常用的离散分布
2.3几种重要的离散型分布
C
n N
.
规范性: k
pk
k
C C k nk M NM
C
n N
k
C C k nk M NM
C
n N
C
n N
C
n N
1.
例2.13 N件产品,含M件是次品,随机地从这N
件产品中抽取n件产品,求恰有k 件次品的概率。
15
注:我们用符号(n︱c )表示:随机抽取了n件
产品,其中的次品数≤c的方案。
9
例2.10 某城市每天发生火灾的次数 X ~ P 1 ,
求该城市一天内发生3次或3次以上火灾的概率.
2
解 P X 3 1 P X 3 1 P X k k0
对立事件公式 1 2 1k e1 1 0.920 0.08.
k0 k !
查泊松分布 表(附表1)
10
泊松分布有一个非常实用的特性——二项分
10 1k e1
k3 k !
0.0803.
二项分布的泊松 近似
查泊松分布 表(附表1)
它与例2.9的结果相比较,近似效果是良好的.
如果p较大,那么二项分布不宜转化泊松 分布,该如何办的问题将在§5.3中回答.
13
例2.12 某出租汽车公司共有出租汽车500辆, 设每天每辆出租汽车出现故障的概率为0.01,试求 一天内出现故障的出租汽车不超过10辆的概率.
布的泊松近似.具体地讲,设 X ~ Bn, p , Y ~ P , 其中 n 较大,p 很小,而 np,
如果要计算
PX
k
C
k n
pk
1
p nk ,
那么可近似计算 P Y k k e . 即
k!
常见离散型分布
刘妍丽主讲
一、单点分布(退化分布)
分布列 P(X=a)=1 期望 EX=a 方差 VarX=0
一次实验中事件A发生的次数X ~ b(1, p)
二、两点分布(0-1分布)EX p VarX pq
分布列 X P
0
1
1-p
p
P( X k) C1k p k (1 p)1k k 0,1
EX
r
k
C
k M
C nk N M
k 0
C
n N
r
M k 1 (n1)(k 1) k k C C M 1 ( N 1)(M 1)
k 1
N n
C n1 N 1
nM N
~ h(n 1, N 1, M 1)
VarX n M N M N n N N N 1
EX 2 VarX (EX )2
•超几何分布的近似分布
5、二项分布的近似分布 图2.4.1
X ~ P() np
n充分大,p很小 泊松定理
X ~ N (, 2 ) np 2 npq np 5 nq 5 极限定理
例2.4.1 例2.4.2 例2.4.3
四、泊松分布 X ~ P() EX VarX
分布列 正则性
P(X k) k e
X ~ h(n, N, M ) X ~ b(n, p)
p M n N N
EX 2
r
k2
C
k M
C
nk N M
r
(k(k
1)
k)
C
k M
C nk N M
r
(k(k
1))
M k
(M 1) (k 1)
C C k 2 (n2)(k 2) M 2 (N 2)(M 2)
常用离散分布
1. (0 – 1)分布,其分布律为 P X 0 1 p, P X 1 p 解: E ( X ) 0 ( 1 p ) 1 p p
E( X ) 0 (1 p ) 1 p p
2 2 2
D ( X ) E ( X ) E ( X ) p p p (1 p )
2
2
2
故
D ( X ) E ( X ) E ( X )
常用离散分布的数学期望
0-1 分布的数学期望 = p 二项分布 b(n, p)的数学期望 = np
几何分布Ge(p) 的数学期望 = 1/p
泊松分布 P() 的数学期望 =
常用离散分布的方差
2 2 2
2
二项分布 设 X 服从参数为 n、p 的二项分布,其分布律为
n k n k P X k p (1 p ) , k k 0 , 1 ,, n
有
E ( X ) np , D ( 数为 的泊松分布,其分布律为
例2.4.1 设X ~ b(2, p), Y ~ b(4, p),
已知 P(X1) = 8/9, 求 P(Y1). 解: 由 P(X1) = 8/9 ,知 P(X=0) = 1/9. 所以 1/ 9 = P(X=0) =(1p)2, 从而解得: p = 2/3.
由此得: P(Y1) = 1 P(Y=0)
泊松定理
定理2.4.1 (二项分布的泊松近似)
在n重伯努里试验中,记 pn 为一次试验中 成功的概率. 若 npn ,则
k n k n k e pn (1 pn ) k! k
上面我们提到
23 常用的离散型分布.
Poisson分布的数字特征
期望: 方差:
EX
DX
Poisson分布的应用
Poisson分布应用极为广泛. 如银行收到的 存款次数;保险公司收到的索赔单数;放射 粒子的数目(著名的Rutherford等人利用云 雾实验室观察镭说发射出的 粒子数目试 验);一定时间内发生的灾害数目;……
故每箱至少应装105个产品,才能符合要求.
例 设有同类型设备90台,每台工作相互独立, 每台设备发生故障的概率都是 0.01. 在通常 情况下,一台设备发生故障可由一个人独立 维修,每人同时也只能维修一台设备.
(1) 问至少要配备多少维修工人,才能保证当设 备发生故障时不能及时维修的概率小于0.01?
因为{X k}表示前 k 1中 A 恰好发生了r 1 次, 而第 k 次 A 发生,故
P{X
k}
C r1 k 1
p r 1q
k
r
p
C r1 k 1
p r q k r
,
k
r, r 1,,
亦可记为 P{X k} f (k; r, p).
一般地,若随机变量 X 的概率分布由上式给
例 某厂产品不合格率为0.03, 现将产品 装箱, 若要以不小于 90%的概率保证每箱 中至少有 100 个合格品, 则每箱至少应装 多少个产品?
解 设每箱至少应装100 + n 个, 每箱的不 合格品个数为X , 则X ~ B ( 100 + n , 0.03 )
n
由题意 P(X n) P100n (k) 0.9 k 0
解 (1) k = [( n + 1)p ] = [( 5000+ 1)0.001] =5
概率论常用的离散分布
目 录
• 引言 • 二项分布 • 泊松分布 • 超几何分布 • 几何分布 • 负二项分布
01 引言
离散分布的定义
离散分布:离散随机变量所有可能取 值的概率分布。
离散分布描述了随机变量取各个可能 值时所对应的概率。
离散分布的应用场景
统计学研究
离散分布在统计学中有着广泛的应用,如人口普 效之 前所经历的试验次数。
02
在生物统计学中,负二项分布可以用于描述在一定时间内捕获
猎物的数量或者在一定时间内发生的事件次数。
在金融领域,负二项分布可以用于描述股票价格在一定时间内
03
上涨或下跌的次数。
THANKS FOR WATCHING
感谢您的观看
它以法国数学家西莫恩·德尼·泊松的名字命名,他在19世纪中叶首次研究了这种 分布。
泊松分布的性质
泊松分布具有离散性和随机性, 适用于描述在一定范围内随机 事件的次数。
泊松分布的概率函数由两个参 数决定:均值和方差。
当随机事件的概率保持不变且 相互独立时,泊松分布成立。
泊松分布在现实生活中的应用
泊松分布在统计学、物理学、 生物学、经济学等领域有广 泛应用。
在网络请求中,直到得到响应所需要的请求次数可以服从几何分布。
自然选择与遗传
在生物进化过程中,自然选择对某一性状的选择压力可以用几何分 布来描述。
06 负二项分布
负二项分布的定义
负二项分布是一种离散概率分布,描 述了在成功达到某一目标之前需要进 行的独立、同分布的伯努利试验次数。
负二项分布的概率质量函数为 P(X=k) = (n+1) choose k * p^k * (1p)^(n+1-k),其中 X 表示试验次数, k 表示成功次数,n 表示试验次数上 限,p 表示每次试验成功的概率。
常用离散分布
(n 1)p或(n 1)p-1 当(n 1)p是整数时
k0
[(n 1)p]
其它
其中[(n+1)p]表示(n+1)p的整数部分。
10
从图中可以看出,对于固定的n及p,当k增加时, b(k;n,p)险随之增加并达到某极大值,以后又下降。此 外,当概率p越与1/2接近时,分布越接近对称。
11
若 X ~ b(n, p) P{X k} Cnk pk (1 p)nk
n(n
1)(n
k
1)
n
k 1
n
nk
k!
n n
kn
1
1
1
2
1
k
1 1
n
nk
k! n n n n
由 于 对 固 定 的k有
lim
n
kn
k , lim1
n
n
n
nk
e
及
lim1 1 1 2 1 k 1 1
n n n
n
因此
lim b(k; n, p) k e .
P{
k
}
k r
11
p
r
q
k
r
,
k
r, r 1,
在事件A发生的概率为p的贝努利试验中,若以X记A
首次出现时的试验次数,则X为随机变量,它的可能取
值为1,2,3…,其概率分布为几何分布。记为X ~ Ge( p)
其分布列为
P{X=k}=qk-1p, k=1,2, … 比如:
其中q=1-p
1、某射手的命中率为0.8,则首次击中目标的射击次数
X ~ Ge(0.8)
n!
pk (1 p)nk
3种常用离散型分布的公式
3种常用离散型分布的公式嘿,咱们来聊聊 3 种常用的离散型分布公式。
先来说说二项分布。
这二项分布啊,就好比你扔硬币。
假设你扔 10 次硬币,每次都只有正面和反面两种可能,而且每次扔硬币正面朝上的概率都一样。
那在这10 次中,出现正面的次数就可能符合二项分布。
我记得之前教过一个学生,他特别纠结这个二项分布的公式。
我就跟他说:“你就想象成你去抽奖,每次抽奖中奖的概率是固定的,抽了特定的次数,算一下总共中奖几次的可能性。
”他还是一脸懵。
于是我就给他举了个例子,假设抽奖中奖概率是 0.2,一共抽 5 次,那中奖 2次的概率咋算呢?这时候二项分布公式就派上用场啦。
二项分布的公式是:P(X = k) = C(n, k) * p^k * (1 - p)^(n - k) 。
这里的 n 就是试验次数,k 就是成功的次数,p 是每次试验成功的概率。
再讲讲泊松分布。
泊松分布就像是在一段时间或者一个区域内,某种事件发生的次数。
比如说,在一个小时内,某个路口发生交通事故的次数。
我曾经观察过我们学校门口的交通情况。
有一天,我特意在那站了一个小时,想看看大概会有多少起小的交通摩擦。
结果发现,差不多平均下来,一个小时会有那么两三起。
这其实就有点像泊松分布的情况。
泊松分布的公式是:P(X = k) = (λ^k * e^(-λ)) / k! ,这里的λ是单位时间或者单位面积内事件发生的平均次数。
最后说说几何分布。
几何分布就好像是你不断尝试做一件事,直到第一次成功为止,所需要的尝试次数。
有次我陪我家孩子玩猜谜语,他一直猜不对,我就告诉他,你猜猜看,平均几次能猜对一个。
这其实就和几何分布有点关系。
几何分布的公式是:P(X = k) = (1 - p)^(k - 1) * p ,其中 p 是每次试验成功的概率。
总之,这三种离散型分布公式在生活和学习中都有很多用处。
咱们多观察、多思考,就能更好地理解和运用它们啦!。
2.3常用的离散型分布
P { X m } q k 1 p q m q j 1 p q m
k m 1
j 1
同理 有
P{Xmn}qmn P{Xn}qn 于是得
P { X m n |X m } q q m m n q n P { X n } 说明
pn(注意这与试验的次数n有关) 如果n时 npn (0为常
数) 则对任意给定的k 有 k l n b i ( k ; n m , p n ) k ! e
( 2 6 3 )
说明
由该定理 我们可以将二项分布用泊松分布来近似 当二
项分布b(n p)的参数n很大 而p很小时 可以将它用参数为
说明
设X表 示 投 掷 一 枚 均 匀 的 骰 子 出 现 的 点 数 此 时 {1 2
6} 令
X()
则 X服 从 {1 2 6}上 的 均 匀 分 布
四、二项分布
二项分布
如 果 一 个 随 机 变 量 X的 概 率 分 布 为
P {Xk}C k npk(1p)nk k0 1 2, n
式(254)通常称为几何分布的无记忆性 意指几何分布对 过去的m次失败的信息在后面的计算中被遗忘了
六、超几何分布
超几何分布
一个袋子中共装有N个球 其中N1个白球 N2个黑球 从中 不放回地抽取n个球 X表示取到白球的数目 那么X的分布为
P { X k } C k N 1 C n N 2 k ,0 k n C n N
如果X只取0 1两个值 其概率分布为
P{X1}p P{X0}1p 0p1
(239)
则称X服从参数为p的01分布 也称X是参数为p的伯努利随机
常用离散分布-二项分布
(一)常用离散分布这里将给出三个常用的离散分布:二项分布、泊松分布与超几何分布。
1 .二项分布我们来考察由n次随机试验组成的随机现象,它满足如下条件:⑴重复进行n次随机试验。
比如,把一枚硬币连抛n次,检验n个产品的质量,对一个目标连续射击n次等。
2 2) n次试验间相互独立,即任何一次试验结果不会对其他次试验结果产生影响。
⑶每次试验仅有两个可能的结果,比如,正面与反面、合格与不合格、命中与不命中、具有某特性与不具有某特性,以下统称为“成功”与“失败工(4)每次试验成功的概率均为p,失败的概率均为1-p。
在上述四个条件下,设X表示n次独立重复试验中成功出现的次数,显然X是可以取0,1,..., n等n+1个值的离散随机变量,且它的概率函数为:n= x) = /(1一。
)1 , x=O,l,…3(1.2-4)W'G这个分布称为二项分布,记为父乩,),其中是从n个不同元素中取出/个的蛆合数,它的计算公式为:\X)G、_ n\㈤%!(« - x)!二项分布的均值、方差与标准差分别为:E(X) = npVar{X}-4>(1 - p)—=加(1-0)特例:n=i的二项分布称为二点分布。
它的概率函数为:产= —, x = O,l或列表如下:x | 0 1 ____________P P它的均值、方差与标准差分别为跃© = P,gr(X) = Hl-⑼,6X)=[pQ-p)[例1.2-10]在一个制造过程中,不合格品率为0.1,如今从成品中随机取出6个,记X为6个成品中的不合格品数,则x服从二项分布8(6 ,0.1),简记为X〜堆,0.1) o现研究如下几个问题:(1)恰有1个不合格品的概率是多少?这里规定抽到不合格品为“成功” > 则事件XE的概率为:P{X = 1) = x0.1x(l-0.1)6-i = 6x0.1x0.95 =0.3543Uz这表明, 6个成品中恰有一个不合格品的概率为0. 3543-类似可计算X=0 , X=1 ,…'X=6的概率,计算结果可列出一张分布列,具体如下:X 0 1 2 3 4 5 6P 0.5314~0.3543 0.0984 0.0146 0.0012 0.0001 0.0000这里0. 0000表示X=6的概率取前4位小数的有效数字为零,实际上,它的概率为P 0(=6)=0. 000001 ,并不严格为零。
概率论常见分布性质及应用
概率论常见分布性质及应用概率论是研究随机现象的规律性及概率性问题的数学分支。
常见的概率论分布有离散分布和连续分布两种。
下面将对常见的概率论分布性质及其应用进行详细阐述。
一、离散分布:1. 伯努利分布(Bernoulli Distribution):伯努利分布是最简单的离散分布,它只有两个取值0和1,其中0发生的概率为p,1发生的概率为q=1-p。
伯努利分布通常用来表示只有两个可能结果的试验,如掷硬币的结果。
应用:伯努利分布可以用于模拟二项分布的单次试验结果,也可以用于描述二分类问题的概率分布。
2. 二项分布(Binomial Distribution):二项分布描述了一系列独立重复的伯努利试验,在每次试验中,都有成功的概率p,失败的概率q=1-p。
将n次伯努利试验的成功次数定义为X,X的取值为0到n。
二项分布的概率质量函数可以表示为P(X=k) = C(n,k) * p^k * q^(n-k)。
应用:二项分布可以用于模拟多次试验的结果,如投掷硬币、扔骰子等。
在实际应用中,二项分布也可以用于描述二分类问题的概率分布,如判断客户是否购买某个产品。
3. 泊松分布(Poisson Distribution):泊松分布描述了在一个固定时间间隔内某个事件发生的次数的概率分布。
泊松分布的概率质量函数可以表示为P(X=k) = (lambda^k * e^(-lambda)) / k!,其中lambda为事件发生的平均次数。
应用:泊松分布广泛应用于描述实际生活中的随机事件,如交通事故发生的次数、电话呼叫的次数等。
此外,泊松分布还可以用于模拟排队论中的到达与服务过程。
二、连续分布:1. 均匀分布(Uniform Distribution):均匀分布是最简单的连续分布,它的概率密度函数在一个有限区间内是常数,而在区间外为零。
均匀分布的概率密度函数可以表示为f(x) = 1/(b-a),其中a和b为区间的起始和结束点。
概率与统计的离散分布与连续分布
概率与统计的离散分布与连续分布概率与统计是一门重要的数学学科,它研究了随机事件发生的规律性和不确定性。
其中,离散分布与连续分布是概率与统计中两个重要的概念。
本文将对离散分布与连续分布进行详细介绍与比较。
一、离散分布离散分布是指概率分布中随机变量取值有限或可数的分布。
在离散分布中,每个可能的取值都有一个特定的概率与之对应。
离散分布通常用概率质量函数(Probability Mass Function,PMF)来描述。
常见的离散分布包括:1. 伯努利分布:伯努利试验是一种只有两个可能结果的随机试验,如抛硬币的结果只能是正面或反面。
伯努利分布描述了这种试验的概率分布。
2. 二项分布:二项分布是一种描述多次独立重复伯努利试验的概率分布。
它描述了在一定次数的独立重复试验中,成功事件发生k次的概率。
3. 泊松分布:泊松分布是一种描述在一段固定时间或空间内随机事件发生的次数的概率分布。
泊松分布常用于描述单位时间或单位空间内事件发生的频率。
4. 几何分布:几何分布是一种描述独立重复伯努利试验中,首次成功事件发生所需的试验次数的概率分布。
二、连续分布连续分布是指概率分布中随机变量的取值为连续的分布。
在连续分布中,每个可能的取值都有一个对应的概率密度函数(Probability Density Function,PDF)来描述。
连续分布中的概率是通过对概率密度函数进行积分得到的。
常见的连续分布包括:1. 均匀分布:均匀分布是指在一个区间内各个取值的概率是相等的。
例如,抛一枚均匀的骰子,每个点数的概率均为1/6。
2. 正态分布:正态分布是一种最常见的分布。
它以一个对称的钟形曲线描述,具有均值和标准差两个参数。
许多现实世界的数据都可以用正态分布来进行建模和分析。
3. 指数分布:指数分布是一种描述在一段固定时间或空间内连续随机事件发生的概率分布。
它常用于描述无记忆性的随机过程,如设备的寿命分布和等待时间分布等。
三、离散分布与连续分布的比较离散分布和连续分布在描述随机事件时有一些明显的区别和特点。
2.3常用的离散型分布
(k 0,1, 2,..., n)
其中0 p 1, 则称X服从参数为n, p的二项分布, 记为 X ~ b(n, p). 注 二项分布的试验背景是n重Bernoulli试验模型;
其中n是试验独立重复的次数, p是每一次基本试验“成功”的概率. 随机变量X指n次试验中“成功”出现的次数.
当n=1时,P(X=k)=pk(1-p)1-k, k=0,1,此时X服从
六. 超几何分布 1 引例 一个袋子中装有N个球,其中N1个白 球,N2个黑球(N=N1+N2),从中不放回地抽取 n个球,X表示取到白球数目,则
P{X k} C C
k N1
n k N2
/ C (0 k n)
n N
规定C 0(b a)
b a
称X服从超几何 分布
注:超几何分布的极限分布是二项分布。即
EX=(x1+x2+…+xn)/n x
1 n 2 D( X ) ( xi x ) n i 1
五.几何分布
1. 定义 若X的概率分布为:
k 1
P( X k ) (1 p)
p, k 1, 2,,
则称 X 服从参数为p 的几何分布。 注:无记忆性: P{X>m+n|X>m}= P{X>n} 2. EX=1/p DX=(1-p)/p2
4. Possion定理 设当 n , npn 0, 则对任意k
k! k 0,1, 2, Poisson定理说明若X ~ B( n, p), 则当n 较大, p 较小, 而 np 适中, 则可以用近似公式 k k k nk Cn p (1 p ) e , k 0,1, 2, k!
常用离散分布
C P{X k} k pk (1 p)nk ,(k 0,1,...,n) n
其中随机变量X为n重贝努里试验中事件A成功的次数。
定义: 设随机变量X的可能取值为0,1,…,n , 并且取这些值的概率分别为
C P{X k} k pk (1 p)nk ,(k 0,1,...,n) n
2.4 常用离散分布
1、退化分布 若随机变量X只取常数值c,即 P{x=c}=1
这时分布函数为
0, x c FX (x) 1, x c
E(X)=c Var(X)=0
1
2、二点分布(0—1)分布
若以X表示进行一次试验事件A发生的次数,即X只可 能取0与1两个值,它的分布列是
P{X=k}=pk(1一p)1-k,k=0,1 (0<p<1), 则称X服从(0—1)分布或两点分布,记为b(1,p)。
P{X
k}
M k
N n
M k
,
k
0,1,, r
N n
where r min{ n, M }
验证规范性,利用r源自k 0M kN n
M k
N n
(见习题1.2)
21
超几何分布的期望和方差 P98
E(X ) n M N
理解
Var( X ) nM (N M )(N n) N 2 (N 1)
(n 1)p或(n 1)p-1 当(n 1)p是整数时
k0
[(n 1)p]
其它
其中[(n+1)p]表示(n+1)p的整数部分。
10
从图中可以看出,对于固定的n及p,当k增加时, b(k;n,p)险随之增加并达到某极大值,以后又下降。此 外,当概率p越与1/2接近时,分布越接近对称。
2-3常见的离散型分布
是确定最小的 N , 使得 P{ X N } 0.99.
由泊松定理,X 近似服从参数 =300 0.01 3的泊
松分布,故 P{ X N } N 3k e3 , k0 k!
故有
N 3k e3 0.99,
k0 k!
查表可求得满足此式最 小的N是8. 故至少需配置8
个工人,才干确保设备发生故障但不能及时维修旳 概率不大于0.01.
P{ X 1} 1 P{ X 0} 1 0.018316 0.9817
启示:小概率事件虽不易发生,但反复次数
多了,就成大约率事件.
6. 几何分布
(1)概率分布 记作X ~ G( p )
P{ X k} qk1 p, k 1, 2, (q 1 p)
(2)应用背景:描述伯努利试验序列中,
解 设X为800个纺锭在这段时间内发生断头的次数,
则X ~ b(800, 0.005),它近似服从参数 =800 0.005 4的泊
松分布, 故
2
2
P{0 X 2} P{ X k} b(k;800, 0.005)
k0
k0
2 4k e4 0.2381
k0 k !
P{ X 2} 1 P{0 X 2} 1 0.2381 0.7619
1 n
,i
1, 2,
n.
P{ X
xi }
P{i }
1 n
,
i 1, 2, n.
实例 抛掷骰子并记出现旳点数为随机变量 X,
则有 X 1 2 3 4 5 6
1 1 11 11
P 6 6 66 66
4. 二项分布
(1)概率分布
记作X ~ b(n, p) (0 p 1)
P{ X
2.4常用的离散分布
•n重伯努利试验:将伯努利试验,独立 重复进行了n 次。
• 以X表示n重贝伯努利试验中事件A发生的次 数,则称X服从参数为n,p的二项分布。 • 记作X ~ B(n,p) [p+(1-p)] 分布律为: 展开式的第k+1项
n
P{X = k} = Cn pk (1− p)n−k , (k = 0,1,..., n)
k n C M C N− kM − P( X = k ) = n CN
k = 0,1, L
当抽取个数n《 产品总量N时,每次抽取完,不合 格品率p=M/N改变甚微,不放回抽样可以看做为 放回抽样,因此超几何分布可以看做二项分布。
离散型 b(n,p) p(λ) λ Ge(p) Nb(p)
期望 np λ 1/p r/p
方差 np(1-p) λ 1-p/p2 r(1-p)/p2
范围 n重伯努利试验 事件A发生的次数 单位时间(体积) 的计数 事件A首次发生(伯努利) A ( ) 事件A第r次发生(伯努 利) 不放回抽样
h(n,N,M) nM/N
Var(X)=np(1-p)
例3 已知X~ b(2,p) Y~b(3,p);若p(X≥1)=5/9 求 ~ ~ p(Y≥1) • 解: p(X≥1)=1-p(X=0)=5/9
• 得 • 即
5 1 − C P (1 − P) = 9
0 2 0 2
4 (1 − P) = 9
2
0 3 0 3
2 3 19 p (Y ≥ 1) = 1 − P (Y = 0) = 1 − C P (1 − P) = 1 − ( ) = 3 27
• X:投保人中的一年死亡人数; np=10 • 项目收入2000 000 支付 X*100 000 • 1)p(X>20)=1-p(X≤20) • =1-0.998=0.002
常用离散分布
常⽤离散分布⼆项分布⼆项分布就是重复 n 次独⽴的伯努利试验,在每次试验中只有两种可能的结果,⽽且两种结果发⽣与否互相对⽴,并且相互独⽴,与其它各次试验结果⽆关,事件发⽣与否的概率在每⼀次独⽴试验中都保持不变。
即⼀枚硬币扔 n 次,扔出正⾯概率为 p ,得到 k 次正⾯的概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k},k=0,1,\cdots,n这个分布称为⼆项分布,记为 X\sim b(n,p) .n=1 时的⼆项分布 b(1,p) 称为⼆点分布,或称0-1分布,或称伯努利分布,其分布列为P(X=x)=p^{x}(1-p)^{1-x}, x=0,1.⼆项分布的数学期望和⽅差设随机变量 X\sim b(n,p) ,则\begin{aligned} E(X) &=\sum_{k=0}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n}\left(\begin{array}{l} n-1 \\ k-1 \end{array}\right) p^{k-1}(1-p)^{(n-1)-(k-1)} \\ &=n p[p+(1-p)]^{n-1}=n p \end{aligned}⼜因为\begin{aligned} E\left(X^{2}\right) &=\sum_{k=0}^{n} k^{2}\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}=\sum_{k=1}^{n}(k-1+1) k\left(\begin{array}{l} n \\ k\end{array}\right) p^{k}(1-p)^{n-k} \\ &=\sum_{k=1}^{n} k(k-1)\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}+\sum_{k=1}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k} \\ &=\sum_{k=2}^{n} k(k-1)\left(\begin{array}{l} n \\ k \end{array}\right) p^{k}(1-p)^{n-k}+n p \\ &=n(n-1) p^{2} \sum_{k=2}^{n}\left(\begin{array}{l} n-2 \\ k-2\end{array}\right) p^{k-2}(1-p)^{(n-2)-(k-2)}+n p \\ &=n(n-1) p^{2}+n p \end{aligned}由此得 X 的⽅差为\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=n(n-1) p^{2}+n p-(n p)^{2}=n p(1-p)泊松分布泊松分布的概率分布列是P(X=k)=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}, k=0,1,2, \cdots其中参数 \lambda>0 ,记为 X\sim P(\lambda) .泊松分布的数学期望和⽅差设随机变量 X\sim P(\lambda) ,则E(X)=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}=\lambda \mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1) !}=\lambda \mathrm{e}^{-\lambda} \mathrm{e}^{\lambda}=\lambda⼜因为\begin{aligned} E\left(X^{2}\right) &=\sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}=\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{(k-1) !} \mathrm{e}^{-\lambda} \\ &=\sum_{k=1}^{\infty}[(k-1)+1] \frac{\lambda^{k}}{(k-1) !} \mathrm{e}^{-\lambda} \\ &=\lambda^{2} \mathrm{e}^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2) !}+\lambda\mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1) !} \\ &=\lambda^{2}+\lambda \end{aligned}由此得 X 的⽅差为\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda⼆项分布的泊松近似(泊松定理) 在 n 重伯努利试验中,记事件 A 在⼀次试验中发⽣的概率为 p_n (与试验次数 n 有关),如果当 b\to\infty 时,有 np_n\to\lambda , 则\lim _{n \rightarrow \infty}\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}证明: 记 np_n=\lambda_n , 可得\begin{aligned} \left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k} &=\frac{n(n-1) \cdots(n-k+1)}{k !}\left(\frac{\lambda_{n}}{n}\right)^{k}\left(1-\frac{\lambda_{n}}{n}\right)^{n-k} \\ &=\frac{\lambda_{n}^{k}}{k !}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)\left(1-\frac{\lambda_{n}}{n}\right)^{n-k} \end{aligned}对固定的 k 有\lim _{n \rightarrow \infty} \lambda_{n}=\lambda\lim _{n \rightarrow \infty}\left(1-\frac{\lambda_{n}}{n}\right)^{n-k}=\mathrm{e}^{-\lambda}\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)=1从⽽\lim _{n \rightarrow \infty}\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}对任意的 k=0,1,\cdots 成⽴.定理得证.由于泊松定理是在条件 np_n\to\lambda 下得到的,故在计算⼆项分布 b(n,p) 时,当 n 很⼤, p 很⼩,⽽ \lambda=np ⼤⼩适中时,可以⽤泊松公式近似,即\left(\begin{array}{l} n \\ k \end{array}\right) p_{n}^{k}\left(1-p_{n}\right)^{n-k} \approx \frac{(n p)^{k}}{k !} \mathrm{e}^{-n p}, k=0,1,2, \cdotsLoading [MathJax]/extensions/TeX/mathchoice.js通常当 n\geqslant20,p\leqslant0.05 时,就可以⽤泊松公式近似得计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pq
n 1
几何分布:X
n ... 其中 n 1 2 ... 0 p 1, pq P p pq pq ... q 1 p p 2 n 1 p pq pq ... pq ... 1 q 1
n1
1
2
3
...
n 1 2 n 1 p 2 pq 3 pq ... npq ... n pq EX
0 1 即为0—1分布. 当 x1 1, x2 0 时, X ~ p 1 p 此时 EX p DX p(1 p)
也称X是参数为p的 伯努利随机变量.
X ~ 1 1 1 ... n n n 1 1 1 1 EX x1 x2 ... xn x1 x2 ... xn x n n n n 2 2 DX E X EX E X x 1 1 1 2 2 2 ( x1 x ) ( x2 x ) ... ( xn x ) n n n
1 P X i 1
i 0
4
i i 20i C 0.3 0.7 20
4
i 0
例 在四舍五入时,每个加数的取整误差 服从 [0.5, 0.5 ] 上的均匀分布,今有n个加数,计算它们中 至少有3个的 绝对误差小于 0.3 的概率. 解 设 X 表示一个加数的取整误差 X ~ U [ 0.5, 0.5 ] 每个加数的绝对误差小于0.3 的概率为:
0.3 0.3
设 Y 为n个加数中 绝对误差小于0.3的个数. y f ( x) 1 Y ~ b( n, 0.6 ) 至少有3个加数的绝对误差 0.5 0.5 小于 0.3 的概率为:
P Y 3 1 P Y 3 1 P Y 0 P Y 1 P Y 2 1 n 1 2 n1 n2 2 C 0.6 1 0.4 C 0.4 0.4 n n 0.6
P ( Ai ) 1 p q P{ X 1} P ( A1 ) p
令
P
p
2 ... pq n1 ... pq pq
其中 q 1 p
P{ X 1} P ( A1 ) P{ X 2} P ( A1 A2 ) P ( A1 ) P ( A2 ) pq P{ X 3} P ( A1 A2 A3 ) P ( A1 ) P ( A2 ) P ( A3 ) qqp pq 2 P{ X n} P ( A1 A2 ... An1 An ) P ( A1 ) P ( A2 )... P ( An1 ) P (An )
可以证明, 二项分布的数学期望和方差 分别为 DX n p q EX n p
可以证明, 二项分布的数学期望和方差 分别为 EX n p DX n p q 例 已知随机变量 X ~ b( n, p) EX 6 DX 4.2 求 P X 5 q 0.7 6q 4.2 解 EX n p 6
1 n
X P
0
1
2
...
k n
k
...
n k
n
1 1 n1 2 2 n 2 ... q n Cn p q Cn pq 设 Ai 表示第 i次发生事件A
C pq
k
...
pn
P ( Ai ) p P ( Ai ) 1 p q P X 2 P ( A1 A2 A3 ... An ... A1 ... An2 An1 An )
每一次试验,A发生的概率都是 p, A不发生的 概率都是 q 1 p 这样的 n 次独立重复试验 称作 n重贝努里试验, 简称贝努里试验 或贝努里 概型. 用 X 表示 n重贝努里试验中 事件A(成功)出现的
次数, X 可能取值: 0,1,2,3,..., n
X P
0
1
2
.
k
...
n
1 1 n1 q n Cn pq
p n q
n1
n1
1 1 1 1 p EX 2 p 2 (1 q ) p p p
n 1
n' n n x ( x )' x x 1时, n 1 n 1 n1
x ' 1 ( x x x ... x ...)' 2 ( 1 x ) 1 x
X ~ b( n, p)
q n Cn p q
k n k
k 0,1, 2,..., n
称随机变量X 服从参数为 n, p 的二项分布,记为
2 2 n2 k k n k Cn p q ... C n p q ... p n ( q p )n 1 当n=1时, 二项分布 b( 1 , p) 1 0 X ~ 即是参数为p的0—1分布. p q 1 1 n1
P X k P ( A1 ... Ak Ak 1 ... An ... A1 ... Ank Ank 1 ... An )
P ( A1 ... Ak Ak 1 ... An ) ... P ( A1 ... Ank Ank 1 ... An )
k nk p q C
P ( A1 A2 A3 ... An ) P ( A1 A2 A3 ... An ) ... P ( A1 ... An1 An ) P ( A1 ) P ( A2 )... P ( An ) P ( A1 ) P ( A2 )... P ( An ) ...
n1 p q P ( A1 )... P ( An1 ) P ( An ) C
2 n
k n
n P X n P ( A1 A ... A ) )P )... P( An ) p 2 ( A2n
X P
0
q
n
1 2 ... n 1 1 2 p 2q n 2 ... q p Cn Cn
k n
k
...
nk
n
C p q
k n
k
...
pn
即 P X k C p q
证 P X m n X m
P X m n P X m
m
q
mn n
m
P X m
q
q P X n
P X m P X m 1 P X m 2 ... P X m k
P X 0 P ( A1 A2 ... An ) P ( A1 ) P ( A2 )... P ( An ) q
设 Ai 表示第 i次发生事件A P ( Ai ) p P ( Ai ) 1 p q
n
P X 1 P ( A1 A2 A3 ... An A1 A2 A3 ... An ... A1 ... An1 An )
X 服从 参数为 p 的几何分布.
一般地,假定一个试验成功的概率是 p ( 0 p 1 ) 且各次试验的 不断地重复试验,直到首次成功为止, 结果是独立的. 1,2,3,..., n,... 令 X表示 试验的次数.X 可能取的值是: X 1 2 3 ... n ... 设 Ai 表示 “第 i 次成功” n 1 2 P ( Ai ) p ... pq P p pq pq ... 令 P ( Ai ) 1 p q q 1 p 其中 p
P X 0.3 P 0.3 X 0.3
1
y f ( x)
0.3
0.3
f X ( x ) dx
0.3
0.3
1 dx 0.6
0.5
0.5
设 Y 为n个加数中 绝对误差小于0.3的个数. Y 的可能取值为 0,1, 2,..., n
设 X 表示一个加数的取整误差 X ~ U [ 0.5, 0.5 ] 0.3 0.3 P X 0.3 f X ( x ) dx 1 dx 0.6
1)n个加数
五、几何分布 例 对某一目标射击,直到击中为止,设每次击中的 概率都是 p ( 0 p 1 )且各次射击的结果是独立的. 令 X 表示 射击的次数. 求 X 的概率分布. 解 设 Ai 表示 “第 i 次击中” i 1,2,..., n X 1 2 3 ... n ... P ( A ) p
2 3 n
X P
2
1
2
3
...
p
pq pq 2 ...
2 2
n ... 其中 0 p 1, q 1 p pq n1 ...
2
1 EX p
2
EX p 2 pq 3 pq ... n pq
2
n1
1 q p n q p 3 p (1 q) n 1
2
n 1
n
x nx
n 1 n 1
'
X P
1
2
3
2
...
n
n 1
p
pq pq
... pq
... ...
P X m n X m P X n
几何分布有性质:对任意自然数m,n,有
P X m n X m
i
P{ X 2} P ( A1 A2 ) P ( A1 ) P ( A2 ) pq P{ X 3} P ( A1 A2 A3 ) P ( A1 ) P ( A2 ) P ( A3 ) qqp pq 2 P{ X n} P ( A1 A2 ... An1 An ) P ( A1 ) P ( A2 )... P ( An1 ) P (An) n 1 p pq 称 X 服从 参数为 的几何分布.