中南大学数据结构与算法第5章数组和广义表课后作业答案
第五章 数组和广义表

第五章数组和广义表一.选择题1.在二维数组A 中引用A[i,j]的时间_________。
A.与i、j的大小有关B.与i、j的大小无关C.与i的大小有关,与j的大小无关D.与i的大小无关,与j的大小有关2.在稀疏矩阵的带行指针向量的链接存储中,每一行单链表中的结点都具有相同的________。
A.行号 B.列号 C.元素值 D.地址3.二维数组A 按行顺序存储,其中每个元素占1个存储单元。
若 A[1][1]的存储地址为420, A[3][3]的存储地址为446,则A[5][5]的存储地址为_______。
A.470 B.471 C.472 D. 4734.在稀疏矩阵的十字链接存储中,每个列单链表中的结点都具有相同的_____。
A.行号 B.列号 C.元素值 D.地址5.下面的说法中,不正确的是________。
A.对称矩阵中只须存放包括主对角线元素在内的下(或上)三角部分的元素即可B.对角矩阵中只须存放的非零元素即可C.稀疏矩阵中值为零的元素较多,因此可以采用三元组表方法存储D.稀疏矩阵中大量值为零的元素分布有规律,因此可以采用三元组表方法存储6.对一些特殊矩阵采用压缩存储的目的主要是为了________。
A.表达变得简单 B.对矩阵元素的存取变得简单C.去掉矩阵中的多余元素 D.减少不必要的存储空间的开销7.若将n 阶对称矩阵 A 按照行序为主序方式将包括主对角线元素在内的下三角形的所有元素依次存放在一个一维数组 B 中,则该对称矩阵在 B 中占用了________个数组元素。
A.n2 B.n*(n-1) C.n*(n+1)/2 D.n*(n-1)8. 稀疏矩阵的三元组顺序表表示的一个三元组中不包括________。
A. 行号B.列号C.元素值D.元素总数9.稀疏矩阵一般的压缩存储方法有两种,即________。
A.二维数组和三维数组 B.三元组和散列C. 三元组和十字链表 D.散列和十字链表10.有一个 10 阶对称矩阵 A,采用压缩存储方式(以行序为主存储,且A[0 Ⅱ0]=1),则A[8][5]的地址是________。
习题5答案 数组与广义表

习题5 数组和广义表一、选择题1.设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为()。
A. 13B. 33C. 18D. 402. 有一个二维数组A[1:6,0:7] 每个数组元素用相邻的6个字节存储,存储器按字节编址,那么这个数组的体积是(①)个字节。
假设存储数组元素A[1,0]的第一个字节的地址是0,则存储数组A的最后一个元素的第一个字节的地址是(②)。
若按行存储,则A[2,4]的第一个字节的地址是(③)。
若按列存储,则A[5,7]的第一个字节的地址是(④)。
就一般情况而言,当(⑤)时,按行存储的A[I,J]地址与按列存储的A[J,I]地址相等。
供选择的答案:①-④: A.12 B. 66 C. 72 D. 96 E. 114 F. 120G. 156 H. 234 I. 276 J. 282 K. 283 L. 288⑤: A.行与列的上界相同 B. 行与列的下界相同C. 行与列的上、下界都相同D. 行的元素个数与列的元素个数相同3. 设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为( )。
A. BA+141B. BA+180C. BA+222D. BA+2254. 假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=()。
A. 808B. 818C. 1010D. 10205. 数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是( )。
A. 1175B. 1180C. 1205D. 12106. 有一个二维数组A[0:8,1:5],每个数组元素用相邻的4个字节存储,存储器按字节编址,假设存储数组元素A[0,1]的第一个字节的地址是0,存储数组A的最后一个元素的第一个字节的地址是(①)。
数据结构(数组和广义表)习题与答案

1、以行序优先顺序存储数组A[5][5];假定A[0][0]的地址为1000, 每个元素占4个字节,下标变量A[4][3]的地址是____。
A.1069B.1092C.1023D.1046正确答案:B2、数组a[1..6][1..5] (无0行0列)以列序优先顺序存储,第一个元素a[1][1]的地址为1000,每个元素占2个存储单元,则a[3][4]的地址是____。
A.1040B.1026C.1046D.1038正确答案:A3、设有一个5行4列的矩阵A,采用行序优先存储方式,A[0][0]为第一个元素,其存储地址为1000,A[2][2]的地址为1040,则A[3][0]的地址为_________。
A.1048B.1024C.1096D.1060正确答案:A4、设有一个10行10列的矩阵A,采用行序优先存储方式,存储全部数据需要400个字节的空间。
如果A[0][0]为第一个元素,其存储地址为1000,则A[3][6]的地址为_________。
A.1036B.1144C.1014D.10565、设有一个10行10列的矩阵A,采用行序优先存储方式。
如果A[0][0]为第一个元素,其存储地址为1000,A[2][3]的存储地址为1069,则存储一个元素需要的单元数是_________。
A.4B.1C.2D.3正确答案:D6、不能够对数据元素进行随机访问的物理结构是_________。
A.三元组顺序表B.对称矩阵的压缩存储C.三对角矩阵的压缩存储D.数组的顺序存储正确答案:A7、对特殊矩阵采用压缩存储的目的主要是_________。
A.表达变得简单B.去掉矩阵中的多余元素C.对矩阵元素的存储变得简单D.减少不必要的存储空间正确答案:D8、对n*n的对称矩阵进行压缩存储,需要保存的数据元素的个数是_________。
A.nB.n(n+1)/2C.n2D.n(n+1)9、设10*10的对称矩阵下三角保存SA[1..55]中,其中A[1][1]保存在SA[1]中,A[5][3] 保存在SA[k]中,这里k等于_________。
完整word版数据结构数组和广义表习题及答案

习题五数组和广义表一、单项选择题1.常对数组进行的两种基本操作是()A.建立与删除B. 索引与修改C. 查找与修改D. 查找与索引2.对于C语言的二维数组DataType A[m][n],每个数据元素占K个存储单元,二维数组中任意元素a[i,j] 的存储位置可由( )式确定.A.Loc[i,j]=A[m,n]+[(n+1)*i+j]*kB.Loc[i,j]=loc[0,0]+[(m+n)*i+j]*kC.Loc[i,j]=loc[0,0]+[(n+1)*i+j]*kD.Loc[i,j]=[(n+1)*i+j]*k3.稀疏矩阵的压缩存储方法是只存储 ( )A.非零元素B. 三元祖(i,j, aij)C. aijD. i,j4. 数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是( )。
A. 1175B. 1180C. 1205D. 12105. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是()。
A. i(i-1)/2+jB. j(j-1)/2+iC. i(j-i)/2+1D. j(i-1)/2+16. 用数组r存储静态链表,结点的next域指向后继,工作指针j指向链中结点,使j 沿链移动的操作为( )。
A. j=r[j].nextB. j=j+1C. j=j->nextD. j=r[j]-> next7. 对稀疏矩阵进行压缩存储目的是()。
A.便于进行矩阵运算 B.便于输入和输出C.节省存储空间 D.降低运算的时间复杂度8. 已知广义表LS=((a,b,c),(d,e,f)),运用head和tail函数取出LS中原子e的运算是( )。
A. head(tail(LS))B. tail(head(LS))C. head(tail(head(tail(LS)))D. head(tail(tail(head(LS))))9. 广义表((a,b,c,d))的表头是(),表尾是()。
数据结构(c语言版)题集答案——第五章_数组和广义表

第五章数组和广义表5.18void RSh(int A[n],int k)//把数组A的元素循环右移k位,只用一个辅助存储空间{for(i=1;i<=k;i++)if(n%i==0&&k%i==0) p=i;//求n和k的最大公约数pfor(i=0;i{j=i;l=(i+n-k)%n;temp=A[i];while(l!=i){A[j]=A[l];j=l;l=(j+n-k)%n;}// 循环右移一步A[j]=temp;}//for}//RSh分析:要把A的元素循环右移k位,则A[0]移至A[k],A[k]移至A[2k]......直到最终回到A[0].然而这并没有全部解决问题,因为有可能有的元素在此过程中始终没有被访问过,而是被跳了过去.分析可知,当n和k的最大公约数为p时,只要分别以A[0],A[1],...A[p-1]为起点执行上述算法,就可以保证每一个元素都被且仅被右移一次,从而满足题目要求.也就是说,A的所有元素分别处在p个"循环链"上面.举例如下:n=15,k=6,则p=3.第一条链:A[0]->A[6],A[6]->A[12],A[12]->A[3],A[3]->A[9],A[9]->A[0].第二条链:A[1]->A[7],A[7]->A[13],A[13]->A[4],A[4]->A[10],A[10]->A[1].第三条链:A[2]->A[8],A[8]->A[14],A[14]->A[5],A[5]->A[11],A[11]->A[2].恰好使所有元素都右移一次.虽然未经数学证明,但作者相信上述规律应该是正确的.5.19void Get_Saddle(int A[m][n])//求矩阵A中的马鞍点{for(i=0;i{for(min=A[i][0],j=0;jif(A[i][j]for(j=0;jif(A[i][j]==min) //判断这个(些)最小值是否鞍点{for(flag=1,k=0;kif(minif(flag)printf("Found a saddle element!\nA[%d][%d]=%d",i,j,A[i][j]);}}//for}//Get_Saddle5.20int exps[MAXSIZE]; //exps数组用于存储某一项的各变元的指数int maxm,n; //maxm指示变元总数,n指示一个变元的最高指数void Print_Poly_Descend(int *a,int m)//按降幂顺序输出m元多项式的项,各项的系数已经按照题目要求存储于m维数组中,数组的头指针为a{maxm=m;for(i=m*n;i>=0;i--) //按降幂次序,可能出现的最高项次数为mnGet_All(a,m,i,0); //确定并输出所有次数为i的项}//Print_Poly_Descendvoid Get_All(int *a,int m,int i,int seq)//递归求出所有和为i的m个自然数{if(seq==maxm) Print_Nomial(a,exps); //已经求完时,输出该项else{min=i-(m-1)*n; //当前数不能小于minif(min<0) min=0;max=nfor(j=min;j<=max;j++){exps[seq]=j; //依次取符合条件的数Get_All(a,m-1,i-j,seq+1); //取下一个数}}//elseexps[seq]=0; //返回}//Get_Allvoid Print_Nomial(int *a,int exps[ ])//输出一个项,项的各变元的指数已经存储在数组exps中{pos=0;for(i=0;i{pos*=n;pos+=exps[i];}coef=*(a+pos); //取得该系数coefif(!coef) return; //该项为0时无需输出else if(coef>0) printf("+"); //系数为正时打印加号else if(coef<0) printf("-"); //系数为负时打印减号if(abs(coef)!=1) printf("%d",abs(coef)); //当系数的绝对值不为1时打印系数for(i=0;iif(exps[i]) //打印各变元及其系数{printf("x");printf("%d",i);printf("E");if(exps[i]>1) printf("%d",exp[i]); //系数为1时无需打印}}//Print_Nomial分析:本算法的关键在于如何按照降幂顺序输出各项.这里采用了一个递归函数来找到所有满足和为i的m个自然数作为各变元的指数.只要先取第一个数为j,然后再找到所有满足和为i-j的m-1个自然数就行了.要注意j的取值范围必须使剩余m-1个自然数能够找到,所以不能小于i-(m-1)*maxn,也不能大于i.只要找到了一组符合条件的数,就可以在存储多项式系数的数组中确定对应的项的系数的位置,并且在系数不为0时输出对应的项.5.21void TSMatrix_Add(TSMatrix A,TSMatrix B,TSMatrix &C)//三元组表示的稀疏矩阵加法{C.mu=A.mu;C.nu=A.nu;C.tu=0;pa=1;pb=1;pc=1;for(x=1;x<=A.mu;x++) //对矩阵的每一行进行加法{while(A.data[pa].iwhile(B.data[pb].iwhile(A.data[pa].i==x&&B.data[pb].i==x)//行列值都相等的元素{if(A.data[pa].j==B.data[pb].j){ce=A.data[pa].e+B.data[pb].e;if(ce) //和不为0{C.data[pc].i=x;C.data[pc].j=A.data[pa].j;C.data[pc].e=ce;pa++;pb++;pc++;}}//ifelse if(A.data[pa].j>B.data[pb].j){C.data[pc].i=x;C.data[pc].j=B.data[pb].j;C.data[pc].e=B.data[pb].e;pb++;pc++;}else{C.data[pc].i=x;C.data[pc].j=A.data[pa].j;C.data[pc].e=A.data[pa].epa++;pc++;}}//whilewhile(A.data[pa]==x) //插入A中剩余的元素(第x行){C.data[pc].i=x;C.data[pc].j=A.data[pa].j;C.data[pc].e=A.data[pa].epa++;pc++;}while(B.data[pb]==x) //插入B中剩余的元素(第x行){C.data[pc].i=x;C.data[pc].j=B.data[pb].j;C.data[pc].e=B.data[pb].e;pb++;pc++;}}//forC.tu=pc;}//TSMatrix_Add5.22void TSMatrix_Addto(TSMatrix &A,TSMatrix B)//将三元组矩阵B加到A上{for(i=1;i<=A.tu;i++)A.data[MAXSIZE-A.tu+i]=A.data[i];/把A的所有元素都移到尾部以腾出位置pa=MAXSIZE-A.tu+1;pb=1;pc=1;for(x=1;x<=A.mu;x++) //对矩阵的每一行进行加法{while(A.data[pa].iwhile(B.data[pb].iwhile(A.data[pa].i==x&&B.data[pb].i==x)//行列值都相等的元素{if(A.data[pa].j==B.data[pb].j){ne=A.data[pa].e+B.data[pb].e;if(ne) //和不为0{A.data[pc].i=x;A.data[pc].j=A.data[pa].j;A.data[pc].e=ne;pa++;pb++;pc++;}}//ifelse if(A.data[pa].j>B.data[pb].j){A.data[pc].i=x;A.data[pc].j=B.data[pb].j;A.data[pc].e=B.data[pb].e;pb++;pc++;}else{A.data[pc].i=x;A.data[pc].j=A.data[pa].j;A.data[pc].e=A.data[pa].epa++;pc++;}}//whilewhile(A.data[pa]==x) //插入A中剩余的元素(第x行){A.data[pc].i=x;A.data[pc].j=A.data[pa].j;A.data[pc].e=A.data[pa].epa++;pc++;}while(B.data[pb]==x) //插入B中剩余的元素(第x行){A.data[pc].i=x;A.data[pc].j=B.data[pb].j;A.data[pc].e=B.data[pb].e;pb++;pc++;}}//forA.tu=pc;for(i=A.tu;i}//TSMatrix_Addto5.23typedef struct{int j;int e;} DSElem;typedef struct{DSElem data[MAXSIZE];int cpot[MAXROW];//这个向量存储每一行在二元组中的起始位置int mu,nu,tu;} DSMatrix; //二元组矩阵类型Status DSMatrix_Locate(DSMatrix A,int i,int j,int &e)//求二元组矩阵的元素A[i][j]的值e {for(s=A.cpot[i];sif(s{e=A.data[s];return OK;}return ERROR;}//DSMatrix_Locate5.24typedef struct{int seq; //该元素在以行为主序排列时的序号int e;} SElem;typedef struct{SElem data[MAXSIZE];int mu,nu,tu;} SMatrix; //单下标二元组矩阵类型Status SMatrix_Locate(SMatrix A,int i,int j,int &e)//求单下标二元组矩阵的元素A[i][j]的值e {s=i*A.nu+j+1;p=1;while(A.data[p].seqif(A.data[p].seq==s) //找到了元素A[i][j]{e=A.data[p].e;return OK;}return ERROR;}//SMatrix_Locate5.25typedef enum{0,1} bool;typedef struct{int mu,nu;int elem[MAXSIZE];bool map[mu][nu];} BMMatrix; //用位图表示的矩阵类型void BMMatrix_Add(BMMatrix A,BMMatrix B,BMMatrix &C)//位图矩阵的加法{C.mu=A.mu;C.nu=A.nu;pa=1;pb=1;pc=1;for(i=0;ifor(j=0;j{if(A.map[i][j]&&B.map[i][j]&&(A.elem[pa]+B.elem[pb]))//结果不为0{C.elem[pc]=A.elem[pa]+B.elem[pb];C.map[i][j]=1;pa++;pb++;pc++;}else if(A.map[i][j]&&!B.map[i][j]){C.elem[pc]=A.elem[pa];C.map[i][j]=1;pa++;pc++;}else if(!A.map[i][j]&&B.map[i][j]){C.elem[pc]=B.elem[pb];C.map[i][j]=1;pb++;pc++;}}}//BMMatrix_Add5.26void Print_OLMatrix(OLMatrix A)//以三元组格式输出十字链表表示的矩阵{for(i=0;i{if(A.rhead[i])for(p=A.rhead[i];p;p=p->right) //逐次遍历每一个行链表printf("%d %d %d\n",i,p->j,p->e;}}//Print_OLMatrix5.27void OLMatrix_Add(OLMatrix &A,OLMatrix B)//把十字链表表示的矩阵B加到A上{for(j=1;j<=A.nu;j++) cp[j]=A.chead[j]; //向量cp存储每一列当前最后一个元素的指针for(i=1;i<=A.mu;i++){pa=A.rhead[i];pb=B.rhead[i];pre=NULL;while(pb){if(pa==NULL||pa->j>pb->j) //新插入一个结点{p=(OLNode*)malloc(sizeof(OLNode));if(!pre) A.rhead[i]=p;else pre->right=p;p->right=pa;pre=p;p->i=i;p->j=pb->j;p->e=pb->e; //插入行链表中if(!A.chead[p->j]){A.chead[p->j]=p;p->down=NULL;}else{while(cp[p->j]->down) cp[p->j]=cp[p->j]->down;p->down=cp[p->j]->down;cp[p->j]->down=p;}cp[p->j]=p; //插入列链表中}//ifelse if(pa->jj){pre=pa;pa=pa->right;} //pa右移一步else if(pa->e+pb->e){pa->e+=pb->e;pre=pa;pa=pa->right;pb=pb->right;} //直接相加else{if(!pre) A.rhead[i]=pa->right;else pre->right=pa->right;p=pa;pa=pa->right; //从行链表中删除if(A.chead[p->j]==p)A.chead[p->j]=cp[p->j]=p->down;else cp[p->j]->down=p->down; //从列链表中删除free (p);}//else}//while}//for}//OLMatrix_Add分析:本题的具体思想在课本中有详细的解释说明.5.28void MPList_PianDao(MPList &L)//对广义表存储结构的多元多项式求第一变元的偏导{for(p=L->hp->tp;p&&p->exp;pre=p,p=p->tp){if(p->tag) Mul(p->hp,p->exp);else p->coef*=p->exp; //把指数乘在本结点或其下属结点上p->exp--;}pre->tp=NULL;if(p) free (p); //删除可能存在的常数项}//MPList_PianDaovoid Mul(MPList &L,int x)//递归算法,对多元多项式L乘以x{for(p=L;p;p=p->tp){if(!p->tag) p->coef*=x;else Mul(p->hp,x);}}//Mul5.29void MPList_Add(MPList A,MPList B,MPList &C)//广义表存储结构的多项式相加的递归算法{C=(MPLNode*)malloc(sizeof(MPLNode)); if(!A->tag&&!B->tag) //原子项,可直接相加{C->coef=A->coef+B->coef;if(!C->coef){free(C);C=NULL;}}//ifelse if(A->tag&&B->tag) //两个多项式相加{p=A;q=B;pre=NULL;while(p&&q){if(p->exp==q->exp){C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=p->exp;MPList_Add(A->hp,B->hp,C->hp);pre->tp=C;pre=C;p=p->tp;q=q->tp;}else if(p->exp>q->exp){C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=p->exp;C->hp=A->hp;pre->tp=C;pre=C;p=p->tp;}else{C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=q->exp;C->hp=B->hp;pre->tp=C;pre=C;q=q->tp;}}//whilewhile(p){C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=p->exp;C->hp=p->hp;pre->tp=C;pre=C;p=p->tp;}while(q){C=(MPLNode*)malloc(sizeof(MPLNode));C->exp=q->exp;C->hp=q->hp;pre->tp=C;pre=C;q=q->tp;} //将其同次项分别相加得到新的多项式,原理见第二章多项式相加一题}//else ifelse if(A->tag&&!B->tag) //多项式和常数项相加{x=B->coef;for(p=A;p->tp->tp;p=p->tp);if(p->tp->exp==0) p->tp->coef+=x; //当多项式中含有常数项时,加上常数项if(!p->tp->coef){free(p->tp);p->tp=NULL;}else{q=(MPLNode*)malloc(sizeof(MPLNode));q->coef=x;q->exp=0;q->tag=0;q->tp=NULL;p->tp=q;} //否则新建常数项,下同}//else ifelse{x=A->coef;for(p=B;p->tp->tp;p=p->tp);if(p->tp->exp==0) p->tp->coef+=x;if(!p->tp->coef){free(p->tp);p->tp=NULL;}else{q=(MPLNode*)malloc(sizeof(MPLNode));q->coef=x;q->exp=0;q->tag=0;q->tp=NULL;p->tp=q;}}//else}//MPList_Add5.30int GList_Getdeph(GList L)//求广义表深度的递归算法{if(!L->tag) return 0; //原子深度为0else if(!L) return 1; //空表深度为1m=GList_Getdeph(L->ptr.hp)+1;n=GList_Getdeph(L->ptr.tp);return m>n?m:n;}//GList_Getdeph5.31void GList_Copy(GList A,GList &B)//复制广义表的递归算法{if(!A->tag) //当结点为原子时,直接复制{B->tag=0;B->atom=A->atom;}else //当结点为子表时{B->tag=1;if(A->ptr.hp){B->ptr.hp=malloc(sizeof(GLNode));GList_Copy(A->ptr.hp,B->ptr.hp);} //复制表头if(A->ptr.tp){B->ptr.tp=malloc(sizeof(GLNode));GList_Copy(A->ptr.tp,B->ptr.tp);} //复制表尾}//else}//GList_Copy5.32int GList_Equal(GList A,GList B)//判断广义表A和B是否相等,是则返回1,否则返回0 { //广义表相等可分三种情况:if(!A&&!B) return 1; //空表是相等的if(!A->tag&&!B->tag&&A->atom==B->atom) return 1;//原子的值相等if(A->tag&&B->tag)if(GList_Equal(A->ptr.hp,B->ptr.hp)&&GList_Equal(A->ptr.tp,B->ptr.tp))return 1; //表头表尾都相等return 0;}//GList_Equal5.33void GList_PrintElem(GList A,int layer)//递归输出广义表的原子及其所在层次,layer表示当前层次{if(!A) return;if(!A->tag) printf("%d %d\n",A->atom,layer);else{GList_PrintElem(A->ptr.hp,layer+1);GList_PrintElem(A->ptr.tp,layer); //注意尾表与原表是同一层次}}//GList_PrintElem5.34void GList_Reverse(GList A)//递归逆转广义表A{GLNode *ptr[MAX_SIZE];if(A->tag&&A->ptr.tp) //当A不为原子且表尾非空时才需逆转{for(i=0,p=A;p;p=p->ptr.tp,i++){if(p->ptr.hp) GList_Reverse(p->ptr.hp); //逆转各子表ptr[i]=p->ptr.hp;}for(p=A;p;p=p->ptr.tp) //重新按逆序排列各子表的顺序p->ptr.hp=ptr[--i];}}//GList_Reverse5.35Status Create_GList(GList &L)//根据输入创建广义表L,并返回指针{scanf("%c",&ch);if(ch==' '){L=NULL;scanf("%c",&ch);if(ch!=')') return ERROR;return OK;}L=(GList)malloc(sizeof(GLNode));L->tag=1;if(isalphabet(ch)) //输入是字母{p=(GList)malloc(sizeof(GLNode)); //建原子型表头p->tag=0;p->atom=ch;L->ptr.hp=p;}else if(ch=='(') Create_GList(L->ptr.hp); //建子表型表头else return ERROR;scanf ("%c",&ch);if(ch==')') L->ptr.tp=NULL;else if(ch==',') Create_GList(L->ptr.tp); //建表尾else return ERROR;return OK;}//Create_GList分析:本题思路见书后解答.5.36void GList_PrintList(GList A)//按标准形式输出广义表{if(!A) printf("()"); //空表else if(!A->tag) printf("%d",A->atom);//原子else{printf("(");for(p=A;p;p=p->ptr.tp){GList_PrintList(p->ptr.hp);if(p->ptr.tp) printf(","); //只有当表尾非空时才需要打印逗号}printf(")");}//else}//GList_PrintList5.37void GList_DelElem(GList &A,int x)//从广义表A中删除所有值为x的原子{if(A&&A->ptr.hp){if(A->ptr.hp->tag) GList_DelElem(A->ptr.hp,x);else if(!A->ptr.hp->tag&&A->ptr.hp->atom==x){q=A;A=A->ptr.tp; //删去元素值为x的表头free(q);GList_DelElem(A,x);}}if(A&&A->ptr.tp) GList_DelElem(A->ptr.tp,x);}//GList_DelElem5.39void GList_PrintElem_LOrder(GList A)//按层序输出广义表A中的所有元素{InitQueue(Q);for(p=L;p;p=p->ptr.tp) EnQueue(Q,p);while(!QueueEmpty(Q)){DeQueue(Q,r);if(!r->tag) printf("%d",r->atom);elsefor(r=r->ptr.hp;r;r=r->ptr.tp) EnQueue(Q,r);}//while}//GList_PrintElem_LOrder分析:层序遍历的问题,一般都是借助队列来完成的,每次从队头取出一个元素的同时把它下一层的孩子插入队尾.这是层序遍历的基本思想.。
第5章数组和广义表答案

第5章数组和⼴义表答案第五章答案5.2设有三对⾓矩阵A n×n,将其三条对⾓线上的元素逐⾏的存于数组B[1..3n-2]中,使得B[k]=a ij,求:(1)⽤i,j表⽰k的下标变换公式;(2)⽤k表⽰i、j的下标变换公式。
【解答】(1)k=2(i-1)+j(2) i=[k/3]+1, j=[k/3]+k%3 ([ ]取整,%取余)5.4在稀疏矩阵的快速转置算法5.2中,将计算position[col]的⽅法稍加改动,使算法只占⽤⼀个辅助向量空间。
【解答】算法(⼀)FastTransposeTSMatrix(TSMartrix A, TSMatrix *B){/*把矩阵A转置到B所指向的矩阵中去,矩阵⽤三元组表表⽰*/int col,t,p,q;int position[MAXSIZE];B->len=A.len; B->n=A.m; B->m=A.n;if(B->len>0){position[1]=1;for(t=1;t<=A.len;t++)position[A.data[t].col+1]++; /*position[col]存放第col-1列⾮零元素的个数, 即利⽤pos[col]来记录第col-1列中⾮零元素的个数*/ /*求col列中第⼀个⾮零元素在B.data[ ]的位置,存放在position[col]中*/ for(col=2;col<=A.n;col++)position[col]=position[col]+position[col-1];for(p=1;p{col=A.data[p].col;q=position[col];B->data[q].row=A.data[p].col;B->data[q].col=A.data[p].row;B->data[q].e=A.data[p].e;Position[col]++;}}}算法(⼆)FastTransposeTSMatrix(TSMartrix A, TSMatrix *B){int col,t,p,q;int position[MAXSIZE];B->len=A.len; B->n=A.m; B->m=A.n;if(B->len>0){for(col=1;col<=A.n;col++)position[col]=0;for(t=1;t<=A.len;t++)position[A.data[t].col]++; /*计算每⼀列的⾮零元素的个数*//*从最后⼀列起求每⼀列中第⼀个⾮零元素在B.data[]中的位置,存放在position[col]中*/ for(col=A.n,t=A.len;col>0;col--) { t=t-position[col];position[col]=t+1;}for(p=1;p{col=A.data[p].col;q=position[col];B->data[q].row=A.data[p].col;B->data[q].col=A.data[p].row;B->data[q].e=A.data[p].e;Position[col]++;}}}5.6画出下⾯⼴义表的两种存储结构图⽰:((((a), b)), ((( ), d), (e, f)))【解答】第⼀种存储结构第⼆种存储结构5.7求下列⼴义表运算的结果:(1)HEAD[((a,b),(c,d))]; (a,b) (2)TAIL[((a,b),(c,d))]; ((c,d)) (3)TAIL[HEAD[((a,b),(c,d))]]; (b)(4)HEAD[TAIL[HEAD[((a,b),(c,d))]]]; b(5)TAIL[HEAD[TAIL[((a,b),(c,d))]]]; (d)。
中南大学数据结构与算法第5章数组和广义表课后作业答案

第5章数组与广义表习题练习答案5.1请按行及按列优先顺序列出四维数组A2*3*2*3的所有元素在内存中的存储次序,开始结点为a0000。
解:按行优先的顺序排列时,先变化右边的下标,也就是右到左依次变化,这个四维数组的排列是这样的:(将这个排列分行写出以便与阅读,只要按从左到右的顺序存放就是在内存中的排列位置) a0000a0001a0002a0010a0011a0012a0100a0101a0102a0110a0111a0112a0200a0201a0202a0210a0211a0212a1000a1001a1002a1010a1011a1012a1100a1101a1102a1110a1111a1112a1200a1201a1202a1210a1211a1212按列优先的顺序排列恰恰相反,变化最快的是左边的下标,然后向右变化,所以这个四维数组的排列将是这样的,(这里为了便于阅读,也将其书写为分行形式):a0000a1000a0100a1100a0200a1200a0010a1010a0110a1110a0210a1210a0001a1001a0101a1101a0201a1201a0011a1011a0111a1111a0211a1211a0002a1002a0102a1102a0202a1202a0012a1012a0112a1112a0212a02125.2 给出C语言的三维数组地址计算公式。
解:因为C语言的数组下标下界是0,所以Loc(A mnp)=Loc(A000)+((i*n*p)+k)*d其中Amnp表示三维数组。
Loc(A000)表示数组起始位置。
i、j、k表示当前元素的下标,d表示每个元素所占单元数。
5.3设有三对角矩阵A n*n,将其三条对角线上的元素逐行地存储到向量B[0...3n-3]中,使得B[k]=a ij,求:(1)用i , j 表示k的下标变换公式。
(2)用k 表示i,j 的下标变换公式。
数据结构课后习题(第4-5章)

【课后习题】第4章 串 第5章 数组和广义表网络工程2010级( )班 学号: 姓名:题 号 一 二 三 四 总分 得 分一、填空题(每空1分,共30分)1. 串有三种机内表示方法: 、 和 ,其中前两种属于顺序存储结构,第三种属于 。
2. 若n 为主串长度,m 为子串长度,则串的BF (朴素)匹配算法最坏的情况下需要比较字符的总次数为 ,T(n)= 。
3. 是任意串的子串;任意串S 都是S 本身的子串,除S 本身外,S 的其他子串称为S 的 。
4. 设数组a[1…50, 1…60]的基地址为1000,每个元素占2个存储单元,若以行序为主序顺序存储,则元素a[32,58]的存储地址为 。
5. 对于数组,比较适于采用 结构够进行存储。
6. 广义表的深度是指_______。
7. 将一个100100 A 的三对角矩阵,按行优先存入一维数组B[297]中,A 中元素66,66A 在B 数组中的位置k 为 。
8. 注意:a i,j 的k 为 2(i-1)+j-1,(i=1时j=1,2;1<i<=n 时,j=i-1,i,i+1) 。
9. 称为空串; 称为空白串。
10. 求串T 在主串S 中首次出现的位置的操作是 ,其中 称为目标串, 称为模式。
11. 对称矩阵的下三角元素a[i,j],存放在一维数组V 的元素V[k]中(下标都是从0开始), 12. k 与i ,j 的关系是:k= 。
13. 在n 维数组中每个元素都受到 个条件的约束。
14. 同一数组中的各元素的长度 。
15. 三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 、 和 。
16.稀疏矩阵中有n个非零元素,则其三元组有行。
17.求下列广义表操作的结果:18.(1)GetHead【((a,b),(c,d))】=== ;19.(2)GetHead【GetTail【((a,b),(c,d))】】=== ;20.(3)GetHead【GetTail【GetHead【((a,b),(c,d))】】】=== ;21.(4)GetTail【GetHead【GetTail【((a,b),(c,d))】】】=== ;22.广义表E=(a,(b,E)),则E的长度= ,深度= ;二、判断题(如果正确,在下表对应位置打“√”,否则打“⨯”。
《第5章 数组和广义表》习题解答

}
4.根据下标(script)修改数组元素的操作
操作int Assign(Array& A,int* script,EType e)的作用是,根据下标向量script修改数组A中相应元素的值为e。如果下标合理返回1表示修改成功,否则返回0表示操作失败。
int Assign(Array& A,int* script,EType e)
void Arrayoutput(Array A)
{int s[3],i,len=1;
switch(A.dim)
{
case 1://按一维数组格式输出
for(s[0]=0;s[0]<A.bounds[0];s[0]++) cout<<Value(A,s)<<" ";
cout<<endl;
break;
该存储结构以最右面的下标为主序,左下标优先变化,即下标变化顺序是从左到右。
以二维数组:
为例,其内存结构如图5.2(a)所示。
对于三维数组: (有2页、2行、3列),按右下标为主序的内存结构如图5.2(b)所示。
2.左下标为主序存储的n维数组中的元素a(j0,j1,...,jn-1)的地址计算公式
对于一个已经被定义的二维数组Ab0×b1=(a[i][j])b0×b1,只要给出该数组存放的起始地址LOC(a[0][0])、数组元素的行下标i和列下标j,以及每个元素所占用的存储单元(字节)数L,便可以求得元素a[i][j]在内存中的首地址LOC(a[i][j])。
int Value(Array A,int* script,EType &e)
第5章数组和广义表答案

第5章数组和广义表答案第 5 章数组和广义表一、选择1.设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为( B )。
A. 13B. 33C. 18D. 402. 设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为(B )。
A. BA+141B. BA+180C. BA+222D. BA+2253. 假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=( B )。
A. 808B. 818C. 1010D. 10204. 二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范围从0到9。
从供选择的答案中选出应填入下列关于数组存储叙述中()内的正确答案。
(1)存放A至少需要( E )个字节;(2)A的第8列和第5行共占( A )个字节;(3)若A按行存放,元素A[8,5]的起始地址与A按列存放时的元素( B )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270 E. 540(2)A. 108 B. 114 C. 54 D. 60 E. 150 (3)A. A[8,5] B. A[4,9]C. A[5,8]D. A[0,9]5. 若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(i<="" b="" p="">A. i*(i-1)/2+jB. j*(j-1)/2+iC. i*(i+1)/2+jD. j*(j+1)/2+i6. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是( B )。
数据结构习题及答案与实验指导(数组和广义表)5

第5章数组和广义表本章所讨论的多维数组和广义表是对线性表的推广,其特点是数据元素仍可被视为一个表。
要求熟悉多维数组的逻辑结构、存储结构,广义表的逻辑结构、表示形式,以及矩阵的压缩存储的有关内容。
重点提示:●多维数组的存储方式和存取特点●特殊矩阵的存储●稀疏矩阵的存储●广义表的表示形式5-1 重点难点指导5-1-1 相关术语1.特殊矩阵要点:矩阵中非零元素或零元素的分布有一定规律的矩阵。
2.对称矩阵要点:一种特殊矩阵;n阶方阵的元素满足性质:a ij=a ji(0≤i,j≤n-1)。
3.三角矩阵要点:以主对角线划分,有上三角矩阵和下三角矩阵两种;主对角线以下,不包括主对角线中的元素,均为常数c,称为上三角矩阵;主对角线以上,不包括主对角线中的元素,均为常数c,称为下三角矩阵。
4.对角矩阵要点:非零元素集中在以主对角线为中心的带状区域中,也称带状矩阵。
5.稀疏矩阵要点:矩阵中非零元素的个数远小于矩阵元素总数的矩阵。
6.三元组表要点:是稀疏矩阵的一种存储结构;将稀疏矩阵的非零元素的三元组(行、列和值)按行优先的顺序排列;得到结点均是三元组的线性表。
7.广义表要点:是线性表的推广;是n个元素a1,a2,…,a n的有限序列;其中a i或者是原子或者是广义表;通常记为LS=(a1,a2,…,a n),LS为广义表的名字。
5-1-2 多维数组1.对n维数组逻辑结构的理解n维数组可视为由n-1维数组为元素的线性结构。
举例:一个m行n列的二维数组可视为由m个一维数组为元素组成的线性结构,其中每个一维数组又由n 个单元素组成。
]a ,,a ,[a A A A A a a a a a a a a a Amn in i2i1i m 21mnv m2m12n 22211n 1211 =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=其中2.数组的顺序存储方式(1)行优先顺序——将数组元素按行向量排列,即第i +1行紧接在第i 行后面。
数据结构与算法第5章课后答案

page: 1The Home of jetmambo - 第 5 章树和二叉树第 5 章树和二叉树(1970-01-01) -第 5 章树和二叉树课后习题讲解1. 填空题⑴树是n(n≥0)结点的有限集合,在一棵非空树中,有()个根结点,其余的结点分成m (m>0)个()的集合,每个集合都是根结点的子树。
【解答】有且仅有一个,互不相交⑵树中某结点的子树的个数称为该结点的(),子树的根结点称为该结点的(),该结点称为其子树根结点的()。
【解答】度,孩子,双亲⑶一棵二叉树的第i(i≥1)层最多有()个结点;一棵有n(n>0)个结点的满二叉树共有()个叶子结点和()个非终端结点。
【解答】2i-1,(n+1)/2,(n-1)/2【分析】设满二叉树中叶子结点的个数为n0,度为2的结点个数为n2,由于满二叉树中不存在度为1的结点,所以n=n0+n2;由二叉树的性质n0=n2+1,得n0=(n+1)/2,n2=(n-1)/2。
⑷设高度为h的二叉树上只有度为0和度为2的结点,该二叉树的结点数可能达到的最大值是(),最小值是()。
【解答】2h -1,2h-1【分析】最小结点个数的情况是第1层有1个结点,其他层上都只有2个结点。
⑸深度为k的二叉树中,所含叶子的个数最多为()。
【解答】2k-1【分析】在满二叉树中叶子结点的个数达到最多。
⑹具有100个结点的完全二叉树的叶子结点数为()。
【解答】50【分析】100个结点的完全二叉树中最后一个结点的编号为100,其双亲即最后一个分支结点的编号为50,也就是说,从编号51开始均为叶子。
⑺已知一棵度为3的树有2个度为1的结点,3个度为2的结点,4个度为3的结点。
则该树中有()个叶子结点。
【解答】12【分析】根据二叉树性质3的证明过程,有n0=n2+2n3+1(n0、n2、n3分别为叶子结点、度为2的结点和度为3的结点的个数)。
⑻某二叉树的前序遍历序列是ABCDEFG,中序遍历序列是CBDAFGE,则其后序遍历序列是()。
数据结构 第5章 数组和广义表答案

第五章数组和广义表一、选择题部分答案解释如下。
1. 错误。
对于完全二叉树,用一维数组作存储结构是效率高的(存储密度大)。
4. 错误。
数组是具有相同性质的数据元素的集合,数据元素不仅有值,还有下标。
因此,可以说数祖是元素值和下标构成的偶对的有穷集合。
5. 错误。
数组在维数和界偶确定后,其元素个数已经确定,不能进行插入和删除运算。
6. 错误。
稀疏矩阵转置后,除行列下标及行列数互换外,还必须确定该元素转置后在新三元组中的位置。
8. 错误。
广义表的取表尾运算,是非空广义表除去表头元素,剩余元素组成的表,不可能是原子。
9. 错误。
广义表的表头就是广义表的第一个元素。
只有非空广义表才能取表头。
10. 错误。
广义表中元素可以是原子,也可以是表(包括空表和非空表)。
11. 错误。
广义表的表尾,指去掉表头元素后,剩余元素所组成的表。
三、填空题1. 顺序存储结构2.(1)9572(2)12283.(1)9174(2)87884. 11005. 1164 公式:LOC(a ijk)=LOC(a000)+[v2*v3*(i-c1)+v3*(j-c2)+(k-c3)]*l (l为每个元素所占单元数)6. 2327. 13408. 11969. 第1行第3列10. (1)270 (2)27 (3)2204 11. i(i-1)/2+j (1<=i,j<=n)12. (1)n(n+1)/2 (2)i(i+1)/2 (或j(j+1)/2) (3)i(i-1)/2+j (4)j(j-1)/2+i (1<=i,j<=n)13. 1038 三对角矩阵按行存储:k=2(i-1)+j (1<=i,j<=n)14. 33 (k=i(i-1)/2+j) (1<=i,j<=n)15. 非零元很少(t<<m*n)且分布没有规律 16. 节省存储空间。
17. 上三角矩阵中,主对角线上第r(1≤r≤n) 行有n-r+1个元素,a ij所在行的元素数是j-i+1。
数据结构课后习题(第4-5章)

【课后习题】第4章 串 第5章 数组和广义表网络工程2010级( )班 学号: 姓名:题 号 一 二 三 四 总分 得 分一、填空题(每空1分,共30分)1. 串有三种机内表示方法: 、 和 ,其中前两种属于顺序存储结构,第三种属于 。
2. 若n 为主串长度,m 为子串长度,则串的BF (朴素)匹配算法最坏的情况下需要比较字符的总次数为 ,T(n)= 。
3. 是任意串的子串;任意串S 都是S 本身的子串,除S 本身外,S 的其他子串称为S 的 。
4. 设数组a[1…50, 1…60]的基地址为1000,每个元素占2个存储单元,若以行序为主序顺序存储,则元素a[32,58]的存储地址为 。
5. 对于数组,比较适于采用 结构够进行存储。
6. 广义表的深度是指_______。
7. 将一个100100 A 的三对角矩阵,按行优先存入一维数组B[297]中,A 中元素66,66A 在B 数组中的位置k 为 。
8. 注意:a i,j 的k 为 2(i-1)+j-1,(i=1时j=1,2;1<i<=n 时,j=i-1,i,i+1) 。
9. 称为空串; 称为空白串。
10. 求串T 在主串S 中首次出现的位置的操作是 ,其中 称为目标串, 称为模式。
11. 对称矩阵的下三角元素a[i,j],存放在一维数组V 的元素V[k]中(下标都是从0开始), 12. k 与i ,j 的关系是:k= 。
13. 在n 维数组中每个元素都受到 个条件的约束。
14. 同一数组中的各元素的长度 。
15. 三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 、 和 。
16.稀疏矩阵中有n个非零元素,则其三元组有行。
17.求下列广义表操作的结果:18.(1)GetHead【((a,b),(c,d))】=== ;19.(2)GetHead【GetTail【((a,b),(c,d))】】=== ;20.(3)GetHead【GetTail【GetHead【((a,b),(c,d))】】】=== ;21.(4)GetTail【GetHead【GetTail【((a,b),(c,d))】】】=== ;22.广义表E=(a,(b,E)),则E的长度= ,深度= ;二、判断题(如果正确,在下表对应位置打“√”,否则打“⨯”。
第5章数组和广义表

第五章习题参考答案一、简答题1.【参考答案】:数组是一组具有相同数据类型的数据集合。
数据元素按次序存储于一段地址连续的内存空间中。
可以通过下标找到存放该元素的存储地址,访问该数据元素的值。
数组中的每一个元素和下标惟一对应。
访问数组中任意指定的数据元素形式是,数组名[下标]。
举例略。
2.【参考答案】:数组是一组具有相同数据类型的数据集合。
数据元素按次序存储于一段地址连续的内存空间中。
即数组是数据元素的线性组合,类似于顺序存储结构的线性表。
3.【参考答案】:在n阶方阵A中,若元素满足下述性质:aij=aji (0≤i,j≤n-1)则称A为n阶对称矩阵。
三角矩阵是指n阶矩阵中上三角(不包括对角线)或下三角(不包括对角线)中的元素均为常数c或为0的n阶方阵。
以主对角线划分,三角矩阵有上三角和下三角两种。
在n阶矩阵A中,所有的非零元素都集中在以对角线为中心的带状区域中,则称A为n阶对角矩阵。
实质上,除了主对角线和主对角线相邻两侧的若干条对角线上的元素之外,其余元素均为零或为常数c。
稀疏矩阵压缩存储方法有两类:顺序存储结构和链式存储结构。
共同点:为了节省存储单元,可只存储非零元素,压缩零元素的存储空间;非零元素的分布一般是没有规律的;在存储非零元素的同时,还必须存储非零元素所在的行号、列号,才能惟一确定非零元素是矩阵中的哪一个元素。
稀疏矩阵中的所有非零元素构成了三元组线性表。
4.【参考答案】:一个阶数较大的m×n矩阵中,设有s个非零元素,如果s<<m×n时,则称该矩阵为稀疏矩阵。
准确的讲,在矩阵A中,有s个非零元素。
令e=s/(m×n),称e 为矩阵的稀疏因子。
通常认为e≤0.05时,称矩阵A为稀疏矩阵。
特点:非零元素分布没有规律,而且很少,远小于矩阵中的元素总个数。
采用压缩存储,节省存储空间,只存储非零元素,并且每个非零元素都需要一个三元组(i,j,aij)惟一表示。
数据结构第五章数组和广义表

第五章数组和广义表:习题习题一、选择题1.假设以行序为主序存储二维数组A[1..100,1..100],设每个数据元素占两个存储单元,基地址为10,则LOC(A[5,5])=( )。
A. 808B. 818C. 1010D. 10202.同一数组中的元素( )。
A. 长度可以不同 B.不限 C.类型相同 D. 长度不限3.二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中( )内的正确答案。
(1)存放A至少需要( )个字节。
(2)A的第8列和第5行共占( )个字节。
(3)若A按行存放,元素A[8]【5]的起始地址与A按列存放时的元素( )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270(2) A. 108 B. 114 C. 54 D. 60(3)[8][5] B. A[3][10] [5][8] [O][9]4.数组与一般线性表的区别主要是( )。
A.存储方面B.元素类型方面C.逻辑结构方面D.不能进行插入和删除运算5.设二维数组A[1..m,1..n]按行存储在数组B[1..m×n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。
A. (i-l)×n+jB. (i-l)×n+j-lC.i×(j-l) D. j×m+i-l6.所谓稀疏矩阵指的是( )。
A.零元素个数较多的矩阵B.零元素个数占矩阵元素中总个数一半的矩阵C.零元素个数远远多于非零元素个数且分布没有规律的矩阵D.包含有零元素的矩阵7.对稀疏矩阵进行压缩存储的目的是( )。
A.便于进行矩阵运算B.便于输入和输出C.节省存储空间D. 降低运算的时间复杂度8.稀疏矩阵一般的压缩存储方法有两种,即( )。
A.二维数组和三维数组B.三元组和散列C.三元组和十字链表D.散列和十字链表9.有一个100×90的稀疏矩阵,非0元素有10个,设每个整型数占两字节,则用三元组表示该矩阵时,所需的字节数是( )。
数据结构课后习题答案第五章数组与广义表

第五章数组与广义表一、假设有二维数组A6*8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A的起始存储位置(基地址)为1000。
计算:1、数组A的体积(即存储量);2、数组A的最后一个元素a57的第一个字节的地址;3、按行存储时,元素a14的第一个字节的地址;4、按列存储时,元素a47的第一个字节的地址;答案:1、(6*8)*6=2882、loc(a57)=1000+(5*8+7)*6=1282或=1000+(288-6)=12823、loc(a14)=1000+(1*8+4)*6=10724、loc(a47)=1000+(7*6+4)*6=1276二、假设按低下标(行优先)优先存储整数数组A9*3*5*8时第一个元素的字节地址是100,每个整数占四个字节。
问下列元素的存储地址是什么?(1)a0000(2)a1111(3)a3125 (4)a8247答案:(1)100(2)loc(a1111)=100+(1*3*5*8+1*5*8+1*8+1)*4=776(3) loc(a3125)=100+(3*3*5*8+1*5*8+2*8+5)*4=1784(4) loc(a8247)=100+(8*3*5*8+2*5*8+4*8+7)*4=4416五、设有一个上三角矩阵(aij)n*n,将其上三角元素逐行存于数组B[m]中,(m 充分大),使得B[k]=aij且k=f1(i)+f2(j)+c。
试推导出函数f1,f2和常数C(要求f1和f2中不含常数项)。
答:K=n+(n-1)+(n-2)+…..+(n-(i-1)+1)+j-i=(i-1)(n+(n-i+2))/2+j-i所以f1(i)=(n+1/2)i-1/2i2f2(j)=jc=-(n+1)九、已知A为稀疏矩阵,试从空间和时间角度比较采用两种不同的存储结构(二维数组和三元组表)完成∑aii运算的优缺点。
(对角线求和)解:1、二维数组For(i=1;i<=n;i++)S=s+a[i][i];时间复杂度:O(n)2、for(i=1;i<=m.tu;i++)If(a.data[k].i==a.data[k].j) s=s+a.data[k].value;时间复杂度:O(n2)二十一、当稀疏矩阵A和B均以三元组表作为存储结构时,试写出矩阵相加的算法,其结果存放在三元组表C中。
数据结构第五章数组和广义表练习及答案

数据结构第五章数组和广义表练习及答案一、选择题1、设二维数组A[0..m-1][0..n-1]按行优先顺序存储在内存中,每个元素a ij占d个字节,则元素a ij的地址为()A、LOC(a00)+(i*n+j)*dB、LOC(a00)+((i-1)*n+j-1)*dC、LOC(a00)+((j-1)*n+i-1)*dD、LOC(a00)+(j*n+i-1)*d2、已知二维数组A8*10中,元素a12的地址为1000,每个元素占2个字节,则元素a00的地址为()A、972B、974C、976D、9783、若数组A[0..m-1][0..n-1]按列优先顺序存储,则a ij地址为()A、LOC(a00)+j*m+iB、LOC(a00)+j*n+IC、LOC(a00)+(j-1)*n+i-1D、LOC(a00)+(j-1)*m+I-14、若下三角矩阵A n*n,按行顺序压缩存储在数组a[0..(n+1)n/2]中,则非零元素a ij的地址为()(设每个元素占d个字节)A、LOC(a00)+((j-1)j/2+i)*dB、LOC(a00)+((i+1)i/2+j)*dC、LOC(a00)+((i-1)i/2+i-1)*dD、LOC(a00)+((i-1)i/2+j-1)*d5、设有广义表D=(a,b,D),其长度为(B),深度为(A)A、∞B、3C、2D、56、广义表A=(a),则表尾为()A、aB、(())C、空表D、(a)7、广义表A=((x,(a,b)),((x,(a,b)),y)),则运算head(head(tail(A)))为()A、xB、(a,b)C、(x,(a,b))D、A8、数组A中,每个元素的长度为3个字节,行下标i从1到8,列下标j从1到10,从首地址a开始连续存放在存储器内,存放该数组至少需要的单元数为()A、80B、100C、240D、2709、数组A中,每个元素的长度为3个字节,行下标i从1到8,列下标j从1到10,从首地址a开始连续存放在存储器内,该数组按行存放时,元素A[8][5]的起始地址为()A、a+141B、a+144C、a+222D、a+22510、稀疏矩阵一般的压缩存储方法有两种,即()A、二维数组和三维数组B、三元组和散列C、三元组和十字链表D、散列和十字链表11、一个广义表的表头总是一个()A、广义表B、元素C、空表D、元素或广义表12、数组就是矩阵,矩阵就是数组,这种说法()A、正确B、错误C、前一句对,后一句错D、后一句对二、填空题1、广义表LS=(),其长度为(0);深度为(0)。
数据结构第4、5章作业 串、数组和广义表答案

第4~5章串和数组答案一、填空题1. 不包含任何字符(长度为0)的串称为空串;由一个或多个空格(仅由空格符)组成的串称为空白串。
2. 设S=“A;/document/Mary.doc”,则strlen(s)= 20 , “/”的字符定位的位置为3。
3. 子串的定位运算称为串的模式匹配;被匹配的主串称为目标串,子串称为模式。
4. 若n为主串长,m为子串长,则串的古典(朴素)匹配算法最坏的情况下需要比较字符的总次数为(n-m+1)*m。
5. 假设有二维数组A6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A的起始存储位置(基地址)为1000,则数组A的体积(存储量)为288 B ;末尾元素A57的第一个字节地址为1282 ;若按行存储时,元素A14的第一个字节地址为(8+4)×6+1000=1072 ;若按列存储时,元素A47的第一个字节地址为(6×7+4)×6+1000)=1276 。
(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A57可知,是从0行0列开始!)6. 设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为8950 。
答:不考虑0行0列,利用列优先公式:LOC(a ij)=LOC(a c1,c2)+[(j-c2)*(d1-c1+1)+i-c1)]*L得:LOC(a32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=89507. 三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的行下标、列下标和元素值。
8..求下列广义表操作的结果:(1)GetHead【((a,b),(c,d))】=== (a, b) ; //头元素不必加括号(2)GetHead【GetTail【((a,b),(c,d))】】=== (c,d) ;(3)GetHead【GetTail【GetHead【((a,b),(c,d))】】】=== b ;(4)GetTail【GetHead【GetTail【((a,b),(c,d))】】】=== (d);二、单选题( B )1. 串是一种特殊的线性表,其特殊性体现在:A.可以顺序存储B.数据元素是一个字符C.可以链式存储D.数据元素可以是多个字符( B )2. 设有两个串p和q,求q在p中首次出现的位置的运算称作:A.连接B.模式匹配C.求子串D.求串长(D )3. 设串s1=’ABCDEFG’,s2=’PQRST’,函数con(x,y)返回x和y串的连接串,subs(s, i, j)返回串s的从序号i开始的j个字符组成的子串,len(s)返回串s的长度,则con(subs(s1, 2, len(s2)),subs(s1, len(s2), 2))的结果串是:A.BCDEF B.BCDEFG C.BCPQRST D.BCDEFEF解:con(x,y)返回x和y串的连接串,即con(x,y)=‘ABCDEFGPQRST’;subs(s, i, j)返回串s 的从序号i 开始的j 个字符组成的子串,则subs(s1, 2, len(s2))=subs(s1, 2, 5)=’ BCDEF’; subs(s1, len(s2), 2)=subs(s1, 5, 2)=’ EF’;所以con(subs(s1, 2, len(s2)), subs(s1, len(s2), 2))=con(’ BCDEF’, ’ EF’)之连接,即BCDEFEF( A )4. 假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章数组与广义表习题练习答案5.1请按行及按列优先顺序列出四维数组A2*3*2*3的所有元素在内存中的存储次序,开始结点为a0000。
解:按行优先的顺序排列时,先变化右边的下标,也就是右到左依次变化,这个四维数组的排列是这样的:(将这个排列分行写出以便与阅读,只要按从左到右的顺序存放就是在内存中的排列位置) a0000a0001a0002a0010a0011a0012a0100a0101a0102a0110a0111a0112a0200a0201a0202a0210a0211a0212a1000a1001a1002a1010a1011a1012a1100a1101a1102a1110a1111a1112a1200a1201a1202a1210a1211a1212按列优先的顺序排列恰恰相反,变化最快的是左边的下标,然后向右变化,所以这个四维数组的排列将是这样的,(这里为了便于阅读,也将其书写为分行形式):a0000a1000a0100a1100a0200a1200a0010a1010a0110a1110a0210a1210a0001a1001a0101a1101a0201a1201a0011a1011a0111a1111a0211a1211a0002a1002a0102a1102a0202a1202a0012a1012a0112a1112a0212a02125.2 给出C语言的三维数组地址计算公式。
解:因为C语言的数组下标下界是0,所以Loc(A mnp)=Loc(A000)+((i*n*p)+k)*d其中Amnp表示三维数组。
Loc(A000)表示数组起始位置。
i、j、k表示当前元素的下标,d表示每个元素所占单元数。
5.3设有三对角矩阵A n*n,将其三条对角线上的元素逐行地存储到向量B[0...3n-3]中,使得B[k]=a ij,求:(1)用i , j 表示k的下标变换公式。
(2)用k 表示i,j 的下标变换公式。
(1) 解:要求i,j 到k 的下标变换公式,就是要知道在k之前已有几个非零元素,这些非零元素的个数就是k 的值,一个元素所在行为i,所在列为j,则在其前面已有的非零元素个数为:(i*3-1)+j-(i+1)其中(i*3-1)是这个元素前面所有行的非零元素个数,j-(i+1)是它所在列前面的非零元素个数化简可得:k=2i+j; // c下标是从0开始的。
(2) 解:因为K和i,j是一一对应的关系,因此这也不难算出:i=(k+1)/3 //k+1表示当前元素前有几个非零元素,被3整除就得到行号j=(k+1)%3+(k+1)/3-1 //k+1除以3的余数就是表示当前行中第几个非零元素,//加上前面的0元素所点列数就是当前列号5.4设二维数组A5*6的每个元素占4个字节,已知Loc(a00)=1000,A共占多少个字节? A的终端结点a45的起始地位为何?按行和按列优先存储时,a25的起始地址分别为何?解:(1)因含5*6=30个元素,因此A共占30*4=120个字节。
(2)a45的起始地址为:Loc(a45)=Loc(a00)+(i*n+j)*d=1000+(4*6+5)*4=1116(3)按行优先顺序排列时,a25=1000+(2*6+5)*4=1068(4)按列优先顺序排列时:(二维数组可用行列下标互换来计算)a25=1000+(5*5+2)*4=11085.5 特殊矩阵和稀疏矩阵哪一种压缩存储后会失去随机存取的功能?为什么?答:后者在采用压缩存储后将会失去随机存储的功能。
因为在这种矩阵中,非零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所在的行、列号做为一个结点存放在一起,这样的结点组成的线性表中叫三元组表,它已不是简单的向量,所以无法用下标直接存取矩阵中的元素。
5.6 简述广义表和线性表的区别与联系。
答:广义表是线性表的推广,线性表是广义表的特例。
当广义表中的元素都是原子时,即为线性表。
5.7 画出下列广义表的图形表示:(1) A(a,B(b,d),C(e,B(b,d),L(f,g))) (2) A(a,B(b,A))解:(1)这是一个再入表。
(2)则是一个递归表。
5.8 设广义表L=((),()),试问head(L),tail(L),L的长度,深度各为多少?解:●head(L)=()●tail(L)=(())●L的长度为2●L的深度为25.9 求下列广义表运算的结果:(1)head ((p,h,w)); (2)tail((b,k,p,h)); (3) head (((a,b),(c,d)));(4)tail(((a,b),(c,d))); (5)head(tail(((a,b),(c,d))));(6)tailhead)(((a,b),(c,d)))).答:(1)head ((p,h,w))=p;(2)tail((b,k,p,h))=(k,p,h);(3)head (((a,b),(c,d)))=(a,b);(4)tail(((a,b),(c,d)))=((c,d));(5)head(tail(((a,b),(c,d))))=(c,d);(6)tail(head(((a,b),(c,d))))=(b).5.10 当三角矩阵采用题5.3所述的压缩存储时,写一算法求三对角矩阵在这种压缩存储表示下的转置矩阵。
解:转置矩阵就是将矩阵元素的行号与列号互换,根据已知的三对角矩阵的特点,其转置矩阵对角线元素不变,非零的非对角线元素a ij与a ji互换位置。
又知元素的下标和存放一维数组空间位置的关系:k=2i+j。
我们可以设计出这个矩阵的转置算法:#define N 10 //矩阵行、列数#define Length (3*N-2)//压缩矩阵的长度typedef struct{int data[Length];}DiaMatrix;void TransMatrix(DiaMatrix * C){ //压缩三对角矩阵转置int i, j;int t;for(i=0; i<N;i++)for(j=i; j<N; j++)if(i-j<=1&&i-j>=-1){ //将对应于行列号的压缩矩阵内的元素互换t=C->data[2*i+j];C->data[2*i+j]=C->data[2*j+i];C->data[2*j+i]=t;}//endif}//end5.11当稀疏矩阵A和B均以三元组表作为存储结构时,试写出矩阵相加的算法,其结果存放在三元组表C 中。
解:矩阵相加就是将两个矩阵中同一位置的元素值相加。
由于两个稀疏矩阵的非零元素按三元组表形式存放,在建立新的三元组表C时,为了使三元组元素仍按行优先排列,所以每次插入的三元组不一定是A的,按照矩阵元素的行列去找A中的三元组,若有,则加入C,同时,这个元素如果在B中也有,则加上B的这个元素值,否则这个值就不变;如果A中没有,则找B,有则插入C,无则查找下一个矩阵元素。
#define MaxSize 10 //用户自定义typedef int DataType; //用户自定义typedef struct{ //定义三元组int i,j;DataType v;}TriTupleNode;typedef struct{ //定义三元组表TriTupleNode data[MaxSize];int m,n,t;//矩阵行,列及三元组表长度}TriTupleTable;//以下为矩阵加算法void AddTriTuple( TriTupleTable *A, TriTupleTable *B, TriTupleTable *C){//三元组表表示的稀疏矩阵A,B相加int k,l;DataType temp;C->m=A->m;//矩阵行数C->n=A->n;//矩阵列数C->t=0; //三元组表长度k=0; l=0;while (k<A->t&&l<B->t){if((A->data[k].i==B->data[l].i)&&(A->data[k].j==B->data[l].j)) {temp=A->data[k].v+B->data[l].v;if (!temp)//相加不为零,加入C{C->data[c->t].i=A->data[k].i;C->data[c->t].j=A->data[k].j;C->data[c->t++].v=temp;}k++;l++;}if ((A->data[k].i==B->data[l].i)&&(A->data[k].j<B->data[l].j)) ||(A->data[k].i<B->data[l].i)//将A中三元组加入C {C->data[c->t].i=A->data[k].i;C->data[c->t].j=A->data[k].j;C->data[c->t++].v=A->data[k].v;k++;}if ((A->data[k].i==B->data[l].i)&&(A->data[k].j>B->data[l].j)) ||(A->data[k].i>B->data[l].i)//将B中三元组加入C {C->data[c->t].i=B->data[l].i;C->data[c->t].j=B->data[l].j;C->data[c->t++].v=B->data[l].v;l++;}}while (k<A->t)//将A中剩余三元组加入C{C->data[c->t].i=A->data[k].i;C->data[c->t].j=A->data[k].j;C->data[c->t++].v=A->data[k].v;k++;}while (l<B->t)//将B中剩余三元组加入C {C->data[c->t].i=B->data[l].i;C->data[c->t].j=B->data[l].j;C->data[c->t++].v=B->data[l].v;l++;}}。