地图投影.ppt

合集下载

《地图投影》PPT课件

《地图投影》PPT课件

精选ppt
1
航天
浩瀚宇宙之中 : 地球是一个表面光滑、蓝 色美丽的正球体。
精选ppt
2
航空 机舱窗口俯视大地 : 地表是一个有些微起
伏、极其复杂的表面。
精选ppt
3
地面
事实是:地球不是一个正球体,而是一个极 半径略短、赤道半径略长,北极略突出、南 极略扁平,近于梨形的椭球体。
–地球的自然表面有 –高山、丘陵、平原、盆地、湖泊、河流 –和海洋等高低起伏的形态, –其中海洋面积约占71%,陆地面积约占29%。
随着人造地球卫星的发射,有了更精密的测算地球形体的 条件,近些年来地球椭球体的计算又有不少新的数据。
1975年第16届国际大地测量及地球物理联合会
(International Unionof Geodesy and Geophysics缩写为IUGG)上 通过的国际大地测量协会第一号决议中公布的地球椭球 体,称为GRS(1975),
精选ppt
4
2.地球体的物理表面(准规则曲面-假想面)
1)假想水准面(基准面):静止海平面
当无海波洋浪静、止潮时汐,、它水流的、自大由气水压面变必化定,与流该体面处上于各平点衡状的态重。力方
2向)大(地铅水垂准线面方:向)成正交,我们把这个面叫做水准面。 但基水准准面面+其有向无陆数地多的个延,伸其部中分有=一一个个封与闭静曲止面的。平均海水面相
9
地球椭球体的基本元素,由于推求它的年代、所用的方法 以及测定的地区不同,其成果并不一致,故地球椭球体的 元素值有很多种。 现将几个常用的地球椭球体元素值列于表中。
椭球体名称及元素值表
精选ppt
10Байду номын сангаас
参考椭球体的选用

3.2地图投影及其分类,3.3常用的地图投影解析PPT参考幻灯片

3.2地图投影及其分类,3.3常用的地图投影解析PPT参考幻灯片
(二)按投影面的形状分圆柱投影、圆锥投影、方位投影 (三)按投影与球面的位置关系分:正轴投影、横轴投影、斜
轴投影
5
§3 常用的地图投影
❖ 1.墨卡托投影(等角正圆柱投影) 投影原理:设想地球为一透明球体,球心置一点光
源,将圆柱投影面沿赤道与地球相切,地球上的经纬网格投 影到圆柱面上
6
墨卡托投影绘制的世界地图
§3 常用的地图投影
❖ (一)地图投影
利用一定的数学法则把地球表面上的经纬线网表 示到平面上
F(, ) f (x, y)
1
❖ 1. 地图投影的失真
由于地球椭球体表面是曲面,而地图通常是要绘制在平 面图纸上,因此制图时首先要把曲面展为平面,然而球 面是个不可展的曲面,即把它直接展为平面时,不可能 不发生破裂或褶皱。
为了保证地图的精度,采用分带投影方法,即将投 影范围的东西界加以限制,使其失真不超过一定的 限度,这样把许多带结合起来,可成为整个区域的 投影。
我国规定1:1 万、1:2.5 万、1:5 万、1:10万、 1:25 万、1:50 万比例尺地形图,均采用高斯克 -吕格投影。1:2.5 至1:50 万比例尺地形图采用 经差6 °分带,1:1 万比例尺地形图采用经差3° 分带。
绘制机场专用航图和涉及仪表飞行程序的基础用图; 国家大地测量和五十万分之一及更大比例尺的国家基本地形

13
❖ 高斯投影坐标网
经纬网(地理坐标网)
114°00 14
16
30° 202
40´
α
3396
94 -δ TH/TC
92
18 20 A( 20218 , 3394 )
90
TH/TC= α+(± δ)

《地图投影》PPT课件

《地图投影》PPT课件

m E M
纬线长度比 n 为:
n G r
精选课件ppt
15
面积比公式: P a b m n sin
式中,a,b为极值长度比,θ′为经纬线投影后 所成的夹角。
角度变形公式:
经纬线夹角变形ε为:
90 tan F
H
一点上最大的角度变形ω为:
sin ab
2 ab
或者: tan45 a
4 b
精选课件ppt
16
第三节 投影的分类
地图投影的种类很多,通常根据投影的变形性质、可展面的 种类和位置进行分类。
一、根据投影的变形性质可将地图投影分为:等角投影、等面 积投影、任意投影。
等角投影:椭球面上任意一点处任意两个方向的 夹角投影后保持大小不变。微分圆仍为
圆形,但大小有变化。满足: ab
P
m
2
n2
K rU
2
0
α, K 均为投影常数:
lg r1 lg r2 lg U 2 lg U 1
K
r1U
1
r2U
2
tan45 U 2 ,sin esin
tane45
2
精选课件ppt
35
精选课件ppt
面积比等 变形线
36
投影变形规律:
(1)无角度变形; (2)等变形线和纬线一致,同一条纬线上变形处处相等; (3)两条标准纬线上没有任何变形; (4)同一经线上,两标准纬线外侧为正变形 (1),
精选课件ppt
12
精选课件ppt
13
精选课件ppt
14
三、投影变形的基本公式
长度比公式:
任意一点与经线成α角方向上的长度比 为:
2M E 2co 2 sr G 2si2 n M Fsr i2 n

地图投影PPT课件

地图投影PPT课件
9
2)按构成方法分类
▪ 几何投影
▪ 按展开方式
➢ 方位投影(Azimuthal Projections) ➢ 圆柱投影(Cylindrical Projections) ➢ 圆锥投影(Conic Projections)
▪ 按投影面与地球相割或相切
➢ 割投影(Secant) ➢ 切投影(Tangent)
19
Sinusoidal 等积伪圆柱投影,(Sanson投影)
20
Robinson 伪圆柱投影
Pseudo-cylindrical Projections
21
3. GIS中地图投影的选择
随区域径纬度不同、地图比例尺不同、及地图用途 不同,地图投影方法也不同,现有地图投影方法共 有250多种。但常用的也就20多种。 1) 选择的投影系统应与国家基本图(基本比例尺地 形图、基本省区图或国家大地图集)投影系统一致; 2)系统一般采用两种投影系统;
且离中央子午线越远,长度变形越大。 6.投影前后的角度保持不变,且小范围内的图
形保持相似。 7.具有对称性,面积有变形。
28
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
23
GIS投影例子
加拿大:>= 1:50万——采用UTM(墨卡托投影) < 1:50万——采用Lambert( 兰勃特 );
美 国:>= 1:50万——采用UTM; < 1:50万——采用州平面坐标系统(以高斯投
影和Lambert投影为主,局部地区采用HOM投影); 中 国:>= 1:50万——采用高斯投影;

《地图投影高斯投影》PPT课件

《地图投影高斯投影》PPT课件
• 1、控制测量对地图投影的要求
(1)、应当采用等角投影 理由:
➢免除大量的投影计算工作
➢局部范围类保持图形的相似性,m(长度比) 只与点的位置有关而与方向没有关系。给制 图和有关的地图量算带来极大的方便。
1、控制测量对地图投影的要求
• (2)、长度和面积的变形不能过大,并且能有用较简单的数学公式计算长 度和面积的变形改正数。
0
60
L ' 3n'
或为
n'
L 0
0
3
高斯平面坐标值的表达
中央子午线在平面上的投影是 x 轴,赤 道的投影是 y 轴,其交点是坐标原点。
x 坐标是点至赤道的垂直距离; y 坐标是点至中央子午线的垂直距离,有正
负。
为了避免 y 坐标出现负值,其名义坐标加
上 500 公里。 为了区分不同投影带中的点,在点的Y坐标 值上加带号N,所以点的横坐标的名义值为
控制测量学
6.6 地图投影、高斯投影
四川建筑职业技术学院 胡川
主要内容
• 1、知识回顾 • 2、地图投影概述 • 3、高斯投影 • 4、小结
一、知识回顾
• 1、大地线的定义和性质
大地线:大地线是一条空间曲面曲线,是椭 球面上两点间的最短线。大地线上每点的密切 面(无限接近的三个点构成的平面)都包含该点 的曲面法线,大地线上各点的主法线与该点的 曲面法线重合。
3、投影实质
3、投影实质
• 建立地球椭球面上经纬线网和平面上相应经纬线 网的数学基础,也就是建立地球椭球面上的点的 地理坐标(λ,φ)与平面上对应点的平面坐标 (x,y)之间的函数关系:
x f1(,)
y f2 (,)

当给定不同的具体条件时,将得到不

地图投影基础知识课件

地图投影基础知识课件
Q1/2.5万:把1/5万图 分为四幅,编号为1、 2、3、4 。方法如下: J-50-144-A-1
Q1/1万地形图:将1/10 万图分8行、8列共64 张,编号 (1) 、 (2 ) 、--、 (64) 。
图号如:
J-50-144- (1)
3. 新编号系统
Qr. 分幅未变,编号体系变。 QS. r\r00万图原来列改称行,行称列。
(3) 变形规律
•切点或割线无变形 • 等变形线以投影中心为圆心呈同心圆分布。
(4) 常见投影及其用途
•正轴等积方位投影--南北两极图 •横轴等积方位投影--东西半球图
•斜轴等积方位投影--水陆半球图
•斜轴等距方位投影--航空图 等距:指从投影中心向各个方向长度变 形为零。
2 圆锥投影
(1) 经纬网的特征
半球地图的投影:东西半球有横轴等面积(等角)方位投 u 南北半球有正轴等面积(等角、等距离)方位投影。 u 各大洲地图的投影:各洲都选用了斜轴等面积方位投影, 外,亚洲和北美洲( 彭纳投影)、欧洲和大洋州(正轴等圆 锥投影)、南美洲(桑逊投影)。 u我国各种地图投影:全国地图(各种投影, lambert投影 多)、分省区地图(各种投影,高斯-克吕格投影最多)、 比例尺地形图(高斯-克吕格投影)。
Q1/25万:J-50-[1]
Q1/10万:将1/100万图 分为12行、12列共144 张1/10万地形图,编 号用1、2、- - -、144 。
直接加到1/100万图
后面。如:J-50-144
(5) .1/5万、1/2.5万、1/1万地形图分 幅编号
Q1/5万:把1/10万地形 图分为四幅。编号为 A、B、C、D 。方法如 下:J-50-144-A
(1) 经纬网的形状

地图学 地图投影(课堂PPT)

地图学 地图投影(课堂PPT)

.
11
地图投影变形的图解示例
(摩尔维特投影-等积伪圆柱投影)
长度变形 角度变形
.
12
地图投影变形的图解示例
(UTM-横轴等角割圆柱投影)
面积变形和长度变形
.
13
投影变形示意图
.
14
1.4、地图投影——地图投影的变形
地图投影的.变形示意
15
1.5、地图投影——地图投影的分类
u按变形性质分类: q 等角投影:角度变形为零。 q 等积投影:面积变形为零。 q 任意投影:长度、角度和面积 都存在变形。
圆锥
u从投影面与地球位置关系划分为:正轴、横轴、斜 轴,切、割
.
18
.
19
1.5、地图投影——地图投影的分类
关于地图投影的几点结论:
Ø实现等角、等面积、等距离同时做到的投影不 存在 Ø投影方式有多种多样,一个国家或地区依据自 己所处在的经纬度、幅员大小以及图件用途选择 投影方式 Ø在大于1:10万的大比例尺图件中,各种投影 带来的误差可以忽略。
关于数据精度只注意数字化和编辑过程中的偶然误差和外 围设备的系统误差,而忽视了地图投影的所产生的变形误 差。
其后果是:显示或输出的图形文件发生变形或扭曲,有些 变形在视觉上不易直接观察。这一方面严重影响到地图的 精度,属性数据空间顺序和空间联系分析结果的准确性; 另一方面严重的影响到GPS的应用效果。
它是任意投影。我国的世界地图 多采用该投影。
我国位于地图中接近中央的位置, 形状比较正确。
.
50
第二节 世界常用地图投影
.
51
.
52
.
53
.
54
.
55

地图投影-PPT精品

地图投影-PPT精品

9
10
8 /5 3
地图投影与高斯投影
昆明冶金高等专科学校
(3)高斯平面直角坐标系
1 2 3
在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午
线和赤道的交点O 作为坐标原点,以中央子午线的投影为纵坐标 x
轴,以赤道的投影为横坐标 y 轴。
4
5
6
7
x
x
500Km
8
A
A
9
xB xA xB xA
B yB
昆明冶金高等专科学校
本章提要
1
2
本章介绍从椭球面上大地坐标系到平面上直角坐
3
标系的正形投影过程。研究如何将大地坐标、大地线
4 5 6
长度和方向以及大地方位角等向平面转化的问题。重 点讲述高斯投影的原理和方法,解决由球面到平面的
7
换算问题,解决相邻带的坐标坐标换算。讨论在工程
8 应用中,工程测量投影面与投影带选择。



q

y
返回本章首页
地图投影与高斯投影
昆明冶金高等专科学校
1 2 3 4 5 6 7 8 9
10
16 /5 3
7.3 高斯平面直角坐标系与大地坐标系
1 高斯投影坐标正算公式
(1)高斯投影正算:已知椭球面上某点的大地坐标 L,B ,求该点
在高斯投影平面上的直角坐标x, y,即L,B (x,y)的坐标变换。
7
8
9
10
20 /5 3
地图投影与高斯投影
昆明冶金高等专科学校
(2)应用高斯投影正、反算公式间接进行换带计算
1
2
计算过程:
3
4

《地图数学投影》课件

《地图数学投影》课件

04
地图投影的应用
BIG DATA EMPOWERS TO CREATE A NEW
ERA
地图制作
地图制作中,投影是必不可少的步骤 ,通过选择合适的投影方法,能够将 地球表面的曲面转化为平面,便于地 图的绘制和阅读。
投影的选择直接影响到地图的精度和 变形程度,不同的投影方法适用于不 同的地图制作需求,如世界地图、国 家地图、地区地图等。
总结词
投影后经线为曲线,长度变形逐渐增大
详细描述
圆锥投影后,经线不再是直线,而是曲线。随着经度的增 加,长度变形逐渐增大。这种投影方式在制作大范围地图 时较为常用,如世界地图和洲际地图。
总结词
投影后面积变形较大,形状和方向保持较好
详细描述
圆锥投影后,面积变形较大,但形状和方向保持较好。这 种投影方式在制作需要精确反映地理空间关系的地图时较 为常用,如地理学研究和地理教育等。
详细描述
方位投影后,经纬线仍然保持相互垂直,并且形状不变。 这种投影方式在制作航海图和航空图时较为常用,因为其 形状保持不变的特点可以保证航行方向和角度的准确性。
总结词
投影后面积变形较大,距离和方向保持较好
详细描述
方位投影后,面积变形较大,但距离和方向保持较好。这 种投影方式在制作军事地图和政治地图时较为常用,因为 其保持方向和距离的特点可以更好地反映地理空间关系。
BIG DATA EMPOWERS TO CREATE A NEW ERA
《地图数学投影》PPT课件
• 投影的基本概念 • 地图投影的原理 • 常用地图投影类型 • 地图投影的应用 • 地图投影的未来发展
目录
CONTENTS
01
投影的基本概念
BIG DATA EMPOWERS TO CREATE A NEW

《地图投影高斯投影》课件

《地图投影高斯投影》课件

1
实例一
使用高斯投影绘制的农业土地分布图,以辅助农业规划和管理。
2
实例二
高斯投影应用于气象图制作,提供准确的天气预测和监测。
3
实例三
高斯投影用于绘制海洋地图,帮助航海和海洋科学研究。
总结和展望
通过本课程中对高斯投影的介绍,您应该对高斯投影的原理和应用有了更深入的理解。希望您可以将这 些知识应用到实际地图制图中,并不断探索新的投影方法。
高斯投影的主要种类和特点
高斯-克吕格投影
克吕格网格形式,适用于大面积地图制图。
高斯-克吕格投影
克吕格网格形式,适用于大面积地图制图。
高斯-克吕格投影
克吕格网格形式,适用于大面积地图制图。
高斯-克吕格投影
克吕格网格形式,适用于大面积地图制图。致,适用于制图和测量。
2 缺点
在地图边缘和投影中心会出现扭曲,不适用于极地地区。
高斯投影在地图制图中的应用
地形图制作
高斯投影可用于制作具有地形 特征的地图,帮助研究地理环 境。
世界地图制作
高斯投影可在制作世界地图时 提供更准确的地理信息。
城市地图绘制
通过高斯投影,可以绘制更准 确和详细的城市地图,方便导 航和定位。
高斯投影的实例分析
《地图投影高斯投影》 PPT课件
欢迎来到《地图投影高斯投影》的PPT课件。本课件将带您深入了解高斯投 影的原理、种类、优缺点以及在地图制图中的应用。
高斯投影的概述
高斯投影是一种常用的地图投影方法,通过将地球表面的曲面映射到平面上,以便更好地表达地球的形 状和地理信息。
高斯投影的原理和基础知识
高斯投影基于高斯圆柱正轴线的投影方式,通过计算得出每个地理坐标点在平面上的投影坐标。

(地图学课件)第4讲(第三章地图投影)

(地图学课件)第4讲(第三章地图投影)
现代地图学基础 第3章 地图投影
§5 我国基本比例尺地形图地图投影
5.2 高斯投影的坐标网
3、方里网的间隔
地图比例尺
1:10000 1:25000 1:50000 1:100000
方里网间隔
10厘米 4厘米 2厘米 2厘米
相应实地长
1公里 1公里 1公里 2公里
4、部分比例尺的经纬线间隔
1:20万的地形图,按照经差15’纬差10’加绘经纬线网,并于内图廓线及图 幅内中央经线、中央纬线再按1’进行等分。 1:50万地形图图幅内按经差 30’纬差20’加绘经纬线网,并于每条经线和纬线上按10’5’各自进行等分。
第3章 地图投影
§1 地图投影的概念 §2 地图投影的分类 §3 常用的地图投影 §4 大型GIS中的地图投影 §5 我国基本比例尺地形图投影 §6 地形图的分幅与编号
现代地图学基础 第3章 地图投影
§5 我国基本比例尺地形图地图投影
我国地形图的投影,除1:100万比例尺地形图采用国际投影 和等角圆锥投影外,其余都采用高斯—克吕格投影。
5.1 1:100万地形图投影 5.2 1:50万及其更大比例尺地形图采用投影
现代地图学基础 第3章 地图投影
§5 我国基本比例尺地形图地图投影
5.2 高斯投影的坐标网
1、经纬网
规定1:1万~1:10万比例尺的地形图上,经纬线只以图廓的形式表现,经 纬度数值注记在内图廓的四角,在内外图廓间,绘有黑白相间或仅用短 线表示经差、纬差1的分度带,需要时将对应点相连接,就可以构成很密 的经纬网。 在1∶25万~1∶100万地形图上,直接绘出经纬网,有时还绘有供加密经 纬网的加密分割线。纬度注记在东西内外图廓间,经度注记在南北内外 图廓间。

地图制图与投影(内部资料)PPT课件

地图制图与投影(内部资料)PPT课件
12
我国使用的地球椭球体
华夏经纬网2003年12月4日讯:随着新一代地心坐标系的建立,目前
使用的1954年北京坐标系将被取代,中国现有的地图也将要全部 改版 。 《科技日报》报道,“全国天文大地网与空间大地网联合平差”成 果3日通过了总参测绘局组织的专家评审。 “全国天文大地网与空间大地网联合平差”是一项跨世纪的军事 测绘重大基础建设项目。1991年由总参测绘局启动,至1998年完 成了全国天文大地网与全国GPS一级网的联合处理,取得了阶段 性成果;1999年启动的二期工程,至今完成了全国天文大地网与 2000国家GPS大地控制网的联合处理,全面实现了工程建设目标。 该项目集中了有关教学、科研和生产单位多方面专家进行联合攻 关,对中国半个世纪以来的大地测量资料进行了系统整理,完善 了军事大地测量综合数据库系统,研制了自主版权的高性能大地 测量数据处理软件系统;特别是在世界上首次运用了三维平差理 论、异常诊断、粗差剔除及抗差估计等新技术新方法,保证了项 目成果的可靠性和先进性。
地图制图与投影
1
地图的基本知识
地图:是按一定的数学法则和综合法则,以形象 -符号表达制图物体(现象)的地理分布、组合和 相互联系及其在时间中的变化的空间模型,它 是地理信息的载体,又是信息传递的通道。
地图的特征: 由于特殊的数学法则而产生的可量测性 由于使用符号表象事物而产生的直观性; 由于制图综合而产生的一览性。
5)有统一的图式符号,便于识别使用。 6)为保持地形图的现势性,还规定了定期更新。
5
其他地图
影像地图:RS Image等等….. 立体地图:由DEM或DTM与DOM生成的立体影象等
等…
电子地图:例如WebGIS查询地图等…… 数字地图:4D产品等…… 等等……

地图投影课件汪明冲

地图投影课件汪明冲

地图投影的分类
按投影变形性质分类
分为等角投影、等面积投影和任意投影。等角投影保持角度不变,但长度和面积会发生变化;等面积投影保持面 积不变,但角度和长度会发生变化;任意投影既可以保持角度不变,也可以保持面积不变,还可以保持特定方向 的比例关系。
按投影面分类
分为正射投影和斜射投影。正射投影是将地球表面垂直投影到平面上的方法,常用于制作世界地图;斜射投影则 是将地球表面倾斜投影到平面上的方法,常用于制作大范围地区的地图。
投影方法的改进与优化
优化现有投影方法
针对现有投影方法的不足,未来将进 一步对其进行改进和优化,提高其准 确性和实用性。
投影方法的标准化
为了便于各行业之间的交流与合作, 未来将推动地图投影方法的标准化, 制定统一的规范和标准。
投影在各领域的应用拓展
投影在导航领域的应用
随着智能交通和自动驾驶技术的发展,地图投影将在导航 领域发挥更加重要的作用,为车辆提供更加精准的定位和 路线规划服务。
投影在气象领域的应用
通过将地图投影与气象数据相结合,可以更加直观地展示 气象变化和预测结果,为气象研究和预报提供有力支持。
投影在应急救援领域的应用
在应急救援领域,地图投影可以为救援人员提供更加精准 的灾区地理信息和救援路线规划,提高救援效率和成功率 。
05 地图投影实例分析
中国地图投影实例
中国大比例尺地图投影实例
详细描述
圆锥投影常用于制作中纬度地区地图,因为它能够保持纬度 比例的真实性,使得南北方向的长度保持不变。常见的圆锥 投影包括等角圆锥投影和等距圆锥投影。
多面体投影
总结词
多面体投影是将地球表面分割成多个面 ,然后将各面分别投影到平面上的方法 。

《地图投影》课件

《地图投影》课件
动态地图投影
随着实时数据处理技术的发展,动态地图投影将 成为未来的重要趋势,能够实时反映地理信息的 动态变化。
跨学科融合
地图投影将与计算机科学、物理学、数学等学科 进一步融合,推动地图投影技术的创新发展。
地图投影的挑战与机遇
数据处理和计算能力
01
随着地图投影的数据量不断增加,对数据处理和计算能力提出
02
地图投影在导航系统中的应用需 要考虑到地球的椭球形状和地球 的自转效应,以保证导航的准确 性和可靠性。
地图投影在城市规划中的应用
城市规划中需要使用地图投影来将地理坐标转换为城市平面坐标,以便进行城市 布局和规划设计。
城市规划中使用的地图投影需要考虑到城市规模、地形地貌和规划要求等因素, 以确保城市规划的科学性和合理性。
亚尔勃斯投影
总结词
等面积正圆锥投影
详细描述
亚尔勃斯投影是一种等面积正圆锥投影,它将地球视为一个正圆锥体,并沿经线 方向展开,保持面积不变。这种投影在制作世界地图时特别有用,因为它可以较 好地表现各大陆的面积比例。
兰勃特等面积投影
总结词
等面积方位投影
详细描述
兰勃特等面积投影是一种等面积方位投影,它将地球投影到一个椭球体上,并保持各方向上的面积相 等。这种投影在制作各种比例尺地图时非常有用,因为它可以较好地表现各区域的面积比例和相对位 置。
01
坐标系
介绍地理坐标系、投影坐标系等 概念,以及它们在地图投影中的 作用。
几何基础
02
03
坐标变换
阐述投影几何的基本原理,如平 行线、相似形等,以及它们在地 图投影中的应用。
介绍如何将地理坐标转换为投影 坐标,以及投影坐标与平面直角 坐标之间的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 地图投影与高斯投影
[本章提要] 7.1 高斯投影概述 7.2 正形投影的一般条件 7.3 高斯平面直角坐标系与大地坐标系 7.4 椭球面上观测成果归化到高斯平面上计算 7.5 工程测量投影面与投影带选择
[习题]
本章提要
本章介绍从椭球面上大地坐标系到平面上直角坐 标系的正形投影过程。研究如何将大地坐标、大地线 长度和方向以及大地方位角等向平面转化的问题。重 点讲述高斯投影的原理和方法,解决由球面到平面的 换算问题,解决相邻带的坐标坐标换算。讨论在工程 应用中,工程测量投影面与投影带选择。
投影变形的形式:角度变形、 长度变形和面积变形。
2 控制测量对地图投影的要求
➢应当采用等角投影(又称为正形投影)
采用正形投影时,在三角测量中大量的角度观测 元素在投影前后保持不变;在测制的地图时,采 用等角投影可以保证在有限的范围内使得地图上 图形同椭球上原形保持相似。
➢在采用的正形投影中,要求长度和面积变形不 大,并能够应用简单公式计算由于这些变形而带 来的改正数。
➢能按分带投影
3 高斯投影的基本概念
(1)基本概念:
如下图所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一 条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中 心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一 定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影 面,此投影为高斯投影。高斯投影是正形投影的一种。
[知识点及学习要求] 1.高斯投影的基本概念; 2.正形投影的一般条件; 3.高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反 算 4.椭球面上观测成果(水平方向、距离)归化到高斯平面上的计算; 5.高斯投影的邻带换算; 6.工程测量投影面与投影带的选择。
[难点]在对本章的学习中,首先要理解和掌握高斯投影的
央子午线经度,它们的关系L3n下图所示。我国 3 带共计22带 (24~45带)。
(3)高斯平面直角坐标系
在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午
线和赤道的交点O 作为坐标原点,以中央子午线的投影为纵坐标 x
轴,以赤道的投影为横坐标 y 轴。
xB xA xB xA
x
B yB
A yA
x y
FF12((LL,,BB))
式中L,B是椭球面上某点的大地坐标,而是x,y该点投影后的平面直角 坐标。
地图投影的方式
➢等角投影——投影前后的角度相等,但长度和面积有变形; ➢等距投影——投影前后的长度相等,但角度和面积有变形; ➢等积投影——投影前后的面积相等,但角度和长度有变形。
1 投影与变形 投影变形:椭球面是一个凸起的、不可展平的曲 面。将这个曲面上的元素(距离、角度、图形) 投影到平面上,就会和原来的距离、角度、图形 呈现差异,这一差异称为投影变形。
返回本章首页
7.2 正形投影的一般条件
高斯投影首先必须满足正形投影的一般条件。图a为椭球面,图b为它 在平面上的投影。在椭球面上有无限接近的两点和 p2 ,投影后为 P1 和p2 ,其坐标均已注在图上,dS为大地线的微分弧长,其方位角为A。 在投影面上,建立如图b所示的坐标系,dS的投影弧长为 ds 。
x
500Km
B yB
A yA
y
y
(3)高斯平面直角坐标系
在我国x坐标都是正的,y 坐标的最大值(在赤 道上)约为330km。为了避免出现负的横坐标, 可在横坐标上加上500 000m。此外还应在坐标前 面再冠以带号。这种坐标称为国家统一坐标。例 如,有一点Y =19 123 456.789m,该点位在带内, 其相对于中央子午线而言的横坐标则是:首先去 掉带号,再减去500000m,最后得 =-3y76 543.211m。
在高斯投影平面上的直角坐标x, y,即L ,B (x,y)的坐标变换。
(2)投影变换必须满足的条件:
中央子午线投影后为直线;
中央子午线投影后长度不变;
投影具有正形性质,即正形投影条件。
(3)投影过程
在椭球面上有对称于中央子午线的两点 P1 和 P2 ,它们的大地坐标
分别为(L, B)及(l, B ),式中 为椭球面上 P点的经度与中央子
概念。高斯正算和反算计算;方向改化和距离改化计算; 高斯投影带的换算与应用;工程测量中投影面与投影带的 选择。
返回本章首页
7.1 高斯投影概述
1 投影与变形
地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一
定的数学法则投影到平面上。研究这个问题的专门学科叫地图投影
学。可用下面两个方程式(坐标投影公式)表示:
(2)分带投影
高斯投影 6 带:自0 子午线起每隔经差 6 自西向东分带,依次编号
1,2,3,…。我国6 带中央子午线的经度,由75 起每隔 6 而至135, 共计 11带(13~23带),带号用 n表示,中央子午线的经度用L 0 表示,它 们的关系是L0 6n3,如下图所示。
高斯投影3 带:它的中央子午线一部分同 6 带中央子午线重合,一部 分同6 带的分界子午线重合,如用 n 表示3 带的带号,L表示 3 带中
(4)高斯平面投影的特点:
(5) 椭球面三角系化算到高斯投影面
将椭球面三角系归算到高斯投影面的主要内容是:
➢将起始点的大地坐标归算为高斯平面直角坐标;为了检核还 应进行反算,亦即根据反算。 ➢通过计算该点的子午线收敛角及方向改正,将椭球面上起算 边大地方位角归算到高斯平面上相应边的坐标方位角。 ➢通过计算各方向的曲率改正和方向改正,将椭球面上各三角 形内角归算到高斯平面上的由相应直线组成的三角形内角。 ➢通过计算距离改正,将椭球面上起算边的长度归算到高斯平 面上的直线长度。 ➢当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换 算。
午线 (L0 )的经度差:l LL0 , l 点在中央子午线之东, l为正,在西
图a
图b
椭球面到平面的正形投影一般公式——称柯西-黎曼条件:
x q x l
上的一般条件:
q x l x
l y
q
y
返回本章首页
7.3 高斯平面直角坐标系与大地坐标系
1 高斯投影坐标正算公式
(1)高斯投影正算:已知椭球面上某点的大地坐标 L,B ,求该点
相关文档
最新文档