机械设计基础第12章 轴
机械设计基础 课后习题答案 第三版 高等教育出版社课后答案(1-18章全)
机械设计基础课后习题答案第三版高等教育出版社课后答案(1-18章全)机械设计基础课后习题答案第三版高等教育出版社目录第 1 章机械设计概述??????????????????????????????????????????????????????????????????? ????????????????????????????????? 1第 2 章摩擦、磨损及润滑概述??????????????????????????????????????????????????????????????????? ????????????????? 3第 3 章平面机构的结构分析??????????????????????????????????????????????????????????????????? ????????????????????? 12第 4 章平面连杆机构??????????????????????????????????????????????????????????????????? ????????????????????????????????? 16第 5 章凸轮机构??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????36第 6 章间歇运动机构??????????????????????????????????????????????????????????????????? ????????????????????????????????? 46第7 章螺纹连接与螺旋传动??????????????????????????????????????????????????????????????????? ????????????????????? 48第8 章带传动??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????60第9 章链传动??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????73第10 章齿轮传动??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????80第11章蜗杆传动??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????112第12 章齿轮系??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????124第13 章机械传动设计???????????????????????????????????????????????????????????????????????????????????????????????????? 131第14 章轴和轴毂连接??????????????????????????????????????????????????????????????????? ????????????????????????????????? 133第15 章轴承??????????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????138第16 章其他常用零、部件??????????????????????????????????????????????????????????????????? ????????????????????????? 152第17 章机械的平衡与调速??????????????????????????????????????????????????????????????????? ????????????????????????? 156第18 章机械设计CAD 简介??????????????????????????????????????????????????????????????????? ???????????????????????163第1章机械设计概述1.1 机械设计过程通常分为哪几个阶段?各阶段的主要内容是什么?答:机械设计过程通常可分为以下几个阶段:1.产品规划主要工作是提出设计任务和明确设计要求。
机械设计基础-----第12章 轴
转动心轴:轴转动 固定心轴:轴固定
问:火车轮轴属于什么类型?
问:自行车前轮轴属于什么类型?
传动轴:只受转矩,不受弯矩M=0,T≠0
如:汽车下的传动轴。
转轴:既传递转矩(T)、又承受弯矩(M)
如:减速器中的轴。
问:根据承载情况下列各轴分别为哪种类型? 0 轴: 传动轴 Ⅰ轴: 转轴 Ⅱ轴: 转动心轴
表12-2 常用材料的[τT]值和C值
轴的材料 Q235-A, 20 Q275, 35 1Cr18Ni9Ti 45 40Cr, 35SiMn 38SiMnMo, 3Cr13
[τT](N/mm2 )
15~25
20~35
25~45
35~55
C
160~135
135~118
118~107
107~98
注: 当作用在轴上的弯矩比传递的转矩小或只传递转矩、载荷较 平稳、无轴向载荷或只有较小的轴向载荷、减速器的低速轴、轴 只作单向旋转, [τT]取较大值, C取较小值; 否则[τT]取较小值, C取较大值。
第12章 轴
§12-1 §12-2 §12-3 §12-4 概 述
带传动和链传动都是通过中间挠性件传递运 动和动力的,适用于两轴中心距较大的场合。 与齿轮传动相比,它们具有结构简单,成本 低廉等优点。
轴的结构设计 轴的计算 轴的设计实例
§12-1、概述
一、主要功用
1、支承轴上回转零件(如齿轮)
2、传递运动和动力 二、分类 1、按承载分 心轴:只承受弯曲(M),不传递转矩(T=0)
▲ 碾压、喷丸等强化处理。
通过碾压、喷丸等强化处理时可使轴的表面产生预 压应力,从而提高轴的疲劳能力。
五、轴的结构工艺性 为便于轴上零件的装拆,一般轴都做成从轴端逐渐向 中间增大的阶梯状。在满足使用要求的前提下,轴的结 构越简单,工艺性越好。零件的安装次序 1. 装零件的轴端应有倒角,需要磨削的轴端有 砂轮越程槽,车螺纹的轴端应有退刀槽。
机械设计基础(第12章)讲解
减速器分类: 齿轮减速器
圆柱齿轮减速器 圆锥齿轮减速器
圆锥—圆柱齿轮减速器
蜗杆减速器 行星减速器
圆柱蜗杆减速器 圆弧齿蜗杆减速器 锥蜗杆减速器 蜗杆—齿轮减速器
渐开线行星齿轮减速器
摆线齿轮减速器 谐波齿轮减速器
12.5 减速器
12.5.1 常见减速器的主要类型、特点及应用
1.齿轮减速器
12.5 减速器
12.1 定轴齿轮系传动比的计算
12.1.1 平面定轴齿轮系传动比的计算
一对齿轮的传动比大小为其齿数的反 比。若考虑转向关系,外啮合时,两轮转 向相反,传动比取“-”号;内啮合时,两 轮转向相同,传动比取“+”号;则该齿轮 系中各对齿轮的传动比为:
i 12
z 1 2
2
z1
z 3' i 3'4
12.1 定轴齿轮系传动比的计算
由齿轮轴线位置是否固定:
定轴轮系
轮
周转轮系
系
复合轮系
无动轴齿轮 至少有一个动轴齿轮
定轴+周转 或几个周转轮系的组合
如果齿轮系中各齿轮的轴线互相平行,则称为平面齿轮系,否则称 为空间齿轮系。
12.1 定轴齿轮系传动比的计算
各种齿轮系
12.1 定轴齿轮系传动比的计算
所有从动轮齿数的连乘 所有主动轮齿数的连乘
积 积
12.2 行星齿轮系传动比的计算
注意事项: 1)A、K、H三个构件的轴线应互相平行,而且ω A、ω K、 ωH、 n必须将表示其转向的正负上。首先应假定各轮转动的同一正方 向,则与其同向的取正号带入,与其反向的取负号带入。
2)公式右边的正负号的确定:假想行星架H不转,变成机架。则 整个轮系成为定轴轮系,按定轴轮系的方法确定转向关系。
河南理工大学机械设计基础第12章 滑动轴承
第7节 其他形式滑动轴承简介
39
休 息 一 会 儿
2011年6月
……
40
[v]—材料的许用滑动速度 4.选择配合 一般可选H9/d9或H8/f7、H7/f6
31
第6节 液体动压润滑径向滑动轴承的设计计算
液体动力润滑径向滑动轴承的设计计算1
一、流体动力润滑基本方程的建立 对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简 化形式的流体动力平衡方程。这些假设条件是 :
2
第1节 概述
工作时轴承和轴颈的支撑面间形成直接或间接活动摩擦的 轴承,称为滑动轴承。
滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在 以下场合,则主要使用滑动轴承:
1.工作转速很高,如汽轮发电机。
2.要求对轴的支承位置特别精确,如精密磨床。
3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。 6.在特殊条件下工作的轴承,如军舰推进器的轴承。
◆ ◆
◆ ◆
流体为牛顿流体,即 (
u ) y
。
流体的流动是层流,即层与层之间没有物质和能量的交换;
忽略压力对流体粘度的影响,实际上粘度随压力的增高而增加;
略去惯性力及重力的影响,故所研究的单元体为静平衡状态或匀速直 线 运动,且只有表面力作用于单元体上;
◆ ◆
流体不可压缩,故流体中没有“洞”可以“吸收”流质;
四.润滑装置及润滑方法 常用的润滑方法有:
油润滑
1)间歇式供油
旋套式注油油杯
压配式压注油杯
26
第4节 滑动轴承的润滑剂和润滑方法
2)连续式供油
3)飞溅润滑
机械设计基础(机电类第三版)习题参考答案
机械设计基础(第3版)复习题参考答案第2章平面机构运动简图及自由度2-1 答:两构件之间直接接触并能保证一定形式的相对运动的连接称为运动副。
平面高副是点或线相接触,其接触部分的压强较高,易磨损。
平面低副是面接触,受载时压强较低,磨损较轻,也便于润滑。
2-2 答:机构具有确定相对运动的条件是:机构中的原动件数等于机构的自由度数。
2-3 答:计算机构的自由度时要处理好复合铰链、局部自由度、虚约束。
2-4 答:1. 虚约束是指机构中与其它约束重复而对机构运动不起新的限制作用的约束。
2. 局部自由度是指机构中某些构件的局部运动不影响其它构件的运动,对整个机构的自由度不产生影响,这种局部运动的自由度称为局部自由度。
3. 说虚约束是不存在的约束,局部自由度是不存在的自由度是不正确的,它们都是实实在在存在的。
2-5 答:机构中常出现虚约束,是因为能够改善机构中零件的受力,运动等状况。
为使虚约束不成为有害约束,必须要保证一定的几何条件,如同轴、平行、轨迹重合、对称等。
在制造和安装过程中,要保证构件具有足够的制造和安装精度。
2-6 答:1.在分析和研究机构的运动件性时,机构运动简图是必不可少的;2. 绘制机构运动简图时,应用规定的线条和符号表示构件和运动副,按比例绘图。
具体可按教材P14步骤(1)~(4)进行。
2-7 解:运动简图如下:2-8 答:1. F=3n-2P L-P H=3×3-2×4-0=1。
该机构的自由度数为1。
2.机构的运动简图如下:2-9答:(a)1.图(a)运动简图如下图;2.F=3n-2P L-P H=3×3-2×4-0=1,该机构的自由度数为1CB4(b)1.图(b)运动简图如下图;2. F=3n-2P L-P H =3×3-2×4-0=1。
该机构的自由度数为1。
2-10 答:(a)n=9 P L=13 P H=0F=3n-2P L-P H=3×9-2×13-0=1该机构需要一个原动件。
机械设计基础 第十二章轴
3.
球墨铸铁、合金铸铁 (高强度铸铁)
价廉、吸振性好、耐磨性好,对应力集中的敏感性较低,铸造 成形,但性脆,可靠性低,品质难控制。 常用于制造外形复杂的轴,如曲轴、凸轮轴。
轴的常用材料及其主要力学特性见
轴的结构设计
12
设计任务:使轴的各部分具有合理的形状和尺寸。
设计要求: 1.轴应便于制造,轴上零件要易于装拆;(制造安装) 2.轴和轴上零件要有准确的工作位置;(定位) 3.各零件要牢固而可靠地相对固定;(固定) 4.改善应力状况,减小应力集中。
第十二章
轴的设计
1
第一节 第二节 第三节
概述 轴的设计举例 轴的强度、刚度计算
2
本章重点:
① 轴的类型,轴的常用材料; ② 轴的结构; ③ 轴上零件的轴向定位和固定方法; 轴上零件的周向定位和固定方法;
④ 按扭转强度计算轴的直径。
轴的功用:主要用于支承传动零件 (齿轮、带轮等) 并
传递运动和动力。
越程槽和退刀槽
17
(3)为去掉毛刺,利于装配,轴端应制出45°倒角。
45°倒角 45°倒角
( 4)当采用过盈配合联结时,配合轴段的零件装入端,常加工 成半锥角为30°的导向锥面。若还附加键联结,则键槽的长度 应延长到锥面处,便于轮毂上键槽与键对中。
18
(5)如果需从轴的一端装入两个过盈配合的零件,则轴上两配 合轴段的直径不应相等,否则第一个零件压入后,会把第二个零件 配合的表面拉毛,影响配合。
一般情况下,直轴 做成实心轴,需要 减重时做成空心轴
6
轴的功用和类型
分类: 按承受载荷分有: 类 型 按轴的形状分有:
7
转轴---传递扭矩又承受弯矩
传动轴---只传递扭矩 心轴---只承受弯矩 直轴 曲轴 光轴 阶梯轴
机械设计基础第12章蜗轮蜗杆
机械设计基础第12章蜗轮蜗杆蜗轮蜗杆是一种常见的传动机构,广泛应用于机械设备中。
蜗轮蜗杆传动具有体积小、传动比大、传动平稳等特点,在机械设计中有着重要的应用价值。
蜗轮蜗杆传动是一种通用型的不可逆传动,典型的结构包括蜗轮和蜗杆两个部分。
蜗轮是一种螺旋状的齿轮,其齿面与蜗杆的蜗杆螺旋面相配合。
蜗杆是一种具有螺旋线形状的轴,其作为传动元件,通过旋转运动驱动蜗轮。
蜗轮齿与蜗杆螺旋线的位置关系使得蜗轮只能顺时针旋转,而无法逆时针旋转。
这种结构特点决定了蜗轮蜗杆传动是一种不可逆传动。
蜗轮蜗杆传动的主要工作原理是靠蜗杆的螺旋面与蜗轮的齿轮面的啮合来实现传动。
在传动过程中,蜗杆通过旋转带动蜗轮转动,从而实现动力传递。
由于蜗杆的螺旋面与蜗轮的齿轮面接触面积小,所以传动效率相对较低。
为了提高传动效率,降低摩擦损失,需要在蜗轮齿面和蜗杆螺旋面之间添加润滑油。
蜗轮蜗杆传动具有很高的传动比,可达到1:40以上,因此在机械设备中常常使用蜗轮蜗杆传动来实现大速比的传动。
例如在起重机构中,通常采用蜗轮蜗杆传动来提高起重高度。
此外,蜗轮蜗杆传动还可以实现两个轴的不同速度传动,例如在机械车床中使用蜗轮蜗杆传动来实现工件的不同转速。
在机械设计中,蜗轮蜗杆传动的设计需要根据实际应用情况确定传动比、工作环境要求等参数。
首先需要确定传动比,在确定传动比的同时要考虑传动效率和传动正反转的能力。
其次,需要根据工作环境来选择蜗杆和蜗轮的材料,以提高传动的可靠性和耐用性。
还需要注意蜗杆和蜗轮的几何尺寸和配合精度,以保证传动的准确性和稳定性。
此外,在设计过程中还需要进行强度校核、轴承选择等工作,以确保传动的安全可靠。
总之,蜗轮蜗杆传动在机械设计中具有重要的应用价值。
它的特点是传动比大、传动平稳,适用于需要大速比、不可逆传动的场合。
在设计蜗轮蜗杆传动时,需要根据实际应用情况,确定传动比、材料、尺寸、配合精度等参数,以保证传动的稳定性和可靠性。
机械设计基础教案——第12章轮系
第 12 章轮系(一)教学要求1、掌握定轴轮系,周转轮系传动比的计算2、了解其他新型齿轮传动装置(二)教学的重点与难点1、定轴轮系转向判别2、转化机构法求解周转轮系传动比2、复合轮系的分析(三)教学内容12.1轮系的分类轮系:用一系列互相啮合的齿轮将主动轴和从动轴连接起来,这种多齿轮的传动装置称为轮系。
定轴轮系(普通轮系)周转轮系复合轮系定 +周(复杂轮系)周 +周12.2定轴轮系及其传动比计算一、传动比A ——输入轴B ——输出轴i AB W A n A W B n B二、定轴轮系的传动比计算i 15W1W2W3 W4Z 2 Z3 Z 4 Z5i12i23i3 4i4 5Z1Z 2 Z3 Z 4W2W3W4W5所有从动轮齿数的乘积∴ i15所有主动轮齿数的乘积三、输出轴转向的表示1、首末两轴平行,用“+”、“ -”表示。
Z——惰轮:不改变传动比的大小,但改变轮系的转向2、首末两轴不平行(将轮 5 擦掉)用箭头表示3、所有轴线都平行i W1( 1)m所有从动轮齿数的乘积W5所有主动轮齿数的乘积m——外啮合的次数12.3周转轮系的传动比计算一、周转轮系F 3 4 2 4 22差动轮系: F=2行星轮系: F=1(轮 3 固定)(F 3 3 2 3 2 1)二、周转轮系的构件行星轮行星架(系杆)、中心轮基本构件(轴线与主轴线重合而又承受外力矩的构件称基本构件)行星架绕之转动的轴线称为主轴线。
ZK-H ( K —中心轮; H —行量架; V —输出构件)还有其他: 3K , K-H-V三、周转轮系传动比的计算以差动轮系为例(反转法)-W H(绕 O H—主轴线)转化机构(定轴轮系)i13H W1H W1W H( 1)Z 3W H W3W H Z13举例:图示为一大传动比的减速器, Z 1=100, Z 2=101, Z 2'=100, Z 3=99 求:输入件 H 对输出件 1 的传动比 i H1解: 1, 3 中心轮2, 2'行星轮H行星架给整个机构( -W H)绕 OO 轴转动i13H W1WH( 1)2Z2Z3 W3W H Z1 Z2周转轮系传动比是计算出来的,而不是判断出来的。
机械设计基础第2版朱龙英主编课后习题答案完整版
《机械设计基础》习题解答目录第0章绪论-------------------------------------------------------------------1 第一章平面机构运动简图及其自由度----------------------------------2 第二章平面连杆机构---------------------------------------------------------4 第三章凸轮机构-------------------------------------------------------------6 第四章齿轮机构------------------------------------------------------- -----8 第五章轮系及其设计------------------------------------------------------19 第六章间歇运动机构------------------------------------------------------26 第七章机械的调速与平衡------------------------------------------------29 第八章带传动---------------------------------------------------------------34 第九章链传动---------------------------------------------------------------38 第十章联接------------------------------------------------------------------42 第十一章轴------------------------------------------------------------------46 第十二章滚动轴承--------------------------------------------------50第十三章滑动轴承------------------------------------------------ 56第十四章联轴器和离合器-------------------------- 59第十五章弹簧------------------------------------62第十六章机械传动系统的设计----------------------65第0章绪论12-3机器的特征是什么?机器和机构有何区别?[解] 1)都是许多人为实物的组合;2)实物之间具有确定的相对运动;3)能完成有用的机械功能或转换机械能。
机械设计基础习题解答第12章
思考题及练习题12.1用轴肩或轴环可以对轴上零件作轴向固定吗?答:轴肩或轴环可以对轴上零件作单向轴向固定12.2圆螺母也可以对轴上零件作周向固定吗?答:圆螺母不能对轴上零件作周向固定,可以轴向固定。
12.3轴肩或轴环的过渡圆角半径是否应小于轴上零件轮毂的倒角高度? 答:轴肩或轴环的过渡圆角半径应小于轴上零件轮毂的倒角高度,以保证装拆方便可靠。
12.4汽车下部变速器与后桥间的轴是否传动轴?答:是传动轴。
12.5轴上零件的轴向固定方法有:1)轴肩和轴环;2)圆螺母与止动垫圈;3)套筒; 4)轴端挡圈和圆锥面;5)弹性挡圈、紧定螺钉或销钉等。
当受轴向力较大时,可采用几种方法?答:轴向力较大时,可采用:1)轴肩和轴环;2)圆螺母与止动垫圈;3)套筒; 4)轴端挡圈和圆锥面。
12.6若轴上的零件利用轴肩来轴向固定,轴肩的圆角半径R 与零件轮毅孔的圆角半径1R 或倒角1C 的关系如何?答:轴肩的圆角半径R 要小于零件轮毅孔的圆角半径1R 或倒角1C 。
12.7为了便于拆卸滚动轴承,轴肩处的直径d (或轴环直径)与滚动轴承内圈外径1D 应保持何种关系?答:1d D <,大约2 mm 。
12.8平键连接的工作原理是什么?主要失效形式是什么?平键的剖面尺寸b ×h 和键的长度L 是如何确定的?举例说明平键连接的标注方法。
答:工作原理:平键的上表面与轮毂键槽顶面留有间隙,依靠键与键槽间的两侧面挤压力 ,传递转矩 。
所以两侧面为工作面。
主要失效形式:键连接的主要失效形式是挤压破坏。
键的剖面尺寸b ×h 和键的长度L 的确定:按照轴的公称直径d ,从国家标准中选择平键的尺寸h b ×。
键的长度L 应略小于轮毂的长度,键长L 应符合标准长度系列。
12.9 圆头(A 型)、方头(B 型)及单圆头(C 型)普通平键各有何优缺点?它们分别用在什么场合?轴上的键槽是如何加工出来的?轮毂上的键槽是如何加工出来的?答:圆头(A 型)对中性好,安装方便,使用广泛;方头(B 型)应力集中小,对轴影响小。
《机械设计基础》第12章 蜗杆传动
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。
陈立德版机械设计基础第12章课后题答案
第12章 齿轮系12.1 定轴齿轮系与行星齿轮系的主要区别是什么?答:主要区别是:定轴齿轮系运转时齿轮轴线相对于机架固定,而行星齿轮系运转时则有一个或几个齿轮的轴线相对于机架不固定。
12.2 各种类型齿轮系的转向如何确定?()1m -的方法适用于何种类型的齿轮系? 答:定轴轮系的转向可用()1m -的方法或在图上画箭头的方法确定;行星轮系的转向应根据其转化机构经计算确定;()1m -方法适用于平面圆柱齿轮定轴轮系。
12.3 “转化机构法”的根据何在?答:根据在于运动的相对性原理。
12.4 摆线针轮行星传动中,针轮与摆线轮的齿差为多少?答:齿数差为1。
12.5 谐波齿轮传动是怎样工作的?谐波齿轮传动中刚轮与柔轮的齿数差如何确定? 答:谐波齿轮传动是利用波发生器使柔轮产生可控的弹性变形而实现柔轮与刚轮的啮合及运动传递。
刚轮与柔轮的齿数差212H2z z z i --= 式中:z 1—刚轮齿数;z 2—柔轮齿数;i H2—波发生器与柔轮的传动比。
12.6 谐波齿轮减速器与摆线针轮减速器相比有何特点?答:谐波齿轮减速器与摆线针轮减速器相比有以下特点:结构简单,体积小,重量轻,安装方便,传动效率高,但使用寿命相对不如摆线针轮减速器。
12.7 如题12.7图所示的某二级圆栓齿轮减速器,已知减速器的输入功率1P =3.8kW,转速1n =960r/min ,各齿轮齿数1z =22,2z =77,3z =18,4z =81,齿轮传动效率η齿=0.97,每对滚动轴承的效率η滚=0.98。
求:(1)减速器的总传动比IIII i ;(2)各轴的功率、转速及转矩。
题12.7图解:(1)总传动比()224IIII 137781115.752218z z i z z ⨯=-⨯==⨯ (2)轴I 的功率I 1P P =η滚=3.80.98 3.724kW ⨯=转速I n =960r/min 转矩31I 19.5510378.02N m P T n =⨯=⋅ 轴II :II I P P = η齿η滚=3.54kW1II 1222960274.29r /min 77z n n z ==⨯= 3II II II 9.55101235.527N m P T n =⨯=⋅ 轴III :P III =P II η齿η滚=3.37kW3III II 460.95r /min z n n z == 3III III III 9.5510528.031N m P T n =⨯=⋅12.8 在如题12.8图所示的齿轮系中,已知各齿轮齿数(括号内为齿数),3'为单头右旋蜗杆,求传动比15i 。
机械轴封 第12章轴
机械设计基础 —— 轴
T
轴的计算流程: 轴的计算流程: 计算方法: 计算方法: 按扭转强度计算 按弯扭合成强度计算 机器的结构 力学分析 简 化 轴的长度 轴上零件的位置 载荷计算简图 强度计算
F
轴径
轴的结构设计
一、轴的强度计算
1 扭转剪切强度计算
机械设计基础 —— 轴
适用状况: 适用状况: (1)轴只传递转矩 不承受弯矩(或很小的弯矩) 轴只传递转矩, (1)轴只传递转矩,不承受弯矩(或很小的弯矩) (2)弯矩未知 弯矩未知, (2)弯矩未知,按扭距作初步计算 T T 9.55 × 106 P 扭剪应力: 扭剪应力: τ T = ≤ [τ T ] = 3 = 3 WT πd / 16 0.2d n 设计公式: 设计公式:
由于合金钢与碳素钢弹性模量差别不大,所以合金钢代 由于合金钢与碳素钢弹性模量差别不大,所以合金钢代 替碳钢并不能提高轴的刚度。 替碳钢并不能提高轴的刚度。
§15.3轴的结构 15.3轴的结构
一、轴的结构 轴 头:轴和旋转零件的配合部分 轴 颈:轴和轴承配合的部分 轴 身:连接轴颈与轴头部分
机械设计基础 —— 轴
机械设计基础 —— 轴
三、各轴段直径和长度的确定 1. 直径的确定原则 1)估算的轴径作为轴上最细处的直径。 估算的轴径作为轴上最细处的直径。 2)与标准件配合的轴径应根据标准件的尺寸设计。 与标准件配合的轴径应根据标准件的尺寸设计。 3) 定位轴肩的高度(半径差) 定位轴肩的高度(半径差) h≈(0.07 ~ 0.1)d+1~2mm 。 0.1) 滚动轴承的定位轴肩,应小于轴承内圈的厚度。 4) 滚动轴承的定位轴肩,应小于轴承内圈的厚度。 5)为便于零件的装拆而设计的非定位轴肩高度 1~2mm。 (半径差)h ≈ 1~2mm。 半径差)
机械设计基础第12章蜗轮蜗杆分析
机械设计基础第12章蜗轮蜗杆分析蜗轮蜗杆传动是一种常见的传动结构,具有传动比大、传动平稳、结构紧凑等优点。
在机械设计中,蜗轮蜗杆传动的分析和设计至关重要。
本文将详细介绍蜗轮蜗杆传动的原理、分析方法和设计要点。
1.原理蜗轮蜗杆传动是由蜗轮和蜗杆组成的一对斜面传动。
蜗轮有多个齿槽,蜗杆有一根螺旋斜面。
当蜗杆旋转时,通过螺旋斜面与蜗轮的齿槽作用,产生转动传递。
由于蜗杆螺旋斜面的斜度较大,所以每转动一圈,蜗轮只转动少量的角度,这就实现了较大的传动比。
2.分析方法蜗轮蜗杆传动的分析主要包括力学分析和几何分析。
力学分析:(1)传动比计算:蜗轮蜗杆传动的传动比可以根据蜗轮的齿数和蜗杆的斜度来计算,传动比=(蜗轮的齿数)/(蜗杆的斜度)。
(2)传动效率计算:蜗轮蜗杆传动的传动效率通常较低,主要受到摩擦损失和滑动损失的影响。
传动效率可以根据摩擦系数和滑动速度来计算。
(3)定位力计算:蜗轮蜗杆传动中,由于蜗轮与蜗杆之间的斜面接触,会产生一定的定位力。
定位力会严重影响传动的稳定性和精度,需进行合理计算和设计。
几何分析:(1)蜗轮参数计算:根据给定的传动比和蜗杆参数,可以计算蜗轮的齿数和齿轮分度圆直径。
(2)蜗杆参数计算:根据给定的传动比和蜗轮参数,可以计算蜗杆的斜度和蜗杆的导程。
(3)轴距计算:蜗轮和蜗杆的轴距是影响传动稳定性和效率的重要参数,需进行合理计算和确定。
3.设计要点(1)选取合适的材料:蜗轮蜗杆传动通常承受较大的扭矩和摩擦力,所以需选取能够承受高载荷和高摩擦的材料,如合金钢等。
(2)控制传动误差:蜗轮蜗杆传动的传动准确性较低,会产生一定的传动误差。
为了减小传动误差,需进行合理的加工和装配,并采用合适的润滑和控制措施。
(3)考虑安装和维修:蜗轮蜗杆传动通常安装在机械设备内部,为方便安装和维修,在设计时需要考虑蜗轮蜗杆传动的拆卸和装配便捷性。
总结:蜗轮蜗杆传动是一种重要的传动结构,在机械设计中具有广泛应用。
通过对蜗轮蜗杆传动的深入分析和合理设计,可以提高传动的效率和稳定性,满足机械设备的传动需求。
机械设计基础第12章螺旋传动
实例二:汽车转向器中的螺旋传动
螺旋传动的特点
在汽车转向器中,螺旋传动具有结构紧凑、传动效率高、可靠性好等优点。通过调整螺旋的 导程和转速,可以实现汽车转向的灵活性和稳定性。
螺旋传动的优势
相比其他驱动方式,如链条驱动、齿 轮驱动等,螺旋传动在升降机中具有 更高的承载能力和运行平稳性,能够 满足不同高度和负载下的升降需求。
THANKS
感谢观看
旋转运动
当主动件固定不动时,从 动件绕螺旋轴作旋转运动。
螺旋传动的效率计算
滑动摩擦效率
总效率
考虑螺旋副间滑动摩擦时的效率,与 摩擦系数、法向力和切向力有关。
综合考虑滑动摩擦和滚动摩擦时的效 率,是评价螺旋传动性能的重要指标。
滚动摩擦效率
考虑螺旋副间滚动摩擦时的效率,与 滚动体的形状、大小和数量有关。
机械设计基础第12章螺 旋传动
目 录
• 螺旋传动概述 • 螺旋传动的工作原理 • 螺旋传动的类型与结构 • 螺旋传动的参数设计与计算 • 螺旋传动的材料、制造与热处理 • 螺旋传动的润滑与密封 • 螺旋传动在机械设计中的应用实例
01
螺旋传动概述
定义与分类
定义
螺旋传动是利用螺旋副传递运动和 动力的一种机械传动方式。
分类
根据螺旋副的摩擦性质,螺旋传动 可分为滑动螺旋传动、滚动螺旋传 动和静压螺旋传动三种类型。
螺旋传动的特点
优点 结构简单,制造方便,易于自锁。
传动平稳,噪声小,工作可靠。
螺旋传动的特点
• 能实现大传动比和远距离传动
04
机械设计基础 第12章 蜗杆传动
d1 mq
pz z1 px
tan pz z1 px z1m z1 d1 d1 d1 q
蜗杆导程 蜗杆轴向齿距
蜗杆导程角
d1越小(或q越小), 越大,传动效率越高,但蜗杆的刚度
和强度越低。 通常,转速高的蜗杆可取较小的d1值,蜗轮齿 数z2较大时可取较大的d1值。
当导程角 小于当量摩擦角时,蜗轮为主动时则发生自锁。
蜗杆材料:20Cr渗碳淬火;40Cr、35CrMo淬火;45调质
蜗轮材料:ZCuSn10P1 ZCuAl10Fe3
vs 25 m/s 耐磨性好、抗胶合
vs 6 m/s 价格便宜
HT200
vs 2 m/s 经济、低速
二、 蜗杆和蜗轮的结构 蜗杆结构:通常与轴为一体,蜗杆轴
蜗轮结构:整体式(铸铁蜗轮或尺寸很小的青铜蜗轮) 组合式(有色金属齿圈+钢或铸铁轮芯)
二、 蜗杆传动的类型 因蜗轮是用形状与蜗杆相同的滚刀加工而成,故蜗杆传动 的类型是按蜗杆的不同进行分类。
按蜗杆形状分:圆柱蜗杆和环面蜗杆。
圆柱蜗杆用直线刀刃的车刀车削成形,根据刀具安装位置 的不同,可加工出阿基米德蜗杆和渐开线蜗杆等。
圆柱蜗杆传动
环面蜗杆传动
阿基米德蜗杆:刀具两刃与蜗杆轴线共面;轴面内相当于 直线齿条,端面齿形为阿基米德螺线。 渐开线蜗杆:用两把车刀,其刀刃顶面切于蜗杆基圆柱; 端面齿廓为渐开线,在切于蜗杆基圆柱的剖面内,齿廓的 一侧为直线,轴面内为凸廓曲线。 蜗杆有左、右旋之分,常用的是右旋蜗杆。
蜗轮径向力
各力方向的确定: 类似于斜齿轮
【例】图示蜗杆传动,蜗杆1主动,转向如图。试指出蜗轮2、 3轮齿旋向及转向,并画出蜗杆1上啮合处的作用力三个分力 方向。
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴是机械传动中的重要零件。轴的功用是支承转动 零件(如凸轮、带轮、齿轮等)及传递运动和动力,它的 结构和尺寸是由被支承的零件和支承它的轴承的结构和 尺寸决定的。本章主要研究轴的分类、设计轴的基本要 求、轴的结构设计、轴的强度计算与刚度计算等。
1
12.1 轴的分类、轴设计的基本准则
12.1.1 轴的分类 根据轴在工作中承受载荷的特点,轴可分为传动轴、 心轴和转轴。 (1)传动轴 (2)心轴 (3)转轴
2
图12.1.1 汽车传动轴
3
图12.1.2 转动心轴和固定心轴
4
图12.1.3 减速器传动装臵中的转轴
5
图12.1.4 曲轴
6
图12.1.5 挠性轴
7
12.1.2 轴设计的基本准则及设计步骤 (1)设计准则 设计轴时应考虑多方面的因素和要求,不同机械对 轴有不同的要求。一般情况,轴设计的基本准则应该满 足如下两个要求: ①具有足够的承载能力,即要求轴具有足够的强度、 刚度和振动稳定性,以保证正常的工作能力。 ②具有合理的结构,使轴加工方便、成本低,轴上 的零件定位和固定可靠,便于装拆。 (2)设计步骤 轴的设计步骤如图12.1.6所示。
21
12.3 传动轴的强度和刚度计算
12.3.1 基本概念 如图12.3.1(a)所示的汽车转向盘轴、图12.3.1(b)所 示的传动系统的传动轴等,这些轴在工作时,其两端都 受到两个大小相等、方向相反且作用面垂直于轴线的力 偶作用,致使轴的任意两截面都绕轴线产生相对转动, 这种变形称为扭转变形。传动轴在传递动力时,主要产 生扭转变形。
12
图12.2.1 单级圆柱齿轮减速器输出轴
13
(2)轴上零件的轴向固定 (3)轴上零件的周向固定 轴上零件周向固定的目的是为了传递转矩,防止零 件与轴产生相对转动。常用的固定方法有键联接、花键 联接和过盈配合等。图12.2.4中用花键实现了对齿轮的 周向固定。当传递转矩很小时,可采用紧定螺钉或销钉 (图12.2.5)实现轴向和周向固定。 (4)轴的结构工艺性
14
图12.2.2 零件的轴向固定
15
图12.2.3 轴肩和轴环
16
图12.2.4 花键实现周向固定
17
图12.2.5 紧定螺钉和销实现轴向和周向固定
18
图12.2.6 砂轮越程槽与螺纹退刀槽
19
图12.2.7 轴的装配
20
12.2.2 轴基本直径和长度的确定 (1)轴基本直径的确定
(2)轴各段长度的确定
(2)圆轴扭转时的刚度条件
32
图12.3.8 圆轴的相对扭转角
33
34
图12.3.9 例12.3图
35
12.4 心轴的强度和刚度计算
许多轴在工作时并非只受扭矩作用而产生变形,大 多数情况下,轴既有扭转变形也有弯曲变形,有时甚至 弯曲变形起主要作用。 12.4.1 固定心轴平面弯曲的概念和实例 在工程中,常见到弯曲变形的构件。例如,火车轮 轴(图12.4.1)、自行车前轮的心轴、刀具轧辊等,这些 构件的受力和变形特点是:作用于杆件上的外力或外力 偶垂直于杆件的轴线,使杆的轴线变形后成曲线,这种 变形称为弯曲变形(简称弯曲)。凡以弯曲变形为主的轴, 习惯称为梁。
29
(2)Ip与Wt的计算 (3)扭转强度条件 为了保证构件扭转时的强度,必须限制轴上危险截 面的最大切应力不超过材料的许用剪切应力[τ],即 传动轴扭转时的强度校核公式为
30
图12.3.7 例12.2
31
12.3.4 圆杆扭转时的变形与刚度计算 在杆件在扭转时,即使强度足够,但若产生过大变 形,仍不能正常工作。例如,机器的传动轴如发生过大 变形,就会影响机器的精密度或使机器产生较大的振动。 因此,对于某些要求高的轴,除了进行强度校核外,还 要满足刚度要求,即不允许轴有过大的扭转变形。 (1)圆杆的扭转变形
10
11
12.2 轴的结构设计
12.2.1 轴的结构设计 (1)轴的结构设计要求 轴的结构设计包括确定轴的合理外形和全部结构尺 寸。轴作为机器中重要的支承零件,除了与齿轮、带轮 等旋转零件联接外,还要与轴承组合并通过轴承与机座 相联接,图12.2.1为单级圆柱齿轮减速器中的输出轴的 结构图,该轴系由联轴器、轴、轴承盖、轴承、套筒、 齿轮等组成;轴与轴承配合处的轴段称为轴颈,轴和传 动零件即轮毂(主要为齿轮和联轴器等)相配合的部分称 为轴头,连接轴颈与轴头的非配合部分统称为轴身。
8
图12.1.6 设计步骤框图
9
12.1.3 轴的材料 轴工作时主要承受弯矩和转矩,且多为交变应力作 用,其主要失效形式为疲劳破坏。因此,轴的材料应满 足强度、刚度、耐磨性、耐腐蚀性等方面的要求。一般 用途的轴常用优质碳素结构钢,如35、40、45的钢。碳 素钢一般应经过调质或正火处理,以改善其力学性能; 轻载或不重要的轴可以采用Q235、Q275等普通碳素钢; 重载或重要的轴可选用合金结构钢,其力学性能高,但 价格比较贵,选用时应综合考虑。形状复杂的轴(如凸轮 轴、曲轴等)可用球墨铸铁,其吸震性好,对应力集中不 敏感且价格低廉。轴的毛坯一般采用轧制的圆钢或锻件。 轴的常用材料及其力学性能见表12.1.1。
22
图12.3.1 零件扭转
23
12.3.2 外力偶矩的计算、扭矩和扭矩图 在轴的结构设计中,往往是先知道工作机的功率, 通过效率计算,确定所选电动机的额定功率和转速,并 计算出轴传递的功率。这样就可以根据理论力学的公式 来计算外力偶矩T,即
24
图12.3.2 横截面上的扭矩
25
图12.3.3 例12.1图
36
图12.4.1 弯曲实例
37
图12.4.2 梁的纵向对称面
38
12.4.2 梁的计算简图 梁的支承情况和载荷作用形式往往比较复杂。为了 便于分析计算,常进行简化。根据梁所受的约束情况, 经过简化,梁有三种典型形式:简支梁、外伸梁和悬臂 梁。 (1)简支梁 梁的两端均为铰支座,其中一端为固定铰支座,另 一端为可动铰支座,如图12.4.3(a)所示。 (2)外伸梁 (3)悬臂梁
26
12.3.3 传动轴扭转时的应力与强度计算 (1)传动轴扭转时的应力 工程中最常见的传动轴是等截面圆轴。本节主要研 究等截面圆轴扭转时横截面上的应力分布规律,即确定 横截面上各个点的应力。
27
图12.3.4 圆轴的扭转变形
28
图12.3.5 实心 圆轴切应力分布 规律
图12.3.6 空心圆 轴切应力分布规 律