遥感卫星影像辐射校正方法

合集下载

遥感卫星影像处理中的常见问题及解决方法

遥感卫星影像处理中的常见问题及解决方法

遥感卫星影像处理中的常见问题及解决方法现如今,遥感技术在地球科学、环境保护、城市规划等领域发挥着重要作用。

遥感卫星影像作为遥感数据的主要来源,其处理过程中常常会遇到一些困扰,本文将探讨其中的常见问题及相应解决方法。

1. 影像纠正问题遥感卫星拍摄的影像受到地球自转、地形起伏以及大气等因素的影响,容易产生图像畸变和色差问题。

针对这一问题,可以采用几何校正和辐射校正等方法来进行纠正。

几何校正主要包括地形校正和几何校正。

地形校正主要针对山区等地形复杂情况下产生的图像投影问题,可以通过数字高程模型(DEM)来解决。

几何校正则主要通过地面控制点的选取和几何模型的建立来校正影像的几何形态。

辐射校正则是针对大气影响导致的辐射畸变问题。

可以利用大气传输模型进行辐射校正,消除大气因素对影像的影响。

此外,还可以利用地面参考反射率进行光谱校正,在不同地物上分别测量反射光谱线进行标定。

2. 影像预处理问题影像的预处理是遥感图像处理的重要环节,可以帮助提取出感兴趣的信息。

然而,预处理过程中常常会遇到图像噪声、云状阴影和云覆盖等问题。

图像噪声主要由传感器本身以及数据传输和存储等过程中引入的噪声造成。

为了降低噪声的影响,可以采用滤波器等方法进行去噪处理。

常用的滤波器有均值滤波、中值滤波和小波去噪等。

云状阴影和云覆盖问题是由云层导致的。

对于云状阴影问题,可以通过校正云覆盖所造成的辐射变化进行修复。

对于云覆盖问题,可以利用多个相邻时刻的影像数据进行云去除,或者采用云检测算法进行自动云剔除。

3. 影像分类问题影像分类是遥感影像处理中的关键任务,可以帮助我们从大规模遥感影像中提取出感兴趣的地物信息。

然而,影像分类过程中常常会遇到地物混合、类别划分不清等问题。

地物混合问题主要由遥感影像中地物覆盖范围重叠较多导致的。

为了解决地物混合问题,可以运用混合像元分解算法将像元分解为纯度更高的子像元,从而更好地反映地物的实际分布。

类别划分不清问题主要由地物间相似性较高导致的。

遥感影像纠正的方法与技巧

遥感影像纠正的方法与技巧

遥感影像纠正的方法与技巧随着科技的不断发展,遥感技术在各个领域得到了广泛的应用。

遥感影像是通过卫星、飞机等远距离获取地面信息的一种重要手段。

然而,在获取遥感影像后,由于各种原因导致的图像扭曲、色差等问题是不可避免的。

因此,进行遥感影像纠正是必要的。

本文将介绍遥感影像纠正的常用方法与技巧。

一、几何校正方法几何校正是对遥感影像进行坐标、尺度和旋转方位的校正。

常见的几何校正方法有影像配准、地标匹配、插值等。

1. 影像配准影像配准是将待纠正影像与参考影像进行对比,通过匹配相同地物或地点的像素点,从而进行坐标转换。

常用的影像配准方法有基于特征点匹配和基于相位相关匹配两种。

基于特征点匹配的方法是通过提取影像中的特征点,并将其与参考影像中的特征点进行匹配,从而获得坐标转换模型。

OpenCV是一种常用的用于特征点匹配的开源库。

基于相位相关匹配的方法是通过计算两幅影像之间的相关性,确定它们之间的几何转换关系。

这种方法通常用于具有相位重建能力的传感器。

2. 地标匹配地标匹配是通过识别影像中的已知地标(如道路交叉口、建筑物等)并与参考影像中的地标进行匹配来进行校正的一种方法。

这种方法适用于城市建筑等具有明显特征的区域。

3. 插值插值是指通过对图像中间的像素值进行估算,从而使整个图像变得平滑过渡的过程。

常用的插值方法有双线性插值、双三次插值等。

这些方法可以使得图像在进行几何校正后仍保持较好的视觉效果。

二、辐射校正方法辐射校正是指对遥感影像中的亮度进行校正,以保证影像反映地物的真实辐射亮度。

常用的辐射校正方法有直方图匹配、大气校正、辐射转换等。

1. 直方图匹配直方图匹配是指通过将原始图像的灰度值映射到目标图像的灰度值范围来进行校正的方法。

这可以使得影像在亮度上看起来更加准确,同时保证地物的色彩还原度。

2. 大气校正大气校正是指通过估计大气光照对地面目标反射率的影响,将地表反射率从观测影像中恢复出来的一种方法。

这种方法适用于去除由大气散射引起的云、雾等干扰。

遥感卫星影像辐射校正、几何校正、正射校正的方法

遥感卫星影像辐射校正、几何校正、正射校正的方法

北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正、几何校正、正射校正的方法a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。

辐射强度越大,亮度值(灰度值)越大。

该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。

当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。

但实际测量时,辐射强度值还受到其他因素的影响而发生改变。

这一改变就是需要校正的部分,故称为辐射畸变。

引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。

仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。

一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。

b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。

遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。

产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。

而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。

几何校正一般包括精校正和正射校正。

精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。

简单理解:和地形图的校正,校正后有准确的经纬度信息。

精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。

有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。

辐射定标和大气校正操作

辐射定标和大气校正操作

辐射定标和大气校正操作辐射定标和大气校正是遥感图像处理中非常重要的环节,它们能够有效地消除大气干扰和地物表面反射率差异等因素对遥感图像的影响,从而得到更为精确的遥感信息。

本文将分别介绍辐射定标和大气校正的基本原理、方法和应用,并探讨它们在遥感图像处理中的重要作用。

一、辐射定标1.基本原理辐射定标是指通过对遥感仪器的响应进行准确的实验测定和模型估计,将数字遥感数据中的像元值转换为表观辐射亮度。

在遥感图像处理中,辐射定标是将数字数值转换为真实物理量的过程,包括辐射定标系数的获取和数据的辐射定标转换。

2.方法辐射定标的方法主要包括实地观测、辐射反演法和模型估算法。

其中,实地观测是指通过在地面上设置观测站点,利用辐射仪器对地表进行测量,获取地面真实辐射亮度,以此来建立数字值和真实辐射亮度之间的关系。

辐射反演法是指通过大气传输模型和辐射传输方程来估算大气对遥感数据的影响,并进一步进行辐射定标。

模型估算法是指利用已有的大气传输模型和地表反射率模型,通过数值方法来进行遥感图像的辐射定标。

3.应用辐射定标的应用主要包括地球观测卫星的遥感数据处理、遥感影像的信息提取、环境变化分析和生态监测等领域。

利用辐射定标后的遥感数据可以更准确地获取地表反射率、地表温度和大气成分等信息,从而为环境监测、资源管理和灾害预警提供更为可靠的数据支持。

二、大气校正1.基本原理大气校正是指利用大气传输模型和辐射传输方程,对遥感数据进行修正,消除大气对遥感图像的干扰和影响,还原地物表面的真实辐射亮度。

大气校正主要考虑大气吸收、散射和反照,以及大气对太阳辐射的衰减和地表反射率的影响。

2.方法大气校正的方法主要包括模型校正和经验校正。

其中,模型校正是指利用大气传输模型和辐射传输方程,对遥感数据进行数值计算,得到校正系数,进而进行大气校正。

经验校正是指利用多源遥感数据、气象数据和地面监测数据,结合统计模型和经验模型,对遥感数据进行修正,消除大气干扰。

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤遥感影像预处理是遥感技术中的重要环节,它对于后续的遥感影像分析和应用具有至关重要的作用。

正确的预处理能够提高遥感影像的质量和准确度,为后续的数据分析提供有力支持。

下面将介绍遥感影像预处理的正确步骤。

一、获取遥感影像数据遥感影像数据可以通过卫星、飞机等遥感平台获取。

在获取数据时,需要确保数据的准确性和完整性,并且注意选择合适的数据源和分辨率。

二、辐射校正遥感影像数据在获取过程中受到了大气、地表反射等因素的影响,需要对数据进行辐射校正。

辐射校正可以消除大气散射和吸收引起的影响,使得遥感影像能够更准确地反映地物的真实特征。

三、几何校正遥感影像在获取过程中存在着不可避免的几何畸变,需要进行几何校正。

几何校正可以将遥感影像的像素位置与地理位置进行对应,使得影像能够与地理信息数据相匹配。

四、影像拼接如果获取到的遥感影像数据较大,需要进行影像拼接。

影像拼接可以将多个影像拼接成一个完整的影像,提供更广阔的地理范围和更丰富的信息。

五、影像增强影像增强是为了提高遥感影像的视觉效果和信息提取能力。

常见的影像增强方法包括直方图均衡化、滤波等。

六、去噪处理遥感影像数据中常常包含各种噪声,需要进行去噪处理。

去噪处理可以提高影像的清晰度和信息质量。

七、影像切割根据具体的需求,可以对遥感影像进行切割,提取感兴趣的区域或目标。

影像切割可以减少后续处理的数据量,提高处理效率。

八、数据格式转换根据不同的应用需求,遥感影像的数据格式可能需要进行转换。

数据格式转换可以使得遥感影像能够被不同的软件和平台所识别和使用。

九、数据融合多源遥感影像数据可以通过数据融合的方法进行融合,提供更综合、全面的信息。

常见的数据融合方法包括像素级融合、特征级融合等。

遥感影像预处理的正确步骤包括获取遥感影像数据、辐射校正、几何校正、影像拼接、影像增强、去噪处理、影像切割、数据格式转换和数据融合。

这些步骤可以保证遥感影像的质量和准确度,为后续的数据分析和应用提供有力支持。

如何进行卫星遥感影像的几何校正与精度评定

如何进行卫星遥感影像的几何校正与精度评定

如何进行卫星遥感影像的几何校正与精度评定卫星遥感影像的几何校正与精度评定是遥感技术中非常重要的一项工作,它能够提高遥感影像的准确性和可信度。

本文将介绍卫星遥感影像几何校正和精度评定的基本原理和方法。

一、卫星遥感影像的几何校正卫星遥感影像的几何校正是指将原始影像转换为具有精确几何关系的图像的过程。

这是因为卫星遥感影像在获取过程中,由于各项误差的存在,常常呈现出几何畸变的情况。

几何校正的目的是消除这些误差,使得影像能够准确地反映地面实际情况。

几何校正的方法一般可以分为两种:地面控制点法和模型法。

地面控制点法是通过选择并测量地面上的控制点,并与影像中的对应点进行匹配,计算出转换参数,然后进行校正。

模型法是利用数学模型对影像进行几何校正,常用的模型有多项式模型和分层多项式模型。

这些方法都需要借助于地面控制点或其他辅助数据来进行几何校正。

除了几何校正,影像还需要进行辐射校正。

辐射校正是将原始影像转换为可以反映地物辐射特性的高光谱数据。

常见的辐射校正方法有大气校正和地表反射率校正。

大气校正是去除大气吸收和散射对影像造成的影响,地表反射率校正是消除影像中的地物纹理和细节。

二、卫星遥感影像的精度评定卫星遥感影像的精度评定是判断影像准确性和可靠性的一项工作。

它可以通过对比影像与已知真实数据进行对照,计算出各种误差指标来评价影像的精度。

影像的精度评定主要包括几何精度评定和辐射精度评定两个方面。

几何精度评定主要是通过计算影像的地面分辨率、地面形状和位置精度等指标来评估影像几何特征的精度。

辐射精度评定则是通过计算影像的辐射定标系数、重现性等指标来评估影像的辐射特性的精度。

在进行精度评定时,需要借助于地面控制点、高分辨率遥感影像或其他精确数据,进行对比和验证。

通过计算各个指标,并进行统计分析,可以得出影像的精度评定结果。

三、卫星遥感影像几何校正与精度评定的重要性卫星遥感影像的几何校正和精度评定对于遥感应用具有重要的意义。

卫星遥感图像辐射衰减校正方法

卫星遥感图像辐射衰减校正方法

卫星遥感图像辐射衰减校正方法卫星遥感技术作为获取地球表面信息的重要手段,在自然资源调查、环境监测、灾害评估等领域发挥着至关重要的作用。

然而,卫星遥感图像在传输过程中会受到大气散射、吸收等因素的影响,导致图像辐射能量衰减,影响数据的准确性和实用性。

因此,对卫星遥感图像进行辐射衰减校正是一个不可或缺的预处理步骤,以确保后续分析的可靠性和精确度。

以下是六种常用的卫星遥感图像辐射衰减校正方法,以及对这些方法的综合评述。

1. 大气顶层辐射传输模型(ATM)法大气顶层辐射传输模型是基于辐射传输理论,通过模拟太阳光在大气中的传播路径,计算出到达卫星传感器前大气对辐射的影响。

该方法需要详细的气象数据(如温度、湿度、气压和气溶胶光学厚度等),以求解辐射传输方程。

常用的模型有MODTRAN、6S(Second Simulation of the Satellite Signal in the Solar Spectrum)等。

ATM法能够较为精确地校正大气影响,但对输入参数的精度要求高,计算复杂度大。

2. 辐射定标法辐射定标是校正卫星图像的第一步,确保图像的数字值与实际辐射量之间建立准确的关系。

它分为内部定标和外部定标。

内部定标依赖于卫星上的定标设备,校正仪器本身产生的误差;外部定标则利用地面控制点或同步的辐射测量数据,调整图像的整体辐射水平。

虽然辐射定标不直接校正大气衰减,但它是后续大气校正的基础,确保图像的辐射量具有物理意义。

3. 暗像元法暗像元法适用于有水体存在的场景,尤其是大面积水域,因为水体可以被视为近似无反射的理想暗像元。

通过选取图像中未受大气散射影响的暗像元,即水面的反射率接近于零的部分,来估算大气上行透过率和大气下垫面反射率,进而校正大气影响。

这种方法简单易行,但受限于应用场景,对水体条件和图像质量有一定要求。

4. 多时相相对辐射校正法(DOS)多时相相对辐射校正法利用不同时间(如早晚)同一地区影像的差异,通过比较阴影区或植被覆盖度变化较小的区域来估算大气影响。

遥感图像辐射校正

遥感图像辐射校正
2.非选择性散射
大气中的云、雾、水滴、尘埃以及大小超过波 长10倍的颗粒引起的散射,散射粒子的直径远大于 入射波长,对各种波长予以同等散射。
第6页/共65页
第7页/共65页
设太阳辐射照度为E0,经过大气的路程为x,则穿过该大 气路程后的辐射照度为:
E E0ex
σ称为衰减系数或消光系数
散射系数 吸收系数
探测器光谱响应带宽探器光谱响应函数红外波段辐射校正系数第64页共65页四中国遥感辐射校正场由中国气象局国家卫星气象中心牵头国内7个部委国防科工委国家计委等的11个单位参加合作于2000年建成了中国遥感卫星辐射校正场其中甘肃省敦煌市西部党和洪积扇区为可见光和近红外波段的绝对辐射校正场青海省的青海湖为热红外波段的辐射校正场
第19页/共65页
3. 因太阳辐射引起的辐射误差
(1)太阳位置 包括太阳高度角和方位角
太阳高度角,也称太阳高度。某地的太阳高度角是太 阳光线与当地地平面所交的线面角。 太阳方位角是指太阳光线在地平面上的投影与当地子 午线的夹角。
太阳位置不同,则地面物体入射照度会发生变化, 地物的反射率也就随之改变。
L
Lmax L min 255
DN
Lm in
第38页/共65页
卫 星 测 量 值
a 0
设回归方程为:
地面测量值
L=a+bR
大气影响的附加部分(天空光散射)
将图像中的每个像素值减去a,获取某区域经过大气 改正后的图像。
第39页/共65页
在获取地面目标图像时,可以预先在地面设置反射率已 知的标志,或事先测出若干地面目标的反射率,把由此 得到的地面实况数据和传感器的输出值进行比较,以消 除大气的影响。 注意:在地面特定地区、特定条件、一定时间段内测定 的地面目标反射率不具有普遍性,因此该方法仅适用于 包含地面实况数据的图像。

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤遥感影像处理是利用遥感技术获取的遥感影像数据进行分析和处理的过程。

下面是遥感影像处理的具体操作步骤:1. 数据预处理:- 影像获取:通过卫星、航空器或者无人机等获取遥感影像数据。

- 影像校正:对获取的遥感影像进行几何校正和辐射校正,以消除影像中的几何畸变和辐射差异。

- 影像配准:将多个遥感影像进行配准,使其在同一坐标系下对齐,以便进行后续的分析。

- 影像切割:根据需要,将遥感影像切割成小块,方便后续处理。

2. 影像增强:- 直方图均衡化:通过调整影像的像素灰度分布,增强影像的对照度和细节。

- 滤波处理:利用滤波算法对影像进行平滑或者锐化处理,以去除噪声或者增强细节。

- 波段合成:将多个波段的影像合成为一幅彩色影像,以显示不同特征或者信息。

3. 影像分类:- 监督分类:根据已知样本进行训练,利用分类算法将遥感影像中的像素分为不同的类别。

- 无监督分类:根据像素的相似性进行聚类,将遥感影像中的像素分为不同的类别,不需要事先提供训练样本。

4. 特征提取:- 纹理特征:通过计算影像中像素的纹理统计量,提取纹理特征,用于地物分类和识别。

- 形状特征:通过计算影像中像素的形状参数,如面积、周长、圆度等,提取形状特征,用于地物分类和识别。

- 光谱特征:利用遥感影像中不同波段的反射率或者辐射值,提取光谱特征,用于地物分类和识别。

5. 地物提取:- 目标检测:利用目标检测算法,自动提取遥感影像中的目标物体,如建造物、道路等。

- 变化检测:通过比较不同时间的遥感影像,检测地物的变化情况,如城市扩张、土地利用变化等。

6. 结果评估:- 精度评估:通过对照遥感影像处理结果与实地调查数据或者高分辨率影像进行对照,评估处理结果的准确性和精度。

- 一致性检验:对处理结果进行一致性检验,确保处理结果的逻辑和合理性。

以上是遥感影像处理的具体操作步骤。

不同的任务和目标可能需要不同的处理方法和算法,具体操作步骤可能会有所不同。

遥感原理与应用_第4章_3 遥感影像处理-遥感影像辐射处理

遥感原理与应用_第4章_3 遥感影像处理-遥感影像辐射处理

1 2 3 4 5 6 7
传 感 器 校 正
L d s2 E0 cos
L为地物在给定波ain
和bias分别为传感器的增益和偏移量,从图像头文件中可以读取; ρ为 反射率(即表观反射率);ds是日地天文单位距离;E0大气顶层的太
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
绝对定标要建立传感器测量的数字信号与对应的辐射能量之间
1 2 3 4 5 6 7
传 感 器 校 正
的数量关系,该关系通常呈线性关系,建立该关系就是确定线性 关系中的系数及常数项,即定标系数。
K:传感器的增益;
Lmax:传感器达到饱和时所记录的辐射能量,即传感器记录 的最大能量;
Lmin:传感器探测并记录的最小能量;
Cmax:遥感图像中的最大值(如:对无符号8位类型数据,最 大值是255)。
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
1 2 3 4 5 6 7
传 感 器 校 正
探测元件响应度差异造成的影像色调不一致性
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
DN值(从遥感器 得到的数字测 量值) 遥感器校正
• 光学系统特征(如边缘减光) • 光电变换系统的灵敏度特 征的偏差 • 遥感器系统的增减及偏差 相关系数(如Landsat TM和 MSS)

modis数据辐射校正方法

modis数据辐射校正方法

modis数据辐射校正方法MODIS(Moderate Resolution Imaging Spectroradiometer)是一种在地球观测卫星上搭载的遥感仪器,用于获取地球表面的高分辨率影像数据。

在使用MODIS数据进行科学研究和应用时,辐射校正是非常重要的一步,因为它可以确保数据的准确性和可靠性。

本文将介绍一些常见的MODIS数据辐射校正方法。

首先,MODIS数据的辐射校正主要包括定标和大气校正两个步骤。

定标是指将MODIS仪器测得的原始辐射值转换为辐射亮度温度(L1B产品)或反射率(L1A产品),以便进行后续的大气校正和科学应用。

大气校正则是通过模型或实地测量数据来去除大气层对地表反射的影响,得到地表的真实反射率或辐射亮度温度。

在定标过程中,MODIS数据使用了辐射源,黑体和太阳辐射等多种标准产品进行定标。

这些产品的准确性和稳定性对最终的辐射校正结果至关重要。

此外,MODIS还使用了辐射定标系数,以及定标参数文件等来对数据进行定标。

在大气校正方面,MODIS数据通常使用了大气校正模型,比如MODTRAN等,来去除大气层对地表反射的影响。

同时,还需要考虑到大气气溶胶,水汽等因素的影响,以保证校正的准确性。

除了以上提到的方法,还有一些其他的辐射校正方法,比如基于地面反射特征的校正方法,或者基于辐射传输模型的校正方法等。

这些方法都可以根据具体的研究目的和数据特点来选择。

总之,MODIS数据的辐射校正是遥感数据处理的重要环节,对于获取准确的地表反射率和辐射亮度温度至关重要。

科研人员在使用MODIS数据时,应该充分了解不同的辐射校正方法,并选择合适的方法来保证数据的准确性和可靠性。

测绘技术中的遥感影像处理方法详解

测绘技术中的遥感影像处理方法详解

测绘技术中的遥感影像处理方法详解遥感技术是当今测绘领域中不可或缺的一项重要技术,通过利用卫星、飞机等遥感平台获取的地球表面影像,可以为地质勘探、环境监测、城市规划等领域提供丰富、准确的地理信息数据。

遥感影像处理是遥感技术中的一种核心技术,本文将对其中的几种常用的处理方法进行详解。

1. 影像预处理遥感影像预处理是指在进行后续处理之前,对原始影像进行一系列的校正、增强等操作,以提高影像的质量和可用性。

其中包括几何纠正、辐射校正和大气校正等步骤。

几何纠正主要是针对影像中的几何畸变问题进行校正,通常包括影像配准、去除地形效应以及去除大地畸变等处理。

影像配准是指将不同卫星或不同时间拍摄的影像进行精确对准,使得它们能够在同一坐标系下进行比较和分析。

去除地形效应是为了消除由于地表起伏引起的影像变形,以确保影像中对地物的位置和形状描述准确。

去除大地畸变是为了消除地球曲面引起的影像形变,通常采用像点的投影转换和校正等方法。

辐射校正是为了将影像中的数字计数值转换为大气无影响的地表辐射亮度值,从而能够实现不同时间、不同地域之间的比较研究。

常用的辐射校正方法有分级灰度线性变换法、大气校正法和无标定性辐射校正法等。

大气校正是为了消除大气介质对遥感影像的影响,以准确获取地表反射率信息。

常用的大气校正方法有大气能见度法、基于粒子传输函数的大气校正法以及辐射传输模型法等。

2. 影像分类遥感影像分类是将影像中的像素分为不同的类别,以实现对地物类型的识别和区分。

常用的影像分类方法包括无监督分类和监督分类两种。

无监督分类是指在不需要先验知识的情况下,根据像素的相似性进行聚类分组,从而得到影像中各个类别的统计信息。

常用的无监督分类方法有K均值聚类法、高斯混合模型法以及自组织映射法等。

监督分类是在事先提供类别标记的训练样本的基础上,通过对样本进行特征提取和模式识别,从而对整个影像进行分类。

常用的监督分类方法有最大似然法、支持向量机法、人工神经网络法以及决策树法等。

第三章遥感影像辐射校正

第三章遥感影像辐射校正

第三章遥感影像辐射校正遥感影像辐射校正是遥感技术的重要应用之一,它是指将无人机、卫星或其他遥感设备获取的图像的辐射信息转化为物理量信息的过程。

在遥感影像中,辐射信息是指影像中的灰度值代表的能量值,这个能量值与被观测物体的反射率和辐射源之间的关系有关。

在进行遥感影像的数据分析前,进行辐射校正可以提高分析结果的准确性和可重复性。

本文将介绍遥感影像的辐射校正方法和应用场景。

1. 辐射校正方法在进行辐射校正前,需要了解一些遥感影像的基本概念。

1.1 辐射度在遥感数据中,辐射度一般是指反射率、亮度或辐射通量密度,这些数据与被观测物体反射的太阳辐射或其他外部辐射之间的关系有关。

辐射度的单位通常是W/m2。

1.2 亮度温度与云图色温度亮度温度是指黑体在辐射平衡状态下所具有的温度,由于遥感仪器无法测量黑体的温度,因此以某些标准物质的亮度温度代替黑体,计算出来的亮度温度称为亮度温度值。

云图色温度是根据红外线波段的辐射谱计算出来的温度,其可衡量的是地物表面的温度。

1.3 辐射传感器辐射传感器是用于测量遥感影像的辐射信息的传感器。

不同的辐射传感器可以测量不同波段的电磁辐射信息,因此可以根据不同应用需求选择不同波段的传感器。

完成上述基础工作后,可以根据不同的遥感影像类型和不同的应用需求选择不同的辐射校正方法。

1.4 大气校正地球大气在遥感影像获取过程中对能见度和色彩产生了影响,因此需要对遥感影像进行大气校正。

大气校正是指从遥感影像中恢复出地表表面的反射率信息,这个过程主要包括大气模型的建立、大气光线的估算以及反演模型的建立和应用等步骤。

其中,大气光线的估算是大气校正最重要的一步。

由于地球大气的复杂变化,大气光线的估算比较困难,需要使用遥感技术和各种模型来进行辅助计算。

1.5 地表反射率校正地表反射率是指地表表面反射入射辐射的比率。

地表反射率可以通过遥感影像的反射率信息计算出来,因此需要进行地表反射率校正。

地表反射率校正主要是通过相关模型和常用遥感数据来进行计算得出。

遥感原理与方法——辐射校正

遥感原理与方法——辐射校正

设E0为某一波长的辐照度,θ为入射方向的天顶角,当无大气 存在的时候,地面上单位面积的辐照度为:
E1=E0•COSθ
假定地表面是朗伯体,其表面是漫反射,则某方向物体的亮度 是
L0=Rλ•E1/π Rλ是地物反射率, π是球面度(半球反射)
传感器接收信号时,受仪器的影响还有一个系统增益系数S,这时, 进入传感器的亮度值为
2)野外波谱测试回归分析法(不常用)
野外波谱测试与地面调查同步进行,通常选用同类仪器测量,将 地面测量结果与卫星影象对应的亮度值进行回归分析,见上 图,(再进行比较时,应将图象象元亮度值转换为辐射率),
回归方程
L=A+BR,
A为一固定的常数,B为回归系数,R为地面反射率。BR(L较) 为不受大气影响的辐射率,所以校正公式为
于气溶胶引起的散射造成的,在热红外区,大气的影响主要是由
于水蒸气的吸收造成的,为了消除大气的影响,需要测定可见光
和近红外区的气溶胶的密度和热红外区的水蒸气密度,实现起来 比较困难
L较=L-A,
即图像中的每一个象元值都扣除A的影响。由于地面反射率不 具有普遍性,所以这个方法不常用。
3)辐射传递方程计算法(不常用)
若地面的辐射能量为E0,它通过高度为H的大气层后,传感器接收 系统所能收集到的电磁波能可见光和近红外区,大气的影响主要是由
既光学摄影机和光电扫描仪引起的辐射误差,—通过辐射校正场 或地面光谱测量来对传感器定标。这一工作由地面接收站来完成。
二)是太阳辐射引起的辐射误差 1)太阳位置引起的辐射误差 2)地形起伏引起的辐射误差 三是大气影响引起的辐射误差
1)大气影响的定量分析 进入大气的太阳辐射会发生反射,折射,吸收,散射和投射。 如果没有大气存在,传感器接收的辐照度只与太阳辐射到达地 面的辐照度和地物的反射率有关,由于大气的存在,辐射经过 大气吸收和散射,透过率小于1,从而减弱了信号的强度。同 时,大气的散射光也有一部分直接或经过地物反射进入到传感 器,这两部分又增强了信号,但是没有用的。

遥感图像处理-几何校正

遥感图像处理-几何校正

0.06/1.76
0.03/2.00
0.04/1.64
0.06/1.52
0.03/1.65
0.05/1.42
0.11/3.91
0.03/4.50
0.12/3.49
Landsat5 0.04/2.38 0.04/1.64 0.05/1.42 0.12/3.49 6
例:条带噪声去除
成像时,由于检测系统某一扫描线上故障造成扫描线脱落。 这时往往没有任何信息,在图像只显示一条黑线,有时也会 出现分段黑线,这些均称条带噪声。
R 绝对辐射亮度;(mW/cm 2 sr) V 数据值。
2021/5/27
5
TM的最小、最大辐射亮度
波段
1
Rmin/Rmax 波段宽度
-0.0099 /1.004 0.066
2
3
4
-0.0227 -0.0083 -0.0194 /2.404 /1.410 /2.660
0.081 0.069 0.129
2021/5/27
7
按照上面查找条带公式。如果第i行是一个条带,由于
条带上所有像元都是零级灰值,故mi和di计算出来也为 零值,最后计算的Gij的灰度值应该等于整个像幅灰度值
的平均值M,即计算出来第 i 行的所有像元的灰值都相
等(也即等于某一常数时),说明第 i 行是一个条带,
需进行去条带处理。
2021/5/27 (a) 原始图像
地形倾斜的影响校正:当地形倾斜时,经过地表扩散、反射 再入射到遥感器的太阳光的辐射亮度就会依倾斜度而变化。 可以采取用地表的法线矢量和太阳光入射矢量的夹角进行校 正的方法,以及对消除了光路辐射成分的图像数据采用波段 间的比值进行校正的方法等。

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤遥感影像预处理是遥感技术中非常重要的一步,它能够提取出影像中所需的信息并减少干扰因素,为后续的数据分析和应用提供清晰的数据基础。

下面将介绍遥感影像预处理的正确步骤。

1. 数据获取遥感影像预处理的第一步是获取原始遥感影像数据。

可以通过卫星遥感、航空遥感或无人机遥感等方式获取。

获取到的原始数据可能包含噪声、失真等问题,需要进行预处理来提高数据质量。

2. 辐射校正遥感影像中的像素值受到辐射条件的影响,辐射校正是将像素值转换为能反映地物表面特征的物理量。

辐射校正的方法包括大气校正、辐射定标等,目的是消除大气、地表反射率等因素对影像的影响。

3. 几何校正几何校正是将遥感影像的像素与地理坐标系相对应,使得像素位置准确地对应于真实地物位置。

几何校正的主要工作包括影像配准、地面控制点获取和校正模型建立等过程。

4. 噪声去除遥感影像中常常存在各种噪声,如斑点噪声、椒盐噪声等。

噪声去除的方法包括滤波、插值等,以提高影像的质量和清晰度。

5. 影像增强影像增强是通过改变影像的对比度、亮度等参数,使得地物特征更加明显。

常用的影像增强方法有直方图均衡化、滤波增强等。

6. 影像融合影像融合是将多个不同波段或不同分辨率的遥感影像融合为一幅影像,以获取更全面、准确的信息。

融合方法包括基于像素级的融合和基于特征级的融合。

7. 尺度转换遥感影像通常具有不同的空间分辨率和时间分辨率,为了方便数据分析和应用,需要进行尺度转换。

常见的尺度转换方法有降尺度和升尺度等。

8. 数据裁剪根据具体应用需求,对遥感影像进行裁剪,提取感兴趣的区域或特定的地物信息。

9. 影像格式转换遥感影像通常有多种格式,如TIFF、JPEG、ENVI等,为了方便数据存储和共享,需要将影像格式进行转换。

10. 数据存储经过预处理的遥感影像需要进行数据存储,以备后续的数据分析和应用。

遥感影像预处理的正确步骤包括数据获取、辐射校正、几何校正、噪声去除、影像增强、影像融合、尺度转换、数据裁剪、影像格式转换和数据存储等。

landsat7辐射定标和大气校正步骤

landsat7辐射定标和大气校正步骤

landsat7辐射定标和大气校正步骤Landsat是美国国家航空航天局(NASA)和美国地质调查局(USGS)合作推出的一系列卫星,用于进行地球遥感观测。

Landsat 7是其中的一颗卫星,它能够提供高分辨率的遥感影像数据,广泛应用于地球科学研究、环境监测和资源调查等领域。

为了获得准确的地球表面反射率信息,需要对Landsat 7卫星数据进行辐射定标和大气校正。

辐射定标是指将Landsat 7卫星接收到的原始辐射数据转换为辐射亮度值的过程。

在这个过程中,需要校正卫星传感器的非线性响应、移除大气散射和吸收的影响,以及纠正地表与卫星之间的距离差异等。

为了实现辐射定标,需要使用卫星的辐射定标系数,这些系数通过在轨定标和地面辐射定标实验获得。

通过对原始辐射数据进行辐射定标,可以消除不同时间和地点采集的数据之间的差异,从而确保数据的一致性和可比性。

大气校正是指对辐射定标后的数据进行进一步处理,以消除大气散射和吸收的影响,获取地表反射率信息。

地球大气层中的气体、云和气溶胶等物质会对太阳辐射和地球表面辐射的传播和接收造成干扰,导致遥感数据中存在大气噪声。

为了消除这些干扰,需要进行大气校正。

大气校正的目标是根据大气模型和卫星观测数据,估算出大气散射和吸收的光谱反射率,从而得到地表的真实反射率。

在进行大气校正时,需要使用大气模型来模拟和估算大气散射和吸收的光谱反射率。

常用的大气模型有大气透射率模型和大气散射模型。

大气透射率模型用于估算太阳辐射和地球辐射在大气中的传播损失,而大气散射模型用于估算大气散射对地表反射率的影响。

根据这些模型,可以通过对卫星观测数据进行反演和拟合,得到大气散射和吸收的光谱反射率。

辐射定标和大气校正是Landsat 7数据预处理的重要步骤,对于获取准确的地表反射率信息至关重要。

通过辐射定标,可以消除不同时间和地点采集的数据之间的差异,确保数据的一致性和可比性。

而通过大气校正,可以消除大气散射和吸收的影响,获取地表的真实反射率。

遥感卫星影像辐射校正包括辐射定标和大气校正@揽宇方圆

遥感卫星影像辐射校正包括辐射定标和大气校正@揽宇方圆

北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正包括辐射定标和大气校正指在光学遥感数据获取过程中,产生的一切与辐射有关的误差的校正(包括辐射定标和大气校正)。

三者关系如图:大气校正的准备过程为辐射定标辐射定标定义(Radiometric Calibration)是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

绝对定标:通过各种标准辐射源,在不同波谱段建立成像光谱仪入瞳处的光谱辐射亮度值与成像光谱仪输出的数字量化值之间的定量关系相对定标:确定场景中各像元之间、各探测器之间、各波谱之间以及不同时间测得的辐射量的相对值。

技术流程:获取空中、地面及大气环境数据,计算大气气溶胶光学厚度,计算大气中水和臭氧含量,分析和处理定标场地及训练区地物光谱等数据,获取定标场地数据时的几何参量和时间,将获取和计算的各种参数带入大气辐射传输模型,求取遥感器入瞳时的辐射亮度,计算定标系数,进行误差分析,讨论误差原因。

方法:反射率法:在卫星过顶时同步测量地面目标反射率因子和大气光学参量(如大气光学厚度、大气柱水汽含量等)然后利用大气辐射传输模型计算出遥感器入瞳处辐射亮度值,具有较高的精度。

辐亮度法:采用经过严格光谱与辐射标定的辐射计,通过航空平台实现与卫星遥感器观测几何相似的同步测量,把机载辐射计测量的辐射度作为已知量,去标定飞行中遥感器的辐射量,从而实现卫星的标定,最后辐射校正系数的误差以辐射计的定标误差为主,仅仅需要对飞行高度以上的大气进行校正,回避了底层大气的校正误差,有利于提高精度。

辐照度法:又称改进的反射率法,利用地面测量的向下漫射与总辐射度值来确定卫星遥感器高度的表观反射率,进而确定出遥感器入瞳处辐射亮度。

这种方法是使用解析近似方法来计算反射率,从而可大大缩减计算时间和计算复杂性。

大气校正定义:大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。

如何进行卫星遥感影像大气校正与地表反射率计算的技巧与方法

如何进行卫星遥感影像大气校正与地表反射率计算的技巧与方法

如何进行卫星遥感影像大气校正与地表反射率计算的技巧与方法遥感技术在现代科学研究和资源管理中扮演着重要的角色,卫星遥感影像是广泛应用于环境和地球科学研究的一种重要数据来源。

然而,由于大气对遥感影像的影响,需要进行大气校正和地表反射率计算,以便获得准确的地表信息。

本文将介绍一些卫星遥感影像大气校正和地表反射率计算的技巧和方法。

首先,了解卫星观测原理和传感器特性对于进行大气校正和地表反射率计算至关重要。

卫星通过测量来自地球表面的辐射能够获得遥感影像。

但是,由于大气层会吸收和散射来自太阳的光线,以及地表辐射的接收,无法直接获得地表反射率。

因此,需要进行大气校正来消除大气效应,以获得真实地物反射率。

为了进行大气校正,可以利用辐射传输模式来估算大气影响。

这需要准确的大气参数,如气溶胶光学厚度、透明度和大气温度等。

这些参数可以通过气象站观测数据、气象模型和气象卫星等来源获取。

此外,还可以利用地面真实观测数据来提供准确的地表光谱信息,以帮助消除大气影响。

另外,大气校正还需要考虑大气折射率。

大气折射率会导致传感器观测到的物体位置和形状产生偏移。

因此,在进行地表反射率计算之前,需要对图像进行几何校正,消除大气折射率的影响。

这可以通过利用地面控制点和地形数据来实现,以精确校正图像。

在进行地表反射率计算时,还应考虑地物特性对遥感影像的影响。

不同的地物具有不同的反射特性和光谱响应,需要进行光谱融合和分类来提取感兴趣的地物信息。

常用的分类方法包括有监督分类和无监督分类。

有监督分类依赖于训练样本,通过使用已知地物光谱特征来分类图像。

无监督分类则是基于统计学方法,自动将图像像元分为不同的类别。

此外,还可以利用高分辨率图像和特征提取算法来提高分类精度和提取地物信息。

除了大气校正和地表反射率计算,还可以利用遥感影像进行环境和资源监测。

例如,农业领域可以利用遥感影像来监测植被生长状况,提前预警病虫害和水分短缺等问题。

水资源管理可以利用遥感影像来监测水体蓄水量和水质变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正方法影像辐射校正原理辐射校正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。

利用传感器观测目标的反射或辐射能量时,所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值叫做辐射误差。

辐射误差造成了遥感图像的失真,影响遥感图像的判读和解译,因此,必须进行消除或减弱。

需要指出的是,导致遥感图像辐射量失真的因素很多,除了由遥感器灵敏度特性引起的畸变之外,还有视场角、太阳角、地形起伏以及大气吸收、散射等的强烈影响。

遥感图像辐射校正主要包括三个方面:(1)传感器的灵敏度特性引起的辐射误差,如光学镜头的非均匀性引起的边缘减光现象、光电变换系统的灵敏度特性引起的辐射畸变等;(2)光照条件差异引起的辐射误差,如太阳高度角的不同引起的辐射畸变校正、地面倾斜、起伏引起的辐射畸变校正等;(3)大气散射和吸收引起的辐射误差改正。

辐射校正的目的主要包括:1、尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声等引起的传感器的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异;2、尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作奠定基础。

辐射校正分为辐射定标和大气校正两部分。

辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。

大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。

辐射校正流程图影像辐射校正方法辐射定标主要分为两种类型:统计型和物理型。

统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。

如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。

但是建立和学习这些物理模型的过程漫长而曲折。

模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。

例如6s模型,Mortran等。

用于大气辐射传输校正的模型主要有5S模型、6S模型、LOWTRAN模型、MODTRAN模型、ACORN模型、FLAASH模型和ATCOR模型。

1、ACORN模型一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作波长范围是350-2500nm。

在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。

Acorn所提供的最高级的大气校正形式是基于辐射传输理论的,大气校正的方法是基于chandrasekhar(1960,dover)公式,描述了太阳辐射源、大气、和地表对辐射的贡献关系。

Caorn提供了一系列大气校正策略,包括经验法和基于辐射传输理论的方法,既可以对高光谱数据进行大气校正,也可以对多光谱图像数据进行大气校正,校正模式如下:1)模式1:对定标后的高光谱数据进行辐射传输大气校正,输出项为地表表观反射率。

2)模式1.5:对定标后的高光谱数据利用水气和液体水光谱你和技术进行辐射传输大气校正。

3)模式2:对高光谱大气校正结果进行独立的光谱增强。

4)模式3:利用经验线性法对高光谱数据进行大气校正5)模式4:对高光谱数据进行卷积处理得到多光谱数据6)模式5:对定标的多光谱数据进行辐射传输大气校正7)模式6:对多光谱的大气校正结果进行独立的光谱增强2、LOWTRAN模型LOWTRAN是一种低分辦率(分辦率大于等于20cm-1)大气辐射传输模式。

它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线,其他13种微量气体的垂直廓线,城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线,辐射参量(如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。

lowtran7可以根据用户的需要,设置水平、倾斜及垂直路径,地对空、空对地等各种探测几何形式,适用对象广泛。

lowtran7的基本算法包括透过率计算方法,多次散射处理和几何路径计算。

1)多次散射处理lowtran采用改进的累加法,自海平面开始向上直至大气的上界,全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通里。

再用得到的通里计算散射源函数,用二流近似解求辐射传输方程。

2)透过率计算该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率,在计算多次散射时,采用k-分布法。

3)光线几何路径计算考虑了地球曲率和大气折射效应,将大气看做球面分层,逐层考虑大气折射效应。

3、MODTRAN模型MODTARN(ModerateResolutionTransmission)这是由美国空军地球物理实验(AFGL)开发的计算大气透过率及辐射的软件包。

MODTRAN从LOWTRAN发展而来,它提高LOWTRAN的光谱分辨率。

MODTRAN的基本算法包括透过率计算,多次散射处理和几何路径计算等。

需要输入的参数有四类:计算模式,大气参数,气溶胶参数和云模式。

MODTRAN有四种计算模式:透过率,热辐射,包括太阳或月亮的单次散射的辐射率,直射太阳辐照度计算。

用MODTRAN进行大气纠正的一般步骤是:首先输入反射率,运行MODTRAN得到大气层顶(TOA)光谱辐射,解得相关参数;然后利用这些参数带入公式进行大气纠正。

MODTRAN可以计算0到50000cm-1的大气透过率和辐射亮度,它在440nm到无限大的波长范围精度是2cm-1,在22680到50000cm-1紫外波(200-440nm)范围的精度是20cm-1,在给定辐射传输驱动、气溶胶和云参数、光源与遥感器的几何立体对和地面光谱信息的基础上,根据辐射传输方程来计算大气的透过率以及辐射亮度。

MODTRAN输入输出参数(1)控制运行参数:如何采用何种辐射传输程序,是否进行多次散射计算等;(2)遥感器参数:如遥感器的波段参数,观测的波束(波长范围);(3)大气参数:其中大气模型通过card1中的选项确定,其他具体参数包括气溶胶;(4)观测几何条件:在card1中有关于几何条件的选项,另外在card3中主要为几何参数的输入选项,它通过多种方式组合来实现几何参数的输入,可根据计算的方便进行选择;(5)地表参量:在card1中提洪了地表参数设定的初步选项,所以只能在card4根据card1中设定的参数对地表的参数进行具体设定。

所有的输入都通过card1进行控制,然后在由后续的card进行具体社这设定所有参数之后,就可以用modtran来模拟大气辐射传输过程4、5S模型1986年,法国里尔科技大学大气光学实验室TanreD.,DeuzeJ.L,等人为了简化大气辐射传输方程,开发了太阳光谱波段卫星信号模拟程序5S(SIMULATION OF THE SATELLITESIGNAL IN THE SOLAR SPECTRUM用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。

5、6S模型1997年,美国马里兰大学地理系Eric Vemote对5s进行了改进,发展到6S (SECONDSIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比5S有所提高。

6S(Second Simulation of the Satellite Signal in the SolarSpectrum)大气校正模型是Eric F.Vermote etal.(1997)在5S模型的基础上发展起来的。

6S模型可以很好地模拟太阳光在太阳-地面目标-传感器的传输过程中所受到的大气影响。

相对于5S模型,6S模型考虑了地面目标的海拔高度、非朗伯平面的情况和新的吸收气体种类(CH4,N20,CO)通过采用theartapproximation近似算法和S0s运算法则,提高了瑞利和气溶胶散射作用的计算精度。

光谱步长提高到了 2.5nm。

6S模型建立在辐射传输理论基础之上,模型应用范围广,不受研究区特点及目标类型等的影响。

6S描述了大气如何影响辐射在太阳-地表-遥感器之间的传输。

需要输入的参数有:几何参数(遥感器类型、成像年月日和经纬度);大气中的水和臭氧浓度;气溶胶浓度;附设条件、观测波段和海拔高度;地表覆盖类型和反射率。

6S预先设置了50多种波段模型,包括MODIS,AVHRR,TM等常见传感器的可见光近红外波段。

它其中主要包括以下几个部分:太阳、地物与传感器之间的几何关系:;大气模式;气溶胶模式;传感器的光谱特性:地表反射率。

这5个部分便构成了辐射传输模型,考虑了大气顶的大阳辐射能里通过大气传递到地表,以及地表的辰射辐射通过大气到达传感器的整个辐射传输过程。

65的输入参数主要有9个部分组成:(1)几何参数(2)大气模式(3)气溶旋模式(4)气溶胶浓度(5)地面高度(6)探测器高度(7)探测器的光谱条件(8)地表特性(9)表观反射率6、FLAASH模型它是ENVI下的一个模块,FLAASH参数如下:(1)图像中心点坐标可以从相应的HDF文件中找到,也可以从屏幕上直接读取影橡的中心坐标,对反演结果影响不大。

当影像位于西半球时,经度为负值;(2)传感器类型当选择传感器类型时,模块会选择相应的类型的传感器波段响应函数,同时系统一般会自动设置传感器的高度和图像的空间分辨率;(3)海拔高度海拔高度为研究区的平均海揣;(4)数据获取日期和卫星过境时间卫星过境时间为格林尼治时间,可以从相应的HDF文件中找到;(5)大气模型模块提供热带,中纬度夏季,中纬度冬季、极地夏季、极地冬季和美国标准大气模型,研究者根据数据获取时间选择相应的大气模型;(6)水气反演大多数多光谱数据不推荐反演水汽含量;(7)气溶胶模型可供选择的气溶胶模型有无气溶胶、城市气溶胶、乡村气溶胶、海洋气溶和对流层气溶胶模型。

当能见度大于40Km时,气溶胶垫型选择对反演设有太多影响,一般情兄下利用ASTER数据不做气溶胶反演。

7、ATCOR模型ATCOR大气校正模型由德国Wessling光电研究所Richter博士于1990年研究提出并且经过大量验证和评估的一种快速大气校正算法。

相关文档
最新文档