动量守恒常见模型归类练习

合集下载

动量守恒定律题型总结

动量守恒定律题型总结

2
2
R L1 L2
位移关系:
0 m L1 M L2
t
t
L1 L2 R
速度关系:水平方向动量守恒
0 mv MV
mgR 1 mv2 1 MV 2
2
2
ML2 L1 600 m
位移关系:
0 m L1 M L2
t
t
L1 L2 Lcos60o L
速度关系
0 mvsin600 MV
题型五、相对运动问题 定参考系、定速度
(1)每次射击(一发):设艇的速度为V,
则子弹速度为-(800-v)
P25——3T
0 (M m)V m(800V )
V m 800 0.01800 0.067m / s
M
120
(2)连续射击(10发):设艇的速度为V,
则子弹速度为-(800-v)
0 (M 10m)V 10m(800 V )
v0
AB
AB
v
AB
vA
AB
vA vB=2vA
mv0 = 2MvA+mv= MvA+(M+m)vB
题型四、系统含有两个以上的物体——如6T 19 3
3明确系统的选取
v


M
M
0= (M+m)v1 - (M-m)v2
讨论:球在两车之间抛了若干次,最终落在甲 车上,求两车速度之比。 最终落在乙车上,之比是多少?
研究对象(系统),则此系统在从子弹开始射入木块
到弹簧压缩至最短的整个过程中:( A、动量守恒、机械能守恒
B)
B、动量不守恒、机械能不守恒
C、动量守恒、机械能不守恒
D、动量不守恒、机械能守恒

人船模型(原卷版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习

人船模型(原卷版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习

动量守恒的十种模型解读和针对性训练人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0。

(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=mM +m L 。

3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。

(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m。

“人船模型”的拓展(某一方向动量守恒)【典例分析】【典例】 如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。

质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。

以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。

整个过程凹槽不翻转,重力加速度为g 。

(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。

【名师点拨】应用“人船模型”解题的两个关键点(1)“人船模型”的应用条件:相互作用的物体原来都静止,且满足动量守恒条件。

(2)人、船位移大小关系:m 人x 人=m 船x 船,x 人+x 船=L (L 为船的长度)。

【针对性训练】1. (2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。

当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。

仅考虑浮力,不计其他阻力,则池深为( )A.M +m MhB.M +m m(h +2a )C.M +m M(h +2a )D.M +m Mh +2a2.(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。

备考2024届高考物理一轮复习强化训练第七章动量守恒定律专题十一动量守恒中的四类典型模型

备考2024届高考物理一轮复习强化训练第七章动量守恒定律专题十一动量守恒中的四类典型模型

专题十一 动量守恒中的四类典型模型1.[滑块+曲面/2023山东]如图所示,物块A 和木板B 置于水平地面上,固定光滑弧形轨道末端与B 的上表面所在平面相切,竖直挡板P 固定在地面上.作用在A 上的水平外力,使A 与B 以相同速度v 0向右做匀速直线运动.当B 的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C 恰好到达最低点,并以水平速度v 滑上B 的上表面,同时撤掉外力,此时B 右端与P 板的距离为s .已知v 0=1m/s ,v =4m/s ,m A =m C =1kg ,m B =2kg ,A 与地面间无摩擦,B 与地面间动摩擦因数μ1=0.1,C 与B 间动摩擦因数μ2=0.5,B 足够长,使得C 不会从B 上滑下.B 与P 、A 的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小g =10m/s2.(1)求C 下滑的高度H ;(2)与P 碰撞前,若B 与C 能达到共速,且A 、B 未发生碰撞,求s 的范围;(3)若s =0.48m ,求B 与P 碰撞前,摩擦力对C 做的功W ;(4)若s =0.48m ,自C 滑上B 开始至A 、B 、C 三个物体都达到平衡状态,求这三个物体总动量的变化量Δp 的大小.答案 (1)0.8m (2)0.625m ≤s ≤2+√22m (3)-6J (4)(6+32√215)N·s解析 (1)C 下滑过程,由动能定理有m C gH =12m C v 2,解得H =0.8m(2)设C 滑上B 以后,C 的加速度大小为a C ,B 的加速度大小为a 1,B 、C 共速时间为t 1,s 的最小值为s 1,B 、C 共同的加速度大小为a 2,经过t 2时间A 追上B ,s 的最大值为s 2,则由牛顿第二定律有μ2m C g =m C a C解得a C =5m/s 2μ2m C g -μ1(m B +m C )g =m B a 1解得a 1=1m/s 2又v 0+a 1t 1=v -a C t 1解得t 1=0.5s由运动学规律有s 1=v 0t 1+12a 1t 12联立解得s 1=58m =0.625mB 、C 共速后,由牛顿第二定律得μ1(m B +m C )g =(m B +m C )a 2解得a 2=1m/s 2由运动学公式得s 2=s 1+(v 0+a 1t 1)t 2-12a 2t 22s 2=v 0(t 1+t 2)联立解得s 2=2+√22m故s 的范围为0.625m ≤s ≤2+√22m(3)由题意知s <s 1,所以B 与P 碰撞时,B 与C 未共速.设C 在B 板上滑动的时间为t 3,B 与P 相碰时C 的速度大小为v 1,则由运动学公式得s =v 0t 3+12a 1t 32解得t 3=0.4s (另一解舍去)v 1=v -a C t 3解得v 1=2m/s对物体C 从刚滑上B 到B 与P 碰撞前的过程,由动能定理有W =12m C (v 12-v 2)解得W =-6J(4)设B 与P 碰撞前瞬间的速度大小为v 2,B 与P 碰撞后瞬间的速度为v 3,B 向左运动的加速度大小为a 3,B 向左运动时间t 4与A 相遇.设A 、B 碰撞前瞬间B 的速度大小为v 4;A 、B 碰撞后瞬间,A 的速度为v 5,B 的速度为v 6,C 的速度大小为v 7,则由运动学公式得v 2=v 0+a 1t 3解得v 2=1.4m/s由于P 固定在地面上,B 与P 的碰撞为弹性碰撞,所以有v 3=v 2=1.4m/sB 与P 碰撞后向左运动的过程中,对B 由牛顿第二定律得μ2mC g +μ1(m B +m C )g =m B a 3解得a 3=4m/s 2自B 、P 碰撞后至A 、B 发生碰撞的过程,由运动学公式得s -v 0t 3=v 0t 4+v 3t 4-12a 3t 42解得t 4=3-2√25s (另一解舍去)v 4=v 3-a 3t 4解得v 4=(8√25-1)m/s v 7=v 1-a C t 4解得v 7=(2√2-1)m/s以向右为正方向,A 、B 发生弹性碰撞,由动量守恒定律得m A v 0-m B v 4=m A v 5+m B v 6由机械能守恒定律得12m A v 02+12m B v 42=12m A v 52+12m B v 62联立解得v 5=(1-32√215)m/s 、v 6=(1-8√215)m/s (另一组解舍去)即A 、B 碰撞后,A 以速度v 5向左运动,B 以初速度v 6向右运动经分析可得,B 、C 最终静止,A 最终以速度v 5向左运动,故自C 滑上B 开始至三物体达到平衡状态,这三个物体总动量的变化量为Δp =m A v 5-[(m A +m B )v 0+m C v ]解得|Δp |=(6+32√215)N·s2.[滑块+弹簧/2022全国乙]如图(a ),一质量为m 的物块A 与轻质弹簧连接,静止在光滑水平面上;物块B 向A 运动,t =0时与弹簧接触,到t =2t 0时与弹簧分离,第一次碰撞结束,A 、B 的v -t 图像如图(b )所示.已知从t =0到t =t 0时间内,物块A 运动的距离为0.36v 0t 0.A 、B 分离后,A 滑上粗糙斜面,然后滑下,与一直在水平面上运动的B 再次碰撞,之后A 再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sin θ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A 与斜面间的动摩擦因数.图(a ) 图(b )答案 (1)0.6m v 02(2)0.768v 0t 0 (3)0.45解析 (1)水平面光滑,故在水平面上两物块碰撞过程动量守恒,从B 与弹簧接触到弹簧第一次压缩到最短过程中有m B v 1=(m B +m A )v 0其中v 1=1.2v 0可得m B=5m该过程中机械能守恒,设弹簧最大弹性势能为E p ,得E p +12(m A +m B )v 02=12m B v 12由上式得E p =0.6m v 02(2)由图像知0~t 0内物块B 与物块A 的位移差等于弹簧的最大压缩量,也就是题图中该段时间物块A 、B 图像所夹面积,物块A 在0~t 0时间内的位移S A =0.36v 0t 0,即为0~t 0内,v -t 图像中A 线与t 轴所夹面积.解法1在压缩弹簧的过程中,物块A 、B 所受弹簧弹力大小相等,方向相反,则物块A 的加速度始终是物块B 加速度的5倍,有a A =5a B若两者均做初速度为零的变速运动,则两者的位移满足S A =5S'B在图1中深灰色阴影面积为S A ,浅灰色阴影面积为S'B .最大压缩量为X =1.2v 0t 0-S A -S'B =0.768v 0t 0图1 图2解法20~t 0过程,由动量守恒定律有 mv A +5mv B =(m +5m )v 0结合运动学知识有mS A +5mS B =6mv 0t 0解得S B =1.128v 0t 0(B 在0~t 0内的位移)最大压缩量为X =S B -S A =1.128v 0t 0-0.36v 0t 0=0.768v 0t 0(3)设物块A 第一次从斜面滑到平面上时的速度为v x ,物块A (含弹簧)回到水平面,第二次与B 相互作用过程系统机械能守恒、动量守恒.则有m B v 2-m A v x =m B v 3+m A ·2v 012m B v 22+12m A v x 2=12m B v 32+12m A (2v 0)2其中v 2=0.8v 0可得v x =v 0(另一解舍去)物块A 第一次从斜面底端滑到最高点的过程,由动能定理有-mgμs cos θ-mgs sin θ=0-12m (2v 0)2物块A 第一次从最高点滑到水平面的过程,由动能定理有-mgμs cos θ+mgs sin θ=12m v 02-0由上式得μ=0.45.。

高考物理总复习动量守恒中的四类典型模型

高考物理总复习动量守恒中的四类典型模型

动量守恒中的四类典型模型
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力
的矢量和为零,则系统动量守恒;
(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能
将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统
模型特点 机械能守恒;
(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动
命题拓展
命题条件不变,一题多设问
下列说法不正确的是(
C )
A. t1~t2时间内B的加速度在减小
B. t1和t3时刻弹簧的弹性势能相等
C. t2时刻弹簧处于压缩状态
D. t3时刻弹簧的弹性势能最大
返回目录
专题十一
[解析]
动量守恒中的四类典型模型
由v-t图像可知t1 ~t2 时间内B的加速度在减小,A正确,不符合题意;t1 和t3
返回目录
专题十一
动量守恒中的四类典型模型
1. [子弹未穿透木块/2024江苏淮安模拟]如图所示,质量为M=0.45 kg的木块静止于
光滑水平面上,一质量为m=0.05 kg的子弹以水平速度v0=100 m/s打入木块并停在
木块中,下列说法正确的是(
A )
A. 子弹打入木块后子弹和木块的共同速度为v=10 m/s
B. 子弹对木块做的功W=25 J
C. 木块对子弹做正功
D. 子弹打入木块过程中产生的热量Q=175 J
返回目录
专题十一
动量守恒中的四类典型模型
[解析] 根据动量守恒定律可得mv0=(M+m)v,解得子弹打入木块后子弹和木块的
共同速度为v=
0

1
W= Mv2-0=22.5

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。

A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。

同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。

A 、B 均视为质点,取重力加速度210m/s g =。

求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。

的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。

A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。

现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。

动量守恒常见模型习题

动量守恒常见模型习题

动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。

(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.<③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞\如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.练习题:1、甲乙两球在水平光滑轨道上同方向运动,已知它们的动量分别是P1=5kg .m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种()!A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2.2、如图所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况()A.甲球速度为零,乙球速度不为零B.两球速度都不为零C.乙球速度为零,甲球速度不为零D.两球都以各自原来的速率反向运动—A HO/OBLP}2L3、有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失.碰后B运动的轨迹为OD曲线,如图所示.(1)已知滑块质量为m,碰撞时间为t ,求碰撞过程中A对B平均冲力的大小.(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道).a.分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;b.在OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45°.求A通过M点时的水平分速度和竖直分速度.@4、如图所示,在同一竖直面上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。

动量守恒定律常见模型归类

动量守恒定律常见模型归类

m l2 L M m
Байду номын сангаас
l 2 l1
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
(1)射入类 特点:在某一方向上动量守恒,如子弹有初 速度而木块无初速度,碰撞时间非常短,子弹 射入木块后二者以相同速度一起运动。 (2)射穿类 特点:在某一方向动量守恒,子弹有初速度, 木块有或无初速度,击穿时间很短,击穿后二 者分别以某一速度运动。
动量守恒定律常见模型归类 模型一 —— 人船模型
【例1】质量为m的人站在质量为M ,长 为L的静止小船的右端,小船的左端靠在 岸边。当他向左走到船的左端时,船左 端离岸多远?
动量守恒定律常见模型归类
解:先画出示意图。人、船系统动量守恒,总动量 始终为零,所以人、船动量大小始终相等。 从图中可以看出,人、船的位移大小之和等于 L 。设 人、船位移大小分别为l1、l2 ,则: mv1=Mv2 两边同乘时间t ,有 m· l1 = M· l2 ………… ① 而 l1 +l2 = L ………… ② 联立①②式,解得
动量守恒定律常见模型归类 子弹打木块模型特征
模型特征: (1)系统合力为零,因此动量守恒; ( 2 )系统初动量不为零(一般为一静一动),末动 量也不为零; (3)子弹没有穿出木块时,子弹和木块两者发生的 相对位移等于子弹射入的深度;子弹穿出木块时,子 弹和木块两者发生的相对位移为木块的宽度。 (4)系统因摩擦产生的热量等于滑动摩擦力与两种 物体相对位移的乘积,且等于损失的机械能,即:
Q f s E
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
【例 2】设质量为 m 的子弹以初速度 v0 射向 静止在光滑水平面上的质量为M的木块,并 留在木块中不再射出,子弹钻入木块深度为 d 。求木块对子弹的平均阻力的大小和该过 程中木块前进的距离。

动量守恒几种模型

动量守恒几种模型
“动量守恒”中的经典模型 动量守恒”
一、人船模型 例1 在平静的湖面上停泊着一条长为L,质量为M的 在平静的湖面上停泊着一条长为L,质量为M 船,如果有一质各为多少?
二、子弹打木块模型 例2 如图4所示,质量为M的木块放在光滑的水平面上,质量 如图4所示,质量为M 为m的子弹以初速度 水平射向木块,设木块没有被射穿且 子弹受到的阻力f 子弹受到的阻力f恒定,求木块最终的速度。
1. 如图11所示,带有光滑的半径为R的圆弧轨道的滑块静止在光滑的水 如图11所示,带有光滑的半径为R 平面上,此滑块的质量为M,一个质量为m的小球静止从A 平面上,此滑块的质量为M,一个质量为m的小球静止从A点释放,当小 球从滑块B 球从滑块B处水平飞出时,求滑块的动能。
三、弹性球正碰模型
例3 已知A、B两个弹性小球,质量分别 为, 已知A B物体静止在光滑的平面上,A以初速度 与B 物体静止在光滑的平面上,A 物体发生正碰,两物体粘在一起,求两物体 的速度。
四、平射炮反冲模型 例4 光滑的水平面上静止一辆质量为M的炮车,当 光滑的水平面上静止一辆质量为M 炮车水平发射一枚质量为m 炮车水平发射一枚质量为m的炮弹,炮弹出的速度 为 ,求炮弹和炮车的动能各为多少?

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。

2如图所示,滑块和小球的质量分别为M 、m 。

滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。

开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,下列说法正确的是( )。

A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。

高中物理-动量守恒定律常见模型

高中物理-动量守恒定律常见模型

§动量守恒定律常见模型子弹打击木块类模型例题1:设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,设木块对子弹的阻力恒为f,求:(1)木块至少多长子弹才不会穿出?(2)子弹在木块中运动了多长时间?变式:若不固定木块时,子弹穿透木块后的速度为v 0/3,现固定木块,其它条件相同,则子弹穿过木块时的而速度为多少?例题2:如图质量为M 的模板B 静止在光滑的水平面上,一质量为m 的长度可忽略的小木块A 以速度v 0水平地沿模板的表面滑行,已知小木块与木板间的动摩擦因数为µ,求:(1)木板至少多长小木块才不会掉下来?(2)小木块在木板上滑行了多长时间?拓展1:上题中,如果已知木板长为L ,(端点为A 、B ,中点为O ),问v 0在什么范围内才能使小木块滑到OB 之间相对木块静止?v 0拓展2:如图所示,一辆质量m=2kg 的平板车左端放有质量M=3kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0。

4。

开始时平板车和滑块共同以2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短、且碰撞后平板车速度大小保持不变,但方向与原来相反。

平板车足够长,以至滑块不会滑出平板车右端(g=10m/s 2)。

求:(1)平板车第一次与墙壁碰撞后想做运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度。

(3)为使滑块始终不会滑到平板车右端,平板车至少多长?拓展3:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B 。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0。

若两导体棒在运动中始终不接触,求: (1)在运动中产生的较耳热最多是多少?(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?人船模型动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。

滑块木板模型(原卷版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习

滑块木板模型(原卷版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习

动量守恒的十种模型解读和针对性训练滑块木板模型模型解读1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能。

(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大。

3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统。

(2)求时间:根据动量定理求解,研究对象为一个物体。

(3)求系统产生的内能或相对位移:根据能量守恒定律Q=fΔx或Q=E初-E末,研究对象为一个系统。

【方法归纳】. “子弹打木块”(“滑块—木板”)模型,采用动量守恒定律、动能定理或能量守恒定律列方程解答。

滑块木板模型的位移关系:滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,二者位移之差等于板长。

若滑块和木板反向运动,二者位移之和等于板长。

【典例精析】【典例】(2024·广东广州校考)如图,长为L的矩形长木板静置于光滑水平面上,一质量为m 的滑块以水平向右的初速度v0滑上木板左端。

若木板固定,则滑块离开木板时的速度大小为v03;若木板不固定,则滑块恰好不离开木板。

滑块可视为质点,重力加速度大小为g。

求:(1)滑块与木板间的动摩擦因数μ;(2)木板的质量M ;(3)两种情况下,滑块从木板左端滑到右端的过程中,摩擦力对滑块的冲量大小之比I 1∶I 2。

【针对性训练】1.. (2024年5月武汉三模)一块质量为M 、长为l 的长木板A 静止放在光滑的水平面上,质量为m 的物体B (可视为质点)以初速度v 0从左端滑上长木板 A 的上表面并从右端滑下,该过程中,物体B 的动能减少量为,长木板A 的动能增加量为,A 、B 间因摩擦产生的热量为Q ,下列说法正确的是( )A. A 、B 组成的系统动量、机械能均守恒B. ,,Q 的值可能为,,C. ,,Q 的值可能为,,D. 若增大v 0和长木板A 的质量M ,B 一定会从长木板A 的右端滑下,且Q 将增大.2 .如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板质量大于物块质量,t =0时两者从图中位置以相同的水平速度v 0向右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物块一直未离开木板,则关于物块运动的速度v 随时间t 变化的图像可能正确的是( )3.(10分)(2024年4月安徽安庆示范高中联考)如图所示,一质量为M =4kg 的木板静止在水平面上,木板上距离其左端点为L =25m 处放置一个质量为m =1kg 的物块(视为质点),物块与木板之间的动摩擦因数为μ1=0.3。

动量守恒定律中的典型模型

动量守恒定律中的典型模型

动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。

一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。

例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。

设木块对子弹的阻力F恒定。

求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。

两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。

求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。

则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。

【高考物理】动量守恒定律10个模型及针对训练题(教师版)

【高考物理】动量守恒定律10个模型及针对训练题(教师版)

【高考物理】动量守恒定律 10个模型及针对训练题(教师版)动量守恒定律是自然界中最普遍、最基本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。

通过对最新高考题和模拟题研究,可归纳出命题的十种模型。

一.碰撞模型【模型解读】碰撞的特点是:在碰撞的瞬间,相互作用力很大,作用时间很短,作用瞬间位移为零,碰撞前后系统的动量守恒。

无机械能损失的弹性碰撞,碰撞后系统的动能之和等于碰撞前系统动能之和,碰撞后合为一体的完全非弹性碰撞,机械能损失最大。

例1. 如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间。

A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态。

现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞。

设物体间的碰撞都是弹性的。

如果m >M ,第一次碰撞后A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后A 停止,C 以A 的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况。

第一次碰撞后,A 反向运动与B 发生碰撞后,A 的速度v A2,B 的速度v B1, 同理 v A 2=m M m M-+ v A 1= 02)(v Mm M m +- A 只与B 、C 各发生一次碰撞时有,v A 2≤v C 1 解得m 2+4mM -M 2≥0……(6)即m ≥(5-2)M ,舍弃m ≤-(5-2)M ) 则(5-2)M ≤m <M 。

【点评】解答时需要对m>M , m>M ,m>M 的情况进行讨论,得出可能的情况。

对于弹性碰撞问题,需要运用动量守恒定律和机械能守恒定律列出相关方程联立解得。

对于三体各发生一次碰撞,要通过分析得出两个物体碰撞后,两物体速度需要满足的条件。

针对训练题1.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m 。

动量守恒常见模型

动量守恒常见模型

动量守恒常见模型1.子弹打木块类问题例1.设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理:①对木块用动能定理:②①、②相减得:总结:①对于这类型问题,系统的机械能不守恒,但是动量守恒②若,则s2<<d。

木块的位移很小,在处理问题时,可以忽略M的位移。

2.人船模型例2.质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?解析:先画出示意图。

人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。

从图中可以看出,人、船的位移大小之和等于L。

设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L,∴总结:做这类题目,首先要画好示意图,要非凡注重两个物体相对于地面的移动方向和两个物体位移大小之间的关系。

3.相对滑动类型(包含弹簧类问题)例3.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m <M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B 开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(M m)v ①所以v= v0方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,则由动量守恒定律得:Mv0-mv0=Mv′ ①对板车应用动能定理得:-μmg s= mv′2/2- mv02/2②联立①②解得:s= v02总结:对于这类型的问题,一般情况下比较难,关键在于应用牛顿第二定律分析出物体的运动情况。

模型7子弹打木块模型(解析版)-动量守恒的十种模型解读和针对性训练

模型7子弹打木块模型(解析版)-动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练模型7 子弹打木块模型模型解读子弹打木块模型,,一般要用到动量守恒,动量定理,动能定理及动力学等规律,综合性强,能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型,。

两种情景情景1 子弹嵌入木块中,两者速度相等,类似于完全非弹性碰撞,机械能损失最多。

情景2 子弹穿透木块,从木块中飞出,类似于非完全弹性碰撞,机械能有损失,损失的机械能等于子弹与木块之间作用力乘以L。

【典例精析】【典例】. (2024山西运城3月质检)如图所示,AOB是光滑水平轨道,BC是半径为R的光滑的14固定圆弧轨道,两轨道恰好相切。

质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右射入长为L木块内,恰好没穿出木块,然后与木块一起继续运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点)。

求:(1)子弹射入木块前的速度;(2)子弹打入木块过程中产生的热量Q;(3)若每当小木块返回到O点或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【参考答案】(1;(2)()M M m gR Q m+=(3)92R m M M m +æöç÷+èø【名师解析】(1)第一颗子弹射入木块的过程,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得()01mv m M v =+系统由O 到C 的运动过程中机械能守恒,由机械能守恒定律得()()2112m M v m M gR +=+由以上两式解得0v =(2)由()22011122Q mv M m v =-+得()M M m gRQ m+=(3)由动量守恒定律可知,第2,4,6…颗子弹射入木块后,木块的速度为0,第1,3,5…颗子弹射入后,木块运动。

当第9颗子弹射入木块时,以子弹初速度方向为正方向,由动量守恒定律得()099mv m M v =+设此后木块沿圆弧上升的最大高度为H ,由机械能守恒得()()291992m M v m M gH +=+由以上各式可得29m M H R M m +æö=ç÷+èø【针对性训练】1. (2024江苏镇江质检)一木块静止在光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2cm 后相对于木块静止,同一时间内木块被带动前移了1cm ,则子弹损失的动能、木块获得动能之比为( )A. 3:2B. 3:1C. 2:1D. 2:3【参考答案】B【名师解析】在运动的过程中,子弹相对运动的位移12cmx =木块向前运动位移为21cmx =子弹的位移为123cmx x x =+=根据动能定理得,对子弹有k1fx E -=D 子弹损失的动能大小为k1E fxD =对于木块,有2k2fx E =D 木块获得动能k22E fx =则子弹损失的动能、木块获得动能之比为k1k 2:3:1E E D =故选B 。

弹性碰撞模型(解析版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习

弹性碰撞模型(解析版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习

动量守恒的八种模型解读和针对性训练弹性碰撞模型模型解读1.碰撞过程的四个特点(1)时间短:在碰撞现象中,相互作用的时间很短。

(2)相互作用力大:碰撞过程中,相互作用力先急剧增大,后急剧减小,平均作用力很大。

(3)位移小:碰撞过程是在一瞬间发生的,时间极短,在物体发生碰撞的瞬间,可忽略物体的位移,认为物体在碰撞前后仍在同一位置。

(4)满足动量守恒的条件:系统的内力远远大于外力,所以即使系统所受合外力不为零,外力也可以忽略,系统的总动量守恒。

(5).速度要符合实际(i)如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。

碰撞后,原来在前的物体的速度一定增大,且原来在前的物体的速度大于或等于原来在后的物体的速度v′前≥v′后。

(ii)如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

若碰后沿同向运动,则前面物体的速度大于或等于后面物体的速度,即v′前≥v′后。

2. 动动弹性碰撞已知两个刚性小球质量分别是m1、m2,m1v1+m2v2=m1v1’+m2v2’,1 2m1v21+12m2v22=12m2v’22+12m乙v2乙,3. 一动一静"弹性碰撞模型如图所示,已知A、B两个刚性小球质量分别是m1、m2,小球B静止在光滑水平面上,A以初速度v0与小球B发生弹性碰撞,取小球A初速度v0的方向为正方向,因发生的是弹性碰撞,碰撞前后系统动量守恒、动能不变,有m1v0=m1v1+m2v21 2m1v20=12m1v21+12m2v22联立解得v1=(m1―m2)v0m1+m2,v2=2m1v0m1+m2讨论:(1)若m1>m2,则0<v1<v0、v2>v0,物理意义:入射小球质量大于被碰小球质量,则入射小球碰后仍沿原方向运动但速度变小,被碰小球的速度大于入射小球碰前的速度。

(2)若m1=m2,则v1=0、v2=v0,物理意义:入射小球与被碰小球质量相等,则碰后两球交换速度。

几种常见的动量守恒模型

几种常见的动量守恒模型

习题1:如图所示,质量为m的小物体B连着轻弹簧静 止于光滑水平面上,质量为2m的小物体A以速度v0向右运 动,则 (1)当弹簧被压缩到最短时,弹性势能Ep为多大? (2)若小物体B右侧固定一挡板,在小物体A与弹簧 分离前使小物体B与挡板发生无机械能损失的碰撞,并在 碰撞后立即将挡板撤去,则碰撞前小物体B的速度为多大, 方可使弹性势能最大值为2.5Ep? A
m M L
习题2:如图所示,总质量为M的气球下端悬 着质量为m的人而静止于高度为h的空中,欲使人 能沿着绳安全着地,人下方的绳至少应为多长?
M m h
四、弹簧弹力联系的“两体模型”
注意:状态的把握 由于弹簧的弹力随形变量变化,弹簧 弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动 量关系”和“能量关系”分析求解。复杂 的运动过程不容易明确,特殊的状态必须 把握:弹簧最长(短)时两体的速度相同; 弹簧自由时两体的速度最大(小)。
1、 ab、cd作什么样的运动? 2、 ab、cd的最终速度为多少? 3、回路中产生的热量共有多少?
总结:解碰撞类的动量守恒注意: 1、规律的应用: 动量守恒和能量守恒的综合应用。 2、注意三个制约因素: 动量守恒,能量不增加,运动要合理。 3、会情境迁移:
能把题目中的新的情境转化为自己熟悉 的类型。
A. pA ' 6kgm/s
B. p A ' 3kgm/ s C. pA ' 2kgm/ s D. pA ' 4kgm/ s
pB ' 6kgm/s
pB ' 9kgm/ s
pB ' 14kgm/ s
pB ' 17kgm/ s
例3. 如图所示,光滑水平面上质量为m1=2kg的物
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒常见模型练习班级:__________ 座号:_______ 姓名:_______________一、弹性碰撞1.如图,一条滑道由一段半径R =0.8 m 的14圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2).(1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′;(2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数μ的大小为多少/二、非弹性碰撞2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s ,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ;(2)小球A 与小球B 碰撞前的速度v 0的大小.'三、完全非弹性碰撞 3.(2011·高考天津卷)如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小.1、碰撞)2、爆炸4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。

求:(1) v0的大小(2)爆炸过程炮弹所增加的动能!5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动()A.一定沿v0的方向飞去B.一定沿v0的反方向飞去C.可能做自由落体运动D.以上说法都不对3、反冲:6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v27.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上/8.(双选)光滑水平地面上,A、B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时—A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等9.10.一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f.试求从木块开始运动到子弹与木块相对静止的过程中:;(1)子弹、木块相对静止时的速度v(2)子弹、木块发生的位移s1、s2以及子弹打进木块的深度l相分别为多少(3)系统损失的机械能、系统增加的内能分别为多少|5、子弹射木块模型4、弹簧模型!11.如图所示,一大小可忽略不计、质量为 m 1的小物体放在质量为 m 2 的长木板的左端,长木板放在光滑的水平面上.现让 m 1 获得向右的速度 v 0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ.求长木板的长度至少是多少12.如图 所示,长为 l 、质量为 M 的小船停在静水中,一个质量为 m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少 /(13.(2013·龙山中学高三月考)如图所示,有光滑弧形轨道的小车静止于光滑的水平面上,其总质量为M ,有一质量也为M 的铁块以水平速度v 沿轨道的水平部分滑上小车.若轨道足够高,铁块不会滑出,则铁块沿圆弧形轨道上升的最大高度为 14.(2011·高考海南卷改编)一质量为2m 的物体P 静止于光滑水平地8、只有水平方向动量守恒7、人船模型6、板块模型面上,其截面如图所示.图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h .重力加速度为g .求木块在ab 段受到的摩擦力f15.(单选)一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统 A .动量守恒,机械能守恒 B .动量不守恒,机械能守恒 C .动量守恒,机械能不守恒D .无法判定动量、机械能是否守恒16.(单选)如图所示,A 、B 两个木块用轻弹簧相连接,它们静止在光滑水平面上,A 和B 的质量分别是99m 和100m ,一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在以后的过程中弹簧弹性势能的最大值为 17.(2010 年湛江二模)如图所示,固定在地面上的光滑圆弧面与车 C 的上表面平滑相接,在圆弧面上有一个滑块A ,其质量为m A =2kg ,在距车的水平面高h =1.25 m 处由静止下滑,车 C 的质量为m C =6kg ,在车C 的左端有一个质量m B =2kg 的滑块B ,滑块A 与B 均可看做质点,滑块A 与B 碰撞后黏合在一起共同运动,最终没有从车C 上滑出,已知滑块 A 、B 与车C 的动摩擦因数均为μ=,车 C 与水平地面的摩擦忽略不计.取 g =10 m/s 2.求: (1)滑块A 滑到圆弧面末端时的速度大小. 【(2)滑块A 与B 碰撞后瞬间的共同速度的大小. (3)车C 的最短长度.—>动量守恒常见模型练习(参考答案),1、解:(1)设A 与B 相碰前的速度为v A ,A 从圆弧轨道上滑下时机械能守恒,有 12mv 2A =mgR ①A 与B 相碰时,动量、机械能守恒 mv A =mv A ′+mv B ′② 12mv 2A =12mv A ′2+12mv B ′2③ 由①②③式得v A ′ =0,v B ′=4 m/s.(2)B 碰撞后到达N 点时速度为0,由动能定理得-fL =0-12mv B ′2⑤ 其中f =μmg ⑥ ?由⑤⑥得μ=.2.解:(1)碰撞结束后小球A 做平抛运动h =12gt 2 s =v A t解得v A =3 m/s.(2)两球碰撞前后动量守恒,有 Mv 0=mv B +Mv A 解得v 0=6 m/s.3.解析:(1)粘合后的两球飞出轨道后做平抛运动,有 :2R =12gt 2 解得t =2R g .(2)设球A 的质量为m ,碰撞前速度大小为v 1,由机械能守恒定律知12mv 2=12mv 21+2mgR设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知 mv 1=2mv 2飞出轨道后做平抛运动,有2R =v 2t联立以上各式得v =22gR . 4.解:(1)爆炸过程动量守恒 【210)(v m M mv Mv --= 解得:s m v /100= (2)增加的动能J Mv v m M mv E k 270021)(2121203221=--+=∆ 5.C6.解:设小孩的运动方向为正方向. 小孩跳离船的过程,由动量守恒定律得mv 1-Mv 2=0解得:v 2=1.5m/s 7. |提示:共mv mv 2=p E mv mv +⨯=2222121共 10.解:(1)由动量守恒得mv 0=(M +m )v …(2分)子弹与木块的共同速度v =mM +m v 0.(1分)(2)对子弹利用动能定理得-fs 1=12mv 2-12mv 20①(2分)所以s 1=Mm M +2m v 202f M +m 2.(1分)同理对木块有:fs 2=12Mv 2②(2分) &故木块发生的位移为s 2=Mm 2v 202f M +m2(1分)子弹打进木块的深度为:l 相=s 1-s 2=Mmv 202f M +m.③(2分)(3)系统损失的机械能ΔE k =12mv 20-12(M +m )v 2=Mmv 202M +m④(2分)系统增加的内能:Q =ΔE k =Mmv 202M +m.(2分)11.解:设共同速度的大小为v ,长木板的长度为L ,由动量守恒定律有m 1v 0=(m 1+m 2)v ① 由能的转化和守恒定律有 ¥ 12m 1v 20-12(m 1+m 2)v 2=μm 1gL ② 由①②式联立解得L =m 2v 202μm 1+m 2g.12.解:系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则 mv 2-Mv 1=0 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t =0,即 ms 2-Ms 1=0, 而s 1+s 2=L解得:L M m m S +=1,L Mm MS +=213.解析:选A.由水平方向动量守恒定律得Mv =(M +M )v ′,v ′=v 2①由机械能守恒定律得 12Mv 2=12×(2M )v ′2+Mgh ②由①②联立解得h =v 24g .14.解析:(1)从开始到木块到达最大高度过程:由动量守恒:mv 0=3mv 1由能的转化及守恒:12mv 20=12(3m )v 21+mgh +fL解得:f =mv 20-3mgh 3L . 15.B16.A17.解:(1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律有m A gh =12m A v 21代入数据解得v 1=2gh =5 m/s.(2)设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,有 m A v 1=(m A +m B )v 2代入数据解得v 2=2.5 m/s. (3)设车C 的最短长度为L ,滑块A 与B 最终没有从车C 上滑出,三者最终速度相同令其为v 3,根据动量守恒定律有(m A +m B )v 2=(m A +m B +m C )v 3 ① 根据能量守恒定律有μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 23 ② 联立① ② 式代入数据解得L = m.。

相关文档
最新文档