流体力学与传热学-1讲解

合集下载

工程热力学和传热学和流体力学初级

工程热力学和传热学和流体力学初级
功和热量是过程量,不仅与初、终状态参数有关, 还与过程有关。
13
2.状态参数分类
强度量 尺度量
压力、温度 比容、热力学能(内能)、焓、熵
基本参数 导出参数
压力、温度、比容 热力学能(内能) 、焓、熵
(√)状态参数的变化只与系统的初、终状态有关,而与变 化途径无关。 (×)功也是状态参数,其变化只与系统的初、终状态有关。 (×)热量是状态参数,其变化只与系统的初、终状态有关。
热量多于定容过程吸收热量。
34
第四节 混合气体
工程实际应用的气体通常是混合气体,如空气、 烟气等等。混合气体的性质取决于各组分气体的成 份及热力性质。
混合物的性质与各种混合物的性质以及各组元在整个 混合物中所占的份额有关。
35
一、混合气体分压力和道尔顿分压力定律
分压力是各组成气体在混合气体的温度下单独 占据混合气体的容积时所呈现的压力。
p1v1 p2v2
p1V1 p2V2
2.查理斯定律
对于一定量的理想气体,当比容(或容积)不变时,压
力与绝对温度成反比。
p1 p2 T1 T2
3.给•吕萨克定律
对于一定量的理想气体,当比容(或容积)不变时,压
力与绝对温度成反比。V1 V2 或 v1 v2
T1 T2 T1 T2
26
4.理想气体状态方程的另外一种表示
(√)一切热力系统连同 与之相互作用的外界可 以抽象为孤立系统。
9
第二节 工质及基本状态参数
一、工质(working substance; working medium)
1.定义:实现热能和机械能相互转化,或 传递热能的媒介物质
例如:
电站锅炉的水蒸气 燃烧形成的烟气 气缸中的燃气

流体力学与传热学ppt课件

流体力学与传热学ppt课件
2) 物理条件 物性参数λ、ρ 、c 和η 的数值,是否随温度和压力变化;有无 内热源、大小和分布
3) 时间条件 稳态对流换热过程不需要时间条件—与时间无关
4) 边界条件 第一类边界条件:已知任一瞬间对流换热过程边界上的温度值 第二类边界条件:已知任一瞬间对流换热过程边界上的热流密度值
§8.3 边界层概念及边界层换热微分方程组
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;
比拟法 数值法
通过研究动量传递及热量传递的共性或类似特性,以建立起表 面传热系数见的相互关系的方法。
近20年内得到迅速发展,并将会日益显示出其重要的作用。
7、如何从解得的温度场来计算对流传热系数
当粘性流体在壁面上流动时,由于粘性的作 用,流体的流速在靠近壁面处随离壁面的距 离的缩短而逐渐降低;
在贴壁处被滞止,处于无滑移状态(即:y=0, u=0) 在这极薄的贴壁流体层中,热量只能以导热方式传递
c 数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速
2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流时的局部 表面摩擦系数推知局部表面传热系数
3)实验法 用相似理论指导
4、对流传热过程的单值性条件
完整数学描述:对流传热微分方程组+ 单值性条件
1) 几何条件 平板、圆管;竖直圆管、水平圆管;长度、直径等

流体力学与传热学

流体力学与传热学

1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的(热传导)和边界层外的(对流传热)合并考虑,并命名为给热。

2、在工程计算中,对两侧温度分别为 t1,t2 的固体,通常采用平均导热系数进行热传导计算。

平均导热系数的两种表示方法是或。

答案;λ =3、图 3-2 表示固定管板式换热器的两块管板。

由图可知,此换热器为或。

体的走向为管程,管程流1 1 4 22 33 5图 3-2 3-18 附图答案:4;2 → 4 → 1 → 5 → 3;3 → 5 → 1 → 4 → 2 4、4.黑体的表面温度从 300℃升至 600℃,其辐射能力增大到原来的(5.39)倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的 4 次方成正比,? 600 + 273 ? 摄氏温度,即 ? ? =5.39。

? 300 + 273 ?5、 3-24 用 0.1Mpa 的饱和水蒸气在套管换热器中加热空气。

空气走管内, 20℃升至 60℃,由则管内壁的温度约为(100℃)6、热油和水在一套管换热器中换热,水由 20℃升至 75℃。

若冷流体为最小值流体,传热效率 0.65,则油的入口温度为 (104℃)。

7、因次分析法基础是 (因次的一致性),又称因次的和谐性。

8、粘度的物理意义是促使流体产生单位速度梯度的(剪应力)9、如果管内流体流量增大 1 倍以后,仍处于滞流状态,则流动阻力增大到原来的(2 倍)10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时4 倍。

11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的(速度梯度),即使(粘度)很小,(内摩擦应力)仍然很大,不容忽视。

12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的(惯性力)与(粘性力)之比。

13、滞流与湍流的本质区别是(滞流无径向运动,湍流有径向运动)二、问答题:问答题: 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么?答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。

流体力学与传热学-1

流体力学与传热学-1

2、连续介质假设(1753年欧拉)
假定流体是由无穷多个、无穷小的、紧密毗邻、连续不断的流体质点所构 成的一种绝无间隙的连续介质。 流体状态的宏观物理量如速度、压强、密度、温度等都可以作为空间和 时间的连续函数
§1.4 流体的主要物理性质
1、流体的密度与重度
密度: 单位体积内流体的质量
lim
流体之间或流体与固体之间的相互作用力;
流动过程中动量、能量和质量的传输规律等。
2、流体力学的发展简况 1、经验阶段(十七世纪前)
大禹治水 4000多年前的大禹治水 古代已有大规模的治河工程。 (公元前256~210年) 秦代,修建了都江堰、郑国渠、灵渠三大水利工程对明槽水流和堰 流流动规律的认识已经达到相当水平。 (公元前156~前87) 西汉武帝时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠 创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防 止了黄土的塌方。 真州船闸(960-1126) 北宋时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船相 比,约早三百多年。
两层气体之间的黏性力主要由分子动量交换形成
一般仅随温度变化,液体温度升高黏度减小,气体温度升高黏度增大。
8) 黏性流体和理想流体
黏性流体 实际中的流体都具有粘性,因为都是由分子组成,都存在分子间的 引力和分子的热运动,故都具有黏性。 理想流体(假想没有黏性的流体) 一些情况下基本上符合粘性不大的实际流体的运动规律,可用来描 述实际流体的运动规律,如空气绕流圆柱体时,边界层以外的势流就可 以用理想流体的理论进行描述。 还由于一些黏性流体力学的问题往往是根据理想流体力学的理论进 行分析和研究的。 再者,在有些问题中流体的黏性显示不出来,如均匀流动、流体静 止状态,这时实际流体可以看成理想流体。

传热学讲义第一章—导热理论基础

传热学讲义第一章—导热理论基础

第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律及导热问题的基本分析方法。

物质内部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。

物质内部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。

导热理论从宏观研究问题,采用连续介质模型。

第一节 基本概念及傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体内各点温度分布的总称,称为即为温度场(标量场)。

它是空间坐标和时间坐标的函数。

在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:① 稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。

(如设备正常运行工况) 稳态导热:发生于稳态温度场中的导热。

② 非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。

(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。

2.从空间坐标分: ① 三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ② 二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τ∆tt-∆tgrad t③ 一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体内温度相同的点连成的面即为等温面。

2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。

为了直观地表示出物体内部的温度分布,可采用图示法,标绘出物体中的等温面(线)。

1传热学-第一章课件讲解

1传热学-第一章课件讲解

热 力学: tm , Q 传热学:过程的速率
水,M2 20oC
t = f ( x , y , z , ); Q = f ( )
传热学研究内容 热量传递的机理和速率、温度 场的变化
传热学的工程应用
1、 强化传热:即在一定的 条件下, 增加 所传递 的热量。 如热水的 搅拌冷 却 2 、 削弱传热,也称 热绝缘 :即在一 定的温差 下,使 热量的传递 减到最小。如热 水瓶 3 、温度控 制:为使 一些设备能安全 经济 地 运 行 ,需要对热量传递中的 关键部位进行温 度控 制 。如航 天器返回 地面, 笔记本的 散热
四、传热问题的分类和主要计算量


稳态传热过程: 传热过程中各处温度不 随时间变化。 非稳态传热过程:传热过程中各 处温度随时间变化。
热流量:
dQ Φ= d
[W]
W 2 m
热流密度:
t Φ q= = A
§1-2热量传递的基本方式
热量传递基本方式:热传导、热对流、热辐射
l
l
为什么水壶的提把要包上橡胶?
不同材质的汤匙放入热水中,哪个黄油融解更快?
在下列技术领域大量存在传热问题
动力、化工、制冷、建筑、环境、机械制造、新 能源、微电子、核能、 航空航天、微机电系统 (MEMS)、新材料、军事科学与技术、生 命科 学与生物技术…
燃煤电厂的基本流程
锅 炉 工 作 原 理
三、传热学与工程热力学的关系
相同点: 传热学以热力学第一定律和第二定律为基础 热力学第一定律
热量始终是从高温物体向低温物体传递,在热量传递过程中 若无能量形式的转换,则热量始终保持守恒。
热力学第二定律
热量能自发的从高温物体传递到低温物体

流体力学与传热学详解

流体力学与传热学详解
并联管系:
Q Q1 Q2 Q3
hw1 hw2 hw3
26
5. 管路特性曲线

风机
所谓管路特性曲线,就是管路中通过的 流量与所需要消耗的能头之间的关系曲线
27
减小流动损失的措施 1. 减小管长、增大直径、降低粗糙度; 2. 减少附加管件、平滑过渡、弯头导流; 3. 管路特性与驱动机械内特性相匹配。

tw1 tw,n1 1 n 1 ln di1
2L i1 i di
39
2.对流换热
基本概念 热对流——流体的宏观运动,使流体各部分之间发生相 对位移,冷热流体相互掺混所引起的热量传递过程。 对流的形式 自然对流:因流体的密度差而引起的流动; 强制对流:流体的流动是由水泵、风机或其他外力 所引起的; 对流换热——流体流过物体表面时的热量传递过程;
1
2
3
i1 i
通过n层平壁的热流密度:
q

tw1
tw,n1
n i

tw1
tw,n1 Ri
i1 i
37
1.稳态导热
圆筒壁的稳态导热
单层圆筒壁的稳态导热: 对于长度为L、无内热源的内、外
径分别为d1、d2的单层圆筒壁,若 其内、外壁温度为tw1和tw2,导热

29
(3)k/de,k=0.15mm
k 5.62 104 de
(4)λ Re = 1.7×105 在湍流过渡区
用希弗林松公式

0.11 k

68
0.25


d Re
(5)R
Rp l de 8.31
λ=0.0194
(6)Δp

传热学第五章_对流换热原理-1

传热学第五章_对流换热原理-1

Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。

1_流体力学与传热学

1_流体力学与传热学

P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n

流体静压强的方向与受 压面垂直并指向受压面
Y X 0

作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强

静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.

流体力学与传热学

流体力学与传热学

流体力学与传热学流体力学和传热学是物理学和工程学中的重要分支,它们在许多领域中都有着广泛的应用。

本文将对流体力学和传热学进行简单的介绍和探讨。

流体力学是研究流体(包括液体和气体)运动、变形和受力规律的学科。

流体力学的研究对象是流体的宏观运动,它涉及到许多自然现象和社会生产实践中的问题。

例如,气象、水利、航空航天、工业制造等领域都离不开流体力学。

流体力学的基本原理包括:流体的性质、流体静力学、流体动力学、流动阻力和能量损失等等。

它在很多领域中有重要应用,如飞机飞行和汽车设计中的气动性能,以及建筑物的风洞实验等等。

传热学是研究热量传递规律和传热过程的学科。

传热学主要涉及到热传导、热对流和热辐射三种基本传热方式。

热传导是指物体内部热能传递的过程,它涉及到物体内部的微观粒子运动;热对流是指由于流体运动而引起的热能传递过程,它主要发生在流体与固体的交界面上;热辐射是指物体通过电磁波的形式向外传递热能的过程。

传热学在能源、建筑、化工、电子、航天等领域中都有广泛的应用,如能源利用中的传热过程优化、建筑物的保温性能设计和微电子器件的散热设计等等。

在能源领域,流体力学和传热学具有非常重要的作用。

例如,在太阳能利用中,如何高效地收集太阳能并进行利用是一个重要问题。

太阳能集热器就是利用传热学原理来提高太阳能的利用率,它可以将太阳能转化为热能,并将其传输到需要加热的地方。

此外,传热学还广泛应用于石油和天然气工业中,例如油井的加热和天然气液化的过程都需要利用传热学的知识来进行优化设计。

建筑领域也是一个广泛应用流体力学和传热学的领域。

例如,建筑物的通风系统和空调系统都需要利用流体力学的知识来进行设计。

同时,建筑物的保温性能和隔热性能是建筑节能的关键因素之一,因此需要通过传热学的知识来进行合理的建筑设计和材料选择。

此外,在桥梁、高速公路和其他基础设施建设领域中,也需要利用流体力学和传热学的知识来进行防水、排水和保温等方面的设计和施工。

流体力学与传热学详解

流体力学与传热学详解

/ m2
30
传热学
两个思考题
热量到底是怎么流动的? 怎样使热量流得快(慢)一点?
32
0.绪论
本节内容主要讲述热能传递的基本理论知识; 概述
研究热量传递规律的科学,主要有热量传递 的机理、 规律、计算和测试方法
热力学第二定律: 热量可以自发地由高温热源传给低温热源 有温差就会有传热, 温差是热量传递的动力
(c) 圆角 0.2
(d) 流线形 0.04 22
管道出口损失系数ζ
1.0
23
管道变截面结构损失系数
管道突扩结构损 失系数ζ
管道突缩结构损 失系数ζ
24
90o 弯头损失系数ζ
25
4. 复合管系
串联管系:
Q1 Q2 Q3
hw,AB hw1 hw2 hw3
1.沿程阻力——沿程损失(长度损失、摩擦损失)
hf

l d
v2 2g
p f

l d

v2 2

λ——沿程阻力系数
2.局部阻力——局部损失
hj

v2 2g

pj


v2 2

达西-魏斯巴赫公式
ζ——局部阻力系数
6
沿程阻力
沿程阻力系数跟黏性有关—— 牛顿粘性实验


gz2
hw
he ws
hw u2 u1 q 0
管道流动损失 hw hf hj
hf : 直管中沿程流动损失(J/kg) hj : 附加管件损失(J/kg)
hf

l de
V2 2
4A de U

《流体力学与传热学》课件

《流体力学与传热学》课件
总结词
04
传热学应用实例
建筑节能是传热学的重要应用领域,通过合理利用传热学原理,可以有效降低建筑能耗,提高能源利用效率。
建筑设计时,利用传热学原理,合理设计建筑物的保温、隔热、通风等系统,可以有效降低建筑物的热量损失和冷热负荷,从而减少能源消耗。例如,利用保温材料和密封技术减少墙体热传导,利用自然通风和热压差通风降低室内温度等。
流体静力学的基本概念、原理和应用
详细描述
流体静力学是研究流体在静止状态下力学行为的一门学科。主要研究流体内部的压力分布、液体对容器壁的侧压力等,在工程实际中有广泛应用。
总结词
流体动力学的基本概念、原理和应用
详细描述
流体动力学是研究流体在运动状态下力学行为的一门学科。主要研究流体的速度、压力、密度等物理量的变化规律,以及流体与固体壁面的相互作用等,在航空航天、交通运输等领域有重要应用。
随着计算机技术的不断发展,数值模拟与仿真技术在流体力学与传热学中发挥着越来越重要的作用。这些技术可以对流体流动和传热过程进行精确模拟和预测,为实验研究和工程应用提供有力支持。
数值模拟与仿真技术在流体力学与传热学中广泛应用于各种领域。例如,在能源领域,通过对流体流动和传热的数值模拟,优化核能、风能等可再生能源的开发和利用。在环境领域,通过对污染物扩散的数值模拟,评估环境治理措施的有效性。在生物医学领域,通过对生物体内的流体流动和传热的数值模拟,揭示生理过程和疾病机制,为诊断和治疗提供依据。
THANKS
感谢观看
总结词
新能源技术是未来能源发展的方向,传热学在新能源技术的开发和利用中发挥着重要作用。
要点一
要点二
详细描述
太阳能、风能等新能源的开发和利用过程中,传热学原理被广泛应用于设备的热回收、热利用和热控制等方面。例如,太阳能热水器利用传热学原理将太阳能转化为热能,风力发电设备的散热系统和热回收系统也涉及到传热学的知识。

第一章流体力学导论(讲义).

第一章流体力学导论(讲义).
1 — 热膨胀系数 T p
等温压缩率物理意义:衡量流体可压缩性,表示 在一定温度下压强增加一个单位时流体密度的相对增 加率。 由于 v 1 ,所以等温压缩率还可以表示为:
1 v T v p T
等温压缩率另一种物理意义:在一定温度下,压 强增加一个单位时流体体积的相对缩小率。
3)、辐射机理
电磁波范围极广,通常把波长为0.4~40μm范围 的电磁波称为热射线。热射线产生于物质的原子内部, 而引起这种运动的基本原因是物体本身温度。
4)、产生辐射传热的条件 当两个物体温度都在绝对零度以上而且有温差时, 高温物体辐射给低温物体的能量大于低温物体辐射给高 温物体的能量。总的效果是高温物体辐射给低温物体能 量。实验证明:只有当物体的温度大于400℃时,因辐 射而传递的能量才比较显著。
20世纪以来,数学与计算机科学的发展,为 通过仿真研究传热学和流体力学奠定了基础。例如: 利用分析软件分析航天器热量分布,从而为航天器 的隔热设计奠定了理论基础。利用仿真软件分析潜 器形状与受到流体阻力的关系,指导潜器等水下平 台的设计。
第二节 传热学与流体力学的理论基础
一、传热学的理论基础
1、热量传递三种基本形式:
v
v
1

表1.2
4)、流体可压缩性与热膨胀性 (1)可压缩性 : 在外力作用下,体积或密度可以改变的性 质。 (2)热膨胀性:温度改变时流体体积或密度可以改变的性 质。 对于单一组分的流体,密度随压强、温度的改变:
d dp dT T dp dT p T 1 T — 等温压缩率 p T

传热学的主要研究内容
传热学是研究热量传递规律的科学

传热与流体力学的相互作用研究与应用

传热与流体力学的相互作用研究与应用

传热与流体力学的相互作用研究与应用引言传热和流体力学是研究物质内部的能量传递和流动行为的两个重要学科。

它们在自然界和工程领域中都有广泛的应用。

传热与流体力学的相互作用是两个学科交叉的领域,具有重要的理论研究和应用价值。

本文将介绍传热与流体力学的基本概念及其相互作用的研究进展,并探讨其在不同领域的应用。

传热的基本概念传热是热量从高温物体传递到低温物体的过程。

热量的传递有三种方式:导热、对流和辐射。

导热是通过物质内部的分子热运动进行热量传递,它的主要方式是热传导。

对流是通过流体的运动进行热量传递,它的主要方式是强迫对流和自然对流。

辐射是通过电磁波辐射进行热量传递。

传热的研究内容包括传热机理、传热模型和传热传质的耦合。

流体力学的基本概念流体力学研究物质流动的规律和性质。

流体力学主要分为两个方面:流体静力学和流体动力学。

流体静力学研究静止的流体,并研究其受力平衡的问题。

流体动力学研究流体的运动,包括流体的速度、压力和密度等变化规律。

流体力学的研究内容包括流体的本构关系、能量方程和动量方程等。

传热与流体力学的相互作用传热与流体力学相互作用的研究是传热与流体力学学科交叉的领域。

它研究在流体中传热过程中热量传递与流体流动之间的相互影响。

传热对流体流动产生的影响主要包括:热源对流体流动的推动作用、热传导对流体流动的抑制作用和热辐射对流体流动的影响。

流体流动对传热的影响主要包括:流体流动对热传导的增强作用、流体流动对传热界面的清洗作用和流体流动对热辐射的干扰作用。

传热与流体力学的相互作用是一个复杂的问题,需要通过实验和数值模拟来研究。

传热与流体力学的应用传热与流体力学的相互作用在工程领域有着广泛的应用。

以下是几个应用的例子:1. 热交换器热交换器是传热与流体力学相互作用的典型应用。

热交换器通过流体的对流传热来实现热量的转移。

流体在热交换器内部流动时,会与热交换器壁面进行热传递,从而实现热量的平衡。

热交换器的设计和优化需要考虑传热与流体力学的相互作用,以提高传热效率和节约能源。

流体力学和传热学

流体力学和传热学

流体力学和传热学《流体力学和传热学》第一章流体力学1.1 流体介质流体(Fluid)是指可用来描述物质在物理状态机制上发生变形,具有形状改变能力的物质类型。

它们包括液体(Liquid)和气体(Gas),可以根据它们的性质将它们分为静力学流体( statically fluids)和动力学流体(dynamic fluids)。

1.2 流体流动流体力学研究的基础内容是流体流动,它是物质在物理空间内的连续改变,由于流体分布的不均匀性,会产生流动。

它是由于重力、压力差、粘度和其他因素引起的。

1.3 流体力学基本原理流体力学研究的基本原理,可以归纳为三大要素:物理定律、力学方程和保守定律。

物理定律指的是物理现象的基本准则,如流体的流动、密度、压力、速度、温度等,他们是流体力学研究的基本研究对象。

力学方程涉及的是流体的动力学特性,如流体内的力平衡方程、温度方程以及动量守恒方程等,是探索流体流动的机理的基础。

保守定律指的是流体受到外力的作用时,它的总动量、能量、动量和质量的变化,可从它们的定义和物理定律可以推出。

第二章传热学2.1 传热学的定义传热学(Thermodynamics)是研究物质在物理系统中的能量交换及其特性的学科,它是动力学、能源学以及工程热力学的一部分。

它涉及物体的物理特性、热质的传递机理及传热学定律。

2.2 传热学的基本原理传热学的基本原理,一般可以概括为三大要素:物理特性、热质传递机理和传热学定律。

物理特性是指传热学中有关物质的特性,如密度、温度和物性参数等,而热质传递机理是指它的传热原理,如热对流、热传导及热辐射等。

最后的传热学定律,根据物理原理推出了物体内部的热能的变化,也就是“物体内的热能不会凭空灰飞烟灭,只能够从一处转移到另外一处”这一定律。

1 流体力学及传热学基础知识

1 流体力学及传热学基础知识
所谓质点,是指由大量分子构成的微团, 所谓质点,是指由大量分子构成的微团,其尺寸远小 质点 于设备尺寸,但却远大于分子自由程。 于设备尺寸,但却远大于分子自由程。 这些质点在流体内部紧紧相连,彼此间没有间隙, 这些质点在流体内部紧紧相连,彼此间没有间隙,即 流体充满所占空间,称为连续介质 连续介质。 流体充满所占空间,称为连续介质。
1 流体力学及传热学基础知识
1.1 流体主要的力学性质
1.1.2 流体的主要力学性质
1. 易流动性
流体这种在静止时不能承受切应力和抵抗剪切变形 的性质称为易流动性 的性质称为易流动性
2. 质量密度
单位体积流体的质量称为流体的密度, 单位体积流体的质量称为流体的密度,即ρ=m/V 流体的密度
3. 重量密度
1 流体力学及传热学基础知识
1.3 流体动力学基础
2. 根据流体流速的变化来进行分类
(1) 均匀流 ) 在给定的某一时刻, 在给定的某一时刻,各点速度都不随位置而变化的 流体运动称为均匀流 均匀流。 流体运动称为均匀流。 (2) 非均匀流 ) 流体中相应点流速不相等的流体运动称为非均匀流 非均匀流。 流体中相应点流速不相等的流体运动称为非均匀流。
1.1.1 连续介质假设
从微观上讲,流体是由大量的彼此之间有一定间隙的 从微观上讲,流体是由大量的彼此之间有一定间隙的 单个分子所组成,而且分子总是处于随机运动状态。 单个分子所组成,而且分子总是处于随机运动状态。 从宏观上讲,流体视为由无数流体质点(或微团)组 从宏观上讲,流体视为由无数流体质点(或微团) 视为由无数流体质点 成的连续介质。 成的连续介质。
1 流体力学及传热学基础知识
1.3 流体动力学基础
3. 按液流运动接触的壁面情况分类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在火箭、导弹、航天器的总体、动力、制导、气动力、结构、材料、计
理论学家、流体力学家主要从事物理学的基础理论中难度最大的两个方
3、第三阶段(二十世纪初至中叶)
流体力学理论、实验全面开展,航空航天迅速发展。
4、第四阶段——多学科互相渗透
工业流体力学、实验流体力学、地球流体力学、非牛顿流体力学、 多相流体力学、生物流体力学等都已形成独立的学科
拉格朗日(1736-1813) 提出了新的流体动力学微分方程,并提出了流函数的概念。 纳 维 ( 1785-1836 法国) 首先提出了不可压缩粘性流体的运动微分方程组。 斯托克斯( 1819-1903,英国) 严格地导出了这些方程,并把流体质点的运动分解为平动、转动、均 匀膨胀或压缩及由剪切所引起的变形运动。统称为纳维-斯托克斯方程。 弗劳德(1810-1879) 提出了船模试验的相似准则数--弗劳德数。 亥姆霍兹(1821-1894)和基尔霍夫(1824-1887) 提出了表征旋涡基本性质的旋涡定理、带射流的物体绕流阻力等学 术成就。
流体之间或流体与固体之间的相互作用力;
流动过程中动量、能量和质量的传输规律等。
2、流体力学的发展简况 1、经验阶段(十七世纪前)
大禹治水 4000多年前的大禹治水 古代已有大规模的治河工程。 (公元前256~210年) 秦代,修建了都江堰、郑国渠、灵渠三大水利工程对明槽水流和堰 流流动规律的认识已经达到相当水平。 (公元前156~前87) 西汉武帝时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠 创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防 止了黄土的塌方。 真州船闸(960-1126) 北宋时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船相 比,约早三百多年。
足球运动的“香蕉球”现象可以帮助理解环流理论: 旋转的球带动空气形成环流,一侧气体加速,一侧气体减速, 形成压力差,使足球拐弯。
马格努斯效应 在炮弹的飞行中观察到的
机翼的特殊形状使它不用旋转就能产生环流,上部流速加快形成 吸力,下部流速减慢形成压力。
测量和计算表明上部吸力的贡献比下部要大得多。
人们之所以不能凭直觉来认识流体运动,是因为:
工程流体力学与传热学
信息学院·次英
第一章 绪 论
§1.1 流体运动与流体力学
人类的祖先在海洋里生活了40亿年
人类在空气里也生活了700万年
虽然生活在流体环境中,人们对一些流体运动却缺乏认识:
1. 高尔夫球 :表面光滑还是粗糙? 2. 汽车阻力 :来自前部还是后部?
3. 机翼升力 :来自下部还是上部?
雷 诺(1842-1912) 用实验证实了粘性流体的两种流动状态──层流和紊流的存在,找到了 实验研究粘性流体流动规律的相似准则数──雷诺数。 普朗特(1875-1953) 建立了边界层理论,解释了阻力产生的机制。 钱学森 算机、质量控制和科技管理等领域的丰富知识,为中国火箭导弹和航天事 业的创建与发展作出了杰出的贡献。 周培源 面即爱因斯坦广义相对论引力论和流体力学中的湍流理论的研究与教学并 取得出色成果。
2、理论阶段(十七世纪~十九世纪)
斯蒂文(1548-1620) 将用于研究固体平衡的凝结原理转用到流体上。 伽利略(1564-1642) 在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻 力随着流体介质密度的增大和速度的提高而增大。
托里拆里(1608-1647) 论证了孔口出流的基本规律。 帕斯卡(B.Pascal,1623-1662) 提出了密闭流体能传递压强的原理--帕斯卡原理。 牛 顿(1642-1727) 提出牛顿内摩擦定律 伯努利(1700-1782) 建立了流体位势能、压强势能和动能之间的能量转换关系──伯努 利方程。 欧 拉(1707-) 提出了流体的连续介质模型,建立了连续性微分方程和理想流体的 运动微分方程,给出了不可压缩理想流体运动的一般解析方法。
高尔夫球
起初,人们认为表面光滑的球飞行阻力小,因此当时用皮革制球; 后来,发现表面有很多划痕的旧球反而飞得更远;
这个谜直到20世纪建立流体力学边界层理论后才解开。
现在的高尔夫球表面有许多窝。
5倍
汽车 汽车发明于19世纪末,人们认为汽车高速前进时的阻力主要来自车前部 对空气的撞击,因此早期的汽车后部是陡峭的,称为箱型车。 阻力系数CD很大,约0.8; 实际上,汽车阻力主要取决于后部形成的尾流; 20世纪30年代起,人们开始运用流体力学原理,改进汽车的尾部形状;
阿基米德(公元前287-212) 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度 的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 列奥纳德.达.芬奇(1452-1519) 著名物理学家和艺术家,设计建造了一小型水渠,系统地研究了物体 的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。
§1.2 流体力学的研究对象、发展简况和研究方法
1、流体力学的研究对象 流体: 在静力平衡时,不能承受拉力或剪力的物体。
液体:无形状,有一定的体积;不易压缩,存在自由(液)面
气体:既无形状,也无体积,易于压缩。
流体力学:研究流体平衡、机械运动的规律以及在工程实际中的运用 任 务: 研究流体的运动规律;
1) 空气看不见摸不着,水无色透明,人的肉眼难以
观察到真实的流动图像;
2) 即使能看到部分流动形态,由于变化太快肉眼无法
辨认。
地球表面水和空气的运动是气象、水文、水利、环保、农业、航空、 航海、渔业、国防等部门研究的对象
航空、航天、造船、机械、动力、冶金、化工、石油、建筑等部门设 备中的工作介质都是流体,改进流程,提高效率,需要流体力学知识
经过近80年的研究和改进,汽车阻力系数从0.8降至0.137,减少到原 来的1/5;
目前在汽车外形设计中,流体力学性能研究已占主导地位,合理的外形 使汽车具有更好的动力学性能和更低的耗油率。
机翼
人们的直观印象是空气从下面冲击着鸟的翅膀,把鸟托在空中; 19世纪初流体力学环流理论彻底改变了人们的传统观念;
相关文档
最新文档