全国2006年7月自考复变函数与积分变换答案
复变函数与积分变换习题解答
![复变函数与积分变换习题解答](https://img.taocdn.com/s3/m/39a805254431b90d6c85c7e2.png)
练 习 一1.求下列各复数的实部、虚部、模与幅角。
(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。
1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。
(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。
证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。
复变函数与积分变换五套试题及答案
![复变函数与积分变换五套试题及答案](https://img.taocdn.com/s3/m/df630ee3dc3383c4bb4cf7ec4afe04a1b071b01e.png)
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数考试题及答案自考
![复变函数考试题及答案自考](https://img.taocdn.com/s3/m/57dfe703ac02de80d4d8d15abe23482fb4da02b9.png)
复变函数考试题及答案自考一、选择题(每题2分,共20分)1. 下列哪个选项是复数z = 3 + 4i的共轭复数?A. 3 - 4iB. -3 + 4iC. -3 - 4iD. 3 + 4i答案:A2. 如果复变函数f(z)在点z₀处解析,那么它的导数f'(z₀)等于:A. 极限lim(Δz→0) [f(z₀ + Δz) - f(z₀)] / ΔzB. f(z₀)的实部C. f(z₀)的虚部D. f(z₀)的模答案:A3. Cauchy积分定理适用于:A. 仅在实数域B. 仅在复平面上的简单闭合曲线C. 仅在复平面上的开区域D. 所有以上情况答案:C4. 如果一个复变函数在某区域内除了一个孤立奇点外处处解析,那么这个函数在该区域内:A. 一定有原函数B. 一定没有原函数C. 可能是周期函数D. 以上都不对答案:A5. 复变函数f(z) = u(x, y) + iv(x, y)中,u和v分别表示:A. 实部和虚部B. 模和辐角C. 辐角和模D. 都不对答案:A6. 以下哪个是复变函数的柯西-黎曼方程?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = -∂v/∂xC. ∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x答案:B7. 复变函数的级数展开式中的系数是:A. 常数B. 复数C. 实数D. 以上都不对答案:B8. 如果一个复变函数在某个区域内处处连续,那么它的模:A. 也必定处处连续B. 可能不连续C. 必定不连续D. 以上都不对答案:A9. 复变函数的Taylor级数展开是关于:A. 模的展开B. 辐角的展开C. z的展开D. 共轭复数的展开答案:C10. 下列哪个是复变函数的Laurent级数展开的一个特性?A. 它只能展开在解析函数上B. 它包含负幂项C. 它只能展开在奇点附近D. 以上都是答案:B二、填空题(每题3分,共30分)11. 复数z = 2 - 3i的模是________。
复变函数与积分变换习题答案
![复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/731e55d72dc58bd63186bceb19e8b8f67c1cefdb.png)
复变函数与积分变换习题答案习题六1. 求映射1w z=下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u v z x y x y x y ===-+++ 221x x u x y ax a===+,所以1w z =将22x y ax +=映成直线1u a=. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y ==-++ 222222x y kxu v x y x y x y ==-=-+++ v ku =-故1w z=将y kx =映成直线v ku =-.2. 下列区域在指定的映射下映成什么?(1)Im()0,(1i)z w z >=+;解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,.20.u x y v x y u v y =-=+-=-<所以Im()Re()w w >.故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 0=. 解:设z =x +i y , x >0, 0i i i(i )i x y y x w z x iy x y x y x y -====+++++ Re(w )>0. Im(w )>0. 若w =u +i v , 则2222,u vy x u v u v==++ 因为0221101,()22u u v u v <<-+>+ 故i w z =将Re(z )>0, 00,Im(w )>0, 1212w > (以(12,0)为圆⼼、12为半径的圆)3. 求w =z 2在z =i 处的伸缩率和旋转⾓,问w =z 2将经过点z =i 且平⾏于实轴正向的曲线的切线⽅向映成w 平⾯上哪⼀个⽅向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转⾓arg w '=π2. 于是, 经过点i 且平⾏实轴正向的向量映成w 平⾯上过点-1,且⽅向垂直向上的向量.如图所⽰.→4. ⼀个解析函数,所构成的映射在什么条件下具有伸缩率和旋转⾓的不变性?映射w =z 2在z 平⾯上每⼀点都具有这个性质吗?答:⼀个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域06. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az bw cz d+=+(ad -bc ≠0)由11-→-.得 1a bb acd c d-+-==+--+ 因为(1)a z c dw cz d ++-=+,即(1)(1)1a z c z w cz d++++=+,由11→代⼊上式,得22a ca d c d+=?=+. 因此11(1)(1)d cd cd c w z z cz d z +++=+=+?++ 令dq c =,得 1(1)(1)/()(1)(1)11(1)(1)/()2(1)(1)1w z q z q z q z a w z q z q z q z +++++++===?-+++---- 其中a 为复数.反之也成⽴,故所求分式线性映射为1111w z a w z ++=?--, a 为复数.7. 若分式线性映射,az bw cz d+=+将圆周|z |=1映射成直线则其余数应满⾜什么条件?解:若az b w cz d +=+将圆周|z |=1映成直线,则dz c=-映成w =∞. ⽽dz c=-落在单位圆周|z |=1,所以1d c -=,|c |=|d |.故系数应满⾜ad -bc ≠0,且|c |=|d |.8. 试确定映射,11z w z -=+作⽤下,下列集合的像. (1) Re()0z =; (2) |z |=2; (3) Im(z )>0. 解:(1) Re(z )=0是虚轴,即z =i y 代⼊得. 22222i 1(1i )12i i 1111y y y yw y y y y ----+===+?++++ 写成参数⽅程为2211y u y -+=+, 221yv y =+, y -∞<<+∞. 消去y 得,像曲线⽅程为单位圆,即u 2+v 2=1.(2) |z |=2.是⼀圆围,令i 2e ,02πz θθ=≤≤.代⼊得i i 2e 12e 1w θθ-=+化为参数⽅程.354cos u θ=+ 4sin 54cos u θθ=+ 02πθ≤≤ 消去θ得,像曲线⽅程为⼀阿波罗斯圆.即22254()()33u v -+=(3) 当Im(z )>0时,即11Im()011w w z w w ++=-?<--, 令w =u +i v 得221(1)i 2Im()Im()01(1)i (1)w u v v w u v u v +++-==<--+-+.即v >0,故Im(z )>0的像为Im(w )>0.9. 求出⼀个将右半平⾯Re(z )>0映射成单位圆|w |<1的分式线性变换. 解:设映射将右半平⾯z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞,所以所求分式线性变换形式为00z z w k z z -=?-其中k 为常数.⼜因为00z z w k z z -=?-,⽽虚轴上的点z 对应|w |=1,不妨设z =0,则i 00||1e ()z z w k k k z z θθ-=?==?=∈-R故000e (Re()0)i z z w z z z θ-=?>-.10. 映射e 1i z w zαα-=?-?将||1z <映射成||1w <,实数?的⼏何意义显什么?解:因为2i i 22(1)()()1||()e e (1)(1)z z w z z z ?αααααα-----'=?=?-?- 从⽽2i i 2221||1()e e (1||)1||w ?αααα-'=?=?-- 所以i 2arg ()arg e arg (1||)w ?αα?'=-?-= 故?表⽰i e 1z w zθαα-=?-在单位圆α处的旋转⾓arg ()w α'.11. 求将上半平⾯Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满⾜条件(1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f.解:将上半平⾯Im(z )>0, 映为单位圆|w |<1的⼀般分式线性映射为w =k z z αα-?-(Im(α)>0). (1) 由f (i)=0得α=i ,⼜由arg (i)0f '=,即i 22i()e (i)f z z θ'=?+,πi()21(i)e 02f θ-'==,得π2θ=,所以ii iz w z -=?+. (2) 由f (1)=1,得k =11αα--;由f ,得k α联⽴解得w =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满⾜条件: (1) f (12)=0, f (-1)=1. (2) f (12)=0, 12πarg ()2f '=, (3) f (a )=a , arg ()f a ?'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为i e1z w zθαα-=-?, |α|<1.(1) 由f (12)=0,知12α=.⼜由f (-1)=1,知 1i i i 2121e e (1)1e 1π1θθθθ--?=-=?=-?=+.故12221112zz z w z --=-?=--. (2) 由f (12)=0,知12α=,⼜i 254e (2)z w z θ-'=?- i 11224π()earg ()32f f θθ''=?==,于是π21i 2221e ()i 12zz z w z--==?--. (3) 先求=()z ξ?,使z =a 0ξ→=,arg ()a ?θ'=,且|z |<1映成|ξ|<1. 则可知 i =()=e 1z a z a zθξ?-?-?再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1. 先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则=()=1w aw a wξψ--?.因此,所求w 由等式给出.i =e 11w a z aa w a zθ--?-?-?.13. 求将顶点在0,1,i 的三⾓形式的部映射为顶点依次为0,2,1+i 的三⾓形的部的分式线性映射.解:直接⽤交⽐不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1--2w w -.1i 21i +-+=1z z -.i 1i- 4z(i 1)(1i)w z -=--+.14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射. 解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交⽐不变性,有2525-+∶2525---+=104104-+--∶104104+- 故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+- 即 44w w +-=55z z --+20w z=-.讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.⼜w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平⾯上的曲线221124x y ??-+= ??映射到w 平⾯上的什么曲线?解:略.16. 映射w =e z将下列区域映为什么图形. (1) 直线⽹Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤; (3) 半带形区域Re()0,0Im(),02πz z αα><<≤≤.解:(1)令z =x +i y , Re(z )=C 1, z =C 1+i y 1i =e e Cyw ??, Im(z )=C 2,则z =x +i C 22i =e e C x w ??故=e zw 将直线Re(z )映成圆周1e Cρ=;直线Im(z )=C 2映为射线2C ?=.(2)令z =x +i y ,y αβ<<,则i i =e ee e ,z x yx y w y αβ+==?<<故=e zw 将带形区域Im()z αβ<<映为arg()w αβ<<的⾓为βα-的⾓形区域. (3)令z =x +i y ,x >0,0 i =e e e (0,0)e 1,0arg z x yx w x y w αα=?><<<故=e zw 将半带形区域Re(z )>0,01, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平⾯除去线段-1w z=将|z |>1映为|w 1|<1,再⽤分式线性映射. 1211i 1w w w +=-?-将|w 1|<1映为上半平⾯Im(w 2)>0, 然后⽤幂函数232w w =映为有割痕为正实轴的全平⾯,最后⽤分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平⾯. 故221121132222132111111i 1111111()11211i 1111z z z z w w w w w z w w z w w ++--?- ? ?----=====+++?? ++-?++ ? ?--.18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππIm()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:⽤1e zw =将区域映为有割痕(0,1)的右半平⾯Re(w 1)>0;再⽤1211ln1w w w +=-将半平⾯映为有割痕(-∞,-1]的单位圆外域;⼜⽤3w =⾯;再⽤43ln w w =将区域映为半带形00;最后⽤42i πw w =-映为所求区域,故e 1ln e 1z z w +=-.19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平⾯Im(w )>0的映射. 解:略.20. 映射cos w z =将半带形区域00保形映射为∞平⾯上的什么区域. 解:因为 1cos ()2iz iz w z e e -==+ 可以分解为w 1=i z ,12e ww =,32211()2w w w =+由于cos w z =在所给区域单叶解析,所以(1) w 1=i z 将半带域旋转π2,映为0w =将区域映为单位圆的上半圆部|w 2|<1,Im(w 2)>0. (3) 2211()2w w w =+将区域映为下半平⾯Im(w )<0.。
复变函数试卷答案(2006)
![复变函数试卷答案(2006)](https://img.taocdn.com/s3/m/c68d3594dd88d0d233d46a63.png)
2006—2007《复变函数》试卷参考答案一、单项选择题(共20分,每题4分)1、函数)z (f 在点z 可导是)z (f 在点z 解析的( C )(A )充分不必要条件 (B )充分必要条件(C )必要不充分条件 (D )既非充分条件也非必要条件2、设z 为复数,则方程i 2z z +=+的解是( B )(A )i 43+- (B )i 43+ (C )i 43- (D )i 43-- 3、设1q 0<<,则幂级数∑∞=0n n n z q 2的收敛半径=R ( A )(A )∞+ (B )q 1 (C )0 (D )q 4、1z =是函数1z 1sin )1z (--的( D ) (A ) 可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5、映射i z i z 3w +-=在i 2z 0=处的旋转角为( B ) (A )0 (B )2π-(C )π (D )2π 二、填空题(共24分,每题4分)1、设)i 2)(i 3()i 3)(i 2)(i 1(z ++--+=,则z 。
2、导函数x v i x u )z (f ∂∂+∂∂='在区域D 内解析的充要条件为 x v ,x u ∂∂∂∂可微且满足222222xv y x u ,y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 。
3、不等式62z 2z <++-所表示的区域是曲线 椭圆:15y 9x 22=+ 的内部。
4、设c 为正向圆周14=-z ,则=-+-⎰c 22dz )4z (2z 3z i 10π 。
5、函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--0n 2n nn )i z (i )1( 。
6、设2z 1z 2)z (f +=,则=∞]),z (f [s Re -2 。
三、解答下列各题(共36分)1、用留数理论计算积分⎰+π202)x cos 32(x d (本小题8分) 解:⎰⎰⎰==⎪⎪⎭⎫ ⎝⎛++=⋅⎪⎪⎭⎫ ⎝⎛+⋅+=+1z 221z 22π2021z 34z z d z i 34iz z d z 21z 321)x cos 32(x d 极点为,3z ,31z 21-=-=其中;1z ,1z 21><由留数定理,有 22z z π202)z z (z z d d lim i π2i 34)x cos 32(x d 1-⋅=+→⎰ 42222z z )z z ()z z (z 2)z z (lim 3π81----⋅=→ 32121)z z ()z z (38-+-⋅π= 332343π8⎪⎪⎭⎫ ⎝⋅= .π4=(评分标准:本小题计8分,计算方法正确者给6分,答案正确者再加2分)2、求函数 )z 1(1 3-在1z <内的泰勒展开式 (本小题8分) 解:"-=--])z 1[(21)z 1(1 13因为 )1z (< 所以"⎪⎭⎫ ⎝⎛=-∑∞=0n n 3z 21)z 1(1 2n 2n z )1n (n 21-∞=∑-= .z )1m )(2m (21m 0m ∑∞=++= )1z (<(评分标准:本小题计8分。
复变函数与积分变换(王忠仁_张静)
![复变函数与积分变换(王忠仁_张静)](https://img.taocdn.com/s3/m/91146ee4e009581b6bd9eb64.png)
3
时, 0 arg w ;
从而区域 0 arg z
3
在 w 平面上的像是位于 u 轴上方的部分。
1.7 设 f ( z ) 证
1 z z ,试证当 z 0 时 f ( z ) 的极限不存在。 (z 0) 2i z z
: 因
2
为
1 z f (z) 2i z
(1)点 z 1 i , z 2 1 i , z 3 3 i 在 w 平面上的像; (2)区域 0 arg z
3
在 w 平面上的像。
解: (1)将 z 1 i , z 2 1 i , z 3 3 i 分别代入 w z 3 ,得
w 1 z 13 i 3 i 2 i i , w 2 z 2 3 (1 i )3 (1 i )2 (1 i ) 2i (1 i ) 2 2i , w3 z3
lim ( z z )n 1 ( z z )n 2 z ( z z )n 3 z 2 ... ( z z ) z n 2 z n 1 z 0 z n 1 z n 2 z z n 3 z 2 ... zz n 2 z n 1 nz n 1
2 xy 不存在, x y2
2
所以 lim f ( z ) 不存在。
z0
1.8
试证 arg z 在原点与负实轴上不连续。
证: (1)因为 Arg 0 无意义,故 a rg 0 也无意义,即 arg z 在
z 0 处无定义,故 arg z 在 z 0 处不连续。
( 2 ) 设 x0 0 为 负 实 轴 上 的 任 意 一 点 , 因 为
(完整版)复变函数与积分变换习题答案
![(完整版)复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/37178cd369eae009581becaa.png)
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数自考试题及答案
![复变函数自考试题及答案](https://img.taocdn.com/s3/m/df3b87c66aec0975f46527d3240c844769eaa09c.png)
复变函数自考试题及答案一、选择题(每题2分,共10分)1. 在复变函数中,下列哪一项不是复数的基本概念?A. 复数域B. 共轭复数C. 复数的模D. 复数的导数答案:D2. 复变函数中的柯西-黎曼方程是指什么?A. 函数的实部和虚部满足的方程B. 函数的导数满足的方程C. 函数的积分满足的方程D. 函数的级数展开满足的方程答案:A3. 下列哪一项不是解析函数的特征?A. 在定义域内处处可导B. 在定义域内连续C. 导数在定义域内连续D. 柯西-黎曼方程成立答案:B4. 复变函数的级数展开中,幂级数的收敛半径是什么?A. 函数的模的最大值B. 函数的实部的最大值C. 函数的虚部的最大值D. 函数的模的倒数答案:D5. 复变函数的积分路径必须是?A. 直线B. 曲线C. 可以是任意形状的连续路径D. 必须闭合的路径答案:C二、填空题(每题3分,共15分)6. 复数 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \))的共轭复数是 \( \_\_\_\_\_\_\_\)。
答案:\( a - bi \)7. 如果 \( f(z) \) 是解析函数,那么 \( f(z) \) 的导数 \( f'(z) \) 满足________。
答案:柯西-黎曼方程8. 复变函数 \( f(z) = u(x, y) + iv(x, y) \) 的实部 \( u(x, y) \) 和虚部 \( v(x, y) \) 必须满足________。
答案:偏导数的连续性9. 复变函数的级数展开中的幂级数 \( \sum_{n=0}^{\infty} a_n (z- z_0)^n \) 在 \( |z - z_0| < R \) 内收敛,其中 \( R \) 是收敛半径,且 \( R \) 满足________。
答案:Cauchy-Hadamard公式10. 复变函数的积分 \( \oint_C f(z)dz \) 表示沿着闭合路径 \( C \) 的积分,根据柯西积分定理,如果 \( f(z) \) 在闭合路径 \( C \) 内解析,则 \( \oint_C f(z)dz = \_\_\_\_\_\_\_\)。
复变函数自考试题和答案
![复变函数自考试题和答案](https://img.taocdn.com/s3/m/83e524895ff7ba0d4a7302768e9951e79b89698c.png)
复变函数自考试题和答案### 一、单项选择题1. **复数的代数形式**设复数 \( z = a + bi \),其中 \( a, b \) 是实数,\( i \) 是虚数单位,满足 \( i^2 = -1 \)。
A. \( z \) 是实数B. \( z \) 是虚数C. \( z \) 可以是实数也可以是虚数D. \( z \) 既不是实数也不是虚数**答案:C**2. **复数的模**设 \( z = 3 + 4i \),求 \( |z| \) 的值。
A. 5C. 12D. 25**答案:A**3. **复数的辐角**设 \( z = 3 + 4i \),求 \( \arg(z) \) 的值。
A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{3\pi}{4} \)**答案:B**4. **复数的乘法**设 \( z_1 = 1 + i \) 和 \( z_2 = 1 - i \),求 \( z_1 \cdot z_2 \) 的值。
A. 2B. 0C. -2**答案:A**5. **复数的除法**设 \( z_1 = 1 + i \) 和 \( z_2 = 1 - i \),求 \( \frac{z_1}{z_2} \) 的值。
A. \( i \)B. \( -i \)C. 1D. -1**答案:C**## 二、填空题1. 复数 \( z = a + bi \) 的共轭复数是 \( \overline{z} =\_\_\_\_\_\_\_\_ \)。
**答案:\( a - bi \)**2. 复数 \( z = 2 + 3i \) 的模是 \( |z| = \_\_\_\_\_\_\_\_ \)。
**答案:\( \sqrt{2^2 + 3^2} = \sqrt{13} \)**3. 复数 \( z = 2 + 3i \) 的辐角是 \( \arg(z) = \_\_\_\_\_\_\_\_ \)。
全国自考复变函数与积分变换的试卷及答案 (2)
![全国自考复变函数与积分变换的试卷及答案 (2)](https://img.taocdn.com/s3/m/1e86bf885901020207409cf5.png)
全国2008年7月复变函数与积分变换真题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z=i +-11,则z 为( ) A .21i +- B .21i --C .21i - D .21i +2.下列集合为有界闭区域的是( )A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D .1≤i z -≤43.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg 34) B .ln5+i(π-arctg 34)C .ln5+i(-π-arctg 43) D .ln5+i(π-arctg 43)4.正弦函数sinz=( )A .i e e iziz 2--B .2iz iz e e --C .i e e iz iz 2-+D .2iz iz e e -+ 5.复积分⎰i iz dz e 0的值是( )A .-(1-e-1)iB .e-1iC .(1-e-1)iD .-e-1i6.复积分⎰=---21i z zi z e dz 的值是( ) A .ei B .e-I C .2πiei D .2πie-i7.z=0是函数2zcos 1z -的( ) A .本性奇点 B .可去奇点 C .一阶极点 D .二阶极点8.Res []1,ctg z π=( )A .-π1B .π1C .-2iD .2i9.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .-3π<ϕ<0C .0<ϕ<3πD .0<ϕ<3π10.函数f(t)=π2122t e -的傅氏变换[])(t f 为( ) A .2ω-e B .22ω-e C .22ωe D .2ωe二、填空题(本大题共6小题,每小题2分,共12分11.复数1-3i 的三角表达式是_________________.12.tgz 的所有零点为_________________.13.⎰=-13cos i z z zdz e =______________.14.幂级数∑∞-12n nn nz 的收敛半径是____________.15.设n z z f n n n2)1()(0∑∞=-=,则)0()10(f =___________. 16.分式线性映射i z iz +---=11ω把上半平面Imz>0映射成___________.三、计算题(本大题共8小题,共52分)17.(本题6分)用θcos 与θsin 表示θ5cos .18.(本题6分)已知z ≠时22y x y x +-=υ为调和函数,求解析函数υi u z f +=)(的导数)(z f ',并将它表示成z 的函数形式. 19.(本题6分)计算积分I=dz ix y x c ⎰+-)(2,其中C 为从0到1+i 的直线段.20.(本题6分)将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.21.(本题7分)函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22.(本题7分)计算积分I=dz z z c ⎰+-)1()1(122,其中C 为正向圆周x2+y2-2x=0. 23.(本题7分)利用留数计算积分I=⎰-c zdz z e 22)1(,其中C 为正向圆周z =2. 24.(本题7分)将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题,若两题全做,以26题计分。
(含答案)复变函数与积分变换习题解析2
![(含答案)复变函数与积分变换习题解析2](https://img.taocdn.com/s3/m/80b2c87db94ae45c3b3567ec102de2bd9605dee6.png)
(含答案)复变函数与积分变换习题解析2习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明.(1)如果()f z 在0z 连续,那么0()f z '存在.(2)如果0()f z '存在,那么)(z f 在0z 解析.(3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导.(4)如果0z 是()f z和()g z 的⼀个奇点,那么0z 也是()()f z g z +和()()f z g z ?的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应⽤导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导.习题2.21. 设试证)(z f 在原点满⾜柯西-黎曼⽅程,但却不可导.(提⽰:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=;(2)i y x y x z f 22332)(+-=;(3)=)(z f232z z -+;(4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=;(4 4. (1)iz z z f 2)(3+=;(25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--;(2 (0)z ≠;(3)1(33)x iy ω-=-;(4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+.(1)2(1)u x y =-;(2)3223u x x xy =-+;(3)323u x xy =-;(4)23v xy x =+;(5)x y x v 222+-=;(62. 求k 值使22ky x u +=为调和函数,并求满⾜1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是⼀个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满⾜下列条件之⼀,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ;(7)i 3;(8)i i )1(+;(9)1(34)i i ++;(10))1sin(i +;(11)cos(5)i π+;(12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ;(3(4 (55.证明:(1)122=-z sh z ch ;(2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复习题⼆⼀、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B⼀、单项选择题1. ). D.z sin2. 下列说法正确的是().A.函数的连续点⼀定不是奇点B.可微的点⼀定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内⽆奇点D.不存在处处不可导的函数3. 下列说法错误的是(). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是().A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满⾜C-R ⽅程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是().A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是().7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是(). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数(). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是().A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是().A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是(). A. )(z f 在复平⾯上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是().A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==⼆、填空题在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivu)(.(1)xu=;(2)xy u=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22y=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数xu和),(yxv都具有⼆阶连续偏导数,且满⾜拉普拉斯⽅程,现令x yvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第⼆章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)zf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导,(44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(;(2)ci z z z f +-=32)(;(3)=)(z f 3z ci +;(4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2;(62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈;((5(6(7)3ln 2i k e e π-)(Zk ∈;(9 ((2.(1 (23.(1)正确;(2)正确;(3)正确.复习题⼆⼆、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0(Λ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平⾯内处处不可导,处处不解析;(2)在0=z 处可导,但在复平⾯内处处不解析,0)0(='f ;(3)在复平⾯内处处不可导,处处不解析;6.(1)4e -;(2))4sin 4(cos 3i e +;(3(4(6 (7。
全国高等教育自学考试复变函数与积分变换真题与答案
![全国高等教育自学考试复变函数与积分变换真题与答案](https://img.taocdn.com/s3/m/4f48cf7b84254b35eefd34f5.png)
全国2011年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n Csin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
全国7月高等教育自学考试-复变函数与积分变换试题与答案
![全国7月高等教育自学考试-复变函数与积分变换试题与答案](https://img.taocdn.com/s3/m/f73f9bb6a300a6c30d229f07.png)
全国2012年7月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.复数1+i的辐角为()A.2π,k k Z∈B.π2π,4k k Z+∈C.π2π,2k k Z+∈D.(21)π,k k Z+∈2.在复平面上方程|z-1|+|z+1|=4表示()A.直线B.圆周C.椭圆周D.抛物线3.不等式组1||1,Im2z z<<表示的区域是()A.单连通区域B.多连通区域C.无界区域D.闭区域4.关于函数cos z,以下哪个说法是错误的()A.它是有界函数B.它是周期函数C.它仅有实零点D.它是解析函数5.函数2()||f z z=在复平面上有定义且()A.在z=0解析B.处处解析C.处处不解析D.以上都不对6.设C为正向圆周|z|=1,则积分C dz z⎰的值为()A.0 B.1 C.2πD.2πi7.当函数3()(2)(21)zf zz z=--表示成z的幂级数时,收敛半径为()A.12B.1C .2D .∞8.点z =0是函数221()sin z f z z z-=的( ) A .可去奇点B .极点C .本性奇点D .解析点 9.函数1()z f z e =在点z =0处的留数为( )A .0B .1C .2D .e 10.映射1()w f z z ==将单位圆盘||1z <映成( ) A .|w |<1B .|w |>1C .Re w <1D .Re w >1二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
11.复数(1+i )2的共轭复数为__________.12.复平面上解析函数()(,)(,)f z u x y iv x y =+满足的柯西-黎曼条件为__________.13.函数()z f z e =的周期为__________.14.设C 是从0到i 的线段,则积分||cz dz =⎰__________. 15.设C 由正向圆周|z |=3与负向圆周|z |=1组成,则积分zC e dz z=⎰__________.16.函数1()f z z=在1z =处的泰勒展开式为__________. 17.函数3()3f z z z =+在z i =处的伸缩率为__________.18.把点1,,1z i =-分别映成点,1,0w =∞-的分式线性变换为__________.19.设()f t 是可微函数且lim ()0t f t →∞=,则f (t )的傅氏变换与()f t '的傅氏变换的关系为__________.20.设L [()]()f t F p =,则对任意复数p 0有L 0[()]p t e f t __________.三、计算题(本大题共7小题,每小题6分,共42分)21.指出函数21()1f z z =+在复平面上的解析区域并求其导数。
2006年复变函数与积分变换试题及解答.doc
![2006年复变函数与积分变换试题及解答.doc](https://img.taocdn.com/s3/m/0e6119ea4b73f242336c5fdb.png)
2006—2007学年第一学期《复变函数与积分变换》课程考试试卷(A )(闭卷)院(系)___________专业班级__________学号__________姓名___________ 考试日期:2006年11月25日 考试时间:19∶00~21∶30一、填空题(每小题3分,共24分)1.i i 2)1(+的值为___________________,主值为______________. 2.3arg 4ππ<<z ;且3||1<<z 所表示的平面点集是区域吗?__________是单连域还是多连域?_____________. 3.⎰==-⋅1||43)2(sin z z dz z zz e _______.4.在映射iz w =下,集合}arg 0,2||1|:{π≤≤≤≤=z z z D 的像集为: _____________________________________________________ . 5.)2,1,0(2±±=+=k k z ππ为z tan 的____阶极点.6.)34(1z z -在i z +=10 处展开成Taylor 级数的收敛半径为_______7.)(sin )(t t t f δ+=的频谱密度函数=)(ωF ____________________.8.已知)()(),()(21t u t f t u e t f t==-,其中⎩⎨⎧<>=0001)(t t t u ,则二、(6分)设a 、b 是实数,函数i y bx axy z f )()(22++=在复平面解析. 求出a 、b 的值,并求)(z f '.三、(8分)验证xy y x y x u 2),(22+-=是调和函数,并求以),(y x u 为实部的解析函数)(z f ,使i i f 21)(+-=.四、(6×4=24分)计算下列各题:1.⎰C z dz zze 2sin ,C 为正向圆周2||=-i z .2.⎰-C zdz z e 11,C 为正向圆周21||=z . +πθ1cos 24.dx x x x⎰∞∞-++)1)(4(cos 22五、(10分)将)(1)(i z z z f -=在i z z ==100与处展成Laurent六、(6分)试求z 平面的下半平面0Im <z 在分式线性映射iz iz w +-=下的象区域.七、(8分)求一保形映射,把区域 ⎪⎩⎪⎨⎧><<0Im 2Re 0z z π映成单位圆内部1||<w . 八、(8分)用Laplace 变换求解常微分方程:⎩⎨⎧='==+'-''1)0(,0)0(232y y e y y y t九、(6分)证明题:设)(z f 在1||<z 内解析,在1||≤z 上连续,试证:当1||<z 时,⎰=--⋅=-1||2)1()(21)()||1(ξξξξξπd zz f i z f z复变函数与积分变换试题解答2006.11.系别___________班级__________学号__________姓名___________一、填空题(每小题3分,共24分)1.ii 2)1(+的值为2ln )42(i k e ++-ππ,主值为2ln 2i e+-π.2.3arg 4ππ<<z ;且3||1<<z 所表示的平面点集是区域吗? 是 ,单连域还是多连域? 单连域 。
复变函数 积分变换——课后答案
![复变函数 积分变换——课后答案](https://img.taocdn.com/s3/m/df3f0f7fa26925c52cc5bf86.png)
ln 1 z 1
( )
+
b .lim lim 1 ,故z 0 为可去奇点。
z→0 z→0 1+
----------------------- Page 1-----------------------
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。
z − z −
( 1)( 1) z z
( −1)( +1)
∞ z n+1 ( ) ∞ n
1 z
(4 ) ; (5) ; (6)e − ;
n +1 z n +1
n 0 n 0
3 sin z
a. z 0 为sin z 为的一级零点;而z 0 为z 的三级零点。故z 0 为 的二级极点。
z z z z 2 z 1
(7)因e −1 z∑ z(1+ + +) ,故z 0 为z (e −1) 的三级零点,因而是 2 z
1
ln(z +1) z
(2k+1)π
1+z (k 0,±1,±2,) 1+e
(5)由1+z 0 得z ±i 为 的一级零点,由1+e 0得z 2k +1 i 为
( ) 2 2 ( )
z (z +1)
其奇点,z 0 为一级极点,而z ±i 为其二级极点。
3
z
n 0 (n +1) ! 2 3! z (e −1)
的三级极点,而z 2kπi,(k ±1,±2,) 均为一级极点。
1 sin z 1
(1) ; (2 ) ; (3) ;
复变函数与积分变换2006(A卷)答案解读
![复变函数与积分变换2006(A卷)答案解读](https://img.taocdn.com/s3/m/56c24b1e02020740be1e9bfa.png)
6、解:记 ,则 ( ),
所以级数 的收敛半径为2。
7、解: 的零点为 ( ),显然它们都是孤立奇点;
而 ,所以这些点都是 的1级零点;
所以 的全部奇点是 ( ),且都是1级极点。
8、解: 是 的2级极点,故
。
9、解: 在复平面上有两个奇点 , ,且都包含在曲线C内;
= 。
五、(10分)解:设L[ ]= ,方程两边求Laplபைடு நூலகம்ce变换,得到
;
将 , 代入,得 ;
解出
;
求Laplace逆变换,得到 。
共3页第3页
课程复变函数与积分变换2006(A卷)答案
一、解答下列各题(每小题5分,共60分)
1、解:由C-R方程 , 得到 , ;解出 , 。
2、解: ( );
其主值为 。
3、解:因被积函数 在复平面解析,由Cauchy-Goursat定理,
。
4、解:因 在复平面解析,由高阶导数公式,
,所以 。
5、解: ( ),因此{ }无界。
由留数定理,
。
共3页第1页
10、解:由分式线性映射的保圆性,以及 在C上无奇点,
知映射 将C变成圆周。由 ,得 ,而 ,
故象曲线为 ;或 。
11、解:[ ]=1,[ ]=
;
所以 =[ ] +[ ]= 。
12、解:L[ ]= ,由Laplace变换的微分性质
L[ ]= ,所以
L[ ]= 。
二、(10分)解:在圆环域 上的Laurent级数为
;
在圆环域 上的Laurent级数为
。
三、(10分)解:显然满足 , , 的分式线性映射
复变函数与积分变换练习册参考答案
![复变函数与积分变换练习册参考答案](https://img.taocdn.com/s3/m/0c70a11f5727a5e9856a6159.png)
分析:显然原方程可化简为一个典型的二项方程。
⎛ 1+ z ⎞ 解:由直接验证可知原方程的根 z ≠ 1 。所以原方程可改写为 ⎜ ⎟ = 1。 ⎝ 1− z ⎠
令
5
ω=
1+ z , ……………(1) 1− z
2π i 5
则 ω = 1 , ……………………(2)
5
方程(2)的根为 ω = 1, e
(5) lim
z →1
zz + 2 z − z − 2 3 = 。 2 z2 −1 zz + 2 z − z − 2 ( z + 2)( z − 1) z +2 3 = lim = lim = 。 2 z →1 ( z − 1)( z + 1) z →1 z + 1 2 z −1
提示: lim
z →1
(1 − cos α ) 2 + sin 2 α = 4sin 2
α
2
= 2sin
α
2
;因为当 0 < α < π 时,
sin α > 0 , 1 − cos α > 0 ,则 arg z = arctan
= arctan(tan +i sin
π −α
2
)=
π −α
2 e
π −α i 2
sin α α = arctan(cot ) 1 − cos α 2
。
6、 ( 2)
=e
2 ln 2 − 2kπ
7、方程 sinh z = i 的解为 三、计算和证明 1、试证函数
1 在复平面上任何点都不解析。 z
利用 C-R 条件,即用解析的充要条件判别,即 u =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国自考人()——700门自考课程 永久免费、完整 在线学习 快快加入我们吧!全国2006年7月自考复变函数与积分变换答案课程代码:02199一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.arg(2-2i)=( B )A.43π-B.4π- C.4π D.43π 2.复数方程z=3t+it 表示的曲线是( A ) A.直线 B.圆周 C.椭圆D.双曲线3.设z=x+iy ,则|e 2i+2z |=( D ) A.e 2+2x B.e |2i+2z| C.e 2+2zD.e 2x 4.下列集合为无界多连通区域的是( C ) A.0<|z-3i|<1 B.Imz>π C.|z+ie|>4D.π<<π2z arg 235.设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( B ) A.-3 B.-1 C.1D.36.若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( C ) A.xy+x B.2x+2y C.2xy+y D.x+y7.⎰==-2|z |2)i z (dz( A )A.0B.1C.2πD.2πi8.⎰=-=2|1z |dz z zcos ( D ) A.0 B.1C.2πD.2πi9.⎰+=i220zdz ( D )A.iB.2iC.3iD.4i10.设f(z)=1z z 22-,则Res[f(z),1]=( B )A.0B.1C.πD.2π11.处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( B )A.0B.1C.2D.312.z=2i 为函数222z )4z (z e )z (f +=的( C )A.可去奇点B.本性奇点C.极点D.解析点13.2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( D )A.∑∞=-0n nnz )1(B.∑∞=-0n n2z)1z (1C.∑∞=--0n nn)1z ()1(D.∑∞=---0n 2n n)1z ()1(14.线性变换z1z2+=ω( A ) A.将上半平面Imz>0映射为上半平面Im ω>0 B.将上半平面Imz>0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<115.δ函数的傅氏变换F )]t ([δ为( C ) A.-2 B.-1 C.1D.2二、填空题(本大题共5小题,每小题2分,共10分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
16.若i3i 1z -+=,则z 17.若sinz=0,则z=()k k π为任意整数.18.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则2sin i z π. 19.幂级数∑∞=0n n nz 3n的收敛半径是___3________.20.映射z1=ω是关于__单位圆周__的对称变换.三、计算题(本大题共8小题,每小题5分,共40分) 21.解方程z 4=-1.24443454741(0,1,2,3),(0)22,(1)22,(2)22,(3)22k ii i i iz z ek e i k e i k e i k e i k ππππππ+=⇒====⎧=+=⎪⎪⎪=-+=⎪⎪=⎨⎪=--=⎪⎪⎪=-=⎪⎩22.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式.22222222222222222(,)()(4)363,363()363(363)3(2)3(2)333(1)x y x x x yu x y x y x xy y u x xy y u x xy y f z u iv u iu x xy y i x xy y x y xyi i x y xyi z iz i z=-++⇒=+-=--'⇒=+=-=+----=-+--+=-=- 解:23.设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.2232222(,),(,)32,2;33,6=263()3/2x y x y x y y x u x y my nx y v x y x xy u nxy u my nx v x y v xy u v n n f z u v m =+=-⇒==+=-=-⇒=-⇒=-⎧⇒⎨=-⇒=⎩解:由解析24.求积分⎰++-Cdz iz 22z 3I )(=的值,其中C:|z|=4为正向. 2=232210.C C dz dz i i i z i πππ∴+=⋅+⋅=+⎰⎰ 解:z=2,i 都在积分曲线C 内,3原式z-225.求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.()023.3!3z z i i e ππ='''∴=⋅-= 解:z=0在积分曲线C 内,原式26.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I .44411444||2()||2(1)(4)Re [(),1]lim(1)()lim (4)522(1)(4)55zz z z z z e f z z z z e es f z z f z z e e eI dz i i z z ππ→→===-+=-==+∴==⋅=-+⎰ 解:被积函数在内的孤立奇点为:z=1(一级极点);而27.将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数.0100011111()=(1)(1)(2)1221211(1)(1)(1)1222n n n nn n n n n n n n n f z z zz z z z z z z +∞=+∞+∞+∞+====-=--+++++⎛⎫⎛⎫=----- ⎪ ⎪⎝⎭⎝⎭∑∑∑∑解:=28.将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.020111()(1)1111(1)()11(1)(1)11(1)(1)n n n n n n f z z z z z z z z z +∞=+∞+=∞⇒==⋅=⋅--+=⋅=⋅---+-=--∑∑1解:1<|z-1|<+<1z-111z-1z-1111z-1z-1z-1四、综合题(下列3个小题中,29题必做,30、31题中只选做一题。
每小题10分,共20分)29.(1)求2z2i z 4e )z (f +=在上半平面的所有孤立奇点;222()4024i z e f z z z i z=+=⇒=+解:由,令为2z 2i z 4e )z (f +=在上半平面的所有孤立奇点,且为一级奇点;(2)求f(z)在以上各孤立奇点的留数;2422(),2]lim(2)()lim ;24i z z i z ie ef z i z i f z z i i-→→=-==+解:R es [(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 22422(),2]lim(2)()lim ;24i z z i z ie ef z i z i f z z i i-→→=-==+解:R es [30.设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π;110w z i =- (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0;12w w e=(3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0;2222i w i w i w e w w i w iθ--==++,可取(4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3.1010z i z ie i w e i ---=+31.(1)求e -t 的拉氏变换F [e -t ];(1)0(1)0[]1(1)1tt ptp t p tF e e e dt e dte p p +∞+∞----++∞-+=⋅===-++⎰⎰(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0,y ′(0)=1,求F [y ′(t)]、F [y ″(t)];[()]()F y t pY p '=2[()]()1F y t p Y p ''=-(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t()12(1)[()]()(0)[()]()(0)(0)(0)n n n n n L f t pF p f L f t p F p p f p f f ---'=-⎡⎢'=----⎣中国自考人()——改写昨日遗憾 创造美好明天!用科学方法牢记知识点顺利通过考试!11()22t ty t e e-=-+21(()1)2()3()21p Y p pY p Y p p -+-=+解:原方程两边取拉氏变换后,得解得 233()(1)(23)(1)(1)(3)11/21/2(1)(1)11p p Y p p p p p p p p p p p ++==++-+-+-==++-+-取逆变换,便得。