实数复习课件pptPPT
合集下载
实数的复习课件(共38张PPT)
零
你知道算术平方根、平方根、立方根联系和区别吗?
算术平方根
平方根
立方根
表示方法
a 的取值
性 正数
0
质
负数
a
a
3a
a≥ 0
a≥ 0
a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
开方
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
是本身
0,1
0
律
则3 5250的值是 17.38
1.已知 x 和 a 2 的和为0,则x的范围是为( B )
A.任意实数 B.非正实数 C .非负实数 D. 0
2.若- 3 m
=
7
3
8
,则m的值是
(B )
A 7
7 B
7
C
8
8
8
D
343 512
3. 若 (x 2)2 2 x成立,则x的取值范围是( A )
5.已知满足 3 a a 4 a ,求a的值
6、a、b互为相反数,c与d互为倒数,则a+1+b+
cd= 2
。
8、已知 a - 2 b 3 0,
则(a b)2 25 ;
9、计算: 1- x x 1 x2 1 0 ;
10、计算: 5 5 2 33
二.已知实数a、b、c,在数轴上的位置如下图所示, 试化简:
a
b0 c
(1) a2- |a-b|+|c-a|+ (b c)2
(2)|a+b-c|+|b-2c|+ (b a)2 -2 a2
你知道算术平方根、平方根、立方根联系和区别吗?
算术平方根
平方根
立方根
表示方法
a 的取值
性 正数
0
质
负数
a
a
3a
a≥ 0
a≥ 0
a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
开方
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
是本身
0,1
0
律
则3 5250的值是 17.38
1.已知 x 和 a 2 的和为0,则x的范围是为( B )
A.任意实数 B.非正实数 C .非负实数 D. 0
2.若- 3 m
=
7
3
8
,则m的值是
(B )
A 7
7 B
7
C
8
8
8
D
343 512
3. 若 (x 2)2 2 x成立,则x的取值范围是( A )
5.已知满足 3 a a 4 a ,求a的值
6、a、b互为相反数,c与d互为倒数,则a+1+b+
cd= 2
。
8、已知 a - 2 b 3 0,
则(a b)2 25 ;
9、计算: 1- x x 1 x2 1 0 ;
10、计算: 5 5 2 33
二.已知实数a、b、c,在数轴上的位置如下图所示, 试化简:
a
b0 c
(1) a2- |a-b|+|c-a|+ (b c)2
(2)|a+b-c|+|b-2c|+ (b a)2 -2 a2
《实数》课件完美版
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
《实数》课件完美版(PPT优秀课件)
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
实数ppt课件
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
实数ppt课件
。
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
《实数的概念》课件
实数的除法运算可以通过乘法转换为乘法运算,即a/b=(a*1/数运算的基本性质
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。
第六章实数复习(公开课)ppt课件
19世纪
数学家逐步完善实数理论 ,形成了完备的实数体系 ,为数学分析、连续函数 等研究奠定了基础。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以转化为加法运算,即a-b=a+(-b)。
总结词
减法运算的运算律
详细描述
减法运算同样满足交换律和结合律,即a-b=b-a和(ab)-c=a-(b+c)。
总结词
减法运算的运算性质
详细描述
减法的可逆性也是减法的一个重要性质,每一个数都有 唯一的相反数;另外,0是减法的单位元,任何数与0 相减都等于它本身。
总结词
加法运算的运算律
详细描述
加法运算还有一些特殊的运算律,例如,任何数与0相加 都等于它本身,即a+0=a;相反数相加等于0,即a+(a)=0。
总结词
加法运算的运算性质
详细描述
加法运算还有一些重要的运算性质,例如,加法的可逆性 ,即每一个数都有加法逆元,与它相加等于0;加法的单 位元,即有一个特殊的数0,任何数与它相加都等于它本 身。
实数在几何学中有着广泛的应用,例如在计算长度 、面积和体积时,需要使用实数表示测量值。
函数定义域与值域
实数可以用来定义各种数学函数,包括代数函数、 三角函数、指数函数和对数函数等,同时函数的值 域也由实数构成。
数学分析基础
实数对于数学分析来说是必不可少的基础,极限、 连续性和可微性的定义都离不开实数。
在物理中的应用
80%
测量与计算
在物理学中,实数常被用于表示 和计算各种物理量,如长度、时 间、质量、电荷等。
100%
物理定律的数学表达
许多物理定律可以用实数表示的 数学公式来描述,例如牛顿第二 定律 F=ma。
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
《中考复习实数的概念》PPT课件讲义
【即时应用3】 衢州新闻网2月16日讯,2013年春节“黄金
周”全市接待游客总数为833 100人次.将数833 100用
科学记数法表示应为
()
A.0.8331×106
B.83.31×105
C.8.331×105
D.8.331×104
答案 C
助学微博 1.初中常见无理数的三种表现形式: (1)含根号化简后开不尽的数; (2)化简后含π(圆周率)的式子; (3)有规律但无限不循环的小数. 特别说明:判定数的归属问题,要先化简,再判断. 2.判断哪些数的相反数、倒数、绝对值是它本身,哪些数 的相反数、倒数、绝对值是它的相反数时,要特别关注零和 负数. 3.用科学记数法表示数时,无论绝对值较大的数还是绝对 值较小的数,都可统一为移动原数的小数点的位置,移到只 含有一位整数时,移的位数是几,10的指数的绝对值就是 几,左移指数为正,右移指数为负.
常考角度:1.求一个数的相反数、倒数、绝对值;
2.根据数轴上点的位置,估计数的大致范围.
【例题2】 (2013·菏泽)如图,数轴上的A、B、C三点所表
示的数分别是a、b、c,其中AB=BC,如果|a|>|b|>
|c|,那么该数轴的原点O的位置应该在
()
A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点B与点C之间或点C的右边 解析 ∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其 次,点C最小,又∵AB=BC,∴原点O的位置是在点C的 右边,或者在点B与点C之间,且靠近点C的地方. 答案 D
中考复习实数的概念
(Suitable for teaching courseware and reports)
实数的分类 1.按定义分类
实数的有关概念PPT课件
8.一个近似数的有效数字,是指从这个数的左边第一个非零数字起,到 右边最后一位数字止的所有数字.
9.科学记数法是把一个大于10或小于l的正数记成 a 10n 的形式,其
中1≤a<10 ( n是正整数),这种记数的方法叫科学记数法.
10.实数的分类
整数
有理数
实数
分数
(有限小数或无限循环小数 )
无理数 (无限不循环小数)
各实数的绝对值之间的大小关系,进而判定带绝对值符号的代数式的值是
正、是负还是零,然后再根据绝对值的意义,去掉绝对值符号.
例3 2005年l0月12日,我国“神舟六号”载人航天一举成功升天,历时5 天共飞行3250000km,这个飞行距离用科学计数法表示正确的是( ).
(A)3.25104 km;(B)3.25105 km;(C)3.25106 km;(D)3.25107 km.
(3)下列说法中j正确的是( ). (A)一个数的相反数—定是负数 (B)—个数的绝对值一定是正数 (C)一个数的绝对值一定不是负数 (D)一个数的绝对值的相反数一定是负数
(4)下列命题中错误的是( ). (A)每一个整数都对应着数轴上的一个点 (B)每一个无理数都对应着数轴上的一个点 (C)数轴上每个点都对应着一个实数 (D)有理数和数轴上的点一.一对应 (5)一个实数的偶数幂是正数,这个实数是( ). (A)正实数 (B)任何实数 (C)负实数 (D)正实数或负实数
是
,属于负实数集合的是
,属于整实数集
合的是
,属于分数集合的是
,属于有理数集
合的是
,属于无理数集合的是
·
(2)若m、n互为相反数.则 m+n= ;若m、n互为倒数,则 mn= 。
《实数》PPT课件(沪科版)3
无理数的特征:
1.圆周率 及一些含有 的数
2.开不尽方的数
3.有一定的规律,但 不循环的无限小数
注意:带根号 的数不一定是 无理数
有理数和无理数统称实数.
整数 实 有理数
数
分数
有限小数或无 限循环小数
无理数 无限不循环小数
正实数
实
数
0
负实数
正有理数 正无理数
负有理数 负无理数
每个有理数都可以用数轴上的点表示, 那么无理数 是否也可以用数轴上的点 来表示呢?
(3)求 3 64的绝对值
(4)已知一个数的绝对值是 3 求这个数.
练习:
求下列各数的相反数和绝值:
2.5, 7, , 3 2, 0
2
计算下列各式的值:
(1)( 3 2) 2;
(2)3 3 2 3
练习: 计算:
(1)2 2 3 2;
(2) 2 32 2.
计算:
(1) 5
同样的,平面直角坐标系中的点 与有序实数对是一一对应的.
在实数范围内,相反数、倒数、绝 对值的意义和有理数范围内的相反数、 倒数、绝对值的意义完全一样。
(1)a是一个实数,它的相反数为 a ,
绝对值为 a ;
1
(2)如果a 0,那么它的倒数为 a
.
填空 1、正实数的绝对值是 它本身 ,0的绝对
(2) 3 • 2.
你能在数轴上找到表示 和 2及 2
这样的无理数的点吗?
直径为1的圆
-2 -1 0 1 2 3π 4
问题:边长为1的正方形,对角线长为多少?
2
2
-2 -1 0 1 2 3 4
也就是说:每一个无理数都可以用数轴上 的一个点来表示.数轴上的点有些表示有 理数,有些表示无理数.
1.圆周率 及一些含有 的数
2.开不尽方的数
3.有一定的规律,但 不循环的无限小数
注意:带根号 的数不一定是 无理数
有理数和无理数统称实数.
整数 实 有理数
数
分数
有限小数或无 限循环小数
无理数 无限不循环小数
正实数
实
数
0
负实数
正有理数 正无理数
负有理数 负无理数
每个有理数都可以用数轴上的点表示, 那么无理数 是否也可以用数轴上的点 来表示呢?
(3)求 3 64的绝对值
(4)已知一个数的绝对值是 3 求这个数.
练习:
求下列各数的相反数和绝值:
2.5, 7, , 3 2, 0
2
计算下列各式的值:
(1)( 3 2) 2;
(2)3 3 2 3
练习: 计算:
(1)2 2 3 2;
(2) 2 32 2.
计算:
(1) 5
同样的,平面直角坐标系中的点 与有序实数对是一一对应的.
在实数范围内,相反数、倒数、绝 对值的意义和有理数范围内的相反数、 倒数、绝对值的意义完全一样。
(1)a是一个实数,它的相反数为 a ,
绝对值为 a ;
1
(2)如果a 0,那么它的倒数为 a
.
填空 1、正实数的绝对值是 它本身 ,0的绝对
(2) 3 • 2.
你能在数轴上找到表示 和 2及 2
这样的无理数的点吗?
直径为1的圆
-2 -1 0 1 2 3π 4
问题:边长为1的正方形,对角线长为多少?
2
2
-2 -1 0 1 2 3 4
也就是说:每一个无理数都可以用数轴上 的一个点来表示.数轴上的点有些表示有 理数,有些表示无理数.
第二章《实数》复习PPT课件
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
14
填空
1
(1) 3 的倒数是 3 ;
(2) 3 -2的绝对值是 2 - 3;
Hale Waihona Puke (3)若 x 1, y 2,且xy>0,x+y=
3或- 3 。
(4) 点A在数轴上表示的数 3 为 5,
点B在数轴上对应的数 为5,
则A,B两点的距离为
45
计算
1)3 216
64 2)3
125
3) 25 64
4) 32 42
25 , 0.373773777 3
无理数集合: 3 9 , 7 , , 2 , 5 , 0.373773777 3
有理数集合:
1 , 5 , 16 , 3 8 ,
4
2
4 9
,
0,
25 ,…
整数集合: 16 , 3 8 , 0 , 25 ,
…
自然数集合:
0 , 25 ,
…
例2、 3222323
化里 简面 绝的 对数 值的 要符 看号 它
是负数
是正数
是负数
等于它的相反数
等于本身
32 2 2 3 2 3
2 2 3
3 2
原 2 式 2 3 2 3 ( 3 2 )
22 3 2 3 3 2
22 2 2 3 3 3
4 2 3
必须掌握 在数轴上找出无理数
在数轴上找出 2
相关练习
判断正误: ①-a一定是负数( ) ②在实数中,如果一个数不是正数,则一定是负数( ) ③开方开不尽的实数叫无理数( ) ④无理数都是无限小数( ) ⑤带根号的数是无理数( ) ⑥没有最小的实数( ) ⑦最小的整数是零( ) ⑧任何实数的平方都是非负数( )
演讲人:XXXXXX 时 间:XX年XX月XX日
14
填空
1
(1) 3 的倒数是 3 ;
(2) 3 -2的绝对值是 2 - 3;
Hale Waihona Puke (3)若 x 1, y 2,且xy>0,x+y=
3或- 3 。
(4) 点A在数轴上表示的数 3 为 5,
点B在数轴上对应的数 为5,
则A,B两点的距离为
45
计算
1)3 216
64 2)3
125
3) 25 64
4) 32 42
25 , 0.373773777 3
无理数集合: 3 9 , 7 , , 2 , 5 , 0.373773777 3
有理数集合:
1 , 5 , 16 , 3 8 ,
4
2
4 9
,
0,
25 ,…
整数集合: 16 , 3 8 , 0 , 25 ,
…
自然数集合:
0 , 25 ,
…
例2、 3222323
化里 简面 绝的 对数 值的 要符 看号 它
是负数
是正数
是负数
等于它的相反数
等于本身
32 2 2 3 2 3
2 2 3
3 2
原 2 式 2 3 2 3 ( 3 2 )
22 3 2 3 3 2
22 2 2 3 3 3
4 2 3
必须掌握 在数轴上找出无理数
在数轴上找出 2
相关练习
判断正误: ①-a一定是负数( ) ②在实数中,如果一个数不是正数,则一定是负数( ) ③开方开不尽的实数叫无理数( ) ④无理数都是无限小数( ) ⑤带根号的数是无理数( ) ⑥没有最小的实数( ) ⑦最小的整数是零( ) ⑧任何实数的平方都是非负数( )
实数ppt课件人教版
实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版
《实数的概念》课件
实数在生活中的应用
温度计上的实数
温度计上的数字表示实际温 度
温度计在生活中的应用:测 量体温、监测天气等
温度计的种类:水银温度计、 电子温度计等
温度计的准确性和使用注意 事项
身高体重指数(BMI)中的实数
身高体重指数(BMI)的定义 BMI中的实数计算 BMI指数在健康生活中的应用 如何根据BMI指数调整生活方式
课堂互动环节设计
案例分析:通过分析具体案例,让 学生更好地理解实数的概念和应用
添加标题
添加标题
添加标题
添加标题
分组讨论:将学生分成小组,让他 们讨论相关问题,提高合作能力
课堂测验:通过小测验或练习题, 检验学生对实数概念的理解和掌握 情况
练习题与答案解析
● 题目1:什么是实数? 答案1:实数包括有理数和无理数,有理数包括整数、分数、小数等,无理数包括无限不循 环小数等。
添加标题 添加标题 添加标题 添加标题
地图上的经纬度
经纬度定义:经度和纬度是地图上的两个基本坐标系统,用于确定地球上 任何位置的坐标。
实数与经纬度的关系:经度和纬度都是实数,可以用小数或度数表示。
经纬度在地图上的应用:通过经纬度可以确定地球上任何位置的精确位置, 从而进行导航、定位和地理信息系统的应用。
添加标题
添加标题
实数与其他数学概念的关系
总结与回顾
本节课的重点与难点总结
重点:实数的概 念、分类和性质
难点:实数的运 算规则和实际应 用
解决方法:通过 例题讲解和练习 巩固,加深对实 数概念的理解和 掌握
总结:回顾本节 课所学内容,强 调容
数
无理数与有理 数的区别:定 义、性质、运 算规则等方面
的差异
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
125 (5)3
27
求根也好,求值也好,关键要弄清它是什么
意思,然后可以选择定义和性质来求.
8
8是 64 64的平方根是
的平方根
±8
不 64的值是 8
9的平方根是 3
要 搞
64的立方根是
-4
错
ห้องสมุดไป่ตู้大了于
17小于
11的所有整数为
_-4_,-_3,-2,-1, _0,_1,_2,.3
9
不 要 遗 漏 哦!
当方程中出现立方时,一般都有一个解 10
已知 1.7201 1.311, 17.201 4.147,
那么0.0017201的平方根是 0.04147
已知 2.36 1.536, 23.6 4.858,
掌 握
若 x 0.4858,则x是 0.236
规
已知3 5.25 1.738, 3 52.5 3.744,
值的 要符
3.14
3 2
看号 它
原式 3.14 3 2 ( 3 2)
3.14 3 2 3 2
3.14 3 3 2 2
3.14
13
1·计算:
(1)、( 3 4) 3
要
(2)、2 2 3(1 3 2)
学
(3)、(-2)2 (3)2 ( 3 2)3 4
1
有限小数及无限循环小数整数
正整数 0
有理数
负整数
分数 正分数
实 数
负分数
正无理数
无理数
负无理数
无限不循环小数 (1)、
自然数
一般有三种情况
2、“ ”,“3 ”开不尽的数
(3)、 类似于0.0100100010 00021
平方根、立方根
概念及性质 1. 平方根的定义:
一般地,如果一个数的平方等于a ,那 么这个数就叫做a 的平方根(或二次方
半径画弧截得一点, 该点
与原点的距离是_√_2__,
√2
该点表示的数是√_2___.
-√2 -1
0
1 √2 2
实数与数轴上的点是一一对应关系. 15
问题:边长为1的正方形,对角线长为多少?
y
3
(
B
2,
2)
2
2
A ( 2, 2)
1
2
√2
2
x
-3 -2 -1 0 1 2 3
C
-1
( 2, 2) -2 2
0,1
0
6
0,1,-1
a2 a =
a 2 a
a a 0 0 a 0 a (a 0) a 0
3 a3 a a为任何数
3 a 3 a a为任何数
3 a 3 a a为任何数
7
1.求下列各数的算术平方根:
(1) 0.04;(2) 1; (3) 56 ; (4) (-346)942 ; (5)
5
平方根、立方根 概念及性质
你知道算术平方根、平方根、立方根联 系和区别吗?
算术平方根
平方根
立方根
表示方法
a 的取值
正数
性
0
质
负数
开 方 是本身
a ≠ a
a≥ 0
a≥ 0
3a a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
求一个数的平方根 求一个数的立方根
的运算叫开平方 的运算叫开立方
特殊:0的算术平方根是0。
记作:0 0
4
4.立方根的定义:
一般地,如果一个数的立方等于a, 那么这个数就叫做a的立方根,也叫做a
的三次方根.记作 3 a .
其中a是被开方数,3是根指数,符号 “3 ”读做“三次根号”.
5.立方根的性质:
一个正数有一个正的立方根;
一个负数有一个负的立方根, 零的立方根是零。
5、实数的大小比较方法有:利用数轴比较、利 用绝对值比较、求平方比较、求差比较、求商比 较和计算近似值比较等方法。
6、在进行实数的运算时,有理数的运算法则及运算性
质同样适用。
12
3.14 3 2 2 3
化里
是负数
是正数
是负数
简 面 等于它的相反数
等于它本身 等于它的相反数
绝的 对数
3.14 3 2 2 3
根).
这就是说,如果x 2 = a ,那么 x 就叫做 a 的平方根.a的平方根记为± a
2.平方根的性质: 正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
3
3.算术平方根的定义:
一般地,如果一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 , 读作“根号a”,a叫做被开方数。
2.求下列各数的平方根: (1) 121;(2) 16; (3) 0 ; (4) (-394)2 ; (5)
3.求下列各数的立方根:
(1) -0.008;(2) 43; (3) -64;
4.(5求) 下列各式的值:
(4)
(-2738)3;
(1) 0.16 (2)
9 16
(3)
25 9
(4) 3 1
会 2、(结果保留3个有效数字)
计
(1)、5
算
(2)、( 3 2 2) 2
哟!
(3)、2 9 2
52
注意:计算过程中要多保留一位!
14
如图是两个边长1的正方形
拼成的长方形, 其面积是2.
√2
现剪下两个角重新拼成一个
正方形, 新正方形的边长是√_2____
下图数轴中, 正方形的对角线长
为√_2___,以原点为圆心, 对角线长为
D ( 2, 2)
平面直角坐标系中的点与有序实数对是一一对应的. 16
在实数范围内,相反数、倒数、绝对值的 意义和有理数范围内的相反数、倒数、绝对值的意 义完全一样。
(1)a是一个实数,它的相反数为
绝对值为 a ;
a ,
1
(2)如果a 0,那么它的倒数为 a .
17
比较大小的方法 利用数轴比较
律
则3 5250的值是 17.38
注意平方根和立方根的移位法则
11
实数的有关 概念和性质
1、无限不循环的小数 叫做无理数. 有理数和无理数统称实数.
2、实数与数轴上的点是一一对应的.
3、同样的,平面直角坐标系中的点与有序实数对是一一对应的.
4、在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样
解下列方程:
1.9(3 y)2 4
解:(3 y)2 4 9
3 y 4 9
2
2. 2(7 x 5)3 8 0
解:
3
27(x
5)3
8
3
(x 5)3 8
3
27
x5 3 8
y 3
3
y 2 1 或y 3 2
3
3
3 27
x52 33
x 1
当方程中出现平方时,若有解,一般都有 两个解
利用绝对值比较 求平方比较
适用范围
所有实数 负实数 正实数
主要的依据
举例
实数与数轴上的点是一一对 应关系,有大小顺序排列。
(略)
两负实数比较,绝对值大的 反而小,绝对值小的反而大。
-√5、-3