实变函数与泛函分析基础第七章(1-3)

合集下载

实变函数与泛函分析概要第1~3章复习

实变函数与泛函分析概要第1~3章复习
e. P~ (0,1) ~ [0,1] ~ R+~ (a,b)
2020/4/20
40
第五节 集的势·序集
2020/4/20
41
5. 连续势集的定义
定义:与[0,1]区间对等的集合称为连续势集,
其势记为 , 显然:n 0
例:1)R~ (0,1) ~ [0,1] ~ [0,1) ~ R+~ (a,b)
存在大量既不开又不闭的集合,如: E=[0,1)
2020/4/20
25
定理3.3 任何集E的导集 E`为闭集
2020/4/20
26
闭集性质:
任意一簇闭集之交为闭集; 任意有限个闭集之并仍为闭集。
2020/4/20
27
例8 f(x)是直线上的连续函数当且仅当 对任意实数a,E={x|f(x)≤a}和 E1={x|f(x)≥a}都是闭集
2020/4/20
48
2 连续势集的性质(卡氏积)
有限个、可数个连续势的卡氏积仍为连续势集
定理:设A {(x1, x2, , xn, ) : xi (0,1)},则A
2020/4/20
49
推论 n维Euclid空间Rn的势为
平面与直线有“相同多”的点
2020/4/20
50
推论
例1 闭区间[0,1]与闭正方形[0,1;0,1]
(即可数集 是无限集中具有最小势的集合)
2020/4/20
15
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2020/4/20
16
例:有限个可数集的卡氏积是可数集
设A,B是可数集,则A×B也是可数集

实变函数与泛函分析基础第三版答案

实变函数与泛函分析基础第三版答案

第七章习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。

解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。

证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。

(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。

《实变函数与泛函分析》教学大纲

《实变函数与泛函分析》教学大纲

《实变函数与泛函分析》教学大纲《实变函数与泛函分析》教学大纲课程编码:110840课程名称:实变函数与泛函分析学时/学分:72/4先修课程:《数学分析》、《复变函数》适用专业:信息与计算科学开课教研室:分析与程教研室一、课程性质与任务1.课程性质:《实变函数与泛函分析》是大学数学系的重要专业方向课之一,它是数学分析的延续和发展。

2.课程任务:通过这门课程的教学应使学生掌握近代抽象分析的基本思想,培养学生综合运用分析数学的几何观点和方法,理解和研究分析数学中的许多问题,为进一步学习现代数学理论和理解现代科学技术提供必要的基础。

二、课程教学基本要求实变函数与泛函分析包括两部分内容:“实变函数”与“泛函分析”。

“实变函数”主要学习测度论、可测函数论、积分论、微分与不定积分;“泛函分析”是通过在集合中引入各种结构,包括代数结构,拓扑结构、测度结构、序结构以及这些基本结构的各种复合,形成了各种各样的抽象空间,本课程主要研究这些抽象空间中的距离空间,赋范线性空间,内积空间的性质及其映射(线性算子和线性泛函)性质。

三、课程教学内容第一章集合1.教学基本要求通过本章的系统学习,使学生熟悉集合列的上极限集、下极限集、极限集的定义与交、并运算表示,集合的对等、基数概念;掌握有限集、可数集、不可数集的概念,可数集是最小的无限集的结论以及可数集的基本运算性质,自然数集、整数集、有理数集等的可数性,有理数集在实数轴上的稠密性。

2.要求学生掌握的基本概念、理论通过本章教学使学生熟悉集合列的上、下极限集、极限集的定义与交、并运算表示;掌握单调集合列{Ak}的概念及其极限集的求法。

熟悉集合的对等概念,熟悉对等是一个等价关系;熟悉集合对等的Cantor-Bernstein定理; 掌握集合对等的夹挤定理。

熟悉集合的基数概念;掌握有限集、可数集、不可数集的概念;掌握可数集是最小的无限集的结论以及可数集的基本运算性质; 掌握自然数集、整数集、有理数集等的可数性;掌握有理数集在实数轴上的稠密性;熟悉无理数集、实数集、区间点集等的不可数性。

实变函数与泛函分析课后答案(郭大均)

实变函数与泛函分析课后答案(郭大均)

ρ~( x, y) = ρ ( x, y) = 1 −
1
≤ 1−
1
1+ ρ(x, y)
1+ ρ(x, y)
1+ ρ(x,z)+ ρ(z, y)
=
ρ ( x, z)
+
ρ(z, y)
1+ ρ(x,z)+ ρ(z, y) 1+ ρ(x, z)+ ρ(z, y)
≤ ρ ( x, z) + ρ (z, y) = ρ~( x, z) + ρ~(z, y) 1+ ρ(x,z) 1+ ρ(z, y)
14. 试证按 C[a, b]中的范数, C m [a, b] (m ≥ 1) 是 C[a, b] 的非闭子空间 .
C m[a, b] 显然是 C[a, b]的线性子空间,因为任 一连续函数 x(t ) 都可以多项式序列一致 逼近,故多项式的全体 P 在 C[a, b]中稠密(即 P = C[a, b]),显然, P ⊂ C m [a, b],故 C m [a, b]=C[a, b],即 C m [a, b] 是 C[a, b]的非闭子空间 .
1
2
19. 设 E 是实线性空间,{ x1 ,L, xn } 是 E 中线性无关元,
x ∈ E,证明存在 n 个实数 λ1',L, λn',使得
x − (λ1' x1 + L + λn ' xn )
= inf λ1 ,L,λn
x − (λ1 x1 + L + λn xn )
记 E0 = L{ x1,L, xn },则 E0 是 E 的 n 维子空间,令
再由 ρ ( y, w ) ≤ ρ ( y, x) + ρ ( x, z) + ρ (z, w ) 得 ρ ( y, w) − ρ ( x, z) ≤ ρ ( x, y) + ρ (z, w) (4)

《实变函数与泛函分析基础》目录简介

《实变函数与泛函分析基础》目录简介

《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。

《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。

这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。

《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。

目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。

实变函数与泛函分析基础》习题解答

实变函数与泛函分析基础》习题解答
n=0
习题 1.4
1. 证:记[0,1]上的无理数所成之集为 I,[0,1]上的有理数全体为 Q.若 I
可数,则 I ∪ Q = [0,1] 可数,这与[0,1]不可数矛盾. 2. 证: A ∈ 2[0,1] ,则 χ A (x) ∈ F.于是 2[0,1] 与 F 的一个子集对等,故
F ≥ 2[0,1] = 2C .另方面, f ∈ F ,{(x, f (x) x ∈[0, 1]}∈ 2R2 .于是 F 对等于
一个子集对等,从而至多可数.
2. 设单调增函数 f 的间断点集为 D, x0 ∈ D : x0 →( f (x0 − 0), f (x0 + 0))
此对应是 D 到直线上某些互不相交的开区间所成之集的一个对等,由习题 1 知,
D 至多可数.
3. An 为 A 的 n 个元素所成子集的全体.由定理 1.3.7 知 An 可数,从而由定
∪ x ∈ A ∩ Bα ⇔ x ∈ ( A ∩ Bα ) . α∈Γ
2.
①因
U U Aα U Bα ⊂ ( Aα ) U ( Bα ) , 所 以
α∈Γ
α∈Γ
U U U U U ( Aα U Bα ) ⊂ ( Aα ) U ( Bα ) . 另 一 方 面 Aα ⊂ ( Aα U Bα ) ,
α∈Γ
8. x ∈ E[ f ≥ a] ⇔ lim fn (x) = f (x) ≥ a, x ∈ E ⇔ ∀ k, ∃ N , 当
n ≥ N 时有
∩ ∪ ∩ fn
(x)
>
a

1 k

x∈
∞ k =1
∞ N =1

E[
n=N
fn
>

实变函数与泛函分析基础 习题答案

实变函数与泛函分析基础 习题答案

n=0
n=0
xn+p ln
1 x

0,
1 xp 1

0
1 − x ln x dx = −
n=0
1 0
xn+p ln xdx
=
∞ n=0
(n +
1 p+
1)2
=
∞ n=1
1 (n + p)2 .
ßÎ 15. { fn} E
¨
¹ Ö lim
n→∞
fn(x)
=
f (x)a.e.
E,
¿ f (x) Î ¡ Æà ¶¸²³
E −
ǯ± ¡
ÝÌ [0, 1] ÙÄß ℄Ï ¨
¤¤ f
(x)
=
1, 0,
x x
[0,1] [0,1]
· ¨, ¨.
´
¨ ÙÄ n, [0,1]
¿ max 1≤i≤n
mEin
=
1 n

0(n

∞).
¾
Ó Dn = {Ein},
Ein =
i−1 n
,
i n
, i = 1, 2, · · · , n − 1, Enn =
0.
¨ª
mE[| f |= ∞] = 0.
1
¶¹ | f(x) | Î ¶ ¾ Ê´
´¹Ü° ¾ Ö ǫ > 0, δ > 0, e ⊂ E me < δ
´ ¾ ¡ δ > 0,
N,
n>N
| f (x) | dx < ǫ.
e
men < δ,
n · men ≤ | f (x) | dx < ǫ.

实变函数论泛函分析课件

实变函数论泛函分析课件

02 实变函数的定义与性质
实变函数的定义
01
02
03
定义域
实变函数的定义域是实数 集的一个子集,可以是有 限或无限的。
值域
实变函数的值域是实数集 的一个子集,可以是有限 或无限的。
函数表达式
实变函数可以表示为从定 义域到值域的映射关系, 通常用符号 f(x) 表示。
实变函数的性质
单调性
如果对于任意 x1<x2,都有 f(x1)≤f(x2),则称 f(x) 在其定义
微积分的应用
介绍微积分在各个领域的应用,如物理学、工程学、经济学等。
微积分的进一步发展
介绍微积分的进一步发展,如变分法、最优控制等。
04 泛函分析的基本概念
泛函的定义与性质
定义
泛函是将函数空间的每一个元素作为自变量,其值是实数或 复数的函数。
性质
泛函是定义在函数空间上的,它具有连续性、可加性、线性 等性质。
么该空间是自完备的。
共鸣定理
在赋范线性空间中,如果存在 一个与所有单位球相交的集合,
那么该空间是自完备的。
开映射定理
如果X和Y是赋范线性空间,T 是X到Y的开映射,那么T是满
射。
闭图像定理
如果X和Y是赋范线性空间,T 是X到Y的连续线性映射,那
么T的像集是闭的。
05 泛函分析的应用领域
微分方程的求解
分析中的某些问题。
应用领域
实变函数论和泛函分析 在许多应用领域都有交 叉,如 质
线性性质
对于任意实数k和函数f,g,有 $k(f+g)=(kf)+(kg)$, $(kf)+(kg)=(k+k)(f)$。
连续性质
如果f_n(x)是函数空间中的收敛序列, 那么$f_n(x)$的极限函数也是连续的。

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。

若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。

实变函数与泛函分析全册精品完整课件

实变函数与泛函分析全册精品完整课件

University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核

实变函数与泛函分析课件

实变函数与泛函分析课件
间的定义
巴拿赫空间的性质
巴拿赫空间与连续线性映射
连续线性映射
连续线性映射的定义
连续线性映射的性质
线性算子的谱理论
03 空间上的算子与变换
有界线性算子
有界线性算子的定义:在某空 间上有界且线性
重要性质:有界线性算子可以 扩展为全空间上的有界线性算

谱定理:有界线性算子的谱分 解定理
空间上的算子与变换部分的习题与解答
01
02
总结词:空间上的算子 与变换部分主要涉及线 性算子、有界算子、 紧 算子等不同类型的算子 的定义、性质和计算方 法,以及空间上的变换 和约化定理的应用。
详细描述
03
04
05
1. 线性算子的定义和性 2. 有界算子和紧算子的 质,包括线性算子的有 定义和性质,以及在各 界性、紧性、谱性质等, 种空间中的存在性和构 以及在各种空间(例如, 造方法。 Hilbert空间、Banach 空间等)中的应用。
映射与变换
序关系
介绍映射的概念及基本性质,如一一映射、 满射、单射等。
讨论集合中的序关系,如偏序、全序、反 对称序等,以及相关的概念如最大元、最 小元、上界、下界等。
实数函数
01
函数的定义
介绍函数的概念及基本性质,如定 义域、值域、单调性等。
函数的极限
介绍函数极限的定义、性质及其计 算方法。
03
02
03
线性空间
01
数乘性质
02
中间元素性质
03
正交性
内积空间与Hilbert空间
内积空间的定义
1
内积空间的定义
2
正交性
3
内积空间与Hilbert空间

实变函数与泛函分析基础第三版第七章答案

实变函数与泛函分析基础第三版第七章答案

习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。

解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。

证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。

(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。

实变函数与泛函分析

实变函数与泛函分析

实变函数的定义
实变函数是定义在实 数集上的函数,其值
域也是实数集。
实变函数具有连续性、 可微性、可积性等性
质。
实变函数的定义域可 以是有限区间、无限 区间或者整个实数轴。
实变函数的值域可以 是有限区间、无限区 间或者整个实数轴。
实变函数的性质
实变函数是一类特殊的数学函数,具 有连续性、可微性和可积性等性质。
实变函数的连续性
实变函数的连续性与极限存 在性有关
实变函数在定义域内是连续 的
实变函数的连续性是函数的 一种基本性质
实变函数的连续性与可微性 密切相关
03 实变函数的应用
实变函数在数学物理方程中的应用
实变函数在求解偏微分方程中的应用 在解决波动方程、热传导方程等数学物理方程中的作用 实变函数在数值分析中的重要地位 实变函数在解决物理问题中的应用实例
求解中。
添加标题
05 泛函分析的应用
泛函分析在微分方程中的应用
微分方程的求解:通过泛函分析中的变分法,求解微分方程的近似解。 稳定性分析:利用泛函分析中的算子谱理论,研究微分方程解的稳定性。 近似方法:利用泛函分析中的逼近理论,构造微分方程的近似解。 数值计算:通过泛函分析中的数值分析方法,对微分方程进行数值模拟和计算。
添加标题
随机积分与微分 方程:在概率论 中,随机积分与 微分方程是非常 重要的研究方向, 而泛函分析中的 积分和微分理论 为此提供了重要
的数学基础。
添加标题
泛函分析在量子力学中的应用
描述了量子力学中的波函数和 概率幅
提供了量子力学中算子的表示 和分类方法
揭示了量子力学中的一些重要 定理和原理,如不确定性原理 和量子纠缠
研究对象:实变函数研究的是具体的、有限的、离散的数学对象,而泛函分析则研究 的是抽象的、无限的、连续的数学对象。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(i n f lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案。

1.设f(x) = x^2 - 2x + 1,求f(x)的最小值。

解:要求f(x)的最小值,可以通过求导来找到极小值点。

首先对f(x)求导得到f'(x) = 2x - 2。

令f'(x) = 0,可以得到2x - 2 = 0,解得x = 1。

再对f(x)求二阶导数得到f''(x) = 2,由于f''(x)大于0,所以x = 1是f(x)的极小值点。

将x = 1代入f(x)得到f(1) = 1^2 - 2(1) + 1 = 0。

所以f(x)的最小值为0。

2.设f(x) = e^x,求f(x)的泰勒级数展开式。

解:泰勒级数展开式可以表示函数在某一点附近的近似值。

对于函数f(x) = e^x,可以通过求导得到其各阶导数。

首先求f(x)的一阶导数:f'(x) = e^x。

再求f(x)的二阶导数:f''(x) = e^x。

依次求得f(x)的各阶导数为:f'(x) = e^x,f''(x) = e^x,f'''(x) =e^x。

通过观察可以发现,f(x)的各阶导数都等于e^x,所以f(x)的泰勒级数展开式为:f(x) = f(0) + f'(0)x + f''(0)(x^2/2!) + f'''(0)(x^3/3!) + 。

代入f(x) = e^x的导数值可以得到:f(x) = e^0 + e^0x + e^0(x^2/2!) + e^0(x^3/3!) + 。

化简得到:f(x) = 1 + x + x^2/2! + x^3/3! + 。

所以f(x)的泰勒级数展开式为1 + x + x^2/2! + x^3/3! + 。

3.证明函数f(x) = x^2在区间[-1, 1]上是连续的。

解:要证明函数f(x) = x^2在区间[-1, 1]上是连续的,需要证明对于任意给定的ε > 0,存在δ > 0,使得当|x - x0| < δ时,|f(x) - f(x0)| < ε。

实变函数与泛函分析要点

实变函数与泛函分析要点

实变函数与泛函分析要点实变函数与泛函分析概要第一章集合基本要求:1、理解集合的包含、子集、相等的概念和包含的性质。

2、掌握集合的并集、交集、差集、余集的概念及其运算性质。

3、会求已知集合的并、交、差、余集。

4、了解对等的概念及性质。

5、掌握可数集合的概念和性质。

6、会判断己知集合是否是可数集。

7、理解基数、不可数集合、连续基数的概念。

8、了解半序集和Zorn引理。

第二章点集基本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。

2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。

掌握聚点的性质。

3、掌握开核、导集、闭区间的概念及其性质。

4、会求己知集合的开集和导集。

5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。

6、会判断一个集合是非是开(闭)集,完备集。

7、了解Peano曲线概念。

主要知识点:一、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A?B,则A ?B ,·A?·B,-A?-B。

T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E?R?,?是开集,E′和―E都是闭集。

(?称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。

T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。

T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。

T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I它覆盖了F(即Fс∪i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F?m∪ Ui)(i?I)4、开(闭)集类、完备集类。

实变函数与泛函分析基础第七章(1-3)

实变函数与泛函分析基础第七章(1-3)
t A
则 ρ(x, y) 是 B(A) 上的度量,事实上, ρ(x, y)显然满足1 ,以下证明也满足2 . 对另一连续函数 z∈B(A), 由
0 0
x(t ) y(t ) x(t ) z(t ) y(t ) z(t )
sup x( t ) z( t ) sup y( t ) z( t )
其次注意到在递增11nnnggg?所以于是11nnngxgxg?????????????????????????11nnngmxgmxg??????????????????????????0lim
现代分析学
实变函数论与泛函分析基础
第七章 度量空间和赋范线性空间
§1 度量空间的进一步例子
§2 度量空间中的极限,稠密集,可分空间
都是 R 中的元素,由Cauchy不等式
n n 2 2 x y x y k k k k k 1 k 1 k 1 n 2
n
再令右端 n→∞,即得
xk yk k 1
n
2
2 2 x y k k k 1 k 1
2 2 2 2 xk 2 x . y y k k k k 1 k 1 k 1 k 1
1 2
2 2 xk yk k 1 k 1


再令左端的 n→∞,即得
2 2 x y x y k k k k k 1 k 1 k 1 n 2
由此可得
2 2 x y x 2 x y y k k k kk k 2 k 1 k 1 k 1 k 1

实变函数及泛函分析概要第1~3章复习

实变函数及泛函分析概要第1~3章复习
则称区间
且 , G
( , )为G的构成区间.
2019/1/25
福州大学数学与计算机学院聂建英
定理4.1-1 直线R中任何非空的有界开集G都可 表示为有限个或可数个互不相交的构 成区间的并。
2019/1/25
福州大学数学与计算机学院聂建英
根据开集与闭集的互余关系,可得如下闭集 的构造定理. 定理4.1-2 设F是非空的有界闭集,则F是由一闭 区间中去掉有限个或可数个互不相交的开区 间(F的余区间)而成。
注:第n次共去掉2n-1个长为1/3n 的开区间
2019/1/25 福州大学数学与计算机学院聂建英
c. P没有内点
d. P中的点全为聚点,没有孤 立点, P为完备(全)集.
e. P~ (0,1) ~ [0,1] ~ R+~ (a,b) (a<b)
2019/1/25
福州大学数学与计算机学院聂建英
第五节 集的势·序集
则称f为满射;
2019/1/25 福州大学数学与计算机学院聂建英
若f既为单射又是满射,则称f为一一映射。
2 对等与势
定义2.2 设A,B是两非空集合,若存在 着A到B的一一映射f(f既单又满), 则称A与B对等,
记作
A ~ B
~ 约定 注:称与A对等的集合为与A有相同 的势(基数),记作 A
势是对有限集元素个数概念的推广
Department of Mathematics
2019/1/25 福州大学数学与计算机学院聂建英
第一章复习
2019/1/25
福州大学数学与计算机学院聂建英
第一节
集及其运算
2019/1/25
福州大学数学与计算机学院聂建英
集合:具有某种特定性质的事物的总体.

(完整版)实变函数与泛函分析基础第三版第七章答案

(完整版)实变函数与泛函分析基础第三版第七章答案

习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。

0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。

[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。

()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 2 2 2 xk 2 x . y y k k k k 1 k 1 k 1 k 1
1 2
2 2 xk yk k 1 k 1
时,对任意的 t ∈ [a, b] , 有
| xn ( t ) x( t ) |

2
.
于是,当 n > N 时,有
max xn ( t ) x( t )
at b

2
,
lim max xn ( t ) x( t ) 0,
n a t b
即 lim ( xn , x ) 0.
n 1 2
d( x
(m)
(m) (0) 2 , x ) xk xk k 1
(0) 1
x
( m) 1
x
x
( m) 2
x
(0) 2
x
( m) n
x
(0) n
d ( x ,x ) 0 (m ).
(m) (0)
2.C[a, b] 空间中,函数列{xn} 收敛于函数
lim d ( xn , x ) 0,
n
称点列 {xn} 收敛于 x . x叫作点列{xn}的极 限,记作
lim xn x 或 xn x ( n ).
n
度量空间中点列收敛性质与数列的收敛性
质有许多共同之处。比如极限的唯一性等等。
定理1 度量空间(X, d) 中的收敛点列{xn}的
如果 (X, d) 为度量空间,Y 是 X 的非空子集,
则 (Y, d) 也是度量空间,称为 (X, d ) 的子空间.
例1 离散度量空间 设 X 是任意非空集合,对 X 中任意两 点 x,y∈X, 令
1 ( x, y ) 0 x y x y
显然,这样定义的 ( , ) 满足距离的全部
都是 R 中的元素,由Cauchy不等式
n n 2 2 x y x y k k k k k 1 k 1 k 1 n 2
n
再令右端 n→∞,即得
xk yk k 1
n
2
2 2 x y k k k 1 k 1

x
(0) 1
, x , , x
(0) 2
(0) n
的充分必要
条件是,对每一个 i ,(1 i n),有
xi( m) xi(0) (m ),
即按坐标收敛。 证明“必要性”:对任意的 i = 1, 2, ... , n, 由

x
(m) i
x
(0) i
n (m ) (0) 2 (m ) (0) xk xk d ( x , x ) k 1

那么, ( , ) 是 S 上的度量,上式通常
称为 Fré chet 组合。
显然, ( , ) 满足度量条件10,下面验证条件 20
事实上,对 ξ, η 及 γ = {cn}∈ S, 由于函数
x ( x) ( x 0) 是单调增函数,因此由 1 x
an bn an cn bn cn
对 M(X) 中的任意两个函数 f, g, 定义
f ( t ) g( t ) d ( f , g) dt X 1 f ( t ) g( t )
与例2同理可证 d(f, g) 是 M(X) 上的度量. 事实上, 对任意两个可测函数 f (t) 及 g(t),
由于
f( t ) g( t ) , 1 1 f ( t ) g( t )
x∈ C[a, b] 当且仅当{xn}一致收敛到x . 证明“必要性”:
0, 因为lim ( xn , x ) 0,
n
即 lim max xn ( t ) x( t ) 0, 于是, 正整数N ,
n a t b
使得当n N 时, 有max xn (t ) x(t ) ,
a t b
当n N 时, 对所有的t [a , b], 有
xn (t ) x(t ) max xn (t ) x(t ) ,
a t b
即 {xn} 在 [a, b] 上一致收敛到 x .
“充分性”:若{xn} 一致收敛到 x , 则对
任给 ε > 0, 存在正整数 N, 使得当 n > N
2 k
2
定义
2 d ( x , y ) yk xk k 1
2
1 2
则 d 是 l 上的距离。距离条件1 是容易得
出的,现检验条件 2
0
0
对任何正整数 n,
x n x1 , x2 , xn 和 y n y1 , y2 ,, yn

an bn 1 an bn

an cn bn cn 1 an cn bn cn

an cn 1 an cn bn cn

bn cn 1 an cn bn cn

a n cn 1 a n cn

bn cn 1 bn cn
(或复值)函数全体,对 C[a, b] 中的任意两点
x, y, 定义
( x , y ) max x ( t ) y( t )
at b
与例3同理可证 ρ(x, y) 是 C[a, b] 上的度量.
例6 l .
2 记 l x xk 2 2 x . 设 x x l , y y l , k k k 1
n
§2 度量空间中的极限,稠密集,可分空间 非空集合 X 引入距离(度量)后,就
可以在其上定义极限概念。
定义1 设 (X, d) 为度量空间,d 是距离,定义
U ( x0 , ) x X d ( x , x0 )
为 x0 的 领域.
定义2 设 (X, d) 为度量空间,{xn} 是 X 中 的点列,如果存在 x∈X, 使得
1 在上面不等式两边同乘 2 n 再求和,便得
( , ) ( , ) ( , )
因此 (S, ρ) 是距离空间。
例3 有界函数空间 B(A).
设 A 是个给定的集合,B(A)表示 A 上有 界实值(或复值)函数全体,对 B(A) 中的任意 两点 x, y, 定义
( x, y ) sup x(t ) y(t )
现代分析学
实变函数论与泛函分析基础
第七章 度量空间和赋范线性空间
§1 度量空间的进一步例子
§2 度量空间中的极限,稠密集,可分空间
§3 连续映射
第七章 度量空间和赋范线性空间
§1 度量空间的进一步例子
定义:设 X 为一非空集合,d : X×X→R+∪{0}
为一映射,且满足 (1) d(x, y) ≥ 0,d(x, y) = 0 当且仅当 x = y(正
1 2 1 2
2
取 k , k , k . 以 xk k k , yk k k 代入上式
即可得条件 2
0
d ( , ) d ( , ) d ( , ).
由上述例子可见,度量空间除了有限维的 欧几里德空间 R 之外,还包括其他的空间.
(m)
1 ,x ) i ( i 1, 2,), (m) (0) 2 1 xi xi
(0)
xi( m ) xi(0)
所以
xi( m ) xi(0) 1 x
(m) i
x
(0) i
2 ( x
i
(m)
, x ) ( i 1, 2,),
n
3. 序列空间 S 中的点列
x x
(m)

(m) n


收敛到 x (0)

(0) (0) (0) x , x , , x 的 1 2 n ,
充分必要条件是,
对每一个 i ,(i 1, 2,, n,),有
定理2 度量空间(X, d) 中的收敛点列{xn}是有 界集.
定理3 M 为度量空间 (X, d) 中的闭集 当且 仅当 M 中的任意收敛点列{xn}的极限均在M 中. 下面讨论某些具体空间中点列收敛的 具体含义。
1. Rn 中的点列 x ( m )
收敛到 x
(0)

(m) (m) (m) x , x , , x 1 2 n
xi( m) xi(0) (m ),
即按坐标收敛。
(m) (0) lim x x ,于是 证明“必要性”:由于 m
( x
(m)
1 ,x ) i 0 ( n ). (m) (0) xi i 1 2 1 xi
(0)

xi( m ) xi(0)
因为 ( x
条件,我们称 ( X , ) 是离散的距离空间.
这种距离是最粗的。它只能区分 X 中 任意两个元素是否相同,不能区分元素间 的远近程度。
此例说明,在任何非空集合上总可以
定义距离,使它成为度量空间。
例2 所有数列组成的集合 S
对 an , bn S , 定义
1 an bn ( , ) n n 1 2 1 an bn
所以这是 X 上的可积函数,如果把 M(X) 中的两个几乎处处相等的函数视为M(X)
中的同一个元,那么利用上面不等式及积分性
质很容易验证d(f, g) 是度量. 因此 M(X) 按上述距离 d(f, g)成为度量空间。
相关文档
最新文档