 '2★ 9.设°,比R,则“(a —6)・疋<0”是“aV6”的A. 充分|何不必要条件B. 必要而不充分条件C. 充要条件IX 既不充分也不必要条件10. 我国数学家陈景润在哥德巴赫猜想的研究中取得了川••界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个索数的和”,如30 = 7 +23.在不超过30的素数中•随机选取两个不同的数•其和等于30的概 率是A 丄B —C —D — -12 ° 14 ° 15 * 1811. 过抛物线b=4工焦点的直线I 与抛物线交于A 、£两点,与圆(工一1 P + y= r 交于C 、D 两点,若有三条直线满足\AC\ = \ BD\,则r 的取值范 围为A.(今,+oo )B. (2,+oo )C. (1 冷)D. (*,2)12. 设函数/(x )=e , (x —1),函数g (H )=mr —加,(加>0),若对任意的心€[—2,2],总存在力2 w [—2,2],使得/、a )=ga ),则实数加的取 值范围是A. ■-3e-4'B. 「1 2*1 片9 G* 3 L 3」A.500 125 C - 3兀 侧视图D.D. R?,+oo)选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 得分答案二、填空题:本题共4小题.每小题5分.共20分.\r+3j^313.____________________________________________________ 设Ay 满足约束条件]工_耳1 ,则之=丄的最大值为______________________ ..妙014.《聊斋志异》屮有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。
湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模)数学(理)试题 含解析
长郡中学2019届第一次适应性考试数学(理科)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设为虚数单位.若复数是纯虚数,则复数在复面上对应的点的坐标为()A. B. C. D.【答案】D【解析】【分析】利用复数是纯虚数求出,化简为,问题得解。
【详解】因为复数是纯虚数,所以,解得:,所以复数可化为,所以复数在复面上对应的点的坐标为.故选:D【点睛】本题主要考查了复数的有关概念及复数对应点的知识,属于基础题。
2.已知集合若,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】分别求出集合A,B,利用列不等式即可求解。
【详解】由得:或.所以集合.由得:.又,所以(舍去)或.故选:B【点睛】本题主要考查了集合的包含关系及对数函数的性质,考查计算能力,属于基础题。
3.美国总统伽菲尔德利用如图给出了种直观、简捷、易懂、明了的证明勾股定理的方法,该图利用三个直角三角形拼成了个直角梯形,后人把此证法称为“总统证法”.现已知,,若从该直角梯形中随机取一点,则该点也在的内切圆内部的概率为()A. B.C. D.【答案】C【解析】【分析】根据勾股定理,求得CE、DE的长,再求得等腰直角三角形CED的内切圆半径,根据几何概型概率求法求得点在△CDE内部的概率即可。
【详解】由勾股定理可得CE=ED=5因为CE⊥ED,所以等腰直角三角形CED的内切圆半径所以等腰直角三角形CED的内切圆面积为直角梯形的面积为所以从该直角梯形中随机取一点,则该点也在的内切圆内部的概率为所以选C【点睛】本题考查了几何概型概率的求法,直角三角形内切圆半径及面积求法,属于基础题。
4.已知为锐角,则的值为()A. B. C. D.【答案】D【解析】【分析】因为,再根据同角三角函数关系及正弦的和角公式,展开即可求值。
【详解】因为为锐角因为所以大于90°由同角三角函数关系,可得所以=所以选D【点睛】本题考查了三角函数式的变形,和角公式的应用,注意判断的符号,属于中档题。
湖南省长郡中学2019届高三上学期第一次月考(开学考试)数学(理)试题
长郡中学2019届高三月考试卷(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数121iz i i+=+-,则z =( ) A .0 B .1 C .2 D .32.已知集合{}240A x x x =-+≥,1{327}18x B x =<<,{}2,C x x n n N ==∈,则()A B C =U I ( ) A .{}2,4 B .{}0,2C .{}0,2,4D .{}2,x x n n N =∈3.若定义在R 上的偶函数()f x 满足()()2f x f x +=且[]0,1x ∈时,()f x x =,则方程()3log f x x =的零点个数是( )A .2个B .3个C .4个D .5个 4.计算sin133cos197cos47cos73︒︒+︒︒的结果为( ) A .12 B .12- C. 22 D .325.已知A 、B 、P 是双曲线22221x y a b-=上不同的三点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率乘积3PA PB k k ⋅=,则该双曲线的离心率为( ) A .2 B .3 C.2 D .36.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:千瓦·时)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了以下对照表:x (单位:℃)17 14 10 1- y (单位:千瓦·时) 24343864由表中数据得线性回归方程:ˆˆ2yx a =-+,则由此估计:当某天气温为2℃时,当天用电量约为( ) A .56千瓦·时 B .62千瓦·时C. 64千瓦·时 D .68千瓦·时7.某空间几何体的三视图如图所示,则该几何体的外接球的体积为( )A .5003π B .100023π C.1253π D .12523π 8.知平面向量a r ,b r 满足()3a a b ⋅=r r r ,且2a =r ,1b =r,则向量a r 与b r 夹角的正弦值为( )A .12-B .32- C.12D .329.设,a b R ∈,则“()20a b a -⋅<”是“a b <”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件10.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112 B .114 C. 115 D .11811.过抛物线24y x =焦点的直线l 与抛物线交于A 、B 两点,与圆()2221x y r -+=交于C 、D 两点,若有三条直线满足AC BD =,则r 的取值范围为( )A .3(,)2+∞B .(2,)+∞ C. 3(1,)2 D .3(,2)212.设函数()()1xf x ex =-,函数()(),0g x mx m m =->,若对任意的[]12,2x ∈-,总存在[]22,2x ∈-,使得()()12f x g x =,则实数m 的取值范围是( )A .213,3e -⎡⎤-⎢⎥⎣⎦ B .21,3e ⎡⎤⎢⎥⎣⎦C.1,3⎡⎫+∞⎪⎢⎣⎭D .2,e ⎡⎤+∞⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设,x y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则y z x =的最大值为 .14.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术。
湖南省长郡中学2019届高三上学期第一次月考(开学考试)数学(文)试题(解析版)
长郡中学2019届高三月考试卷(一)数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1.已知集合,,则()A. B. C. D.【答案】D【解析】【分析】根据集合的运算,求并集即为求满足两个集合的最大范围。
【详解】集合A为,集合B为所以并集所以选D【点睛】本题考查了集合的基本运算,属于基础题。
2.2.复数满足(为虚数单位),则复数的虚部为()A. B. C. D.【答案】B【解析】【分析】根据复数的除法运算,分子分母同时乘以分母的共轭复数,进而化简即可得到复数的虚部。
【详解】所以复数z的虚部为-3所以选B【点睛】本题考查了复数的基本运算和基本概念,注意复数的虚部只有数字,不含虚数单位,属于基础题。
3.3.已知,则()A. B. C. D.【答案】C【解析】分析:直接利用二倍角的余弦公式求解即可.详解:,故选C.点睛:本题主要考查二倍角的余弦公式,属于简单题.4.4.某家具厂的原材料费支出(单位:万元)与销售额(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为()A. B. C. D.【答案】A【解析】【分析】根据回归直线经过样本平均数中心点,求得平均值,代入即可求得b。
【详解】因为回归直线方程经过样本中心点,代入回归直线方程得所以选A【点睛】本题考查了回归直线的简单应用,注意回归直线会经过平均数中心点,而不是某个样本点,属于基础题。
5.5.已知向量,,则()A. B. C. D.【答案】D【解析】由题意,所以答案A,B都不正确;又,且,所以答案C不正确,应选答案D。
6.6.执行如图所示的程序框图输出的结果是()A. B. C. D.【答案】A【解析】【分析】根据程序框图循环结构运算,依次代入求解即可。
【详解】根据程序框图和循环结构算法原理,计算过程如下:所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题。
炎德英才大联考2019届长郡中学高三月考理数(答案)
$ # # % 8% 又! 的各项均为正# 所以& $ # 故! 为等比数列# 公比为! # & ! & " '&1 % & ) 0 ) & ! '" ' 1 #% '0 '" )0 # % 8 $ 说明& 也可以由递推关系求前)项# 直接相加求和%
)
! " # $届十四校联考第一次考试理科数学参考答案%! !
! $ !分% )
!槡 ! $ 分% # # 又#& # 4 #% & 7 8 5 ! ' 0 " % # #% ! ) ) & ) & # 槡 & !槡 !* # 槡 &1 !槡 ! $ 分% 所以5 2 6#0 5 2 6 0 * 1 0 ! ) 1 #% ) ) & ! & ! ) * * 槡 槡 $ 因为. 所以! 即) 0 < 5 2 60# 5 2 6"0 < 5 2 60# 5 2 6"0槡 * < 5 2 60# "1 % ) & &
* # * !且 解析 两抛物线的焦点分别为$ # % 和 " 由题可知& # # 解得 *0 # ( ! /! # " " !槡 &! 1 0 *% ! '
! ! ! (' (' (' 解析 解法一 如图# # # 由余弦定理& * ! /! " $0 # $ 00 " 00 1 $ 0 0" $ 1" 0 % ! ! 已知 "0 # # 代入上式得 " # ! " $*" 0* 7 8 5"# ) " 9 " $0 # $ 00槡 &# 00! 4" $ 1$ 0 0 !# 故 $0 # 即) # " 0 $ " 9 4 * 0 " ! 解法二 设 与 的夹角为# 由题设*$ % # 1 0 # 3 1 7 8 5 ) " 9 * *
2019届湖南省长沙一中、师大附中、雅礼中学、长郡中学高三下学期5月联考数学(理)试题及答案
sin x cos x
sin x cos x 0, 即 sin x cos x
0 x 2
x 5
4
4
故选:C
点评:
此题考查解三角函数方程,恒等变化后根据 sin x, cos x 的关系即可求解,属于简单题目.
5.设 x、y、z 是空间中不同的直线或平面,对下列四种情形:①x、y、z 均为直线;②x、y 是直
即 f (x 1) f (x 1) f (x 1)
即 f x f x 2
则 f x 4 f x 2 f x 即 f x 是周期为 4 的周期函数。
若 f 2 2 ,则 f 2019 f 2020 1 f 1 g 0 0
故选:B
点评:
此题考查函数的奇偶性与周期性结合化简求值,熟练掌握奇偶性和周期性的表达式,属于简单题目.
f x1 f x2
x1 x2
8,
即 f x1 f x2 8 x1 x2 ,
f x1 f x2 8 x2 x1 , f x1 8x1 f x2 8x2 ,
AE 7 , AC 3 3 , cos AEC 7 16 27 1 , 2 74 2 7
sin AEC 3
3
, 2R
AC sin AEC
3 3
3 3
2
7 ,R
7 , S 28 .
27
27
故选:A
点评:
此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于
解:
如图,取 BD 的中点 M,CBD 和 ABD 的外接圆半径为 r1 r2 2 ,CBD 和 ABD 的外心O1 ,
O2 到弦 BD 的距离(弦心距)为 d1 d2 1.
炎德英才大联考2019届长郡中学高三月考理数(答案)
!
"
1 #槡 *( 槡 *1 " 故选 ' # # + 5 % 5 ! " ) 5 1 ' 0 $ 5 0 5 0 ! .! , % & 解析 % 由题意知( 所 以 +6 % ! .! $ : 7 6 *-: 7 $ *( " *0 *" *" ( ( " *0 ) $ ; " *0 # 6 *0槡 &( +$ /. / . /. /. /. /. /. /. /. 设6 ! " ( 因为 70 6 *$ " " 70" 616 7( $ 70$ "1" 616 7( #34;1 #0
( 0 + '
( & 得 由# #1 0 ( #0 ( ' # + 理科数学试题参考答案! 长郡版" !" !
( ( 5 # # # 4 0 ( #1 &0 + ' ( * 故选 /! 1 0 ( ' ' ' 解析% 如图( + ! .!$ 6 依题意可得 +. / 00 +/. 00& $ 1( / 00 ( . 00 2 ! 5 # # & # # # # # 1 # # # 4 "1 #1 &0 "1 #" #1 &0
湖南省长郡中学2019届高三上学期第一次月考(开学考试)数学(理)试题(解析版)
长郡中学2019届高三月考试卷(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.1.设复数,则()A. B. C. D.【答案】D【解析】【分析】根据复数除法运算,分子分母同时乘以分母的共轭复数,化简即可。
【详解】所以所以选D【点睛】本题考查了复数的除法运算,复数模的定义,属于基础题。
2.2.已知集合,,,则()A. B. C. D.【答案】C【解析】集合,故,集合表示非负的偶数,故,故选C.3.3.若定义在上的偶函数满足且时,,则方程的零点个数是()A. 个B. 个C. 个D. 个【答案】C【解析】【分析】根据函数的周期性和奇偶性,画出函数图像,根据函数图像的交点个数确定零点个数即可。
【详解】因为数满足,所以周期当时,,且为偶函数,所以函数图像如下图所示由图像可知,方程有四个零点所以选C【点睛】本题考查了函数的奇偶性和周期性,绝对值函数图像的画法和函数零点的概念,关键是根据函数解析式能够正确画出函数的图像,属于基础题。
4.4.计算的结果为()A. B. C. D.【答案】B【解析】【分析】根据诱导公式,化简三角函数值;再根据正弦的差角公式合并即可得到解。
【详解】所以选B【点睛】本题考查了三角函数诱导公式、正弦差角公式的简单应用,属于基础题。
5.5.已知、、是双曲线上不同的三点,且、连线经过坐标原点,若直线、的斜率乘积,则该双曲线的离心率为()A. B. C. D.【答案】C【解析】【分析】根据题意,设出A、B、P点的坐标,代入方程做差,得到;利用两条直线的斜率乘积关系,得到。
联立可以得到的关系式,进而求得离心率。
【详解】由题意,设则将A、P坐标代入双曲线方程,得两式相减得所以,即所以所以选C【点睛】本题考查了点与双曲线的关系,设而不求法是解决圆锥曲线问题常用方法,属于基础题。
6.6.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量(单位:千瓦·时)与气温(单位:℃)之间的关系,随机选取了天的用电量与当天气温,并制作了以下对照表:(单位:℃)(单位:千瓦·时)由表中数据得线性回归方程:,则由此估计:当某天气温为℃时,当天用电量约为()A. 千瓦·时B. 千瓦·时C. 千瓦·时D. 千瓦·时【答案】A【解析】【分析】根据回归直线方程经过样本中心点,求得,代入回归直线可求得;代入回归方程后,可预报当气温为℃时,当天的用电量。
【百强名校】湖南省长郡中学2019届高三上学期第一次月考数学(理)答案
又
#
为三角形内角&所以
#0
)
!
!)分"
!#"由余弦定理)+#0,#1;#!#,;:57# 得)'0,#1;#!#,;槡#&##,;!槡&,;&
所以,;$'!#1槡&"&所以:/#%& 0 "#,;728#$#1槡&&/#%& 面积的最大值为#1槡&! !"#分"
则:57*"&#+0
"# " #
0
"0 槡"$
槡"$& "$
所以二面角5!#%!0 的余弦值为 槡""$$! !"#分"
"%!$解析%!"";!$!$#1$!$+1$!$%1#+"<'0"&3+0$!$&& !#分"
! - ! - 所以(6!?",$在?' $&" % 内恒成立&故函数(!?"在?' $&" % 内单调递增&
! - 故(!?"' $&*(# 6 >"># '!$&槡"$-! !"#分"
故所求概率为")(0
# (
!
!"#分"
#$!$解析%!""由题意可知)+#0&&
又椭圆&" 的上顶点为!$&,"&
炎德英才大联考2019届长郡中学高三月考理数(答案)
# # # # # " 2 5 0 2 ! # " 2 0 2 9 3 : 2 0( $ 0 1$ 2 5 0 2 ! # $ 2 0 2 9 3 : 2 0( -" -$ # # # # # # #( ( 0-" 2 05-$ 2 01 " 21$ 2( 6" 0 5$ 0 1 & 5 ) 1 # " 2 5 # 0 2 1 ( . # # # & 5 ) ! . # & ) 则9 3 : 01 1 ! 5 ( ) & # & )
解析% 如图( 连接 0 延长交 " 由于 1 为重心( 故 2 为" " " ! , 1( $ 于2( $ 的中点( !$
0" 1,$ 1( 62 11
" " ( & & ( # 由重心的性质得( 即0 由余弦定理得( " $1 . 0 21 & 2 1( 21 " $1 . " 0 1 # # # #
& &" &( & 即&1槡 6 & 1! & 6 & 1 & &( &( ) 1 &槡 &!
2019-2020学年湖南省长沙市长郡中学高三(上)月考数学试卷(理科)试题及答案
2019-2020学年湖南省长沙市长郡中学高三(上)月考数学试卷(理科)(二)(10月份)一、选择题(共12小题,每小题5分,满分60分)1.(2017秋•商丘期末)设{||2|1}A x x =-…,{|(32)1}B x ln x =-<,则(A B = )A .3(,)2-∞B .3[1,)2C .3(1,)2D .3(,3]22.(5分)(2018春•张家口期末)若复数z 满足(2)1811z i i -=+,则|4|(z i -= )A B C .13D .153.(5分)(2019秋•天心区校级月考)我国古代数学著作(九章算术》中记述道:今有良马与弩马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马,二马相逢.问:几日相逢?结合二马相逢的问题设计了一个程序框图如图所示.已知a 为良马第n 天行驶的路程上为弩马第n 天行驶的路程,S 为良马、鸳马n 天行驶的路程和,若执行该程序框图后输出的结果为9n =,则实数m 的取值范围为( )A .[2250,5125)2B .[2250,5125]2C .(1950,2250]D .[950,2250]4.(5分)(2016•山东)已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -剟时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则f (6)(= ) A .2-B .1C .0D .25.(5分)(2017秋•洛阳期末)等差数列{}n a 的前n 项和为n S ,已知261116203a a a a a ---+=,则21S 的值为( ) A .63B .21-C .63-D .216.(5分)(2016•天津)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件7.(5分)(2017秋•太原期末)已知命题“[1x ∀∈,2],2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5(,)4-∞B .5(4,)+∞C .(,1)-∞D .(1,)+∞8.(5分)(2017秋•平谷区期末)将函数()cos(2)6f x x π=-的图象向左平移3π个单位,得到函数()y g x =的图象,那么下列说法正确的是( ) A .函数()g x 的最小正周期为2π B .函数()g x 是奇函数C .函数()g x 的图象关于点(12π,0)对称D .函数()g x 的图象关于直线3x π=对称9.(5分)(2014•山东)已知x ,y 满足约束条件10230x y x y --⎧⎨--⎩……,当目标函数(0,0)z a x b y a b =+>>在该约束条件下取到最小值22a b +的最小值为( )A .5B .4CD .210.(5分)(2019秋•天心区校级月考)已知函数()f x 是定义域为R 的奇函数,且满足(2)(2)f x f x -=+,当(0,2)x ∈时,2()(1)f x ln x x =-+,则方程()0f x =在区间[0,8]上的解的个数是( ) A .3B .5C .7D .911.(5分)(2018•浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -+=,则||a b -的最小值是( )A 1B 1C .2D .212.(5分)(2018•泸州模拟)已知函数2,0(),0x x x f x e x >⎧=⎨⎩…,()(x g x e e =是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为( )A .1(12)2ln -B .122ln +C .12ln -D .1(12)2ln +二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2019秋•天心区校级月考)已知向量,a b 的夹角为120︒,且||2a =,|2|27a b -=,则||b =14.(5分)(2019秋•天心区校级月考)正项等比数列{}n a 中,存在两项m a ,*(,)n a m n N ∈使得m a ,2116n a a =,且7652a a a =+,则125m n+的最小值为 15.(5分)(2018春•皇姑区校级期中)在研究函数1()2(0)xf x x =≠的单调区间时,有如下解法: 设2()()ln g x lnf x x==,()g x 在区间(,0)-∞和区间(0,)+∞上是减函数,因为()g x 与()f x 有相同的单调区间,所以()f x 在区间(,0)-∞和区间(0,)+∞上是减函数. 类比上述作法,研究函数(0)x y x x =>的单调区间,其单调增区间为 .16.(5分)(2018•上饶三模)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,1sin cos()sin 2B BC C =+,当角B 取最大值时,ABC ∆的周长为3,则a = . 二、解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题;共60分.17.(12分)(2015春•桂林期末)已知(sin ,cos )a x x =,(sin ,sin )b x x =,函数()f x a b =. (1)求()f x 的对称轴方程; (2)若对任意实数[6x π∈,]3π,不等式()2f x m -<恒成立,求实数m 的取值范围.18.(12分)(2018秋•泉州期中)如图,在ABC ∆中,点P 在BC 边上,60PAC ∠=︒,2PC =,4AP AC +=.(Ⅰ)求边AC 的长;(Ⅱ)若APB ∆的面积是sin BAP ∠的值.19.(12分)(2012春•鲤城区校级期末)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.20.(2015秋•溧阳市期末)已知数列{}n a 的首项135a =,1321n n n a a a +=+,1n =,2,⋯.(1)求证:数列1{1}na -为等比数列; (2)记12111n nS a a a =++⋯+,若100n S <,求最大的正整数n .(3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列且1m a -,1s a -,1n a -成等比数列,如果存在,请给出证明;如果不存在,请说明理由.21.(12分)(2018春•烟台期末)已知函数()()af x lnx x a R x=++∈.(1)若函数()f x 在[1,)+∞上为增函数,求a 的取值范围;(2)若函数2()()(1)g x xf x a x x =-+-有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312(x x e e >为自然对数的底数).[选修4-4:坐标系与参数方程]22.(10分)(2017•阳东县校级模拟)在直角坐标系xOy 中,曲线1C 的参数方程为23(24x tt y t =-⎧⎨=-+⎩为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos tan ρθθ=.(Ⅰ)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(Ⅱ)若1C 与2C 交于A ,B 两点,点P 的极坐标为)4π-,求11||||PA PB +的值.2019-2020学年湖南省长沙市长郡中学高三(上)月考数学试卷(理科)(二)(10月份)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2017秋•商丘期末)设{||2|1}A x x =-…,{|(32)1}B x ln x =-<,则(AB =)A .3(,)2-∞B .3[1,)2C .3(1,)2D .3(,3]2【解答】解:{||2|1}{|13}A x x x x =-=剟?,33{|(32)1}{}22e B x ln x x -=-<=<<,3{|1}[12AB x x ∴=<=…,3)2.故选:B .2.(5分)(2018春•张家口期末)若复数z 满足(2)1811z i i -=+,则|4|(z i -= )A B C .13D .15【解答】解:由(2)1811z i i -=+, 得1811(1811)(2)582(2)(2)i i i z i i i i +++===+--+, ∴4512z i i -=-,则|4|13z i -=. 故选:C .3.(5分)(2019秋•天心区校级月考)我国古代数学著作(九章算术》中记述道:今有良马与弩马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马,二马相逢.问:几日相逢?结合二马相逢的问题设计了一个程序框图如图所示.已知a 为良马第n 天行驶的路程上为弩马第n 天行驶的路程,S 为良马、鸳马n 天行驶的路程和,若执行该程序框图后输出的结果为9n =,则实数m 的取值范围为( ) A .[2250,5125)2B .[2250,5125]2C .(1950,2250]D .[950,2250]【解答】解:根据题意,良马走的路程可以看成是首项为103,公差为13的等差数列,则10313(1)1390a n n =+-=+,记其前n 天路程和为1S ,则113(1)1032n n S n -=+; 驽马走的路程可以看成是首相为97,公差为0.5-的等差数列,则97.50.5b n =-,记其前n 天路程和为2S ,20.5(1)972n n S n -=-, 所以1225200(1)4S S S n n n =+=+-. 由题输出时9n =,所以当8n =时,1950S m =<;9n =时,2250S m =…. 所以19502250m <…. 故选:C .4.(5分)(2016•山东)已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -剟时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则f (6)(= ) A .2-B .1C .0D .2【解答】解:当12x >时,11()()22f x f x +=-, ∴当12x >时,(1)()f x f x +=,即周期为1. f ∴(6)f =(1),当11x -剟时,()()f x f x -=-, f ∴(1)(1)f =--,当0x <时,3()1f x x =-, (1)2f ∴-=-,f ∴(1)(1)2f =--=, f ∴(6)2=.故选:D .5.(5分)(2017秋•洛阳期末)等差数列{}n a 的前n 项和为n S ,已知261116203a a a a a ---+=,则21S 的值为( ) A .63B .21-C .63-D .21【解答】解261116203a a a a a ---+=, 22061611()()3a a a a a ∴+-+-=, 113a ∴=-, 21112163S a ∴==-,故选:C .6.(5分)(2016•天津)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【解答】解:{}n a 是首项为正数的等比数列,公比为q ,若“0q <”是“对任意的正整数n ,2120n n a a -+<”不一定成立, 例如:当首项为2,12q =-时,各项为2,1-,12,14-,⋯,此时2(1)10+-=>,111()0244+-=>; 而“对任意的正整数n ,2120n n a a -+<”,前提是“0q <”,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要而不充分条件, 故选:C .7.(5分)(2017秋•太原期末)已知命题“[1x ∀∈,2],2210x ax -+>”是真命题,则实数a 的取值范围为( ) A .5(,)4-∞B .5(4,)+∞C .(,1)-∞D .(1,)+∞【解答】解:若命题“[1x ∀∈,2],2210x ax -+>”是真命题,则“[1x ∀∈,2],212x ax +>,即2111()22x a x x x+<=+恒成立,11()12x x x x+=, 1a ∴<,即实数a 的取值范围是(,1)-∞,故选:C .8.(5分)(2017秋•平谷区期末)将函数()cos(2)6f x x π=-的图象向左平移3π个单位,得到函数()y g x =的图象,那么下列说法正确的是( ) A .函数()g x 的最小正周期为2π B .函数()g x 是奇函数C .函数()g x 的图象关于点(12π,0)对称D .函数()g x 的图象关于直线3x π=对称【解答】解:将函数()cos(2)6f x x π=-的图象向左平移3π个单位,得到函数2()cos(2)sin 236y g x x x ππ==+-=-的图象, 故()g x 为奇函数,且最小正周期为22ππ=,故A 错误,B 正确; 当12x π=时,1sin62y π=-=-,故C 错误;当3x π=时,2sin3y π=-=D 错误, 故选:B .9.(5分)(2014•山东)已知x ,y 满足约束条件10230x y x y --⎧⎨--⎩……,当目标函数(0,0)z a x b y a b =+>>在该约束条件下取到最小值22a b +的最小值为( )A .5B .4CD .2【解答】解:由约束条件10230x y x y --⎧⎨--⎩……作可行域如图,联立10230x y x y --=⎧⎨--=⎩,解得:(2,1)A .化目标函数为直线方程得:(0)a zy x b b b=-+>.由图可知,当直线a zy x b b =-+过A 点时,直线在y 轴上的截距最小,z 最小.2a b ∴+=即20a b +-=.则22a b +的最小值为24=.故选:B .10.(5分)(2019秋•天心区校级月考)已知函数()f x 是定义域为R 的奇函数,且满足(2)(2)f x f x -=+,当(0,2)x ∈时,2()(1)f x ln x x =-+,则方程()0f x =在区间[0,8]上的解的个数是( ) A .3B .5C .7D .9【解答】解:由(2)(2)f x f x -=+得,()(4)f x f x =+,()f x ∴的周期为4, (0,2)x ∈时,2()(1)f x ln x x =-+,()f x 为奇函数,当0x =时,(0)0f =,当20x -<<时,2()(1)f x ln x x =-++, ∴当22x -<<时,22(1),02()(1),20ln x x x f x ln x x x ⎧-+<<=⎨-++-<⎩…, 当22x -<<时,令()0f x =,则0x =,或1x =±, 由于()f x 的周期为4,∴当[0x ∈,8]时,()f x 的零点为:0,1,3,4,5,7,8共7个.故选:C .11.(5分)(2018•浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -+=,则||a b -的最小值是( )A 1B 1C .2D .2【解答】解:由2430b e b -+=,得()(3)0b e b e --=,()(3)b e b e ∴-⊥-, 如图,不妨设(1,0)e =,则b 的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量a 与e 的夹角为3π,则a 的终点在不含端点O 的两条射线(0)y x =>上.不妨以y =为例,则||a b -的最小值是(2,0)0y -=的距离减1.11-=.故选:A .12.(5分)(2018•泸州模拟)已知函数2,0(),0x x x f x e x >⎧=⎨⎩…,()(x g x e e =是自然对数的底数),若关于x 的方程(())0g f x m -=恰有两个不等实根1x 、2x ,且12x x <,则21x x -的最小值为( ) A .1(12)2ln -B .122ln +C .12ln -D .1(12)2ln +【解答】解:2,0(),0x x x f x e x >⎧=⎨⎩…,()0f x ∴>恒成立;()[()]f x g f x e m ∴==,()f x lnm ∴=; 作函数()f x ,y lnm =的图象如下,结合图象可知,存在实数(01)m m <…,使122x x e m ==故1212x x m lnm -=-,令1()2g m m lnm =-,则1()12g m m'=-,故()g m 在(0,1]2递减,在1(2,1)递增,111()()2222g m g ln ∴=+…,故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2019秋•天心区校级月考)已知向量,a b 的夹角为120︒,且||2a =,|2|27a b -=,则||b = 2【解答】解:||||cos120||a b a b b =︒=-,||2a =,|2|27a b -=,∴2222(2)4444||4||28a b a a b b b b -=-+=++=,解得||2b =或||3b =-(舍去). 故答案为:2.14.(5分)(2019秋•天心区校级月考)正项等比数列{}n a 中,存在两项m a ,*(,)n a m n N ∈使得m a ,2116n a a =,且7652a a a =+,则125m n+的最小值为 6 【解答】解:正项等比数列{}n a 中,存在两项m a ,*(,)n a m n N ∈使得21121116m n m n a a a q q a --==,2216m nm n q qq++-∴==,即422m n q q +=.且7652a a a =+,6541112a q a q a q ∴=+,即 22q q =+,∴正整数2q =,6m n +=. ∴12512512526125261()(125)()106666666m n m n m n m n m n n m n m ++=+=+++=+++=…, 当且仅当25m nn m=时,等号成立,故125m n+的最小值为6, 故答案为:6.15.(5分)(2018春•皇姑区校级期中)在研究函数1()2(0)xf x x =≠的单调区间时,有如下解法: 设2()()ln g x lnf x x==,()g x 在区间(,0)-∞和区间(0,)+∞上是减函数,因为()g x 与()f x 有相同的单调区间,所以()f x 在区间(,0)-∞和区间(0,)+∞上是减函数.类比上述作法,研究函数(0)x y x x =>的单调区间,其单调增区间为 1(,)e+∞ .【解答】解:设()()g x lnf x xlnx ==, 则()1g x lnx '=+, 令()0g x '>, 则1x e>,即()g x 在1(,)e +∞上为增函数,又由复合函数单调性同增异减的原则, (0)x y x x =>的单调增区间为1(,)e +∞,故答案为:1(,)e+∞.16.(5分)(2018•上饶三模)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,1sin cos()sin 2B BC C =+,当角B 取最大值时,ABC ∆的周长为3,则a = 3 . 【解答】解:ABC ∆中,1sin cos()sin 2B BC C =+,∴1cos()2b B C c =+,即cos 02bA c=-<, A ∴为钝角,cos cos 0A C ∴≠;由sin sin()sin cos cos sin 2cos sin B A C A C A C A C =+=+=-, 可得tan 3tan A C =-,且tan 0C >,2tan tan 2tan 2tan tan()11tan tan 133tan tan A C CB AC A C tan CC C+∴=-+=-===-++…,当且仅当tan C =时取等号;B ∴取得最大值时,1c b ==,6C B π==. 23A π∴=,由2222cos a b c bc A =+-,可得:a =,三角形的周长为3a b c b b ++=++=.解得:b =,可得:3a =.故答案为:3.二、解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题;共60分.17.(12分)(2015春•桂林期末)已知(sin ,cos )a x x =,(sin ,sin )b x x =,函数()f x a b =. (1)求()f x 的对称轴方程; (2)若对任意实数[6x π∈,]3π,不等式()2f x m -<恒成立,求实数m 的取值范围. 【解答】(本小题满分14分)解:(1)由()f x a b =及(sin ,cos )a x x =,(sin ,sin )b x x =,可得2()s i n s i n c o s f x x x x =+⋯(2分) 1cos21sin 222x x -=+ ⋯(3分)1)242x π=-+ ⋯(4分) 令2242x k πππ-=+,k Z ∈,解得328k x ππ=+,k Z ∈.⋯(5分) 所以,()f x 的对称轴方程为328k x ππ=+,k Z ∈.⋯(6分) (2)[6x π∈,]3π,∴5212412x πππ-剟.⋯(7分) 又sin y x =在[0,]2π上是增函数,5sinsin(2)sin12412x πππ∴-剟.⋯(8分) 又5222sin sin()sin cos cos sin 12343434πππππππ=-=-12==,⋯(9分)()f x ∴在[6x π∈,]3π,时的最大值是1()2max f x =+=.⋯(11分)不等式()2f x m -<恒成立,即()2f x m -<恒成立,⋯(12分)∴2m -<,即m >所以,实数m 的取值范围是)+∞.⋯(14分) 18.(12分)(2018秋•泉州期中)如图,在ABC ∆中,点P 在BC 边上,60PAC ∠=︒,2PC =,4AP AC +=.(Ⅰ)求边AC 的长;(Ⅱ)若APB ∆的面积是sin BAP ∠的值.【解答】解:(Ⅰ)在ABC ∆中,点P 在BC 边上,60PAC ∠=︒,2PC =,4AP AC +=. 则:设AC x =,利用余弦定理得:2222cos PC AP AC AP AC PAC =+-∠, 则:2214(4)2(4)2x x x x =+---, 整理得:2312120x x -+=, 解得:2x = 故:2AC =.(Ⅱ)由于2AC =,4AP AC +=, 所以:2AP =,所以APC ∆为等边三角形.由于:APB ∆的面积是则:1sin 2AP BP BPA ∠= 解得:4BP =. 在APB ∆中,利用余弦定理:2222cos AB BP AP BP AP BPA =+-∠,解得:AB = 在APB ∆中,利用正弦定理得:sin sin BP ABBAP BPA=∠∠,所以:4sin BAP =∠解得:sin BAP ∠=19.(12分)(2012春•鲤城区校级期末)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围. 【解答】解:(1)定义域为R 的函数()f x 是奇函数, (0)0f ∴=,当0x <时,0x ->, ()23x xf x ---=-, 又函数()f x 是奇函数, ()()f x f x ∴-=-,∴()23x xf x -=+, 综上所述2(0)3()0(0)2(0)3x x x x f x x xx -⎧->⎪⎪==⎨⎪⎪+<⎩.(2)5(1)(0)03f f =-<=,且()f x 在R 上单调, ()f x ∴在R 上单调递减,由22(2)(2)0f t t f t k -+-<, 得22(2)(2)f t t f t k -<--, ()f x 是奇函数,22(2)(2)f t t f k t ∴-<-, 又()f x 是减函数,2222t t k t ∴->-即2320t t k -->对任意t R ∈恒成立,∴△4120k =+<得13k <-即为所求.20.(12分)(2015秋•溧阳市期末)已知数列{}n a 的首项135a =,1321n n n a a a +=+,1n =,2,⋯. (1)求证:数列1{1}na -为等比数列; (2)记12111n nS a a a =++⋯+,若100n S <,求最大的正整数n .(3)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列且1m a -,1s a -,1n a -成等比数列,如果存在,请给出证明;如果不存在,请说明理由. 【解答】解:(1)112133n n a a +=+,∴1111133n n a a +-=-,(2分)1110a -≠,∴*110()nn N a -≠∈,(3分) ∴11211()33n n a --=⨯, ∴数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列.(4分)(2)由(1)可求得11211()33n n a --=⨯,∴112()13n n a =⨯+.(5分) 1212111111111332()211333313n n n n n S n n n a a a +-=+++=++++=+=+--,(7分)若100n S <,则111003nn +-<,99max n ∴=.(9分) (3)假设存在,则2m n s +=,2(1)(1)(1)m n s a a a --=-,(10分)332n n na =+,∴2333(1)(1)(1)323232n m sn m s --=-+++.(12分) 化简得:3323m n s +=,(13分)233323s m n m n +=+…,当且仅当m n =时等号成立.(15分)又m ,n ,s 互不相等,∴不存在.(16分)21.(12分)(2018春•烟台期末)已知函数()()af x lnx x a R x=++∈.(1)若函数()f x 在[1,)+∞上为增函数,求a 的取值范围;(2)若函数2()()(1)g x xf x a x x =-+-有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312(x x e e >为自然对数的底数).【解答】解:(1)由题可知,函数()f x 的定义域为(0,)+∞,22()x x af x x +-'=, 因为函数()f x 在区间[1,)+∞上为增函数, 所以()0f x '…在区间[1,)+∞上恒成立, 等价于2()min a x x +…,即2a …,所以a 的取值范围是(-∞,2].(4分) (2)由题得,2()g x xlnx ax a x =-+-, 则()2g x lnx ax '=-,因为()g x 有两个极值点1x ,2x , 所以112lnx ax =,222lnx ax =,欲证2312x x e >等价于证2312()3ln x x lne >=, 即1223lnx lnx +>, 所以12322ax ax +>, 因为120x x <<,所以原不等式等价于12324a x x >+,由112lnx ax =,222lnx ax =,可得22112()x ln a x x x =-,则21212()x lnx a x x =-,由可知,原不等式等价于21211232x lnx x x x x >-+, 即22211211213(1)3()221x x x x x ln x x x x x -->=++, 设21x t x =,则1t >,则上式等价于3(1)(1)12t lnt t t->>+,令3(1)()(1)12t h t lnt t t -=->+, 则2(1)(41)()(12)t t h t t t --'=+,因为1t >,所以()0h t '>,所以()h t 在区间(1,)+∞上单调递增, 所以当1t >时,()h t h >(1)0+,即3(1)12t lnt t->+, 所以原不等式成立,即2312x x e >.(12分) [选修4-4:坐标系与参数方程]22.(10分)(2017•阳东县校级模拟)在直角坐标系xOy 中,曲线1C 的参数方程为23(24x tt y t =-⎧⎨=-+⎩为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos tan ρθθ=.(Ⅰ)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(Ⅱ)若1C 与2C 交于A ,B 两点,点P的极坐标为)4π-,求11||||PA PB +的值. 【解答】解:()I 曲线1C 的参数方程为23(24x tt y t =-⎧⎨=-+⎩为参数).消去参数t 可得普通方程:4320x y +-=.曲线2C 的极坐标方程为cos tan ρθθ=,可得22cos sin ρθρθ=,可得直角坐标方程:2x y =. ()II 点P的极坐标为)4π-,可得直角坐标(2,2)P -.直线1C 的参数方程化为标准方程:325(425x t t y t⎧=-⎪⎪⎨⎪=-+⎪⎩为参数). 代入方程:2x y =.可得:29801500t t -+=, 12809t t ∴+=,121509t t =. ∴12121280111189150||||||||159t t PA PB t t t t ++=+===.。
2019-2020学年湖南省长沙市长郡中学高三(上)月考数学试卷(理科)
()
A. 1 (1 ln2) 2
B. 1 ln2 2
C.1 ln2
D. 1 (1 ln2) 2
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.(5
分) (2019
秋•天心区校级月考)已知向量
a,
b
的夹角为120
,且
|
a
|
2
,| a
2b
|
2
7,
)
A. (, 3) 2
B.[1, 3) 2
C. (1, 3) 2
D. ( 3 ,3] 2
2.(5 分)(2018 春•张家口期末)若复数 z 满足 z(2 i) 18 11i ,则 | z 4i | ( )
A. 13
B. 15
C.13
D.15
3.(5 分)(2019 秋•天心区校级月考)我国古代数学著作(九章算术》中记述道:今有良 马与弩马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;
D. 2 3
12.(5
分)(2018•泸州模拟)已知函数
f
(x)
x, x 0 e2x , x0
, g(x)
ex (e
是自然对数的底数),
若关于 x 的方程 g( f (x)) m 0 恰有两个不等实根 x1 、 x2 ,且 x1 x2 ,则 x2 x1 的最小值为
B.函数 g(x) 是奇函数
C.函数 g(x) 的图象关于点 ( , 0) 对称 12
D.函数 g(x) 的图象关于直线 x 对称 3
x y 10
9.(5
分 ) ( 2014 • 山 东 ) 已 知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长郡中学2019届高三月考试卷(一)数 学(理科)总分:150分 时量:120分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置.1.如果复数212bii-+(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b = ( )A. B. 23 C. 23- D. 2【解】选由222(4)125bi b b i i ---+=+,依题有2240b b ---=,即23b =-. 2.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m 被抽到的概率为( )A.1100 B.120 C.199D.150 【解】选 由抽样的公平性可知,每个个体入样的概率均为5110020P ==. 3.设偶函数满足()24(0)x f x x =-≥,则{|()0}x f x >=( ) A. {|24}x x x <->或 B. {|04}x x x <>或 C. {|22}x x x <->或D. {|06}x x x <>或【解】选 当0x ≥时,由()240x f x =->,得2x >,由图象对称性可知选C. 4.若21()n x x-展开式中的所有二项式系数之和为512,则该开式中常数项为( ) A. 84-B. 84C. 36-D. 36【解】选 由二项式系数之和为2512n =,即9n =,又18319(1),r r r r T C x -+=- 令1830r -=,则6r =故常数项为784T =.5.设条件:|2|3p x -<,条件:0q x a <<,其中a 为正常数.若p 是q 的必要不充分条件,则a的取值范围是( ) A. (0,5]B. (0,5)C.[5,+∞)D. (5,+∞) 【解】选 由条件p 对应的集合为(1,5)A =-,条件q 对应(0,)(0)B a a =>.且依题意A B =≠=⊃, 可知5a ≤,又0a >,故05a <≤.否 开始 输入x6.按照如图所示的程序运行,已知输入的x 的值为21log 3+, 则输出y 的值为( )A. 112 B.38 C. 712D. 1124【解】选由于输入的初始值为21log 34+<,故 221log 312log 3x =++=+,即2log 3211111()()224312y =⨯=⨯=.故选A.7.已知一个几何体的三视图及有关数据如图所示, 则该几何体的体积为( )A.B.C.D.【解】选 由该几何体的三视图可以借用长方体将其还原 为直观图如右所示,(由简到繁)由俯视图→侧视图→正视图→直观图, 其为四棱锥P ABCD -, 所以13P ABCD ABCD V S -==矩选B.8.设2(),0,()1,0x a x f x x a x x -≤⎧⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,则a 的取值范围为( ) A. [-1,2]B. [-1,0]C. [1,2]D. [0,2]【解】选当0a <时,显然(0)f 不是()f x 的最小值,当0a ≥时,可知0x ≤时, 2()(0)f x f a ≥=,而当0x >时,1()2f x x a a x=++≥+,依题意22a a +≥,得12a -≤≤, 所以02a ≤≤即求.9.已知锐角A 是ABC ∆的一个内角,,,a b c 是三角形中各角的对应边,若221sin cos 2A A -=,则下列各式正确的是( ) A. 2b c a +=B. 2b c a +<C. 2b c a +≤D. 2b c a +≥【解】选由221sin cos 2A A -=得,1cos22A =-,又A 为锐角,故02A π<<, 于是223A π=,即3A π=.于是由余弦定理有2222()3a b c bc b c bc =+-=+-, 正视图112222侧视图俯视图即22223()()()44b c a b c b c +≥+-+=,解得2a b c ≥+,选C.【一点开心】事实上在ABC ∆中,如果三边,,a b c 成等差或等比数列,即22b a c b ac =+=或, 那么我们都可以结合重要不等式知识得到60B ≤.10.如图,圆O 的半径为1,A是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线 OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )【解】选 由OP HM PM OM ⋅=⋅,于是HM PM OM =⋅,由三角函数线有,1|s i n ||c o s ||s i n 2|2H M x x x =⋅=,于是1()|sin2|2f x x =的最大值为1,22T π=,故选C.二、填空题:本大题共5小题,共25分,把答案填在答题卡中对应题号后的横线上. 11.已知直线的极坐标方程为sin()4πρθ+=则极点到直线的距离为 . 【解】填2 由sin()42πρθ+=化为直角坐标方程为1x y +=,于是极点 (0,0)O 到该直线的距离为d ==即求. 12.设,,x y z 均为正数,满足230x y z -+=,则2y xz的最小值是 .由230x y z -+=可化为23y x z =+,得224(3)43y x z x z =+≥⋅,其中运用了重要不等式的变形式2()4,,a b ab a b R +≥∈,故23y xz≥(当3x z =时取等号). 13.数列{}n a 的前n 项和为n S ,若*111,3,n n a a S n N +==∈,则2014a = . 若填为201234⋅形式则视为错误,0.由*111,3,n n a a S n N +==∈……①,可推出,21133,3,2n n a a a S n -===≥……② ①-②式得,14,2n n a a n +=≥,于是224n n a a -=⨯,2n ≥,故2012201434a =⨯. 注意定义域了吗?A yB yC y D14.若,x y 满足约束条件10,22,2x y y x y +-≥⎧⎪≥-⎨⎪≤⎩,且z kx y =+取得最小值的点有无数个,则k = .首先作出可行域如右图: 0k -≠,所以①当0k ->,即0k <时,依题意有目标直线//l BC 时,当其运动至与BC 重合时,最优解有无数个,符合题意,即2k -=,即2k =-; ②同理当0k -<,即0k >时,必有//l AB ,即1k -=-,即1k =, 综上①②可知,1k =或 2-为所求.15.已知椭圆22221(0)x y a b a b +=>>过椭圆上一点M 作直线MA MB 、分别交椭圆于A B 、两点,且斜率为12k k 、,若点A B 、 关于原点对称,则12k k ⋅的值为 .【解】填13-由222619b e a =-=,得2213b a =,如右图所示取BM 中点D ,连结OD ,,2213O D B Mb k ka ⋅=-=-,又//OD AM ,故1OD k k =,即1213k k ⋅=- 【一点开心】显然,本题有一般性结论,即过椭圆2222:1()x y a b a bΓ+=≠的中心的任一条直线l 交椭圆Γ于A B 、两点,P 是椭圆Γ上异于A B 、的任意一点,且当P A P B k k 、都存在时,则有22P A P B b k k a⋅=-.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)2019年巴西世界杯的志愿者中有这样一组志愿者:有几个人只通晓英语,还有几个人只通晓俄语,剩下的人只通晓法语,已知从中任抽一人恰是通晓英语的概率为12,恰是通晓俄语的人的概率为310,且通晓法语的人数不超过3人.(Ⅰ)求这组志愿者的人数;(Ⅱ)现从这组志愿者中选出通晓英语、俄语和法语的志愿者各1人,若甲通晓俄语,乙通晓法语,求甲和乙不全被选中的概率;(Ⅲ)现从这组志愿者中抽取3人,求3人所会的语种数X 的分布列. 【解】(Ⅰ)设通晓英语、俄语、法语人分别有,,x y z 人,且*,,,3x y z N z ∈≤;则依题意有1,23,10x x y z y x y z ⎧=⎪++⎪⎨⎪=⎪++⎩,即,733,x y z y x z =+⎧⎨=+⎩…………………………………………2分By消去x 得,*32zy N =∈,当且仅当2z =时,3y =符合正整数条件, 所以5x =,也即这组志愿者有10人;………………………………………………………3分 (Ⅱ)记事件A 为“甲、乙不全被选中”,则A 的对立事件A 表示“甲、乙全被选中”, 于是1155()1()15326P A P A ⨯⨯=-=-=⨯⨯;…………………………………………………7分(Ⅲ)随机变量X 的可能取值为1,2,3,且由古典概型知33212121535537283310101179(1),(2)120120C C C C C C C C P X P X C C +++====== 11153231030(3)120C C C P X C ===.………………………………………………………………11分 所以随机变量的分布列如下: . ……………………………………………………………12分17.(本小题满分12分) 如图,点A 是单位圆与x 轴的正半轴的交点,点1(2B -. (Ⅰ)若AOB α∠=,求sin 2α;(Ⅱ)设点P 为单位圆上的动点,点Q 满足,OQ OA OP =+2(),62AOP ππθθ∠=≤≤()f OB OQ θ=⋅,求()f θ的取值范围. 【解】(Ⅰ)由三角函数定义可知1sin 2y x r r αα====-, 所以1sin 22sin cos 2()2ααα==-=即求…………………………………5分 (Ⅱ)由三角函数定义知(cos2,sin 2)P θθ,所以(1cos2,sin2),OQ OA OP θθ=+=+所以11()(1cos 2)2sin(2)262f OB OQ πθθθθ=⋅=-++=--, 又因62ππθ≤≤,故52666πππθ≤-≤,即1sin(2)126πθ≤-≤,于是10()2f θ≤≤,所以()f θ的取值范围是1[0,]2.……………………………………12分18.(本小题满分12分)直三棱柱111ABC A B C -中,5,4,3,AB AC BC ===yC 1AB 114AA =,点D 在AB 上.(Ⅰ)若D 是AB 中点,求证:1//AC 平面1B CD ; (Ⅱ)当13BD AB =时,求二面角1B CD B --的余弦值. 【解】(Ⅰ)连接1BC 交1B C 于点E ,连接DE , 因为直三棱柱中侧面11BCC B 为矩形,所以 E 为1BC 的中点,又D 是AB 中点,于是1//DE AC ,且D E ⊂面1B CD ,1AC ⊄面1B CD , 所以1//AC 平面1B CD ;…………………………6分 (Ⅱ)由5,4,3,AB AC BC ===知90ACB ∠=,即AC CB ⊥, 又直三棱柱中1AA ⊥面ABC ,于是以C 为原点建立空间 直角坐标系C xyz -如右图所示,于是1(3,0,0),(3,0,4)B B ,又13BD AB =,由平面几何易知4(2,,0)3D ,显然平面BCD 的一个法向量为1(0,0,1)=n ,又设平面1B CD 的一个法向量为2(,,)x y z =n ,则由212(3,0,4),4(2,,0),3CB CD ⎧⊥=⎪⎨⊥=⎪⎩n n ,得340,4203x x y +=⎧⎪⎨+=⎪⎩, 解得4,23x y =-=,取1z =,则24(,2,1)3=-n ,设二面角1B CD B --的平面角为θ, 则1212||3361|cos |||||61θ⋅===⨯n n n n ,又由图知θ为锐角, 361.…………………………………………………………………12分19.(本小题满分13分)AC DBC 1 AB 1 Eyxz ACDBC 1 AB 1在数列{}n a 中,已知*111,21,n n a a a n n N +=-=-+∈. (Ⅰ)求证:{}n a n -是等比数列; (Ⅱ)令,2nn n na b S =为数列{}n b 的前n 项和,求n S 的表达式. 【解】(Ⅰ)证明:由*111,21,n n a a a n n N +=-=-+∈ 可得11(1)2(),120n n a n a n a +-+=--=-≠所以数列{}n a n -以是-2为首项,以2为公比的等比数列………………………………6分 (Ⅱ) 由(Ⅰ)得:1222n n n a n --=-⨯=-,所以2n n a n =-,12n n n b =- 所以12221212(1)(1)(1)()222222n n n n n nS b b b n =+++=-+-++-=+++-令212222n n n T =+++,则2311122222n n n T +=+++,两式相减得2311111111122222222n n n n n n nT ++=+++-=--, 所以222n n n T +=-,即222n n n S n +=--…………………………………………………13分20.(本小题满分13分)已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线0x y -+的距离为3.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与直线(0)y kx m k =+≠相交于不同的两点M N 、.当||||AM AN =时,求m 的取值范围.【解】(Ⅰ)依题意可设椭圆方程为2221x y a+=,右焦点22(,0),1F c c a =-,3=,得c =故2213a c =+=;故椭圆的方程为2213x y +=………5分(,),(,)M x y N x y MN (,)P x y 可化为212(1)()2(1)0k x x k m ++++=,且120x x +≠……① …………………………8分且122031x x k +=-≠+,得0m ≠……③………………………………………………10分③式代入①式得,226(1)2(1)031kmk k m k -+++=+, 化简得2231m k =+1>,得12m >,又代入②式得,22m m <,解得02m <<,综上可得122m <<,即为所求...…………………………………………………………13分21.(本小题满分13分)已知函数()ln 3()f x a x ax a R =--∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45,对于任意的[1,2]t ∈,函数32()[()]2mg x x x f x '=++在区间(,3)t 上总不是单调函数,求m 的取值范围; (Ⅲ)求证:*ln2ln3ln4ln 1(2,)234n n N n n⨯⨯⨯⨯<≥∈.【解】(Ⅰ)由(1)()(0)a x f x x x-'=>,.………………………………………………………1分①当0a >时,显然01x <<时,()0f x '>,当1x >时,()0f x '<,所以此时()f x 的单调递增区间为(0,1),递减区间为(1,)+∞,②同理当0a <时, ()f x 的单调递增区间为(1,)+∞,递减区间为(0,1),③当0a =时,()3f x =-不是单调函数;.……………………………………………………4分(Ⅱ)由题知,(2)12af '=-=,得2a =-,所以()2ln 23f x x x =-+-. 所以32()(2)2,02mg x x x x x =++->,且2()3(4)2,0g x x m x x '=++->,……………6分令()0g x '=时,可知2(4)240m ∆=++>恒成立,即()0g x '=一定有两个不等实根12,x x , 且注意到12203x x =-<,所以不妨设120x x <<,又0x >,于是可知 20x x <<时,()0g x '<,又2x x >时,()0g x '>即()g x 在2(0,)x 上递减,在2(,)x +∞上递增,依题意可知2(,3)x t ∈,Ay于是只须2()03(4)20(3)03370g t t m t g m '<++-<⎧⎧⇔⎨⎨'>+>⎩⎩,…………………………………………7分 又以上事实对[1,2]t ∈恒成立.故(1)50(2)21803370g m g m m '=+<⎧⎪'=+<⎨⎪+>⎩,得3793m -<<-;……………9分(Ⅲ)分析:要证*ln2ln3ln4ln 1(2,)234n n N n n⨯⨯⨯⨯<≥∈成立, 即证ln 2ln3ln 4ln 123(1),2n n n ⨯⨯⨯⨯<⨯⨯⨯⨯-≥,也即证,ln 1,n n n <-≥2成立,下面用综合法证明.由(Ⅰ)知当1a =-时,()ln 3f x x x =-+-在(1,)+∞上递增,所以()ln 3(1)2ln 1,1f x x x f x x x =-+->=-⇔<->………………………………11分 也所以在上式中分别令2,3,4,,x n =得, ln 21,ln32,ln 43,,ln 1,2n n n <<<<-≥,ln 2ln3ln 4ln 123(1),2n n n ⨯⨯⨯⨯<⨯⨯⨯⨯-≥两边同除以!n 得,*ln2ln3ln4ln 1(2,)234n n N n n⋅⋅⨯⨯<≥∈,即证.…………………13分。