人教版数学中考专题代数几合综合问题含答案

合集下载

代数几何综合(含答案)

代数几何综合(含答案)

23.(本小题7分)如图,在平面直角坐标系中,A(-3,0),点C 在y 轴的正半轴上,BC ∥x 轴,且BC=5,AB 交y 轴于点D ,OD=23. (1)求出点C 的坐标; (2)过A 、C 、B 三点的抛物线与x 轴交于点E ,连接BE .若动点M 从点A 出发沿x 轴向x 轴正方向运动,同时动点N 从点E 出发,在直线EB 上作匀速运动,两个动点的运动速度均为每秒1个单位长度,请问当运动时间t 为多少秒时,△MON 为直角三角形? 23.解:(1)∵ BC ∥x 轴, ∴ △BCD ∽△AOD .∴ CD BC OD AO=. ∴ 535322CD =⨯=.∴ 53422CO =+=. ∴ C 点的坐标为 (0,4) . ……………………… 1分 (2)如图1,作BF ⊥x 轴于点F ,则BF= 4. 由抛物线的对称性知EF=3.∴BE=5,OE=8,AE=11. ………………………… 2分 根据点N 运动方向,分以下两种情况讨论: ① 点N 在射线EB 上.若∠NMO=90°,如图1,则cos ∠BEF=ME FENE BE=, ∴1135t t -=,解得558t =.……………… 3分 若∠NOM=90°,如图2,则点N 与点G 重合.∵ cos ∠BEF=OE FEGE BE=, ∴ 835t =,解得403t =. …………………… 4分∠ONM=90°的情况不存在. ………………………………………………………… 5分 ② 点N 在射线EB 的反向延长线上.若∠NMO=90°,如图3,则cos ∠NEM= cos ∠BEF ,∴ME FENE BE =. ∴ 1135t t -=,解得552t =. …………………… 6分 而∠NOM=90°和∠ONM=90°的情况不存在.…… 7分 综上,当558t =、403t =或552t =时,△MON 为直角三角形.(第23题图2)D(N)(第23题图3)D(第23题)25.(7分)已知,抛物线22y ax bx =+-与x 轴的两个交点分别为A (1,0),B (4,0),与y 轴的交点为C . (1)求出抛物线的解析式及点C 的坐标;(2)点P 是在直线x=4右侧的抛物线上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OCB 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由. 25.(7分)解:(1)据题意,有0164202a b a b =+-⎧⎨=+-⎩, . 解得 1252a b ⎧=-⎪⎪⎨⎪=⎪⎩, . ∴抛物线的解析式为:215222y x x =-+-.点C 的坐标为:(0,-2). ………………………(2)答:存在点P (x ,215222x x -+-),使以A ,P ,M ∵∠COB =∠AMP =90°,∴①当OC OBMP MA =时,△OCB ∽△MAP . ②当OC OB MA MP=时,△OCB ∽△MP A . ①OC MP OB MA =,∴215222241x x x -+=-. 解得:x 1=8,x 2=1(舍). ②OC MA OB MP =,∴221154222x x x -=-+. 解得:x 3=5,x 4=1(舍).综合①,②知,满足条件的点P 为:P 1(8,-14),P 2(5,-2). ……………………… 7分24. 在△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点BB 的横坐标;(2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由。

【初三物理试题精选】中考数学复习代数几何综合问题专项练习(人教版含答案)

【初三物理试题精选】中考数学复习代数几何综合问题专项练习(人教版含答案)

中考数学复习代数几何综合问题专项练习(人教版含答案) K
j 代数几何综合问题(1)专项练习
1 如图⑴,在平面直角坐标系中,O为坐标原点,抛物线经过点B(0,4)。

⑴求抛物线的解析式;
⑵设抛物线的顶点为D,过点D、B作直线交x轴于点A,点C在抛物线的对称轴上,且C点的纵坐标为,连接BC、AC。

求证△ABC 是等腰直角三角形;
⑶在⑵的条下,将直线DB沿y轴向下平移,平移后的直线记为l,直线l与x轴、y轴分别交于点A′、B′,是否存在直线l,使△A′B′C是直角三角形,若存在,求出直线l的解析式,若不存在,请说明理由。

2 二次函数的图象的一部分如图所示。

已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1)。

(1)试求,所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形。

若存在,请求出a的值;若不存在,请说明理由。

3 如图,在平面直角坐标系中,二次函数的图象经过点A(4,0)、B(-1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,,EF⊥OD,垂足为F。

(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值。

代数几何综合问题(1)专项练习
参考答案
1 (1)解由题意知16a+6=4。

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

中考数学总复习专题六代数几何综合题(课堂本)课件新人教版

中考数学总复习专题六代数几何综合题(课堂本)课件新人教版

(2)设点E(x,y)是抛物线上一动点,且位于第一象
限,四边形OEAF是以OA为对角线的平行四边形,求平行
四边形OEAF的面积S与x之间的函数关系式;
(3)当(2)中的平行四边形OEAF的面积为24时,请判
断平行四边形OEAF是否为菱形.
(3)平行四边形OEAF的面积为24时,平行四边形OEAF 不能为菱形,理由如下: 当平行四边形OEAF的面积为24时,即 ﹣4x2+28x﹣24=24, 化简,得 x2﹣7x+12=0,解得x=3或4, 当x=3时,EO=EA,平行四边形OEAF为菱形. 当x=4时,EO≠EA,平行四边形OEAF不为菱形. ∴平行四边形OEAF的面积为24时,平行四边形OEAF可 能为菱形.
3.(2016•赤峰)在平面直角坐标系中,已知点A(﹣2 ,0),B(2,0),C(3,5). (1)求过点A,C的直线解析式和过点A,B,C的抛物线 的解析式; (2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标 ; (3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存 在请求出Q点坐标.
∴∠GAE=∠ADG,
∴∠AEG=∠ADG,
∴AE=AD=15.
综上所述,△AEC是以EG为腰的等腰三角形时,线段
AE的长为 2 5 或15;
2
(3)作DH⊥AB于H,如图2,则AH=9HE=AE﹣AH=x﹣9,
在Rt△HDE中,DE= 122 (x 9)2 ,
∵∠AGE=∠DAB,∠AEG=∠DEA,
解:(1)四边形APQD为平行四边形; (2)OA=OP,OA⊥OP,理由如下: ∵四边形ABCD是正方形, ∴AB=BC=PQ,∠ABO=∠OBQ=45°, ∵OQ⊥BD, ∴∠PQO=45°, ∴∠ABO=∠OBQ=∠PQO=45°, ∴OB=OQ, ∴△AOB≌△OPQ(SAS), ∴OA=OP,∠AOB=∠PQO, ∴∠AOP=∠BOQ=90°, ∴OA⊥OP;

2024-2025学年人教版中考数学试题及答案

2024-2025学年人教版中考数学试题及答案

2024-2025学年人教版中考数学试题一、单选题(每题3分)1.函数:已知函数(y=2x+1),当(x=2)时,函数的值为多少?A)3 B) 4 C) 5 D) 6答案:C) 52.几何:在一个直角三角形中,如果一个锐角为30°,那么这个角所对的直角边与斜边的比是多少?A)1:1 B) 1:2 C) 1:√3 D) √3:1答案:C) 1:√33.概率:一个不透明的袋子中有5个红球和3个蓝球,从中随机抽取一个球,抽到红球的概率是多少?A)3/8 B) 5/8 C) 3/5 D) 5/3答案:B) 5/84.代数:解方程(2x2−5x+2=0),其中一个根为?A)1/2 B) 1 C) 2 D) -1答案:A) 1/25.统计:在一组数据中,众数是出现次数最多的数。

若一组数据{2, 5, 5, 8, 8, 8, 9}的众数是8,则这组数据的中位数是?A)2 B) 5 C) 8 D) 9二、多选题(每题4分)1. 下列哪些数是无理数?A.(√2))B.(34C.(π)D.(e)E.(√9)【答案】 ACD2. 设函数(f(x)=x3−6x2+9x),则下列哪些陈述是正确的?A. 函数在(x=1)处取得极大值B. 函数在(x=3)处取得极小值C. 函数在(x=3)处取得极大值D. 函数在(x=1)处取得极小值E. 函数在(x=0)处有拐点【答案】 BE3. 下列哪些图形具有旋转对称性?A. 等边三角形C. 长方形(长宽比不是1)D. 圆E. 平行四边形【答案】 ABD4. 在直角坐标系中,直线(y=mx+b)经过点(1, 2),且与(y)轴交于点(0, 1),下列哪些结论是正确的?A. 斜率(m=1)B. 直线方程为(y=x+1)C. 直线与(x)轴交于点(-1, 0)D. 直线平行于(y=x)E. 直线垂直于(y=−x)【答案】 ABCD5. 若集合A={1, 2, 3},集合B={2, 3, 4},下列哪些集合表示的是(A∪B)和(A∩B)?A.(A∪B={1,2,3,4})B.(A∩B={2,3})C.(A∪B={1,2,2,3,3,4})D.(A∩B={1,2,3,4})E.(A∪B={1,3,4})【答案】 AB三、填空题(每题3分)第1题若(ab =34),且(a+b=14),则(a)的值为______。

2022年中考复习《代数几何综合》专项练习附答案

2022年中考复习《代数几何综合》专项练习附答案

代数几何综合1、〔2021年潍坊市压轴题〕如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.〔1〕求抛物线的解析式;〔2〕假设直线平分四边形OBDC 的面积,求k 的值.〔3〕把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不管k 取何值,直线PM 与PN 总是关于y 轴对称?假设存在,求出P 点坐标;假设不存在,请说明理由.答案:〔1〕因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . 〔2〕由〔1〕知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 〔3〕由〔1〕知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 那么〔1〕式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以〔t+2〕(x M +x N )=2k x M x N,……(2) 把y=kx-2(k ≠0)代入221x y -=中,整理得x 2+2kx-4=0, 所以x M +x N =-2k, x M x N =-4,代入〔2〕得t=2,符合条件,故在y 轴上存在一点P 〔0,2〕,使直线PM 与PN 总是关于y 轴对称.考点:此题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式确实定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:此题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。

中考数学-几何与代数综合专题(含答案)

中考数学-几何与代数综合专题(含答案)

题型:反比例函数专题题型说明:自从2010年北京中考第23题考查了反比例函数的知识以来,各区县模拟考试题中就开始出现了很多反比例函数的类型题,但是不管如何考查,都基本上会涉及几何变换,数形结合,方程与不等式,整体思想等。

【例1】已知:反比例函数()0ky k x=≠经过点(11)B ,. ⑴求该反比例函数解析式;⑵联结OB ,再把点(20)A ,与点B 连结,将OAB ∆绕点O 按顺时针方向旋转135︒得到''OA B ∆,写出''A B 的中点P 的坐标,试判断点P 是否在此双曲线上,并说明理由;⑶若该反比例函数图象上有一点(1)F m -(其中0m >),在线段OF 上任取一点E ,设E 点的纵坐标为n ,过F 点作FM x ⊥轴于点M ,连结EM ,使OEM ∆的面积是2,求代数式2n +-【答案】⑴反比例函数解析式:1y x=⑵∵已知(11)B ,,(20)A , ∴OAB ∆是等腰直角三角形∵顺时针方向旋转135°,∴'(0B,'(A - ∴中点P为(2. ∵((1⋅= ∴点P 在此双曲线上. ⑶∵EH n = ,OM m =例题精讲代数综合(二)∴OEM S ∆=EH OM ⋅21=mn 21=2,∴m = 又∵(1)F m -在函数图象上∴)123(-m m =1. 将m21=∴2n =∴2n +-【例2】如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N . ⑴求直线DE 的解析式和点M 的坐标; ⑵若反比例函数y =xm(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; ⑶若反比例函数y =xm(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围. 【答案】⑴设直线DE 的解析式为y =kx +b∵点D ,E 的坐标为(0,3)、(6,0), ∴⎩⎨⎧b k b+== 603 解得⎪⎩⎪⎨⎧321 ==b k -∴直线DE 的解析式为y =-21x +3 ∵点M 在AB 边上,B (4,2),而四边形OABC 是矩形,∴点M 的纵坐标为2 又∵点M 在直线y =-21x +3上,∴2=-21x +3,∴x =2,∴M (2,2) ⑵∵y =xm (x >0)经过点M (2,2),∴m =4,∴y =x 4又∵点N 在BC 边上,B (4,2),∴点N 的横坐标为4 ∵点N 在直线y =-21x +3上,∴y =1 ∴ N (4,1) ∵当x =4时,y =x 4=1,∴点N 在函数y =x4的图象上 ⑶48m ≤≤【例3】如图,已知直线y =-2x +b 与双曲线y =xk(k >0且2k ≠)相交于第一象限内的两点P (1,k )、Q (22-b ,y 2) ⑴求点Q 的坐标(用含k 的代数式表示)⑵过P 、Q 分别作坐标轴的垂线,垂足为A 、C ,两垂线相交于点B .是否存在这样的k 值,使得△OPQ 的面积等于△BPQ 面积的二倍?若存在,求k 的值;若不存在,请说明理由 (P 、Q 两点请自己在图中标明)【答案】⑴∵P (1,k )在直线y =-2x +b 上,∴k =-2+b∴b -2=k ∵Q (22-b ,y 2)在双曲线y =x k上,∴y 2=22-b k =2∴22-b =2k∴点Q 的坐标为(2k,2)⑵由P (1,k )、Q (2k,2)可知P 为AB 与双曲线的交点,Q 为BC 与双曲线的交点 S △OPQ=S 矩形OABC-S △AOP -S △COQ -S △BPQ =1×2-21×1×k -21×2k ×2-21×(1-2k )(2-k ) =1-41k2 假设存在这样的k 值,使得△OPQ 的面积等于△BPQ 面积的二倍,则有 1-41k2=2×21×(1-2k)(2-k ) 整理得:3k2-8k +4=0解得:k =2(不合题意,舍去)或23k =, 故存在k =32,使得△OPQ 的面积等于△BPQ 面积的二倍 【例4】如图,直线y =21x +b 分别与x 轴、y 轴相交于A 、B ,与双曲线y =xk(其中x >0)相交于第一象限内的点P (2,y 1),作PC ⊥x 轴于C ,已知△APC 的面积为9. ⑴求双曲线所对应的函数关系式;⑵在⑴中所求的双曲线上是否存在点Q (m ,n )(其中m >0),作QH ⊥x 轴于H ,当QH>CH时,使得△QCH 与△AOB 相似?若存在,请求出Q 点坐标;若不存在,请说明理由.【答案】⑴y =0代入y =21x +b ,得x =-2b ∴A (-2b ,0)把x =2代入y =21x +b ,得y 1=1+b ,∴P 由题意得:S △APC=21AC ·PC =21(2+2b )(1+b )=9 整理得:(1+b )2=9,解得b =-4(舍去)或b =2 ∴P (2,3),把P (2,3)代入y =x k,得k =6 ∴双曲线所对应的函数关系式为y =x6 ⑵由⑴知AO =4,BO =2,设Q (m ,m6) 当点Q 在点P 左侧时,CH =2-m ,QH =m 6若△QCH ∽△ABO ,则有BO CH =AO QH ,即22m -=46m整理得:m2-2m +3=0,此方程无实数解当点Q 在点P 右侧时,CH =m -2,QH =m6 若△QCH ∽△ABO ,则有BO CH =AO QH ,即22-m =46mm2-2m -3=0,解得m =-1(负值,舍去)或m =3当m =3时,CH =1,QH =2,QH>CH ,符合题意∴Q (3,2)综上所述,存在点Q (3,2),使得△QCH 与△AOB 相似【例5】如图,直线1y k x b =+与反比例函数y =xk 2(x >0)的图象交于A (1,6),B (a ,3)两点. (1)求k 1、k 2的值; (2)直接写出k 1x +b -xk 2>0时x 的取值范围;0 (3)如图,等腰梯形OBCD 中,BC ∥OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.【答案】(1)由题意知:k 2=1×6=6∴反比例函数的解析式为y =x6 又B (a ,3)在y =x6的图象上,∴a =2,∴B (2,3) ∵直线y =k 1x +b 过A (1,6),B (2,3)两点 ∴⎩⎨⎧32611 =+=+b k b k 解得⎩⎨⎧93 1 ==-b k(2)x 的取值范围为1<x<2(3)当S 梯形OBCD=12时,PC =PE设点P 的坐标为(m ,n ),∵BC ∥OD ,CE ⊥OD ,OB =CD ,B (2,3) ∴C (m ,3),CE =3,BC =m -2,OD =m +2 ∴S 梯形OBCD=21(BC +OD )·CE ,即12=21×(m -2+m +2)×3∴m =4,mn =6,∴n =23,即PE =21CE∴PC =PE【例6】在平面直角坐标系中,函数y =xm(x >0,m 是常数)的图象经过点A (1,4)、点B (a ,b ),其中a >1.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,AC 与BD 相交于点M ,连结AD 、DC 、CB 与AB . ⑴求m 的值; ⑵求证:DC ∥AB ;⑶当AD =BC 时,求直线AB 的函数解析式【答案】⑴∵点A (1,4)在函数y =xm图像上 ∴4=1m,∴m =4 ⑵∵点B (a ,b )在函数y =x4图像上 ∴B (a ,a 4),∴D (0,a4) 又∵A (1,4),∴C (1,0),M (1,a4) ∴DM =1,MB =a -1,AM =4-a 4,MC =a4 ∴MC DM =a 4,AM MB =aa 441--=a 4 ∴MC DM =AMMB∵∠DMC =∠BMA∴△CDM ∽△ABM ∴∠DCA =∠BAC ∴DC ∥AB ⑶设直线AB 的函数解析式为y =kx +b∵DC ∥AB ,AD =BC∴四边形ABCD 为平行四边形或等腰梯形 情况①:四边形ABCD 为平行四边形则DM =MB ,∴1=a -1,∴a =2 ∴B (2,2)∵点A (1,4)、B (2,2)在直线AB 上∴⎩⎪⎨⎪⎧k +b =42k +b =2 解得⎩⎪⎨⎪⎧k =-2b =6 ∴直线AB 的函数解析式为y =-2x +6情况②:四边形ABCD 为等腰梯形则AC =BD ,∴a =4∴B (4,1)∵点A (1,4)、B (4,1)在直线AB 上∴⎩⎪⎨⎪⎧k +b =44k +b =1 解得⎩⎪⎨⎪⎧k =-1b =5 ∴直线AB 的函数解析式为y =-x +5综上所述,直线AB 的函数解析式为y =-2x +6或y =-x +5【例7】如图,在平面直角坐标系中,已知A (1,0),B (0,1),E 、F 是线段AB 上的两个动点,且∠EOF=45°,过点E 、F 分别作x 轴和y 轴的垂线CE 、DF 相交于点P ,垂足分别为C 、D .设P 点的坐标为(x ,y ),令x y =k . ⑴求证:△AOF ∽△BEO ; ⑵当OC =OD 时,求k 的值;⑶在点E 、F 运动过程中,点P 也随之运动,探索:k 是否为定值?请证明你的结论.【答案】⑴证明:由已知得OA =OB =1,∠AOB =90°∴∠OAF =∠OBE =45°,又∵∠OF A =∠ABO +∠BOF =∠EOF +∠BOF =∠EOB ∴△AOF ∽△BEO⑵解:如图,过O 作OM ⊥AB 于M ,则OM =21AB =22∵OA =OB =1,OC =OD ,∴AC =BD ,∴CE =DF 又∠OCE =∠ODF =90°,∴△OCE ≌△ODF ∴OE =OF ,∴△EOF 是等腰三角形,∠EOM =21∠EOF =22.5° 而∠COE =∠AOM -∠EOM =45°-22.5°=22.5°=∠EOM ∠OCE =∠OME =90°,OE =OE ,∴△OCE ≌△OME∴OC =OM =22,∴PC =PD =OC =22 ∴k =x y =PD ·PC =21(3)k 为定值如图,过E 作EH ⊥OB 于H ,过F 作FK ⊥OA 于K 由△AOF ∽△BEO 得OB AF =BEOA,∴AF ·BE =OA ·OB =1 又AF =2FK ,BE =2HE ,∴2HE ·2FK =1 ∴HE ·FK =21,∴PD ·PC =HE ·FK =21,∴k 为定值21【例8】如图,点P (a ,b )和点Q (c ,d )是反比例函数y =x1在第一象限内图象上的两个动点(a b <,a c ≠),且OP =OQ .P 1是点P 关于y 轴的对称点,Q 1是点Q 关于x 轴的对称点,连接P 1Q 1分别交OP 、OQ 于点M 、N . ⑴求证:a =d ,b =c ; ⑵求证:11PQ PQ ∥;⑶设四边形PQNM 的面积为S .①求S 关于a 的函数关系式; ②是否存在这样的点P ,使得S =58?若存在,求出点P 的坐标;若不存在,请说明理由. 【答案】(1)∵P (a ,b ),Q (c ,d ),OP =OQ ,∴a2+b2=c2+d2又∵b =a 1,d =c 1,∴a2+(a 1)2=c2+(c1)2整理得(ac +1)(ac -1)(a +c )(a -c )=0 ∵a >0,c >0,且a ≠c ,∴ac =1 从而可得a =d ,b =c(2)证明:分别延长P 1P 、Q 1Q 相交于点A , 过点P 1、Q 1分别作x 轴、y 轴的垂线相交于点B 由(1)知AP =AQ =b -a ,AP 1=AQ 1=b +a ∴∠APQ =∠AP 1Q 1=45° ∴PQ ∥P 1Q 1(3)解:①易得P 1、Q 1的坐标分别为(-a ,b )、(b ,-a ) ∴S 梯形PP 1Q 1Q=S △AP 1Q 1-S △APQ =21(b +a )2-21(b -a )2=2ab =2 设直线P 1Q 1的解析式为y =kx +n则⎩⎪⎨⎪⎧-ak +n =b bk +n =-a 解得⎩⎪⎨⎪⎧k =-1n =b -a ∴直线P 1Q 1的解析式为y =-x +b -a 由已知可得直线OP 的解析式为y =abx 联立⎩⎪⎨⎪⎧y =-x +b -a y =abx 得x =b a a b a +-)( ,y =b a a b b +-)( 即点M 的坐标为(b a a b a +-)( ,ba ab b +-)( ) ∴S △PP 1M=21×2a ×[b -b a a b b +-)( ]=b a b a +22=ba a+2 由对称性可知S △QQ 1M=S △PP 1M=ba a +2 ∴S 四边形PQNM=S 梯形PP 1Q 1Q-2S △PP 1M=2-2×b a a+2=12222+-a a②假设存在这样的点P ,则12222+-a a =58,解得a =±31∵a >0,∴a =31,∴b =3∴存在满足条件的点P ,点P 的坐标为(31,3)【例9】如图,矩形ABCD (点A 在第一象限)与x 轴的正半轴相交于M ,与y 的负半轴相交于N ,AB ∥x轴,反比例函数y =xk的图象过A 、C 两点,直线AC 与x 轴相交于点E 、与y 轴相交于点F . (1)若B (-3,3),直线AC 的解析式为y =ax +b①求a 的值;②连结OA 、OC ,若△OAC 的面积记为S △OAC,△ABC 的面积记为S △ABC,记S =S △ABC-S △OAC,问S 是否存在最小值?若存在,求出其最小值;若不存在,请说明理由; (2)AE 与CF 是否相等?请证明你的结论.【答案】(1)①方法一:∵四边形ABCD 是矩形,AB ∥x 轴,B (-3,3) ∴A (3k ,3),C (-3,-3k) ∵y =ax +b 经过A 、C 两点∴⎩⎪⎨⎪⎧3ka +b =3-3a +b =-3k ∴(3k +3)a =3k +3∵k >0,∴3k+3≠0,∴a =1 方法二:∵四边形ABCD 是矩形,AB ∥x 轴,B (-3,3) ∴A (3k ,3),C (-3,-3k ),D (3k ,-3k) ∴AB =3k +3,AD =3k+3,∴AB =AD ,∴四边形ABCD 是正方形 ∴∠AEO =∠ACD =45°,∴OE =OF =b ∴E (-b ,0),∴-ab +b =0 ∵b ≠0,∴a =1②∵S =S △ABC-S △OAC=S △ACD-S △OAC=S △AOM+S △CON+S 矩形ONDM=21×3k ×3+21×3×3k +3k ×3k =91k2+k =91(k +29)2-49∴当k >-29时,S 随着k 的增大而增大 又∵k >0,k 没有最小值,∴S 没有最小值 (2)答:AE =CF ,理由如下: 方法一:如图,连接MN ,设AB 交y 轴于点P ,BC 交x 轴于点Q∵S 矩形APOM=S 矩形CQON=3k ×3=k ,∴DN ·AD =DM ·CD ∴CD DN =ADDM,又∵∠D =∠D ,∴△DNM ∽△DCA ∴∠DNM =∠DCA ,∴MN ∥AF又∵AM ∥FN ,∴四边形AFNM 是平行四边形,∴AF =MN 同理CE =MN ,∴AF =CE ∴AE =CF 方法二:设A (m ,m k ),C (n ,n k ),则AM =m k ,AD =m k -nk,CN =-n ,CD =m -n∵EM ∥CD ,∴△AEM ∽△ACD ,∴AC AE =AD AM =n k m k mk -=nk m k mk -=m n n- ∵FN ∥AD ,∴△CFN ∽△CAD ,∴AC CF =CDCN =n m n --=m n n- ∴AC AE =ACCF,∴AE =CF 方法三:设A (m ,mk ),C (n ,n k ),则M (m ,0)、N (0,n k)从而⎩⎪⎨⎪⎧ma +b =m kna +b =nk ∴(m -n )a =m k -nk∴a =-mn k ,∴b =mn k n m )(+,∴直线AC 的解析式为y =-mn k x +mnkn m )(+ ∴E (m +n ,0),∴EM =m -(m +n )=-n ,∵CN =-n ,∴EM =CN ∵EM ∥BA ∥CN ,∴∠AEM =∠FCN又∵∠AME =∠FNC =90°,∴△AEM ≌△FCN ∴AE =CF【例10】已知二次函数23(0)2y ax bx a =+-≠的图象经过点(10),和(30)-,,反比例函数1ky x=(0x >)的图象经过点(1,2).(1)求这两个函数的解析式,并在给定的直角坐标系中作出这两个函数的图象; (2)若反比例函数1k y x =(0x >)的图象与二次函数23(0)2y ax bx a =+-≠的图象在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数; (3)若反比例函数2k y x=(00k x >>,)的图象与二次函数23(0)2y ax bx a =+-≠的图象在第一初中数学.中考冲刺.第06讲.教师版 Page 11 of 11 象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围.【答案】(1)把(10),和(30)-,分别代入23(0)2y ax bx a =+-≠解方程组,得 12a =,1b = ∴ 抛物线解析式为23212-+=x x y ∵ 反比例函数1k y x =的图象经过点(1,2),∴ k =2. ∴ 12y x= (2)正确的画出二次函数和反比例函数在第一象限内的图象 由图象可知,这两个相邻的正整数为1与2.(3)由函数图象或函数性质可知:当23x <<时,对23212-+=x x y ,y 随着x 的增大而增大,对2(0)k y k x=>,2y 随着x 的增大而减小.因为00()A x y ,为二次函数图象与反比例函数图象的交点,所以当02x =时,由反比例函数图象在二次函数的图象上方,得2y y > 即2k >2322212-+⨯,解得5k >. 同理,当03x =时,由二次函数的图象在反比例函数图象上方的,得2y y >, 即2333212-+⨯>3k ,解得18k <. 所以k 的取值范围为518k <<.。

中考数学复习专题 代数与几何综合(含答案)

中考数学复习专题 代数与几何综合(含答案)
第- 6 -页 共 8 页
5. 如图 2-5-16,在矩形 ABCD 中,AB=10。cm,BC=8cm.点 P 从 A 出发,沿 A→B→C→D 路线运动,到 D 停止;点 Q 从 D 出发,沿 D→C→B→A 路线运动,到 A 停止,若点 P、 点 Q 同时出发,点 P 的速度为 1cm/s,点 Q 的速度为 2cm/s,a s 时点 P、点 Q 同时改变 速度,点 P 的速度变为 bcm/s,点 Q 的速度变为 d cm/s,图 2-5-17 是点 P 出发 x 秒 后△APD 的面积 S1(cm2)与 x(s)的函数关系图象;图 2-5-18 是点 Q 出发 xs 后面 AQD 的面积 S2(cm2)与 x(s)的函数关系图象. ⑴ 参照图 2-5-17,求 a、b 及图中 c 的值; ⑵ 求 d 的值; ⑶ 设点 P 离开点 A 的路程为 y1(cm),点 Q 到点 A 还需走的路程为 y2(cm),请分别写出 动点 P、Q 改变速度后,y1、y2 与出发后的运动时间 x(s)的函数解析式,并求出 P、 Q 相遇时 x 的值. ⑷ 当点 Q 出发_______s 时,点 P、点 Q 在运动路线上相距的路程为 25cm.
第- 6 -页 共 8 页
答案 一、ABDCB DAACD
二、1、 3 2、 2 -1
三、1、(1)y=- 1 x2+x 2
3、 11
6
4、(-502,502)
(2)x 取最大整数为-1,∴ y=- 1 ×(-1)2-1=– 3 ∴AC= 3
2
2
2
由△BOQ∽△CAQ,可得 BO = OQ
AC AQ
C. y x
D. y 3 x 2
7.如图,反比例函数 y 4 的图象与直线 y 1 x 的

新人教版九年级数学上册专题十二概率与代数、几何知识的综合同步测试及答案

新人教版九年级数学上册专题十二概率与代数、几何知识的综合同步测试及答案

概率与代数、几何知识的综合教材P141习题25.2第9题)盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是38,写出表示x 和y 关系的表达式. (2)往盒中再放进10枚黑棋,取得黑棋的概率变为12,求x 和y 的值. 解:(1)∵从盒中随机地取出一个棋子是黑色棋子的概率是38,∴x x +y =38,y =53x .① (2)∵如果往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为12,∴x +10x +y +10=12.② 由①②解得⎩⎪⎨⎪⎧x =15,y =25. 【思想方法】 概率与代数、几何的综合运用其本质还是求概率,只不过应用代数和几何的方法确定某些限制条件的事件数.一般的方法是利用列表或树状图求出所有等可能的情形,再求出满足所涉及知识的情形,进一步求概率,此类问题能很好地考查学生对概率与其他知识的综合运用.一 概率与代数的综合有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面数字作为y 的值,两次结果记作(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式x 2-3xy x 2-y 2+y x -y有意义的(x ,y )出现的概率; (3)化简分式x 2-3xy x 2-y 2+y x -y,并求使分式的值为整数的(x ,y )出现的概率. 解:(1)画树状图如下:,(-1,1),(1,-2),(1,-1),(1,1).(2)要使分式x 2-3xy x 2-y 2+y x -y有意义,则有(x +y )(x -y )≠0,只有(-2,-1),(-2,1),(-1,-2),(1,-2)符合条件,∴使分式x 2-3xy x 2-y 2+y x -y有意义的(x ,y )出现的概率为49. (3)x 2-3xy x 2-y 2+y x -y =x 2-3xy (x +y )(x -y )+y (x +y )(x +y )(x -y )=x 2-3xy (x +y )(x -y )+xy +y 2(x +y )(x -y )=x 2-3xy +xy +y 2(x +y )(x -y )=x 2-2xy +y 2(x +y )(x -y )=(x -y )2(x +y )(x -y )=x -y x +y,将符合条件的(-2,-1),(-2,1),(-1,-2),(1,-2)分别代入上式计算可得原式=13,3,-13,-3,∴使分式的值为整数的(x ,y )出现的概率为29. 二 概率与几何的综合如图1,直线a //b ,直线c 与a ,b 都相交,从所标识的∠1,∠2,∠3,∠4,∠5这五个角中任意选取两个角,则所选取的两个角是互为补角的概率是( A )图1A.35B.25C.15D.23小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E ,F 分别是矩形ABCD 的两边AD ,BC 上的点,且EF ∥AB ,点M ,N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( C )A.13B.23C.12D.34如图3,4张背面完全相同的纸牌(用①,②,③,④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图或列表法表示两次摸牌出现的所有可能结果;(2)ABCD 是平行四边形的概率.解:(1)解法一:画树状图如图:① ② ③ ④ ① ①② ①③ ①④② ②① ②③学科②④ ③ ③① ③② ③④④ ④① ④② ④③(2)由(1)可知共128种,即①②,②①,①③,③①,②④,④②,③④,④③,∴P (能判断四边形ABCD 是平行四边形)=812=23. 如图4,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是______(只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表的方法求解).图4解:(1)△DFG 或△DHF ;(2)画树状图: 由树状图可知共有6种等可能结果.其中与△ABC 面积相等的有3种,即△DHF ,△DGF 和△EGF .所以所画三角形与△ABC 面积相等的概率为P =36=12. 答:所画三角形与△ABC 面积相等的概率为12. 三 概率与方程(或不等式)的综合从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y =(5-m 2)x 和关于x 的方程(m +1)x 2+mx +1=0中m 的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为__25__. 四 概率与坐标系的综合如图5,在平面直角坐标系中,A (-2,2),B (-3,-2).(1)若点C 与点A 关于原点O 对称,则点C 的坐标为__(2,-2)__;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为__(3,2)__;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.图5解:(3)四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点有15个,如图其中横、纵坐标之和恰好为零的有3个,所以所取的点横、纵坐标之和恰好为零的概率是315=15. 五 概率与一次函数的综合甲、乙两个袋中均装有三张除所标数字外完全相同的卡片,甲袋中的三张卡片上所标的数字分别为-7,-1,3,乙袋中的三张卡片上所标的数字分别为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数字,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数字,把x ,y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况;(2)求点A 落在第三象限的概率.解:(1)画树状图如图:所以点A 的所有坐标为(-7,-2),(-7,1),(-7,6),(-1,-2),(-1,1),(-1,6),(3,-2),(3,1),(3,6);(2)由树状图可知,所有等可能的情况共有9种,点A 落在第三象限的情况有2种,所以P (点A 落在第三象限)=29. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y .(1)计算由x ,y 确定的点(x ,y )在函数y =-x +5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x ,y 满足xy >6,则小明胜,若x ,y 满足xy <6,则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.解: (1)y x1 2 3 4 1 (1,2) (1,3) (1,4)2 (2,1) (2,3) (2,4)3 (3,1) (3,2) (3,4)4 (4,1) (4,2) (4,3)率为412=13. (2)由(1)可知,xy >6的概率为412=13,xy <6的概率为612=12,因为12>13,所以游戏不公平. 公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜.六 概率与二次函数的综合[2013·内江]同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别记为x ,y ,并以此确定点P (x ,y ),那么点P 落在抛物线y =-x 2+3x 上的概率为( A )A.118B.112C.19D.16。

中考数学-函数与几何综合问题(共25题)(解析版)

中考数学-函数与几何综合问题(共25题)(解析版)

专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,∴∠NAJ+∠ANJ=90°,∵AN=MN,∠ANM=90°,∴∠MNK+∠ANJ=90°,∴∠MNK=∠NAJ,∴△MNK≌△NAJ,设N x,-2x-6,∴MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB=8,∴-2x-12-x=8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.2(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D 3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.3(2023·江苏无锡·统考中考真题)二次函数y =a (x -1)(x -5)a >12的图像与x 轴交于点A 、B ,与y 轴交于点C ,过点M 3,1 的直线将△ABC 分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.【答案】910或2+25或2+12【分析】先求得A 1,0 ,B 5,0 ,C 0,5a ,直线BM 解析式为y =-12x +52,直线AM 的解析式为y =12x -12,1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线,则①如图1,直线AM 过BC 中点,②如图2,直线BM 过AC 中点,直线BM 解析式为y =-12x +52,AC 中点坐标为12,52a ,待入直线求得a =910;③如图3,直线CM 过AB 中点,AB 中点坐标为3,0 ,直线MB 与y 轴平行,必不成立;2)当分成三角形和梯形时,过点M 的直线必与△ABC 一边平行,所以必有“A ”型相似,因为平分面积,所以相似比为1:2.④如图4,直线EM ∥AB ,根据相似三角形的性质,即可求解;⑤如图5,直线ME ∥AC ,⑥如图6,直线ME ∥BC ,同理可得AE AB =12,进而根据tan ∠MEN =tan ∠CBO ,即可求解.【详解】解:由y =a (x -1)(x -5),令x =0,解得:y =5a ,令y =0,解得:x 1=1,x 2=5,∴A 1,0 ,B 5,0 ,C 0,5a ,设直线BM 解析式为y =kx +b ,∴5k +b =03k +b =1解得:k =-12b =52 ∴直线BM 解析式为y =-12x +52,当x =0时,y =52,则直线BM 与y 轴交于0,52,∵a >12,∴5a >52,∴点M 必在△ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y =mx +n∴k +b =03k +b =1解得:m =12n =-12 则直线AM 的解析式为y =12x -12①如图1,直线AM 过BC 中点,,BC 中点坐标为52, 52a ,代入直线求得a =310<12,不成立; ②如图2,直线BM 过AC 中点,直线BM 解析式为y =-12x +52,AC 中点坐标为12,52a ,待入直线求得a =910;③如图3,直线CM 过AB 中点,AB 中点坐标为3,0 ,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与△ABC 一边平行,所以必有“A ”型相似,因为平分面积,所以相似比为1:2.④如图4,直线EM ∥AB ,∴△CEN ∽△COA∴CE CO =CN CA =12,∴5a -15a =12,解得a =2+25;⑤如图5,直线ME∥AC,MN∥CO,则△EMN∽△ACO∴BE AB =12,又AB=4,∴BE=22,∵BN=5-3=2<22,∴不成立;⑥如图6,直线ME∥BC,同理可得AEAB=12,∴AE=22,NE=22-2,tan∠MEN=tan∠CBO,∴1 22-2=5a5,解得a=2+12;综上所述,a=910或2+25或2+12.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B的坐标;(2)若OD:OC=2:1,直线y=-x+b分别交x轴、y轴、AD于点E,F,M,且M是AD的中点,直线EF交DC延长线于点N,求tan∠MND的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使△NPQ是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.【答案】(1)B-4,0(2)tan∠MND=13(3)存在,等腰三角形的个数是8个,Q16-522,52-42,Q26+522,-52+42,Q34,-3,Q4 -4,3【分析】(1)解方程得到OB,OC的长,从而得到点B的坐标;(2)由OD:OC=2:1,OC=2,得OD=4.由AD=BC=6,M是AD中点,得到点M的坐标,代入直线y =-x+b中,求得b的值,从而得到直线的解析式,进而求得点E,点F的坐标,由坐标特点可得∠FEO= 45°.过点C作CH⊥EN于H,过点N作NK⊥BC于K.从而△DOC∽△NKC,DO:OC=NK:CK=2: 1,进而得到NK=2CK,易证∠KEN=∠KNE=45°,可得EK=NK=2CK,因此EC=CK,由EC=OC -OE=2-1=1可得CK=1,NK=2,EK=2,从而通过解直角三角形在Rt△ENK中,得到EN=EK cos∠KEN =22,在Rt△ECH中,CH=EH=EC⋅cos∠CEH=22,因此求得NH=EN-EH=322,最终可得结果tan∠MND=CHNH=13;(3)分PN=PQ,PN=NQ,PQ=NQ三大类求解,共有8种情况.【详解】(1)解方程x2-6x+8=0,得x1=4,x2=2.∵OB>OC,∴OB=4,OC=2.∴B-4,0;(2)∵OD:OC=2:1,OC=2∴OD=4.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6.∵M是AD中点,∴MD=3.∴M-3,4.将M-3,4代入y=-x+b,得3+b=4.∴b=1.∴E1,0,F0,1.∴∠FEO=45°.过点C作CH⊥EN于H,过点N作NK⊥BC于K.∵△DOC∽△NKC,DO:OC=NK:CK=2:1.∴NK=2CK∵∠KEN=∠FEO=45°∴∠KNE=90°-∠KEN=45°∴∠KEN=∠KNE∴EK=NK=2CK∴EC=CK∵EC=OC-OE=2-1=1∴CK=1,NK=2,EK=2∴在Rt△ENK中,EN=EKcos∠KEN =2cos45°=22在Rt△ECH中,CH=EH=EC⋅cos∠CEH=1⋅cos45°=22∴NH =EN -EH =22-22=322∴tan ∠MND =CH NH =22322=13(3)解:由(2)知:直线EF 解析式为y =-x +1,N 3,-2 ,设P 0,p ,Q q ,-q +1 ,①当PN =QN =5时,3-0 2+-2-p 2=52,3-q 2+-2+q -1 2=52,解得p =-6或p =2,q =6+522或q =6-522,∴Q 16-522,52-42 ,Q 26+522,-52+42 ,P 10,-6 ,P 20,2 ,如图,△P 1Q 1N 、△P 1Q 2N 、△P 2Q 1N 、△P 2Q 2N 都是以5为腰的等腰三角形,;②当PQ =QN =5时,由①知:Q 16-522,52-42 ,Q 26+522,-52+42 ,∵6+522>5,∴PQ 2不可能等于5,如图,△P 3Q 1N ,△P 4Q 1N 都是以5为腰的等腰三角形,;③当PN=PQ=5时,由①知:P10,-6,P20,2,当P10,-6时,0-q2+-6+q-12=5,解得q1=3(舍去),q2=4,∴Q34,-3,如图,当P20,2时,0-q2+2+q-12=5,解得q1=3(舍去),q2=-4,∴Q4-4,3,如图,综上,等腰三角形的个数是8个,符合题意的Q坐标为Q16-522,52-42,Q26+522,-52+42,Q34,-3,Q4-4,3【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.【答案】(1)BD 是⊙O 的切线,证明见解析(2)1+52(3)y =x 0<x ≤1【分析】(1)依据题意,由勾股定理,首先求出∠ACB =90°,从而∠CAB +∠ABC =90°,然后根据∠DBC =∠CAB ,可以得解;(2)由题意,据S 1⋅S =S 2 2得CD CD +AC =AC 2,再由tan ∠D =BC CD =tan ∠ABC =AC BC ,进而进行变形利用方程的思想可以得解;(3)依据题意,连接OM ,分别在Rt △OFM 、Rt △AFE 、Rt △BFN 中,找出边之间的关系,进而由FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,可以得解.【详解】(1)解:BD 是⊙O 的切线.证明:如图,在△ABC 中,AB 2=BC 2+AC 2,∴∠ACB =90°.又点A ,B ,C 在⊙O 上,∴AB 是⊙O 的直径.∵∠ACB =90°,∴∠CAB +∠ABC =90°.又∠DBC =∠CAB ,∴∠DBC +∠ABC =90°.∴∠ABD =90°.∴BD 是⊙O 的切线.(2)由题意得,S 1=12BC ⋅CD ,S 2=12BC ⋅AC ,S =12AD ⋅BC .∵S 1⋅S =S 2 2,∴12BC ⋅CD ⋅12AD ⋅BC =12BC ⋅AC 2.∴CD •AD =AC 2.∴CD CD +AC =AC 2.又∵∠D +∠DBC =90°,∠ABC +∠A =90°,∠DBC =∠A ,∴∠D =∠ABC .∴tan ∠D =BC CD =tan ∠ABC =AC BC.∴CD =BC 2AC.又CD CD +AC =AC 2,∴BC 4AC2+BC 2=AC 2.∴BC 4+AC 2⋅BC 2=AC 4.∴1+AC BC 2=AC BC4.由题意,设tan D 2=m ,∴AC BC2=m .∴1+m =m 2.∴m =1±52.∵m >0,∴m =1+52.∴tan D 2=1+52.(3)设∠A =α,∵∠A +∠ABC =∠ABC +∠DBC =∠ABC +∠N =90°,∴∠A =∠DBC =∠N =α.如图,连接OM .∴在Rt △OFM 中,OF =OM 2-FM 2=1-x 2.∴BF =BO +OF =1+1-x 2,AF =OA -OF =1-1-x 2.∴在Rt △AFE 中,EF =AF ⋅tan α=1-1-x 2 ⋅tan α,AE =AF cos α=1-1-x 2cos α.在Rt △ABC 中,BC =AB ⋅sin α=2sin α.(∵r =1,∴AB =2)AC =AB ⋅cos α=2cos α.在Rt △BFN 中,BN =BF sin α=1+1-x 2sin α,FN =BF tan α=1+1-x 2tan α.∴y =FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=x 2⋅12+21-x 2+12-21-x 2=x 2⋅2-21-x 2+2+21-x 24-41-x 2 =x 2⋅1x 2=x 2⋅1x=x .即y =x .∵FM ⊥AB ,∴FM 最大值为F 与O 重合时,即为1.∴0<x ≤1.综上,y =x 0<x ≤1 .【点睛】本题主要考查了圆的相关性质,切线的判定定理,求角的正切值,解题时要熟练掌握并灵活运用.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.【答案】(1)k 的值为-1,m 的值为3,n 的值为2(2)①函数y 2的图像的对称轴为x =-13;②函数y 2的图像过两个定点0,1 ,-23,1 ,理由见解析(3)能构成正方形,此时S >2【分析】(1)根据题意得到a 2=c 2,a 1=c 2,b 1=-b 2≠0即可解答;(2)①求出y 1的对称轴,得到s =-3r ,表示出y 2的解析式即可求解;②y 2=-3rx 2-2rx +1=-3x 2+2x r +1,令3x 2+2x =0求解即可;(3)由题意可知y 1=ax 2+bx +c ,y 2=cx 2-bx +a 得到A 、B 的坐标,表示出CD ,EF ,根据CD =EF 且b 2-4ac >0,得到a =c ,分a =-c 和a =c 两种情况求解即可.【详解】(1)解:由题意可知:a 2=c 2,a 1=c 2,b 1=-b 2≠0,∴m =3,n =2,k =-1.答:k 的值为-1,m 的值为3,n 的值为2.(2)解:①∵点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,∴对称轴为x =r +s 2=-2r 2,∴s =-3r ,∴y 2=sx 2-2rx +1,∴对称轴为x =--2r 2s =r s =-13.答:函数y 2的图像的对称轴为x =-13.②y 2=-3rx 2-2rx +1=-3x 2+2x r +1,令3x 2+2x =0,解得x 1=0,x 2=-23,∴过定点0,1,-2 3 ,1.答:函数y2的图像过定点0,1,-2 3 ,1.(3)解:由题意可知y1=ax2+bx+c,y2=cx2-bx+a,∴A-b2a ,4ac-b24a,B b2c,4ac-b24c,∴CD=b2-4aca ,EF=b2-4acc,∵CD=EF且b2-4ac>0,∴a =c ;①若a=-c,则y1=ax2+bx-a,y2=-ax2-bx+a,要使以A,B,C,D为顶点的四边形能构成正方形,则△CAD,△CBD为等腰直角三角形,∴CD=2y A ,∴b2+4a2|a|=2⋅-4a2-b24a,∴2b2+4a2=b2+4a2,∴b2+4a2=4,∴S正=12CD2=12⋅b2-4aca2=12⋅b2+4a2a2=2a2,∵b2=4-4a2>0,∴0<a2<1,∴S正>2;②若a=c,则A、B关于y轴对称,以A,B,C,D为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD是边长为4的菱形,∠A=60°,点Q为CD的中点,P为线段AB上的动点,现将四边形PBCQ沿PQ翻折得到四边形PB C Q.(1)当∠QPB=45°时,求四边形BB C C的面积;(2)当点P在线段AB上移动时,设BP=x,四边形BB C C的面积为S,求S关于x的函数表达式.【答案】(1)43+8(2)S=323xx2+12+43【分析】(1)连接BD、BQ,根据菱形的性质以及已知条件可得△BDC为等边三角形,根据∠QPB=45°,可得△PBQ为等腰直角三角形,则PB=23,PQ=26,根据翻折的性质,可得∠BPB =90°,PB=PB ,则BB =26,PE=6;同理CQ=2,CC =22,QF=2;进而根据S四边形BB C C=2S梯形PBCQ-S△PBB+S △CQC,即可求解;(2)等积法求得BE =23x x 2+12,则QE =12x 2+12,根据三角形的面积公式可得S △QEB =123x x 2+12,证明△BEQ ∼△QFC ,根据相似三角形的性质,得出S △QFC =43x x 2+12,根据S =2S △QEB +S △BQC +S △QFC 即可求解.【详解】(1)如图,连接BD 、BQ ,∵四边形ABCD 为菱形,∴CB =CD =4,∠A =∠C =60°,∴△BDC 为等边三角形.∵Q 为CD 中点,∴CQ =2,BQ ⊥CD ,∴BQ =23,QB ⊥PB .∵∠QPB =45°,∴△PBQ 为等腰直角三角形,∴PB =23,PQ =26,∵翻折,∴∠BPB =90°,PB =PB ,∴BB =26,PE =6;.同理CQ =2,∴CC =22,QF =2,∴S 四边形BB C C =2S 梯形PBCQ -S △PBB +S △CQC =2×12×2+23 ×23-12×23 2+12×22=43+8;(2)如图2,连接BQ 、B Q ,延长PQ 交CC 于点F .∵PB =x ,BQ =23,∠PBQ =90°,∴PQ =x 2+12.∵S △PBQ =12PQ ×BE =12PB ×BQ ∴BE =BQ ×PB PQ =23x x 2+12,∴QE =12x 2+12,∴S △QEB =12×23x x 2+12×12x 2+12=123x x 2+12.∵∠BEQ =∠BQC =∠QFC =90°,则∠EQB =90°-∠CQF =∠FCQ ,∴△BEQ ∼△QFC ,∴S △QFC S △BEQ =CQ QB 2=223 2=13,∴S △QFC =43x x 2+12.∵S △BQC =12×2×23=23,∴S =2S △QEB +S △BQC +S △QFC =2123x x 2+12+23+43x x 2+12=323x x 2+12+43.【点睛】本题考查了菱形与折叠问题,勾股定理,折叠的性质,相似三角形的性质与判定,熟练掌握菱形的性质以及相似三角形的性质与判定是解题的关键.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y=-3x2+23x的图象与x 轴分别交于点O,A,顶点为B.连接OB,AB,将线段AB绕点A按顺时针方向旋转60°得到线段AC,连接BC.点D,E分别在线段OB,BC上,连接AD,DE,EA,DE与AB交于点F,∠DEA=60°.(1)求点A,B的坐标;(2)随着点E在线段BC上运动.①∠EDA的大小是否发生变化?请说明理由;②线段BF的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE的中点在该二次函数的因象的对称轴上时,△BDE的面积为.【答案】(1)A2,0,B1,3;(2)①∠EDA的大小不变,理由见解析;②线段BF的长度存在最大值为12;(3)239【分析】(1)y=0得-3x2+23x=0,解方程即可求得A的坐标,把y=-3x2+23x化为顶点式即可求得点B的坐标;(2)①在AB上取点M,使得BM=BE,连接EM,证明△AED是等边三角形即可得出结论;②由BM= AB-AF=2-AF,得当AF最小时,BF的长最大,即当DE⊥AB时,BF的长最大,进而解直角三角形即可求解;(3)设DE的中点为点M,连接AM,过点D作DH⊥BN于点H,证四边形OACB是菱形,得BC∥OA,进而证明△MBE≌△MHD得DH=BE,再证△BME∽△NAM,得ANBM=MNBE=AMME即1BM=MNBE=3,结合三角形的面积公式即可求解.【详解】(1)解:∵y=-3x2+23x=-3x-12+3,∴顶点为B1,3,令y=0,-3x2+23x=0,解得x=0或x=2,∴A2,0;(2)解:①∠EDA的大小不变,理由如下:在AB上取点M,使得BM=BE,连接EM,∵y=-3x-12+3,∴抛物线对称轴为x=1,即ON=1,∵将线段AB绕点A按顺时针方向旋转60°得到线段AC,∴∠BAC=60°,AB=AC,∴△BAC是等边三角形,∴AB=AC=BC,∠C=60°,∵A2,0,B1,3,O0,0,ON=1,∴OA=2,OB=12+32=2,AB=2-12+32=2,∴OA=OB=AB,∴△OAB是等边三角形,OA=OB=AC=BC=2,∴∠OAB=∠OBA=∠AOB=60°,∵∠MBE=60°,BM=BE,∴△BME是等边三角形,∴∠BME=60°=∠ABE,ME=BE=BM,∴∠AME=180°-∠BME=120°,BD∥EM,∵∠DBE=∠ABO+∠ABC=120°,∴∠DBE=∠AME,∵BD∥EM,∴∠FEM+∠BED=180°-120°=60°=∠AEF=∠MEA+∠FEM,∴∠BED=∠MEA,∴△BED≌△MEA,∴DE=EA,又∠AED=60°,∴△AED是等边三角形,∴∠ADE=60°,即∠ADE的大小不变;②,∵BF=AB-AF=2-AF,∴当AF最小时,BF的长最大,即当DE⊥AB时,BF的长最大,∵△DAE是等边三角形,∴∠DAF=12∠DAE=30,∴∠OAD=60°-∠DAF=30°,∴AD⊥OB,∴AD=OA×cos∠OAD=2×cos30°=3,∴AF=AD×cos∠DAF=2×cos30°=32,∴BF=AB-AF=2-32=12,即线段BF的长度存在最大值为12;(3)解:设DE的中点为点M,连接AM,过点D作DH⊥BN于点H,∵OA=OB=AC=BC=2,∴四边形OACB是菱形,∴BC∥OA,∵DH⊥BN,AN⊥BN,∴DH∥BC∥OA,∴∠MBE=∠MHD,∠MEB=∠MDH,∵DE的中点为点M,∴MD=ME,∴△MBE≌△MHD,∴DH =BE ,∵∠ANM =90°,∴∠MBE =180°-90°=90°=∠ANM ,∠NMA +∠NAM =90°,∵DE 的中点为点M ,△DAE 是等边三角形,∴AM ⊥DE ,∴∠AME =90°,∴∠BME +∠NMA =180°,∴∠BME =∠NAM ,∴△BME ∽△NAM ,∴AN BM =MN BE =AM ME 即1BM =MN BE=3,∴BM =33, ∴MN =BN -BM =233,∴DH =BE =MN 3=23,∴S △BDE =S △BDM +S △BEM =12×33×23+12×33×23=239,故答案为239.【点睛】本题主要考查了二次函数的图像及性质,菱形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,等边三角形的判定及性质以及解直角三角形,题目综合性较强,熟练掌握各知识点是解题的关键.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.【答案】(1)C (3,1),D (0,2),E (6,0)(2)①证明见解析,②点P 的坐标为(1,3)或(7,37-6)【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设F (m ,0),然后利用勾股定理求解,m =2,过点C 作CG ⊥x 轴,垂足为G .再由等腰三角形及各角之间的关系即可证明;②根据题意得出tan ∠PFK =13,设点P 的坐标为t ,-t 2+3t +1 ,根据题意得13<t <3.分两种情况分析:(i )当点P 在直线KF 的左侧抛物线上时,tan ∠P 1FK =13,13<t <2.(ii )当点P 在直线KF 的右侧抛物线上时,tan ∠P 2FK =13,2<t <3.求解即可.【详解】(1)解:∵直线y =-13x +2交y 轴于点D ,交x 轴于点E ,当x =0时,y =2,∴D 0,2 ,当y =0时,x =6,∴E 6,0 .∵直线y =-13x +2交抛物线于B ,C 两点,∴-x 2+3x +1=-13x +2,∴3x 2-10x +3=0,解得x 1=13,x 2=3.∵点B 在点C 的左侧,∴点C 的横坐标为3,当x =3时,y =1.∴C (3,1);(2)如图,①抛物线y =-x 2+3x +1交y 轴于点A ,当x =0时,y =1,.∴A (0,1),∴OA =1,在Rt △AOF 中,∠AOF =90°,由勾股定理得AF 2=OA 2+OF 2,设F (m ,0),∴OF =m ,∴AF 2=1+m 2,∵E (6,0),.∴OE =6,∴EF =OE -OF =6-m ,∵AF 2+EF 2=21,∴1+m 2+(6-m )2=21,∴m 1=2,m 2=4,∵OF <EF ,∴m =2,∴OF =2,∴F (2,0).∵D (0,2),∴OD =2,∴OD =OF .∴△DOF 是等腰直角三角形,∴∠OFD=45°.过点C作CG⊥x轴,垂足为G.∵C(3,1),∴CG=1,OG=3,∵GF=OG-OF=1,∴CG=GF,∴△CGF是等腰直角三角形,∴∠GFC=45°,∴∠DFC=90°,∴△DFC是直角三角形.②∵FK平分∠DFC,∠DFC=90°,∴∠DFK=∠CFK=45°∴∠OFK=∠OFD+∠DFK=90°,∴FK∥y轴.∵3tan∠PFK=1,∴tan∠PFK=13.设点P的坐标为t,-t2+3t+1,根据题意得13<t<3.(i)当点P在直线KF的左侧抛物线上时,tan∠P1FK=13,13<t<2.过点P1作P1H⊥x轴,垂足为H.∴P1H∥KF,∠HP1F=∠P1FK,∴tan∠HP1F=13.∵HF=OF-OH,∴HF=2-t,在Rt△P1HF中,∵tan∠HP1F=HFP1H =13,∴P1H=3HF,∵P1H=-t2+3t+1,∴-t2+3t+1=3(2-t),∴t2-6t+5=0,∴t1=1,t2=5(舍去).当t=1时,-t2+3t+1=3,∴P1(1,3)(ii)当点P在直线KF的右侧抛物线上时,tan∠P2FK=13,2<t<3.过点P2作P2M⊥x轴,垂足为M.∴P2M∥KF,∴∠MP2F=∠P2FK,∴tan∠MP2F=13,∵MF=OM-OF,∴MF=t-2在Rt △P 2MF 中,∵tan ∠MP 2F =MF P 2M=13,∴P 2M =3MF ,∵P 2M =-t 2+3t +1,∴-t 2+3t +1=3(t -2),∴t 2=7,∴t 3=7,t 4=-7(舍去).当t =7时,-t 2+3t +1=37-6,∴P 2(7,37-6)∴点P 的坐标为(1,3)或(7,37-6).【点睛】题目主要考查一次函数与二次函数综合问题,特殊三角形问题及解三角形,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.【答案】(1)4-x ;x(2)y =4x 2-12x +160<x ≤2 -4x +162<x ≤4(3)x =43或x =83【分析】(1)根据正方形中心对称的性质得出OM =OP ,OQ =ON ,可得四边形PQMN 是平行四边形,证明△ANP ≌△CQM 即可;(2)分0<x ≤2,2<x ≤4两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,AP =x ×1=x cm ,则PB =AB -AP =4-x cm ,∵四边形ABCD 是正方形,∴AD ∥BC ,∠DAB =∠DCB =90°,∵点O 是正方形对角线AC 的中点,∴OM =OP ,OQ =ON ,则四边形PQMN 是平行四边形,∴MQ =PN ,MQ ∥NP ,∴∠PNQ =∠MQN ,又AD ∥BC ,∴∠ANQ =∠CQN ,∴∠ANP =∠MQC ,在△ANP ,△CQM 中,∠ANP =∠MQC∠NAP =∠QCM NP =MQ,∴△ANP ≌△CQM ,∴MC =AP =x cm故答案为:4-x ;x .(2)解:当0<x ≤2时,点Q 在BC 上,由(1)可得△ANP ≌△CQM ,同理可得△PBQ ≌△MDN ,∵PB =4-x ,QB =2x ,MC =x ,QC =4-2x ,则y =AB 2-2S △MCQ -2S △BPQ=16-4-x ×2x -x 4-2x=4x 2-12x +16;当2<x ≤4时,如图所示,则AP =x ,AN =CQ =2x -CB =2x -4,PN =AP -AN =x -2x -4 =-x +4,∴y =-x +4 ×4=-4x +16;综上所述,y =4x 2-12x +160<x ≤2-4x +162<x ≤4 ;(3)依题意,①如图,当四边形PQMN 是矩形时,此时∠PQM =90°,∴∠PQB +∠CQM =90°,∵∠BPQ +∠PQB =90°,∴∠BPQ =∠CQM ,又∠B =∠BCD ,∴△BPQ ~△CQM ,∴BP CQ =BQCM ,即4-x 4-2x =2x x,解得:x =43,当四边形PQMN 是菱形时,则PQ =MQ ,∴4-x 2+2x 2=x 2+4-2x 2,解得:x =0(舍去);②如图所示,当PB =CQ 时,四边形PQMN 是轴对称图形,4-x =2x -4,解得x =83,当四边形PQMN 是菱形时,则PN =PQ=4,即-x +4=4,解得:x =0(舍去),综上所述,当四边形PQMN 是轴对称图形时,x =43或x =83.【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上,如图2,将正方形OABC绕点O 逆时针旋转,旋转角为α0°<α<45°,AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN,将△OFN与△OCF的面积分别记为S1与S2,设S=S1-S2,AN=n,求S关于n的函数表达式.【答案】(1)22.5°(2)FC=154(3)S=1n22【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出∠AOG=∠AOE,再由题意得出∠EOG=45°,即可求解;(2)过点A作AP⊥x轴,根据勾股定理及点的坐标得出OA=5,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O、C、F、N四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN=ON,∠FNO=90°,过点N作GQ⊥BC于点G,交OA于点Q,利用全等三角形及矩形的判定和性质得出CG=OQ,CO=QG,结合图形分别表示出S1,S2,得出S=S1-S2=NQ2,再由等腰直角三角形的性质即可求解.【详解】(1)解:∵正方形OABC,∴OA=OC,∠A=∠C=90°,∵OE=OF,∴Rt△OCF≌Rt△OAE(HL),∴∠COF=∠AOE,∵∠COF=∠AOG,∴∠AOG=∠AOE,∵AB交直线y=x于点E,∴∠EOG=45°,∴∠AOG=∠AOE=22.5°,即∠COF=22.5°;(2)过点A作AP⊥x轴,如图所示:∵A (4,3),∴AP =3,OP =4,∴OA =5,∵正方形OABC ,∴OC =OA =5,∠C =90°,∴∠C =∠APO =90°,∵∠AOP =∠COF ,∴△OCF ∽△OPA ,∴OC OP =FC AP即54=FC 3,∴FC =154;(3)∵正方形OABC ,∴∠BCA =∠OCA =45°,∵直线y =x ,∴∠FON =45°,∴∠BCA =∠FON =45°,∴O 、C 、F 、N 四点共圆,∴∠OCN =∠FON =45°,∴∠OFN =∠FON =45°,∴ΔFON 为等腰直角三角形,∴FN =ON ,∠FNO =90°,过点N 作GQ ⊥BC 于点G ,交OA 于点Q ,∵BC ∥OA ,∴GQ ⊥OA ,∵∠FNO =90°,∴∠1+∠2=90°,∵∠1+∠3=90°,∴∠2=∠3,∴△FGN ≌△NQO (AAS )∴GN =OQ ,FG =QN ,∵GQ ⊥BC ,∠FCO =∠COQ =90°,∴四边形COQG 为矩形,∴CG =OQ ,CO =QG ,∴S 1=S ΔOFN =12ON 2=12OQ 2+NQ 2 =12GN 2+NQ 2 =12GN 2+12NQ 2,S 2=S ΔCOF =12CF ⋅CO =12GC -FG GN +NQ =12GN 2-NQ 2 =12GN 2-12NQ 2,∴S =S 1-S 2=NQ 2,∵∠OAC =45°,∴△AQN 为等腰直角三角形,∴NQ =22AN =22n ,∴S =NQ 2=22n 2=12n2【点睛】题目主要考查全等三角形、相似三角形及特殊四边形的判定和性质,四点共圆的性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.【答案】(1)32,2,-1,0 ,12(2)2,3(3)m =217,13≤k <17【分析】(1)利用待定系数法求二次函数解析式即可求得b =32、c =2,从而可得OB =4,OC =2,由y =0,可得-12x 2+32x +2=0,求得A -1,0 ,在Rt △COB 中,根据正切的定义求值即可;(2)过点C 作CD ∥x 轴,交BP 于点D ,过点P 作PE ∥x 轴,交y 轴于点E ,由tan ∠OCA =tan ∠ABC =12,即∠OCA =∠ABC ,再由∠PCB =2∠ABC ,可得∠EPC =ABC ,证明△PEC ∼△BOC ,可得EP OB=EC OC,设点P 坐标为t ,-12t 2+32t +2 ,可得t4=-12t 2+32t 2,再进行求解即可;(3)①作DH ⊥DQ ,且使DH =BQ ,连接FH .根据SAS 证明△BQE ≌△HDF ,可得BE +QF =FH +QF ≥QH ,即Q ,F ,H 共线时,BE +QF 的值最小.作QG ⊥AB 于点G ,设G (n ,0),则Q n ,-12n 2+32n +2 ,根据QG =BG 求出点Q 的坐标,燃然后利用勾股定理求解即可;②作PT ∥y 轴,交BC 于点T ,求出BC 解析式,设T a ,-12a +2 ,P a ,-12a 2+32a +2 ,利用三角形面积公式表示出S ,利用二次函数的性质求出S 的取值范围,结合①中结论即可求解.【详解】(1)解:∵抛物线y =-12x 2+bx +c 经过点B (4,0),C (0,2),∴-8+4b +c =0c =2 ,解得:b =32c =2 ,∴抛物线解析式为:y =-12x 2+32x +2,∵抛物线y =-12x 2+bx +c 与x 轴交于A 、B (4,0)两点,∴y =0时,-12x 2+32x +2=0,解得:x 1=-1,x 2=4,∴A -1,0 ,∴OB =4,OC =2,在Rt △COB 中,tan ∠ABC =OC OB=24=12,故答案为:32,2,-1,0 ,12;(2)解:过点C 作CD ∥x 轴,交BP 于点D ,过点P 作PE ∥x 轴,交y 轴于点E ,∵AO =1,OC =2,OB =4,∴tan ∠OCA =AOCO=12,由(1)可得,tan ∠ABC =12,即tan ∠OCA =tan ∠ABC ,∴∠OCA =∠ABC ,∵∠PCB =2∠OCA ,∴∠PCB =2∠ABC ,∵CD ∥x 轴,EP ∥x 轴,∴∠ACB =∠DCB ,∠EPC =∠PCD ,∴∠EPC =ABC ,又∵∠PEC =∠BOC =90°,∴△PEC ∽△BOC ,∴EP OB =EC OC,设点P 坐标为t ,-12t 2+32t +2 ,则EP =t ,EC =-12t 2+32t +2-2=-12t 2+32t ,∴t4=-12t 2+32t 2,解得:t =0(舍),t =2,∴点P 坐标为2,3 .(3)解:①如图2,作DH ⊥DQ ,且使DH =BQ ,连接FH .∵∠BQD +∠BDQ =90°,∠HDF +∠BDQ =90°,∴∠QD =∠HDF ,∵QE =DF ,DH =BQ ,∴△BQE ≌△HDF (SAS ),∴BE =FH ,∴BE +QF =FH +QF ≥QH ,∴Q ,F ,H 共线时,BE +QF 的值最小.作QG ⊥AB 于点G ,∵OB =OD ,∠BOD =90°,∴∠OBD =45°,∵∠QBD =90°,∴∠QBG =45°,∴QG=BG.设G(n,0),则Q n,-12n2+32n+2,∴-12n2+32n+2=4-n,解得n=1或n=4(舍去),∴Q(2,3),∴QG=BG=4-1=3,∴BQ=DH=32,QD=52,∴m=QH=322+522=217;②如图3,作PT∥y轴,交BC于点T,待定系数法可求BC解析式为y=-12x+2,设T a,-12a+2,P a,-12a2+32a+2,则S=12-12a2+32a+2+12a-2×4=-a-22+4,∴0<S≤4,∴0<14m2-k≤4,∴0<17-k≤4,∴13≤k<17.【点睛】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与x轴的交点、全等三角形的判定与性质、相似三角形的判定与性质、解一元二次方程、锐角三角函数、最值问题、二次函数最值、用分割法求三角形面积,熟练掌握相关知识是解题的关键.13(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.【答案】(1)等腰直角三角形(2)详见解析(3)①t=3;②t=6;③D125,6 5【分析】(1)由A(0,2),B(2,0)得到OA=OB=2,又由∠AOB=90°,即可得到结论;(2)由∠EOD=90°,∠AOB=90°得到∠AOE=∠BOD,又有AO=OB,OD=OE,利用SAS即可证明△AOE≌△BOD;(3)①求出直线AC的解析式和抛物线y1的解析式,联立得x2-t+3x+3t=0,由Δ=(t+3)2-4×3t= (t-3)2=0即可得到t的值;②抛物线y1=-2tx2+2t(t+2)x-4向左平移2个单位得到抛物线y2=-2tx-t-222+(t-2)22t,则抛物线y2的顶点Pt-22,(t-2)22t,将顶点P t-22,(t-2)22t代入y AC=-2t x+2得到t2-6t=0,解得t1=0,t2=6,根据t>2即可得到t的值;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N,先证明△ODN≌△EOM(AAS),则ON=EM,DN=OM,设EM=2OM=2m,由OA∥EM得到OC:CM=OA:EM,则tt+m =22m,求得m=tt-1,得到D2tt-1,tt-1,由抛物线y2再向下平移2(t-1)2个单位,得到抛物线y3=-2tx2+2t(t-2)x-2(t-1)2,把D2tt-1,tt-1代入抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,得到3t2-19t+6=0,解得t1=13,t2=6,由t>2,得t=6,即可得到点D的坐标.【详解】(1)证明:∵A(0,2),B(2,0),∴OA=OB=2,∵∠AOB=90°,∴△AOB是等腰直角三角形,故答案为:等腰直角三角形(2)如图,∵∠EOD=90°,∠AOB=90°,∴∠AOB-∠AOD=∠DOE-∠AOD,∴∠AOE=∠BOD,∵AO=OB,OD=OE,∴△AOE≌△BOD(SAS);(3)①设直线AC的解析式为y=kx+b,∵A(0,2),C(t,0),∴b=2kt+b=0 ,∴y AC=-2tx+2,将C(t,0),B(2,0)代入抛物线y1=ax2+bx-4得,0=at2+bt-40=4a+2b-4,解得a=-2t,b=2t(t+2),∴y1=-2t x2+2t(t+2)x-4,∵直线y AC=-2t x+2与抛物线y1=-2tx2+2t(t+2)x-4有唯一交点∴联立解析式组成方程组解得x2-t+3x+3t=0∴Δ=(t+3)2-4×3t=(t-3)2=0∴t=3②∵抛物线y1=-2tx2+2t(t+2)x-4向左平移2个单位得到y2,∴抛物线y2=-2tx-t-222+(t-2)22t,∴抛物线y2的顶点P t-22,(t-2)22t,将顶点Pt-22,(t-2)22t代入y AC=-2t x+2,∴t2-6t=0,解得t1=0,t2=6,∵t>2,∴t=6;③过点E作EM⊥x轴,垂足为M,过点D作DN⊥x轴,垂足为N,∴∠EMO=∠OND=90°,∵∠DOE=90°,∴∠EOM+∠MEO=∠EOM+∠NOD=90°,∴∠MEO=∠NOD,∵OD=OE,∴△ODN≌△EOM(AAS),∴ON=EM,DN=OM,∵OE的解析式为y=-2x,∴设EM=2OM=2m,∴DN=OM=m,∵EM⊥x轴,∴OA∥EM,∴△CAO~△CEM,∴OC:CM=OA:EM,∴t t+m =2 2m,∴m=tt-1,∴EM=ON=2OM=2m=2tt-1,DN=OM=m=tt-1,∴D2tt-1,t t-1,∵抛物线y2再向下平移2(t-1)2个单位,得到抛物线y3,∴抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,∴D2tt-1,t t-1代入抛物线y3=-2t x2+2t(t-2)x-2(t-1)2,∴3t2-19t+6=0,解得t 1=13,t 2=6,由t >2,得t =6,∴2t t -1=126-1=125,t t -1=66-1=65,∴D 125,65.【点睛】此题是二次函数和几何综合题,考查了二次函数的平移、二次函数与一次函数的交点问题、待定系数法求函数解析式、解一元二次方程、全等三角形的判定和性质及相似三角形的判定与性质等知识点,综合性较强,熟练掌握二次函数的平移和数形结合是解题的关键.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)S =-32x 2+23x(2)当x =2时,S 的最大值为23【分析】(1)过点A 作AG ⊥OC 于点G ,连接AC ,证明△AOC 是等边三角形,可得DE =x ,进而证明△CDF ∽△COB ,得出DF =34-x ,根据三角形面积公式即可求解;(2)根据二次函数的性质即可求解.【详解】(1)解:如图所示,过点A 作AG ⊥OC 于点G ,连接AC ,∵顶点A 的坐标为2,23 ,∴OA =22+232=4,OG =2,AG =23∴cos ∠AOG =OG AO=12,∴∠AOG =60°∵四边形OABC 是菱形,∴∠BOC =∠AOB =30°,AC ⊥BD ,AO =OC ,∴△AOC 是等边三角形,∴∠ACO =60°,∵DE ⊥OB ,∴DE ∥AC ,∴∠EDO =∠ACO =60°∴△EOD 是等边三角形,。

中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:几何综合题(含答案解析)

几何综合题1.已知△ABC 中,AD 是的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H . (1)如图1,若①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=︒,45ACB ∠=︒;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD =2可得DE =1,AE 3. Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1. ∴AC 31.Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α︒<<︒时, ①依题意补全图1.②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.BAC ∠60BAC ∠=︒(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.答案:(1)①补全的图形如图7所示.② ∠NCE =2∠BAM .(2)当45°<α<90°时,=1802NCE BAM ∠︒-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵ 四边形ABCD 为正方形, ∴ ∠BAD=∠ADC=∠BCD=90°,直线BD 为正方形ABCD 的对称轴,点A 与点C 关于直线BD 对称. ∵ 射线AM 与线段BD 交于点M , ∴ ∠BAM=∠BCM=α. ∴ ∠1=∠2=90α︒-. ∵ CE ⊥AM , ∴ ∠CEH=90°,∠3+∠5=90°. 又∵∠1+∠4=90°,∠4=∠5, ∴ ∠1=∠3.∴ ∠3=∠2=90α︒-.∵ 点N 与点M 关于直线CE 对称,∴ ∠NCE=∠MCE=∠2+∠3=1802BAM ︒-∠. (31CDBA图1备用图C DBAM3. 如图,已知60AOB ∠=︒,点P 为射线OA内,且满足DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=, ∴30OPE ∠=.∴30DPA OPE ∠=∠=. ∴120EPD ∠=. ∵DP PE =,6DP PE +=,∴30PDE ∠=,3PD PE ==. ∴cos30DF PD =⋅︒=∴2DE DF ==(2)当M 点在射线OA 上且满足OM =DMME的值不变,始终为1.理由如下: 当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △.∴MK MD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵60MO MOL =∠=,∴sin 603ML MO =⋅=.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK ,∴MK ME =.∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明. 答案:(1)补全的图形如图所示.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°, ∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=+.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°. ∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF , ∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数; (3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;(2)45°;(3)结论:AM 2CN .A BC E证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称, ∴CE 是BD 的垂直平分线. ∴CB =CD .∴∠1=∠2=α.∵CA =CB ,∴CA =CD .∴∠3=∠CAD . ∵∠4=90°,∴∠3=(180°∠ACD )=(180°90°αα)=45°.∴∠5=∠2+∠3=α+45°-=45°. ∵∠4=90°,CE 是BD 的垂直平分线, ∴∠1+∠7=90°,∠1+∠6=90°. ∴∠6=∠7. ∵AG ⊥EC ,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中,∠8=∠G , ∠7=∠6, BC =CA ,BCN ≌△CAG .∴CN =AG . ∵Rt △AMG 中,∠G =90°,∠5=45°,∴AM AG .∴AM CN .答案:(1)补全图形略 (2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=,12-12----αα又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ②BP AB =.7.如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF , 过点B 作BG ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;(2)用等式表示线段C G ,AG ,BG 之间 的等量关系,并证明.答案:(1)证明 :∵ ∠CAB=90°. ∵ BG ⊥CF 于点G , ∴ ∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴ ∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH , ∵ △ABC 是等腰直角三角形, ∴ ∠CAB =90°,AB =AC . ∵ ∠ABG =∠ACH . ∴ △ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF . (1)依题意补全图形; (2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所示. (2)证明∵正方形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°, ∴∠PAH =45°-∠BAE . ∵FH ⊥AE .∴∠APF =45°+∠BAE .EDCBAM H PDAC∵BF=BE ,∴AF=AE ,∠BAF =∠BAE . ∴∠FAC =45°+∠BAF . ∴∠FAC =∠APF .(3)判断:FM =PN .证明:过B 作BQ ∥MN 交CD 于点Q ,∴MN =BQ ,BQ ⊥AE . ∵正方形ABCD ,∴AB =BC ,∠ABC =∠BCD=90°. ∴∠BAE =∠CBQ . ∴△ABE ≌△BCQ . ∴AE =BQ . ∴AE =MN .∵∠FAC =∠APF , ∴AF =FP . ∵AF=AE , ∴AE =FP . ∴FP =MN . ∴FM =PN .9.如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.解:(1)120°. ----------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒, ∴60.ACP BCP ∠+∠=︒ ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒ ()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴∴18060.CPD BPC ∠=︒-∠=︒ ∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒, ∴.ACD BCP ∠=∠ 在ACD △和BCP △中,M H PDA CDAC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分 (3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=︒, ∴=60.ADB CDB ∠∠=︒ ∴=60.ADB CDB ∠∠=︒∴3= 3.BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =+()32AD CD =+ 32=3.=-----------------------------------7分10.如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①. ………………………………………………………………………… 1分3-图1 备用图② 0≤QL2分(2)设直线+3y =与x 轴,y 轴的交点分别为点A ,点B ,可得A ,(0,3)B .∴ OA =,3OB =,30OAB ∠=︒. 由0≤QL y =.①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E , 可得11D E ∥OB ,111D E AE BO AO=. ∵ ⊙D 的半径为1, ∴ 111D E =.∴ 1AE =11OE OA AE =-=. ∴1D x =②如图14,当⊙D 与直线y =相切时, 相应的圆心2D 满足题意,其横坐标取到最小值.作22D E x ⊥轴于点2E ,则22D E ⊥OA . 设直线y =与直线+33y x =的交点为F 可得60AOF ∠=︒,OF ⊥AB .则9cos2AF OA OAF =⋅∠==.∵ ⊙D 的半径为1, ∴ 21D F =.∴2272AD AF D F =-=.∴ 22cos AE AD OAF=⋅∠72==,224OE OA AE =-=.图13∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠<︒ ,点C 与点F 关于BD对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是 ;(2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (3)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.(1)DE DF =; (2)解:连接DE ,DF , ∵△ABC 是等边三角形, ∴60C ∠=︒. ∵DBC α∠=, ∴120BDC α∠=︒-.∵点C 与点F 关于BD 对称,∴120BDF BDC α∠=∠=︒-,DF DC =. ∴1202FDC α∠=︒+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆心,DC 为半径的圆上.∴1602FEC FDC ∠=∠=︒+α.(3)BG GF FA =+.理由如下:GFE DCBA图15GFEDCBA连接BF ,延长AF ,BD 交于点H , ∵△ABC 是等边三角形,∴60ABC BAC ∠=∠=︒,AB BC CA ==. ∵点C 与点F 关于BD 对称, ∴BF BC =,FBD CBD ∠=∠. ∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=, 则602ABF α∠=︒-. ∴60BAF α∠=︒+. ∴FAD α∠=.∴FAD DBC ∠=∠. 由(2)知60FEC α∠=︒+. ∴60BGE FEC DBC ∠=∠-∠=︒. ∴120FGB ∠=︒,60FGD ∠=︒.四边形AFGB 中,360120AFE FAB ABG FGB ∠=︒-∠-∠-∠=︒. ∴60HFG ∠=︒.∴△FGH 是等边三角形. ∴FH FG =,60H ∠=︒. ∵CD CE =, ∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△△AHD BGE ≅. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.12.如图,在△ABC 中,AB=AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE = AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF .(1)∠CAD = 度; (2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明.HGFEDCBA解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分 ∴∠DBA =∠DCA ,BD = CD . ∵CD =DF ,∴B D =DF . ………………………………………3分 ∴∠DBA =∠DFB =∠DCA . ∵∠DFB +∠DFA =180°, ∴∠DCA +∠DFA =180°. ∴∠BAC +∠CDF =180°.∴∠CDF =90°. ………………………………………4分 (3)CE =)21CD . ……………………………………5分证明:∵90 EAD ∠=°,∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分 ∴DF =EF .由②可知,CF 2CD . …………………………7分 ∴CE =()21C D .13.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . (1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .GFAB DCAB CE D∵四边形ABCD 是正方形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°, ∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF , ∴AE=AF ,∠FAE =90°. ∴∠1=∠2.∴△FDA ≌△EBA . …………………3分 ∴∠FDA =∠EBA =90°,FD=BE . ∵∠ADC =90°,∴∠FDA +∠ADC =180°。

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

代数综合题一:对于实数a, b,我们用符号min{a, b}表示a, b两数中较小的数,如min{3, 5}=3 ,因此,min{ —1, — 2}=; 若min {(x+1)2,x2} = 4 ,则x=.题二:对于实数c, d,我们用符号max{c, d}表示c, d两数中较大的数,如max{3 , 5}=5 ,因此,max{—1, —1}= ;若max1x2+2x + 2,x2} = 2 ,贝U x= .2 3 ----------- -----------------------------------------------------2题三:如图,平行于x轴的直线AC分别交抛物线y i=x2(x>)与y2=上(xA)3于B、C两点,过点C作y轴的平行线交y1于点D,直线DE//AC,交y2于点E,则匹=BC ----------题四:在平面直角坐标系中,点P(0, m2)(m>0)在y轴正半轴上,过点P作2 2 平行于x轴的直线,分别交抛物线C I: y=工于点A、B,交抛物线C2: y=上49 于点C、D.(1)如图①,原点O关于直线AB的对称点为点Q,分别连接OA, OB, QC 和QD,求》OB与笈QD面积比为.(2)如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C I于点F,在y轴上任取一点M,连接MA、ME、MD和MF, 则/IMAE与Z1MDF 面积的比值为.题五:如图,点E、F在函数y=上(k>0)的图象上,直线EF分别与x轴、y x 轴交于点A、B,且BE: BF=1: 4,过点E作EP,y轴于P,已知—EP的面积为2.⑴求反比例函数的解析式;(2)计算为EF的面积.题六:如图,点A(1, 6)和点M(m, n)都在反比例函数y" (k>0)的图象上. x⑴求反比例函数的解析式;(2)当m=3时,求直线AM的解析式,并求出BOM的面积.「2 ’“题七:设函数v=' x ,若互不相等的实数Xi, X2, X3,满足Vl=V2=/3, 3X +1, X <0求X1 + X2+X3的取值范围.题八:在平面直角坐标系xOy中,抛物线y=x2+4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线AC的表达式;(2)在x轴下方且垂直于y轴的直线l与抛物线交于点P(X1,必),Q(X2, 丫2), 与直线AC交于点N(x3, y3),若x1>x2>x3,结合函数的图象,求与+&+期的取值范围.参考答案题一:一2, —3或 2.详解:.. 一 2<—1,「.min{ —1, —2}=—2,: min{(x+1)2,x 2} = 4 ,当(x+1)2=x 2时,解得:x= —0.5, (x+1)2=x 2=0.25,这时不可能得出最小值为4,当 x> —0.5, (x+1)2>x 2,则 x 2=4,解得 %=2 或 M = —2(舍去), 当 x< —0.5, (x+1)2<x 2,则(x+1)2=4,解得 x 1二 —3 或 x 2=1(舍去),• . x= - 3 或 x=2.题二:详解:- 3>-》「.maxL 12 : max{x 2+2x +2,x 2} = 2 ,2,当 x>—1, x 2+2x+2>x 2,则 x 2+2x+2=2,解得 x 1=0 或 x 2= —2(舍去), 当 x<—1, x 2+2x+2<x 2,则 x 2=2,解得 x 1 二 —后或 x 2=我 (舍去),• . x=—五或 x=0.题三:V 3 .详解:设A 点坐标为(0, a ), (a>0),则x 2=a,解得x= a a ,.二点B (4 , a ),2____ _.解得—,,点C (肖明」.B —公•「C D //y轴,-3}二,当 x 2+2x+2=x 2 时,解得:x= — 1, x 2+2x+2=x 2=1,这时不可能得出最大值为•••点D的横坐标与点C的横坐标相同均为怎,• - y1=(v13a)2=3a,题五:(1)y=4, (2)15 .占 八、D 的坐标为(痣,占 八、E 的纵坐标为3a,3a), 「DE//AC,2——=3a, • . x=3 v 1 a , 3 占八、E 的坐标为(3 v,a ,3a), •.DE=3Va —痘,「 DE 3, a 7 3a1八A— AB PO,cS AOB _ 2- 4m-2••.E 点的横坐标为一2m, F 点的横坐标为 3m, .•.y E =l^-2m)2=4m99222 4m _ 5m9 ・ 9,AE=m 2,y F =1x (3m)2=也, 4 422DF=9m- - m 2=-5m-44 5m 3E(—2m,当 SA AEM =1292X 5m 2-)F(3m,耳),4SA DFM = 12① X5m= 15m 3一S DFM15m 3278详解:(1)作EC ,x 轴于C, FD ,x 轴于D, FH ,y 轴于H,如图,•••△OEP 的面积为2,:|k|=2,而k>0,k=4, •••反比例函数解析式为 y=4; x(2) 「EPLy 轴,FH ,y 轴,「.EP//FH, /. A BPE^A BHF ,即HF=4PE,设E 点坐标为(t,,),则F 点的坐标为(4t,,), t 4t ・ S ^OEF +S* AQFD = S AQEC +S 梯形ECDF , 而 S AQFD =S 8EC =2 ,题六:(1)y=6; (2)y=—2x+8, 8. x・「y=x 2_4x+2(x 刃)的对称轴为 x=2, y i =y 2, :x 2+x 3=4,・•・y=x 2—4x+2(x 冷)的顶点坐标为(2, —2),令 y= —2,代入 y=3x+1,解得:x=—1,「•—1<x 1<0, 贝U x i +x 2+x 3 的取值范围是:-1+4<x 1+x 2+x 3<0+4,3<x 1+x 2+x 3<4.题八:(1)y=x+3; (2) - 8<x 1+x 2+x 3< - 7.PE BE _ 1 =-- , IM ,详解:先作出函数y=」x2-4x '2,* * ** x -0的图象,如图,不妨设X 1VX 2VX 3,勺+…可详解:(1)由y=x2+4x+3得至U: y=(x+3)(x+1), C(0, 3),• .A(—3, 0), B(—1, 0),设直线AC 的表达式为:y=kx+b(k?・•. :3k:b=°,解得:;k=:,所以直线AC的表达式为y=x+3, b =3 b =3(2)由y=x2+4x+3得至U:y=(x+2)2—1, ••・抛物线y=x2+4x+3的对称轴是x= —2, 顶点坐标是(一2, —1), •. y1=y2,「-2=—4,令y= —1,代入y=x+3,解得:x= — 4,: x1 >x2>x3, •二—4<x3<—3, •二一4 — 4<x1 +x2+x3< — 3 — 4,「•一8<必+垣+&< 一7.代数几何综合题一:如图,已知抛物线y=ax2+bx+c (a?0与x轴交于A (-1, 0)、B (3, 0)两点,与y轴交于点C (0, 3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得APAC的周长最小,并求出点P 的坐标.题二:如图,已知抛物线y=ax2+bx+c (a?0与x轴交于点A (-4, 0), B (1,0),与y轴交于点D (0, 4),点C (-2, n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE, AC请判断△ ACE的形状,并说明理由.题三:在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M, N的密距,记为d (M, N).特别地,若图形M, N有公共点,规定d (M, N) =0.(1)如图1, OO的半径为2,①点A (0, 1) , B (4, 3),则d (A, OO) =, d (B, OO) =.②已知直线l: y=3x + b与。

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

人教版数学中考专题:代数几合综合问题含答案完整版

人教版数学中考专题:代数几合综合问题含答案完整版

人教版数学中考专题:代数几合综合问题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】中考数学专题:代数几何综合问题一、填空题1. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.2.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是______.二,选择题3.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A. B.B. D.C.D. 4. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()E.?F.G.三、解答题H. 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以厘米/秒的速度沿BC向终点C运动.过点P作I.PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).J.(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;K.(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?L.(3)当t为何值时,△EDQ为直角三角形.M.N.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)O.(1)求线段AB的长;当t为何值时,MN∥OC?P.(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?Q.R.7. 条件:如下图,A、B是直线l同旁的两个定点.S.T.问题:在直线l上确定一点P,使PA+PB的值最小.U.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).V.模型应用:W.(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;X.(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;Y.(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值.Z.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x 轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.9.(1)求N点、M点的坐标;10.(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;11.(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;12.②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.13.14.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. (2018?成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a <0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y 轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M 为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F 是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.?【答案与解析】一、填空题1.【答案】(0,0),(0,10),(0,2),(0,8)2.【答案】(2×3n﹣1,0).【解析】∵点B1、B2、B3、…、Bn在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴An Bn=4×3n﹣1(n为正整数).∵OAn =AnBn,∴点An的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).二、选择题3.【答案】A.【解析】分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AG=BG=OG=AB=2cm,∴S=AP?OG=×t×2=t(cm2),②当t≥4时,作OG⊥AB于G,如图2所示:S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.4.【答案】A.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD==,∵PE∥BC,解得PE=,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=,∴?∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=,∴解得t=(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在 Rt△ACD中,∵AC=4,CD=3,∴AD=,?∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,?∴ t=(秒).综上所述,当 t=秒或t=秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当?时,,?,.∵?,,∴,即?(秒).(2)过点作轴于点,交的延长线于点,∵?,∴,.即?,.?,?.?,∴.即?().由?,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36 解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则?,解得?,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S最大=﹣.9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE =k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知xD ﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=yD +yQ=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上.(2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。

中考数学模拟题《代数几何综合问题》专项检测题(附答案)

中考数学模拟题《代数几何综合问题》专项检测题(附答案)

中考数学模拟题《代数几何综合问题》专项检测题(附答案) 学校:___________班级:___________姓名:___________考号:___________两圆一中垂模型讲解【模型】已知点A,B是平面内两点,再找一点C,使得△ABC为等腰三角形.【结论】分类讨论:若AB=AC,,则点 C 在以点 A 为圆心,线段 AB 的长为半径的圆上若BA=BC,,则点 C 在以点 B 为圆心,线段 AB 的长为半径的圆上若CA=CB 则点 C在线段AB 的垂直平分线PQ 上.以上简称“两圆一中垂”.“两圆一中垂”上的点能构成等腰三角形,但是要除去原有的点A,B,还要除去因共线无法构成三角形的点M,N以及线段AB 中点E(共除去5个点),需要注意细节.典例秒杀典例1如图平面直角坐标系中已知A(2 2) B(4 0) 若在x轴上取点 C 使. △ABC为等腰三角形,则满足条件的点C 有( ).A.1个B.2 个C.3个D.4个【答案】D【解析】∵点 A B的坐标分别为(2 2) B(4 0) ∴AB=2√2.①若AC=AB 以 A为圆心 AB长为半径画弧与x 轴有2个交点(含 B点) 即(0 0) (4 0)(舍去)∴满足△ABC是等腰三角形的点C 有1个②若 BC=AB 以B为圆心 BA长为半径画弧与x 轴有2个交点,即满足△ABC是等腰三角形的点C 有2个③若CA=CB,作线段AB的垂直平分线与x轴有 1个交点,即满足△ABC是等腰三角形的点C有1个.综上所述,满足条件的点C共有 4个.故选 D.典例2图象上的一点,连接AO并延长交双曲线的另一分支于点B,P 是x 如图,已知点 A(1,2)是反比例函数y=kx轴上一动点.若△PAB是等腰三角形,则点 P的坐标是 .【答案】(-3 0)或(5 0)或(3 0)或(-5 0)的图象关于原点对称【解析】∵反比例函数y=kx∴A,B两点关于点O对称∴O为AB 的中点且 B(-1 -2)∴当△PAB为等腰三角形时,只有. PA=AB或PB=AB两种情况.设点 P 的坐标为(x 0)∵A(1 2) B(-1 -2)∴AB=√[1−(−1)]2+[2−(−2)]2=2√5,PA=√(x−1)2+22,PB=√(x+1)2+(−2)2故当 PA=AB时√(x−1)2+22=2√5,解得x=--3 或x=5 此时 P点坐标为(-3 0)或(5 0);当 PB=AB 时√(x+1)2+(−2)2=2√5,解得 x=3 或x=-5 此时P点坐标为(3 0)或(-5 0).综上可知点 P的坐标为(-3 0)或(5 0)或(3 0)或(-5 0).典例3如图,抛物线y=x²−2x−3与y轴交于点C,点 D的坐标为(0,-1),抛物线在第四象限内有一点 P,若△PCD 是以CD 为底边的等腰三角形,则点 P 的横坐标为( ).A.1+√2B.1−√2C.√2−1D.1−√2或1+√2【答案】A【解析】令x=0 则y=-3∴点C的坐标为( (0,−3).∵点 D的坐标为(0 -1)×(−1−3)=−2.∴线段CD的中点的纵坐标为12∵△PCD是以CD 为底边的等腰三角形∴点 P 只能在线段CD 的垂直平分线上∴点 P 的纵坐标为-2∴x²−2x−3=−2,解得x1=1−√2,x2=1+√2.∵点 P 在第四象限∴点 P 的横坐标为1+√2.故选 A.小试牛刀1.(★★☆☆☆)如图在平面直角坐标系中AB=2OB,在坐标轴上取一点 P,使得△ABP为等腰三角形,则符合条件的点 P共有( ).A.4个B.5 个C.6个D.7个2.(★★☆☆☆)如图点 A的坐标是(2 2) 若点 P 在x 轴上且△APO是等腰三角形,则点 P的坐标不可能是( ).A.(4 0)B.(1 0)C.(−2√2,0)D.(2 0)(x−√3)2+4上则能3.(★★☆☆☆)已知直线y=−√3x+3与坐标轴分别交于点A B 点 P 在抛物线y=−13使△ABP为等腰三角形的点 P 有( ).A.3个B.4个C.5个D.6 个直击中考的图象交于A(3 4) B(n -1)两点.1.如图所示,一次函数y=kx+b的图象与反比例函数y=mx(1)求反比例函数和一次函数的解析式.(2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.2.已知抛物线y=ax²+bx+c(a≠0)与x轴交于A,B两点(点 A 在点B 的左边),与y轴交于点C(0,−3),顶点 D 的坐标为( (1,−4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得. △EAC为等腰三角形,请直接写出点 E 的坐标.两垂一圆模型讲解【模型】平面内有两点A,B,再找一点C,使得△ABC为直角三角形.【结论】分类讨论:若∠A=90°,则点 C在过点 A 且垂直于 AB 的直线上(除点 A 外);若∠B=90°,则点 C 在过点 B 且垂直于 AB 的直线上(除点 B 外);若∠C=90°,则点 C在以 AB为直径的圆上(除点 A B外).以上简称“两垂一圆”.“两垂一圆”上的点能构成直角三角形,但要除去A,B两点.典例秒杀典例1如图已知点A(-8 0) B(2 0) 点 C在直线y=−3x+4上,则使△ABC是直角三角形的点C 的个数为( ).4A.4B.3C.2D.1【答案】B【解析】如图所示,有三个点满足条件.典例2的图象上,若△PAB为直角三角形,则满足已知抛物线y=x²−9与x轴交于A,B两点,点 P 在函数y=√3x条件的点 P 的个数为( ).A.2B.3C.4D.6【答案】D【解析】令x²−9=0,解得x₁=3,x₂=−3,不妨设A(-3 0) B(3 0)若AB为斜边,则以 O为圆心,OA长为半径作圆,如图1.的图象的交点即为满足条件的点,这样的点有4个,分别是P₁,P₂,P₃,P₄;圆O与y=√3x的图象于点P₆,P₅,交点即为满足条件的点,若以AB为一直角边,则分别过A,B作x轴的垂线,交y=√3x如图2,这样的点有2个.综上所述,满足条件的点 P 有 6 个.故选 D.典例3如图,在平面直角坐标系中,二次函数y=x²+bx+c的图象的对称轴为经过点(1,0)的直线,其图象与x轴交于点A,B,且过点 C(0,−3),,其顶点为 D,在 y轴上有一点 P(点 P 与点 C 不重合),使得△APD是以点 P 为直角顶点的直角三角形,则点 P 的坐标为( ).A.(0 3)B.(0,−3)C.(0 -1)D.(0,−1)或(0,−3)【答案】C【解析】由题意得二次函数图象的对称轴为直线. x=1,则−b=1,b=-22又二次函数的图象过点 C(0,-3)∴--3=c 即c=-3∴二次函数的解析式为y=x²−2x−3.由y=x²−2x−3=(x−1)²−4,得顶点 D的坐标为(1 -4).令x²−2x−3=0,得x₁=3,x₂=−1,则 A(3 0).设 P(0 m)(m≠-3) 由题意得PA=√9+m2,PD=√1+(m+4)2,AD=2√5.∵∠APD=90°∴PA²+PD²=AD²,即(√9+m2)2+(√1+(m+4)2)2=(2√5)2.解得m₁=−1,m₂=−3(不合题意,舍去).∴P(0 -1).故选 C.1.(★★★☆☆)如图所示已知 A(2 6) B(8 -2) C为坐标轴上一点且△ABC是直角三角形,则满足条件的点 C 有( ).A.6 个B.7 个C.8个D.9 个2.(★★★☆☆)已知点 P 为二次函数y=x²−2x−3图象上一点,设这个二次函数的图象与x轴交于A,B两点(A 在B 的右侧),与y轴交于C 点,若△APC为直角三角形且 AC 为直角边,则点 P 的横坐标的值为 .直击中考1.如图 1,抛物线y=ax²+bx+6与 x轴交于点A(-2 0) B(6 0) 与y轴交于点C 顶点为 D 直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2 将△AOE沿直线AD 平移得到△NMP.①当点 M落在抛物线上时,求点 M的坐标②在△NMP 移动过程中,存在点 M使△MBD为直角三角形,请直接写出所有符合条件的点 M的坐标.胡不归模型讲解从前,有一个小伙子在外地当学徒,当他获悉在家乡的老父亲病危的消息后,便立即启程日夜赶路.由于思念心切,他选择了全是沙砾地带的直线路径A-B(如图所示,A是出发地,B是目的地,AC是一条驿道,而驿道靠近目的地的一侧全是沙砾地带),当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子不觉失声痛哭,邻居劝慰小伙子时告诉说,老人在弥留之际不断喃喃地念叨着“胡不归? 胡不归? ……”这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢?倘若有可能,他应该选择怎样的路线呢?这就是风靡千年的“胡不归问题”.【模型】由于在驿道和沙砾地带的行走速度不一样,那么,小伙子有没有可能先在驿道上走一段路程后,再走沙砾地带,虽然多走了路,但反而总用时更短呢?如果存在这种可能,那么要在驿道上行走多远才最省时?【解析】设在沙砾地带的行驶速度为v₁,在驿道上的行驶速度为v₂显然v₁<v₂.不妨假设从 C处进入沙砾地带.设总用时为t,则t=BCv1+ACv2=1v1(BC+v1v2AC).因为 v₁,v₂是确定的,所以只要BC+v1v2AC的值最小,用时就最少.问题就转化为求BC+v1v2AC的最小值.我们可以作一条以C为端点的线段,使其等于v1v2AC,并且与线段CB位于AM 两侧,然后根据两点之间线段最短,不难找到最小值点.怎么作呢?由三角函数的定义,过A点,在 AM的另一侧以A 为顶点,以AM为一边作∠MAN=α,sinα=v1v2,然后作CE⊥AN 则CE=v1v2AC.故当点 B,C,E在一条直线上时,BC+CE的值最小即BC+v1v2AC的值最小,即总用时最少.【问题解决】求形如“PA+kPB”的最值问题,构造射线 AD,使得sin∠DAN=k,即CHAC=k,CH=kAC.将问题转化为求BC+CH 的最小值过 B 点作BH⊥AD交MN于点C 交 AD 于点H 此时BC+CH 取到最小值即BC+kAC的值最小.典例秒杀典例1如图菱形 ABCD中∠ABC=60° 边长为3 P是对角线BD 上的一个动点,则12BP+PC的最小值是( ).A. √3B.32√3 C.3 D.√3+32【答案】B【解析】如图作 PM⊥AB于点M CH⊥AB 于点H.∵四边形ABCD是菱形∴∠PBM=12∠ABC=30∘,∴PM=12PB,∴12PB+PC=PC+PM,根据垂线段最短可知CP+PM的最小值为CH 的长在 Rt△CBH中CH=BC⋅sin60∘=3√32,∴12PB+PC的最小值为3√32,故选 B.典例2如图,△ABC在平面直角坐标系内,点A(0,3 √3) C(2 0).点 B为y 轴上的动点,则12AB+BC的最小值为( ).A.2√3B.52√3C.3√3D.72√3【答案】B【解析】如图,取. D(−3,0),连接AD 作. BE⊥AD,CE′⊥AD交AD于点E′,交 y轴于点B′.∵A(0,3√3),C(2,0),D(−3,0),∴OD=3,OA=3√3,OC=2,CD=5,∴tan∠DAO=ODOA =√33,∴∠DAO=30°,∴EB=12AB,∠ADO=60∘,∴12AB+BC=EB+CB,∴当 E 与E′重合,B与B′重合时,EB+BC的值最小,即最小值为CE'的长.在 Rt△CDE'中 ( CE′=CD⋅sin60∘=5√32,∴12AB+BC的最小值为5√32.故选 B.典例3如图,△ABC中AB=AC=10,tanA=2,BE⊥AC于点 E D 是线段BE 上的一个动点,则CD+√55BD的最小值是( ).A.2√5B.4√5C.5√3D.10【答案】B【解析】如图,作DH⊥AB于点H ( CM⊥AB于点M.∵BE⊥AC,∴∠AEB=90°.∵tanA=BEAE=2,∴设AE=a BE=2a则100=a²+4a²,∴a²=20,解得a=2√5或a=−2√5(舍去)∴BE=2a=4√5.∵AB=AC BE⊥AC CM⊥AB∴CM=BE=4√5(等腰三角形两腰上的高相等).∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH=DHBD =AEAB=√55,∴DH=√55BD,∴CD+√55BD=CD+DH,∴CD+DH≥CM,∴CD+√55BD≥4√5,∴CD+√55BD的最小值为4√5.故选 B.小试牛刀1.(★★★☆☆)如图 △ABC 在平面直角坐标系中 AB=AC A(0 2 √2) C(1 0) D 为射线AO 上一点,一动点 P 从点 A 出发,运动路径为A→D→C ,点 P 在AD 上的运动速度是在CD 上的3倍,要使整个运动时间最少,则点 D 的坐标为( ).A.(0 √2 )B.(0,√22)C.(0,√23)D.(0,√24)2.(★★★☆☆)如图 在△ABC 中 ∠A=90° ∠B=60° AB=2 若 D 是BC 边上的动点 则2AD+CD 的最小值为 .直击中考1.已知抛物线 y =ax²+bx +c 与 x 轴交于A(-1 0) B(5 0)两点 C 为抛物线的顶点 抛物线的对称轴交 x 轴于点D ,连接 BC ,且 tan∠CBD =43,如图所示.(1)求抛物线的解析式.(2)设 P 是抛物线的对称轴上的一个动点.①过点 P 作x 轴的平行线交线段BC 于点 E 过点 E 作EF ⊥PE 交抛物线于点F ,连接FB ,FC ,求△BCF 的面积的最大值 ②连接PB 求 35PC +PB 的最小值.阿氏圆问题模型讲解“阿氏圆”又称为“阿波罗尼斯圆”,如图,已知A,B两点,点P 满足PA : PB=k(k≠1) 则点 P 的轨迹为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型】如图所示⊙O的半径为R 点A B都在⊙O外 P为⊙O上一动点,已知K=25OB,连接PA PB 则当102:25/4B的值最小时,P点的位置如何确定?【解析】如图,在线段OB上截取OC 使OC=25R,连接PO PC 则可说明△BPO与△PCO相似,则有25PB=PC.故本题求PA+25PB的最小值可以转化为求PA+PC的最小值,其中A与C 为定点,P 为动点,故当A,P,C 三点共线时,PA+PC的值最小.典例秒杀典例1如图,正方形ABCD的边长为4,⊙B的半径为2,P 为⊙B上的动点,则PD+12PC的最小值等于( ).A.3B.4C.5D.6【答案】C【解析】如图,在 BC上截取BE=1,连接BP PE DE.∵正方形ABCD的边长为4 ⊙B的半径为2∴BC=CD=4,BP=2,∴EC=3,∴BPBC =BEBP=12,又∠PBE=∠PBE,∴PBECBP,∴PEPC =BEBP=12,∴PE=12PC,∴PD+12PC=PD+PE,∴当D P E三点共线时 PD+PE取得最小值即PD+12PC取得最小值∴PD+12PC的最小值为DE=√DC2+CE2=5.故选 C.典例2问题提出:如图1 在 Rt△ABC中∠ACB=90° CB=4 CA=6 ⊙C的半径为2 P 为圆上一动点连接AP BP 求AP+12BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2 连接CP 在CB 上取点D 使CD=1 连接 PD 则有CDCP =CPCB=12.又∵∠PCD=∠BCP ∴△PCD∽△BCP.∴PDBP =PCBC=12,∴PD=12BP,∴AP +12BP =AP +PD.请你完成余下的思考,并直接写出答案: AP +12BP 的最小值为(2)自主探索:在“问题提出”的条件不变的情况下, 13AP +BP 的最小值为 .(3)拓展延伸:如图3 已知扇形 COD 中 ∠COD =90°,OC =6, OA =3,OB =5,点 P 是 ⌢CD 上一点,求2 2PA +PB 的最小值.【解析】(1)如图 连接AD. ∵AP +12BP =AP +PD,∴要使 AP +12BP 最小,即AP+PD 最小 则点A P D 在同一条直线上 ∴AP +12BP 的最小值为AD 的长,在 Rt △ACD 中 CD=1 AC=6 ∴AD =√AC 2+CD 2=√37, ∴AP +12BP 的最小值为 √37.(2)如图 在 CA 上取点 D 连接 BD 使 CD =23, ∴CD CP=CP CA=13.∵∠PCD=∠ACP ∴△PCD ∽△ACP ∴PD AP =CP CA=13,∴PD =13AP,∴13AP +BP =PD +BP,同(1)的方法得 13AP +BP 的最小值为 BD =√BC 2+CD 2= 23√37.(3)如图 延长OC 到点E 使CE=6 则OE=OC+CE=12 连接 PE OP∵OA =3,∴OAOP =OPOE =12. ∵∠AOP =∠EOP,∴△OAPO △OPE, ∴APEP =OAOP =12,∴EP =2PA,∴2PA +PB =EP +PB,∴当E P B 三点共线时 2PA +PB 取得最小值,为 BE = √OB 2+OE 2=13.小试牛刀1.(★★☆☆☆)如图在Rt△ABC中∠ACB=90°,CB=7,AC=9,,以C为圆心 3为半径作⊙C,P 为⊙C上一动点,连接AP BP 则1AP+BP的最小值为( ).3A.7B.5√2C.4+√10D.2√132.(★★☆☆☆)如图所示已知正方形 ABCD 的边长为4 ⊙B的半径为2,点 P是⊙B上的一个动点,则PD−1PC的最大值为( ).2A.3B.4C.5D.6PA+PB的3.(★★☆☆☆)如图在平面直角坐标系中点A(4 0) B(4 4) 点 P 在半径为 2 的圆 O 上运动,则12最小值是 .直击中考1.如图1,在平面直角坐标系中,直线y=-5x+5与x轴 y轴分别交于A C两点抛物线y=x²+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标(2)若点M为x轴下方抛物线上一动点,连接MA,MB,BC,当点 M运动到某一位置时,四边形AMBC的面积最大,求此时点 M的坐标及四边形AMBC的面积PA的值最小,(3)如图2 若 P点是半径为2的⊙B上一动点连接PC PA 当点 P 运动到某一位置时,PC+12请求出这个最小值,并说明理由.等分面积模型讲解【模型】三角形中的中线等分面积很常见,如图,在△ABC中,取BC的中点D,连接AD,由于左右两个三角形等底同高,故它们的面积相等,即S ABD=AGD,如果在AC边上取一点P,那么如何作线平分面积呢?¯【作法】因为 D 是 BC 的中点S ABD=S ACD,所以要想平分三角形的面积,可作. AE‖PD,连接PE 如图.比较S ABD=S ACD,AED可等量替换为△AEP,因此,得S=S EPC,即完成了面积平分.四边形ABEP典例秒杀典例1已知平面上点O(0 0) A(3 2) B(4 0) 直线. y=mx−3m+2将△OAB分成面积相等的两部分,则m的值为( ).A.1B.2C.3D.4【答案】B【解析】y=mx--3m+2=m(x-3)+2当x=3时 y=2则直线y=mx--3m+2一定过点A(3 2)因为直线 y=mx--3m+2 将△OAB分成面积相等的两部分所以直线y=mx-3m+2一定过OB的中点(2 0)把x=2 y=0代入y=mx-3m+2得0=2m--3m+2解得m=2.故选 B.典例2如图 AB∥DC ED∥BC AE∥BD 那么图中与△ABD面积相等的三角形(不包括△ABD)有( ).A.1个B.2个C.3 个D.4 个【答案】B【解析】∵AB∥DC∴△ABC与△ABD的面积相等.∵AE∥BD∴△BED 与△ABD的面积相等.∵ED∥BC找不到与△ABD等底等高的三角形∴与△ABD面积相等的三角形有△ABC △BED 共2个.故选 B.典例3(1)如图1 梯形 ABCD的对角线交于点O AB∥CD 请写出图中面积相等的三角形(2)如图 2,在平面直角坐标系中,O 是坐标原点,点 A(—2,3) B(2 1).①求点 C的坐标及三角形 AOC 和三角形BOC 的面积②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点 D 作直线DE 平分三角形ABO的面积,并交AB 于点E(要有适当的作图说明).【解析】(1)∵AB∥DC∴S ABD=S ABC,S ADC=S BDC,∴S AOD=S BOC.(2)①∵点 A(-2 3) B(2 1)∴直线AB的解析式为y=−12x+2,∴C(0 2)∴S AOC=12×2×2=2,S Bx=12×2×2=2.②由①可知点 C是线段AB 的中点,则S CA=S OBC.连接CD 过点O作( OE‖CD交AB 于点E 连接DE 则直线DE就是所求作的直线.小试牛刀1.(★★★☆☆)操作体验.(1)如图 1 已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD面积的大小关系.(2)如图2,在平面直角坐标系中,△ABC的边 BC 在 x 轴上已知点A(2 4) B(-1 0) C(3 0) 试确定过点 A 的一条直线l 平分△ABC的面积,请写出直线l的表达式.(3)如图3 在平面直角坐标系中若A(1 4) B(3 2) 则在直线y=−4x+20上是否存在一点C,使直线OC 恰好平分四边形OACB 的面积?若存在,请计算点 C的坐标若不存在,请说明理由.2.(★★★☆☆)已知在梯形ABCD中AB‖CD.(1)如图1 若点 E 为AD 的中点 BE 的延长线交 CD 的延长线于点F,求证:(2)如图2,请过点 B画一条直线将梯形ABCD 的面积平分,并简单说出画法.x+m的图象与x 轴交于点A(−6,0),交 y轴于点 B.3.(★★★☆☆)如图已知一次函数y=43(1)求m的值与点 B 的坐标.(2)在x轴上是否存在点C,使得. △ABC的面积为 16?若存在,求出点C的坐标若不存在,说明理由.(3)一条经过点 D(0,2)和直线AB上一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.直击中考1.在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分.进而,小明继续研究,过四边形的某一顶点的直线能否将该四边形分为面积相等的两部分?他画出了如下示意图(如图1),得到了符合要求的直线AF.小明的作图步骤如下:第一步,连接AC第二步过点 B作BE∥AC交DC 的延长线于点E;第三步,取ED的中点F,作直线AF则直线 AF即为所求.请参考小明思考问题的方法,解决问题:如图2 五边形 ABOCD各顶点坐标为A(3 4) B(0 2) O(0 0) C(4 0) D(4 2).请你构造一条经过顶点 A 的直线将五边形 ABOCD分为面积相等的两部分,并求出该直线的解析式.第 21 页共 21 页。

7代数几何综合题(含答案)

7代数几何综合题(含答案)

代数几何综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题.Ⅱ、典型例题剖析【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是 BD C 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且 BF AD =,EM 切⊙O 于M 。

⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。

解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵ BF AD =,∴∠DCA=∠BAE,∴△CAD∽△AEB⑵ 过A 作AH⊥BC 于H(如图)∵A 是 BD C 中点,∴HC=HB =12BC , ∵∠CAE=900,∴AC 2=CH·CE=12BC·CE⑶∵A 是 BD C 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2=12 BC·CE,BC·CE=8 ②①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC=AE AC =132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90○。

过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长;(2)求过B 、A 、C 三点的抛物线的解析式。

新人教版中考代数几何综合

新人教版中考代数几何综合

代数几何综合1.如图9,边长为5的正方形OABC 的顶点O 在坐标原点处,点A C 、分别在x 轴、y 轴的正半轴上,点E 是OA 边上的点(不与点A 重合),EF CE ⊥,且与正方形外角平分线AC 交于点P . (1)当点E 坐标为(30),时,试证明CE EP =; (2)如果将上述条件“点E 坐标为(3,0)”改为“点E 坐标为(t ,0)(0t >)”,结论CE EP =是否仍然成立,请说明理由;(3)在y 轴上是否存在点M ,使得四边形BMEP 是平行四边形?若存在,用t 表示点M 的坐标;若不存在,说明理由.2.如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M 、N 以每秒1个单位的速度分别从点A 、C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP . (1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ;(3分) (2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?(4分)(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的13?若存在,求出点T 的坐标;若不存在,请说明理由.(3分)3、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、 y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.4、如图1、在平面直角坐标系中,O 是坐标原点,□ABCD 的顶点A 的坐标为(-2,0),点D 的坐标为(0,32),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x 轴交于点F ,与射线DC 交于点G 。

初中数学专题训练《代数与几何》综合练习题及解析

初中数学专题训练《代数与几何》综合练习题及解析

专题71 代数与几何综合(1)【典例分析】例1、如图,四边形OABC为长方形,其中O为原点,A、C两点分别在x轴和y轴上,B 点的坐标是(4,6),将长方形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC,BC于点E、D,且D点坐标是(52,6).(1)求F点的坐标;(2)如图2,P点在第二象限,且△PDE≌△CED,求P点的坐标;(3)若M点为x轴上一动点,N点为直线DE上一动点,△FMN为以FN为底边的等腰直角三角形,求N点的坐标.【答案】解:(1)∵点D坐标是(52,6),B点的坐标是(4,6),四边形OABC为矩形,∴BC=AO=4,OC=AB=6,CD=52,BD=BC−CD=32,∵将矩形沿直线DE折叠,∴DF=CD=52,∴BF=√DF2−DB2=√254−94=2,∴AF=6−2=4,∴点F(4,4);(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,∵C(0,6),F(4,4),∴直线CF的解析式为y=−12x+6,∵DE垂直平分线段CF,∴直线DE的解析式为y=2x+1,∴E(0,1),D(52,6),∵DJ=JE,∴J(54,72 ),∵PJ=JF,∴P(−32,3);(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.设N(m,2m+1),则K(m+42,2m+52),M(7−m2,3m+12),M′(3m+12,m+92),当点M落在x轴上时,3m+12=0,解得m=−13,当点M′落在X轴上时,m+92=0,解得m=−9,∴满足条件的点N的坐标为(−13,13)或(−9,−17).【解析】【试题解析】(1)由折叠的性质可得DF=CD=5,由勾股定理可求BF的长,即可求解;2(2)如图2中,连接PF交DE于J.当四边形EFDP是矩形时,△PDE≌△FED≌△CED,构建一次函数求出点E,点D坐标,求出点J的坐标即可解决问题.(3)如图3中,连接FN,以FN为对角线构造正方形NMFM′,连接MM′交FN于K.用m的代数式表示出点M,M′的坐标,根据点M,M′在x轴上时,纵坐标为0构建方程求解即可.本题属于四边形综合题,考查了矩形的性质,翻折变换,一次函数的应用等知识,解题的关键是学会构建一次函数解决问题,学会利用参数解决问题,属于中考压轴题.【好题演练】一、选择题1.在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n),其中m>a,a<1,n>0,若△ABC是等腰直角三角形,且AB=BC,则m的取值范围是A. 0<m<2B. 2<m<3C. m<3D. m>3【答案】B【解析】【分析】本题考查了坐标于图形的性质,等腰直角三角形的性质和全等三角形的判定和性质,不等式(组)的解集等有关知识,关键是知识的综合,利用数形结合思想解决问题.先由已知条件判定ΔAOB≌ΔBDC,故得OB=CD,OA=BD,再结合已知和点的坐标,得到不等式m−2<1和m−2>0,最后解不等式(组)即可求解.【解答】解:过点C作CD⊥x轴于点D,∴∠BDC=90°,∵∠ABC=90°,∴∠1+∠2=90°,∵∠AOB=90°,∴∠3+∠2=90°,∴∠1=∠3,∵∠AOB=∠BDC=90°,AB=BC,∴ΔAOB≌ΔBDC(AAS),∴OB=CD,OA=BD,即a=n,m−a=2,∴a=n=m−2,∵a<1,∴m−2<1,即m<3;∵n>0,∴m−2>0,即m>2;∴m的取值范围是2<m<3.故答案为B.二、填空题2.如图A,E为反比例函数y=2x (x>0)上的两点,B、D为反比例函数y=kx(x>0)上的两点,AB//DE//y轴,连结DA并延长交y轴于点C且CD轴,若SΔABC−SΔADE=19,则k=__________.【答案】94【解析】【分析】本题主要考查的是反比例函数与几何综合,解题的关键是根据题意写出各点坐标.设点A(a,2a),根据反比例函数及其图象的特点依次表示出B、C、D的坐标,再根据SΔABC−SΔADE=19即可得出结果.【解答】解:∵点A在反比例函数y=2x(x>0)上,设点A(a,2a),∵AB//DE//y轴,∴B点的横坐标为a,C、D点纵坐标为2a,∴B(a,ka ),C(0,2a),D(ak2,2a),∴E点的横坐标为ak2,∵点E在反比例函数y=2x(x>0)上,∴E(ak2,4ak),∵SΔABC−SΔADE=19,∴12⋅AC⋅AB−12AD⋅DE=19,∴12×a×(ka−2a)−12×(ak2−a)×(2kak−4ak)=19,∴k=94.故答案为:94.3.如图,矩形硬纸片ABCD的顶点A在y轴的正半轴上滑动,顶点B在x轴的正半轴上滑动,点E为AB的中点,AB=24,BC=5.当OD最大时,直线OD的表达式为________.【答案】y=5x【解析】【分析】本题主要考查代数与几何的综合.待定系数法,相似三角形的判定与性质等知识.求直线OD解析式.需要先求出D点坐标,用到相似三角形的判定与性质求D点的横坐标,纵坐标,代入计算即可.【解答】解:如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90∘, ∵∠DFA =∠AOB =90°,∴∠DAF +∠ADF =∠DAF +∠OAB , ∴ADF =∠OAB ,又Rt △OAB 中,E 为AB 中点, ∴EO =EA =EB ,∴∠OAE =∠AOE , ∴∠ADF =FOD , 又∠AFD =∠OFD , ∴△FOD∽△FDA , ∴OD AD =OFDF , 即255=√252−x 2x,解得x =25√2626,或x =−25√2626(舍去), ∴OF =125√2626,∴D(25√2626,125√2626).令直线OD的表达式:y=kx,把点D坐标代入得k=5,∴y=5x.故答案为:y=5x.三、解答题4.如图,直线l:y=x−2分别交x,y轴于A、B两点,C、D是直线l上的两个动点,点C在第一象限,点D在第三象限.且始终有∠COD=135∘.(1)求证:ΔOAC∽△DBO;(2)若点C、D都在反比例函数y=kx的图象上,求k的值;(3)记▵OBD的面积为S1,▵AOC的面积为S2,且S1S2=12,二次函数y=ax2+bx+c满足以下两个条件:①图象过C、D两点;②当S1≤x≤S2时,y有最大值2,求a的值.【答案】解:(1)证明:∵∠DOC=135°,∴∠BOD+∠AOC=45°,∵A,B分别是直线y=x−2与x轴,y轴的交点,∴OA=OB=2,∴∠OAB=∠OBA=45°,∴∠AOC +∠ACO =45°, ∴∠BOD =∠ACO , ∵∠OBD =∠OAC , ∴▵OAC ∽▵DBO ;(2)由(1)得▵OAC ∽▵DBO , ∴ACBO =AOBD , ∴AC ·BD =4, 设C(x C ,y C ),D(x D ,y D ),过点C 作CE ⊥OA 于点E ,过点D 作DF ⊥OB 于点F ,则BD =√2DF =−√2x D ,AC =√2CE =√2y C . ∴−√2x D ·√2y C =4, ∴x D ·y C =−2, 即k·x D x C=−2,联立{y =x −2y =k x,消去y 得x 2−2x −k =0,∴x D ·x C =−k ,∴x D 2=2,∴x D =−√2, ∴y D =2−√2, ∴k =2√2+2;(3)由(1)知▵OAC ∽▵DBO ,∴S 1S 2=(OB AC )2=(BD OA )2=12,∴AC =2√2,BD =√2, ∴C(4,2),D(−1,−3), ∴S 1=1,S 2=2,把C ,D 代入二次函数解析式得: {16a +4b +c =2a −b +c =−3, 解得{b =1−3ac =−2−4a, ∴y =ax 2+(1−3a)x +(−2−4a), 对称轴为x =−1−3a 2a=32−12a,①当a >0时, ∵x =32−12a <32,∴2到对称轴的距离大于1到对称轴的距离,∴当x =2时,二次函数取最大值为4a +2−6a −2−4a =2. ∴a =−13(舍去),这种情况,不存在a 的值使二次函数的最大值为2; ②当−1≤a <0时,x =32−12a ≥2,∴二次函数y =ax 2+(1−3a)x +(−2−4a)在1≤x ≤2上是随着x 的增大而增大的, ∴当x =2时,二次函数取最大值为4a +2−6a −2−4a =2, 解得:a =−13; ③当a <−1时,32<x =32−12a <2,∴当x =32−12a 时,二次函数取最大值为−(3a−1)24a−2−4a =2,解得a =−15(舍去), 综上可得a 的值为−13.【解析】本题主要考查的是相似三角形的判定和性质,一次函数的图象上点的坐标特征,等腰三角形的判定,二次函数的应用的有关知识.(1)根据∠DOC=135°,得到∠BOD+∠AOC=45°,根据A,B分别是直线y=x−2与x轴,y轴的交点,得到OA=OB=2,进而得到∠OAB=∠OBA=45°,从而有∠BOD=∠ACO,根据∠OBD=∠OAC,得到▵OAC∽▵DBO;(2)由相似三角形的性质得到AC·BD=4,设C(x C,y C),D(x D,y D),过点C作CE⊥OA于点E,过点D作DF⊥OB于点F,则BD=√2DF=−√2x D,AC=√2CE=√2y C.进而求出k·x Dx C=−2,联立{y=x−2y=kx,消去y得x2−2x−k=0,求出x D=−√2,y D=2−√2,进而求出k;(3)利用相似三角形的性质得到S1S2=(OBAC)2=(BDOA)2=12,求出点C,D的坐标,再代入二次函数的解析式求出y=ax2+(1−3a)x+(−2−4a),求出对称轴为x=−1−3a2a =32−12a,再分①当a>0时,②当−1≤a<0时,③当a<−1时,讨论求解即可.5.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=kx(x>0)的图像上,点D的坐标为(4,3).(1)求k的值.(2)设点M在反比例函数图像上,连接AM,DM,若△AMD的面积与菱形ABCD的面积相等,求点M的坐标.【答案】解:(1)延长AD交x轴于E,∵点D的坐标为(4,3),∴OE=4,DE=3,由勾股定理得,OD=5,则AE=8,∴点A的坐标为(4,8),∴k=4×8=32,答:k的值为32;(2)菱形ABCD的面积为5×4=20,∵△AMD的面积与菱形ABCD的面积相等,∴点M到AD的距离为20×25=8,∴点M的横坐标为4+8=12,y=3212=83,点M的坐标为(12,83).【解析】本题考查的是反比例函数系数k的几何意义、求反比例函数的解析式,勾股定理,三角形的面积,反比例函数的图象上点的坐标特征的有关知识,菱形的性质,掌握菱形的性质、反比例函数系数k=xy是解题的关键.(1)延长AD交的轴于E,根据勾股定理求出菱形的边长,确定A的坐标,代入反比例函数解析式求出k的值;(2)根据题意求出菱形的面积,根据题意求出点M到AD的距离,求出点M的横坐标,代入求值即可.6.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲y=kx(k>0)相交于点A、B,点C在x轴正半轴上,点D(1,−2),连结OA、OD、DC、AC,四边形AODC为菱形.(1)求k和m的值;(2)根据图象写出反比例函数的值小于2时x的取值范围;(3)设点P是y轴上一动点,且S△OAP=S菱形OACD,求点P的坐标.【答案】解:(1)∵四边形AODC是菱形,O、C在x轴上,∴A、D关于x轴对称,∵D(1,−2),∴A(1,2),将A(1,2)代入直线y=mx+1可得m+1=2,解得m=1,将A(1,2)代入反比例函数y=kx,可求得k=2.(2)∵当x=1时,反比例函数的值为2,∴当反比例函数图象在A点下方时,对应的函数值小于2,此时x的取值范围为:x<0或x>1;(3)连接AD交x轴于E,∵OC=2OE=2,AD=2DE=4,∴S菱形OACD =12OC⋅AD=4,S△OAP=S菱形OACD,∴S△OAP=4,设P点坐标为(0,y),则OP=|y|,∴12×|y|×1=4,即|y|=8,解得y=8或y=−8,∴P点坐标为(0,8)或(0,−8)【解析】本题考查的是反比例函数的解析式,菱形的性质,三角形的面积有关知识.(1)由菱形的性质可知A、D关于x轴对称,可求得A点坐标,把A点坐标分别代入两函数函数解析式可求得k和m值;(2)由(1)可知A点坐标为(1,2),结合图象可知在A点的下方时,反比例函数的值小于2,可求得x的取值范围;(3)根据菱形的性质可求得C点坐标,可求得菱形面积,设P点坐标为(0,y),根据条件可得到关于y的方程,可求得P点坐标.7.抛物线y=ax2+bx+c的图象经过点A(−1,0),B(3,0),交y轴负半轴于点C且OC=OA.(1)求抛物线的解析式;(2)如图1,在第四象限内的抛物线上是否存在一点P,连接AP,直线AP将四边形ACPB的面积分为1:2的两部分?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图2,以AB为直径向x轴上方画半圆,交y轴正半轴于点D,点Q是弧BD上的动点,M是弧DQ的中点,连接AQ、DQ,AM,设∠CDQ的角平分线交AM于点N,当点Q沿半圆从点D运动至点B时,求N点的运动路径长.【答案】解:(1)∵抛物线图象经过点A(−1,0)、点B(3,0)且OC=OA∴点C(0,−1),设抛物线解析式为y=a(x+1)(x−3),把点C(0,−1)代入,得a =13,∴设抛物线解析式为y =13(x +1)(x −3), 即y =13x 2−23x −1;(2)连接BC 交AP 于点E ,过点C 作CG ⊥AP 垂足为点G 、过点B 作BH ⊥AP 交AP 的延长线于点H ,过点E 作EF ⊥AB ,垂足为点F , 如图 ①若S △APC :S △APB =1:2,则CG:BH =1:2,∵△CGE∽△BHE , ∴CE:BE =CG:BH =1:2, 易证△BEF∽△BOC , ∴BF BO=BE BC=EF OC =23, ∴E(1,−23),∴AE 的解析式为y =−13(x +1),令,解得{x 1=−1y 1=0(舍);{x 2=2y 2=−1,∴点P(2,−1) ;②如图若S △APC :S △APB =2:1,则CG:BH =2:1,∵△CGE∽△BHE ∴CE:BE =CG:BH =2:1, 易证△BEF∽△BCO , ∴,∴E(2,−13),∴AE 的解析式为y =−19(x +1), 令{y =−19(x +1),y =13(x +1)(x −3).解得∴点P(83,−1127),综上所述点P(2,−1)或(83,−1127).(3)如图连接AD ,易知AB =4,OD =√3,∠AQD =∠ABD =30°,∴∠DAO =60°,∠ADO =30°,不妨设∠QAO=x,∴∠DAQ=60°−x,∵点M是弧DQ的中点,∴∠DAM=∠MAQ=12(60°−x),∵∠QAO+∠DOA=∠ODQ+∠AQD,∴∠ODQ=x+90°−30°=60°+x,∵DN平分∠ODQ,∴∠ODN=12∠ODQ=12(60°+x),∴∠ADN=∠ADO+∠ODN=30°+12(60°+x)=60°+12x,∴∠AND=180°−(∠DAN+∠ADN)=90°,如图∴点N在以AD为直径的圆上运动,起点为点D,终点为N′,取AD的中点S,连接SN′,当点Q运动到点B时,即∠QAO=x=0°,∴∠DAN=30°,则∠DSN=60°,∵AD=2∴SD=1,∴点N运动的路径长为60⋅π⋅12180=π3.【解析】本题考查二次函数与相似三角形和圆的有关知识的综合,并要具备分类讨论的思想、数形结合思想,需要很强的逻辑推理能力;要有很强的计算能力,熟记计算公式是关键;本道题是一道比较困难的综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学中考专题代数几合综合问题含答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】中考数学专题:代数几何综合问题一、填空题1. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.2.如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是______.二,选择题3.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A. B.B. D.C.D. 4. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为()E.?F.G.三、解答题H. 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P 作I.PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).J.(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;K.(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB 平行.为什么?L.(3)当t为何值时,△EDQ为直角三角形.M.N.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)O.(1)求线段AB的长;当t为何值时,MN∥OC?P.(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?Q.R.7. 条件:如下图,A、B是直线l同旁的两个定点.S.T.问题:在直线l上确定一点P,使PA+PB的值最小.U.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).V.模型应用:W.(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;X.(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;Y.(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.Z.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.9.(1)求N点、M点的坐标;10.(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;11.(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;12.②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA 交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.13.14.9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10. (2018?成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a (a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11. 如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.?【答案与解析】一、填空题1.【答案】 (0,0),(0,10),(0,2),(0,8)2.【答案】(2×3n ﹣1,0).【解析】∵点B 1、B 2、B 3、…、B n 在直线y=2x 的图象上,∴A 1B 1=4,A 2B 2=2×(2+4)=12,A 3B 3=2×(2+4+12)=36,A 4B 4=2×(2+4+12+36)=108,…,∴A n B n =4×3n ﹣1(n 为正整数).∵OA n =A n B n ,∴点A n 的坐标为(2×3n ﹣1,0). 故答案为:(2×3n ﹣1,0). 二、选择题 3.【答案】A.【解析】分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD的中心,∴AG=BG=OG=AB=2cm,∴S=AP?OG=×t×2=t(cm2),②当t≥4时,作OG⊥AB于G,如图2所示:S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t (cm2);综上所述:面积S(cm2)与时间t(s)的关系的图象是过原点的线段,故选A.4.【答案】A.三、解答题5.【答案与解析】解:(1)能,如图1,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒∴AP=1,BQ=1.25,∵AC=4,BC=5,点D在BC上,CD=3,∴PC=AC-AP=4-1=3,QD=BC-BQ-CD=5-1.25-3=0.75,∵PE∥BC,解得PE=0.75,∵PE∥BC,PE=QD,∴四边形EQDP是平行四边形;(2)如图2,∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t,∴?∴PQ∥AB;(3)分两种情况讨论:①如图3,当∠EQD=90°时,显然有EQ=PC=4-t,又∵EQ∥AC,∴△EDQ∽△ADC∴,∵BC=5,CD=3,∴BD=2,∴DQ=1.25t-2,∴解得t=2.5(秒);②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则EM=PC=4-t,在 Rt△ACD中,∵AC=4,CD=3,∴AD=,?∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,?∴ t=3.1(秒).综上所述,当 t=2.5秒或t=3.1秒时,△EDQ为直角三角形.6.【答案与解析】解:(1)过点B作BD⊥OA于点D,则四边形CODB是矩形,BD=CO=4,OD=CB=3,DA=3在Rt△ABD中,.当?时,,?,.∵?,,∴,即?(秒).(2)过点作轴于点,交的延长线于点,∵?,∴,.即?,.?,?.?,∴.即?().由?,得.∴当时,S有最小值,且7.【答案与解析】解:(1)∵四边形ABCD是正方形,∴AC垂直平分BD,∴PB=PD,由题意易得:PB+PE=PD+PE=DE,在△ADE中,根据勾股定理得,DE=;(2)作A关于OB的对称点A′,连接A′C,交OB于P,PA+PC的最小值即为A′C的长,∵∠AOC=60°∴∠A′OC=120°作OD⊥A′C于D,则∠A′OD=60°∵OA′=OA=2∴A′D=∴;(3)分别作点P关于OA、OB的对称点M、N,连接OM、ON、MN,MN交OA、OB 于点Q、R,连接PR、PQ,此时△PQR周长的最小值等于MN.由轴对称性质可得,OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=2∠AOB=2×45°=90°,在Rt△MON中,MN===10.即△PQR周长的最小值等于10.8.【答案与解析】解:(1)∵CN=CB=15,OC=9,∴ON==12,∴N(12,0);又∵AN=OA﹣ON=15﹣12=3,设AM=x∴32+x2=(9﹣x)2,∴x=4,M(15,4);(2)解法一:设抛物线l为y=(x﹣a)2﹣36 则(12﹣a)2=36∴a1=6或a2=18(舍去)∴抛物线l:y=(x﹣6)2﹣36 解法二:∵x2﹣36=0,∴x1=﹣6,x2=6;∴y=x2﹣36与x轴的交点为(﹣6,0)或(6,0)由题意知,交点(6,0)向右平移6个单位到N点,所以y=x2﹣36向右平移6个单位得到抛物线l:y=(x﹣6)2﹣36;(3)①由“三角形任意两边的差小于第三边”知:P点是直线MN与对称轴x=6的交点,设直线MN的解析式为y=kx+b,则?,解得?,∴y=x﹣16,∴P(6,﹣8);②∵DE∥OA,∴△CDE∽△CON,∴;∴S=∵a=﹣<0,开口向下,又m=﹣∴S有最大值,且S=﹣.最大9.【答案与解析】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:;把B点坐标为:代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×|2x﹣1|;∴S=|x﹣|;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).10.【答案与解析】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE =k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知xD ﹣xP=xA﹣xQ,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=yD +yQ=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11.【答案与解析】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上. (2)成立.证明:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,∴∠MDF=∠NDE.在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,∴△DMF≌△DNE.∴MF=NE.(3)画出图形(连出线段NE),MF与EN相等的结论仍然成立(或MF=NE成立).。

相关文档
最新文档