2020中考数学复习微专题(探索三角形相似的条件典型习题汇编)

合集下载

2020-2021初中数学图形的相似难题汇编附答案

2020-2021初中数学图形的相似难题汇编附答案

2020-2021初中数学图形的相似难题汇编附答案一、选择题1.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.2.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )A .2244x y+= B .2244x y -= C .2288x y -= D .2288x y+= 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE ,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC , ∴GE CE =CE FE, ∴y =2FE, ∴y 2=24FE , ∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4, ∴24y=x 2﹣4, ∴24y+4=x 2, 故选:A .【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.3.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】C【解析】【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案.【详解】解:∵∠A =60°,AC =2, ∴4,3,AB BC ==4,23,BD x CE y =-=在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x , 故可得242CD x x =-+, 又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角),∴△CDE ∽△CBD ,即可得,CE CD CD CB= 即222342,2342yx x x x --+=-+ 故可得: 23343.y x x =-++ 即呈二次函数关系,且开口朝下. 故选C .【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.4.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;②2BG AG =;③EBF DEG ∆∆:;④23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL”判定Rt △ADG ≌Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故②正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故③错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故④错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG ⎧⎨⎩==, ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,∵BE =EC ,∴EF =CE =BE=12a∴GE=12a+x 由勾股定理得:EG 2=BE 2+BG 2,即:(12a+x)2=(12a)2+(a-x)2解得:x =13∴BG =2AG , 故②正确;∵BE =EF ,∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,∴△EBF 与△DEG 不相似,故③错误;连接CF ,∵BE =CE ,∴BE =12BC , ∴S △BFC =2S △BEF .故④错误,综上可知正确的结论的是2个.故选:B .【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.5.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q , OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+,6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.6.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A 'B 'C ,使得△A 'B 'C 的边长是△ABC 的边长的2倍.设点B 的横坐标是﹣3,则点B '的横坐标是( )A .2B .3C .4D .5【答案】B【解析】【分析】 作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,根据位似图形的性质得到B′C =2BC ,再利用相似三角形的判定和性质计算即可.【详解】解:作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,则BD ∥B ′E ,由题意得CD =2,B′C =2BC ,∵BD ∥B ′E ,∴△BDC ∽△B ′EC ,∴1'2CD BC CE B C ==, ∴CE =4,则OE =CE−OC =3,∴点B'的横坐标是3,故选:B .【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.7.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,2CD =,1BD =,则AD 的长是( )A .1.B 2C .2D .4【答案】D【解析】【分析】 由在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,根据同角的余角相等,可得∠ACD=∠B ,又由∠CDB=∠ACB=90°,可证得△ACD ∽△CBD ,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B ,∴△ACD ∽△CBD , ∴=AD CD CD BD, ∵CD=2,BD=1, ∴2=21AD , ∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.9.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B为(a,1a-),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=2 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.10.在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO 缩小,则点E 的对应点E′的坐标是A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换11.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V ∴43S ACD S CBA =V V ∵ACD V 的面积为15 ∴44152033S CBA S ACD ==⨯=VV 故答案为:A .【点睛】 本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.12.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为( )A .20米B .18米C .16米D .15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30, ∴旗杆的高=130=152⨯米. 故选:D .【点睛】 本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.22C.3D.3【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴2 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.15.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE=,又∵AE=BE,∴AE2=AG•BF=2,∴2(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.16.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .33【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA = 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P,利用三角形相似是解题关键.18.如图,已知△ABC,D、E分别在边AB、AC上,下列条件中,不能确定△ADE∽△ACB 的是()A.∠AED=∠B B.∠BDE+∠C=180°C.AD•BC=AC•DE D.AD•AB=AE•AC【答案】C【解析】【分析】A、根据有两组角对应相等的两个三角形相似,进行判断即可;B:根据题意可得到∠ADE=∠C,根据有两组角对应相等的两个三角形相似,进行判断即可;C、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A、由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;B、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;C、由AD•BC=AC•DE,得不能判断△ADE∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,故选:C.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);有两组角对应相等的两个三角形相似.19.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.20.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.。

2020年中考相似三角形经典题型汇编【PDF详解版】

2020年中考相似三角形经典题型汇编【PDF详解版】

A. 五丈 B. 四丈五尺 C. 一丈 D. 五尺
6.学校门口的栏杆如图所示,栏杆从水平位置 BD 绕点 O 旋转到 AC 位置.已知 AB⊥BD,
CD⊥BD,垂足分别为 B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆 D 端下降的垂直距
离 CD 为( )
2
A. 0.2 m B. 0.3 m C. 0.4 m D. 0.5 m
大意是,如图,四边形 DEFG 是一座边长为 200 步(“步”是古代的长度单位)的正方形小城,
7
东门 H 位于 GD 的中点,南门 K 位于 ED 的中点,出东门 15 步的 A 处有一树木,问出南门 多少步恰好看到位于 A 处的树木(即点 D 在直线 AC 上)?请你计算 KC 的长为________步.
第 32 题
第 33 题
33.如图,在矩形 ABCD 中,E 为 AD 的中点,BD 和 CE 相交于点 F.如果 DF=2,那么线段 BF 的长为________. 34.如图,在矩形 ABCD 中,E 是边 AB 的中点,连接 DE 交对角线 AC 于点 F.若 AB=4,AD
6
=3,则 CF 的长为________.
4.如图,在△ABC 中,点 D 在 BC 边上,连接 AD,点 G 在线段 AD 上,GE∥BD,且交 AB
于点 E,GF∥AC,且交 CD 于点 F,则下列结论一定正确的是( ) A. AB=AG B. DF=DG C. FG=EG D. AE=CF
AE AD CF AD AC BD BE DF
3
第 14 题
第 15 题
15.如图,在△ABC 中,D,E 分别是边 AC,AB 的中点,BD 与 CE 交于点 O,连接 DE.下列

中考数学试题分类解析汇编专题38相似.doc

中考数学试题分类解析汇编专题38相似.doc

2019-2020 年中考数学试题分类解析汇编专题38相似一、选择题1.(重庆綦江 4 分)若相似△ ABC 与△ DEF的相似比为 1: 3,则△ ABC 与△ DEF的面积比为A、 1:3B、 1: 9C、3:1D、 1: 3【答案】 B。

【考点】相似三角形的性质。

【分析】由相似△ ABC 与△ DEF 的相似比为1: 3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△ DEF的面积比为1:9。

故选 B。

2. (重庆江津 4 分)已知如图:( 1)、( 2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中 AB、 CD交于 0 点,对于各图中的两个三角形而言,下列说法正确的是A、都相似C、只有(1)相似B 、都不相似D、只有( 2)相似【答案】 A。

【考点】相似三角形的判定,三角形内角和定理,对顶角的性质。

【分析】图( 1)根据三角形的内角和定理,即可求得△ABC的第三角,由有两角对应相等的三角形相似,即可判定( 1)中的两个三角形相似;图(2)根据图形中的已知条件,即可证得OA OC,又由对顶角OD OB 相等,即可根据对应边成比例且夹角相等的三角形相似证得相似。

故选A。

3.(重庆潼南 4 分)若△ ABC∽△ DEF,它们的面积比为4: 1,则△ ABC与△ DEF 的相似比为A、 2: 1B、 1: 2C 、 4:1 D、 1: 4【答案】 A。

【考点】相似三角形的性质。

【分析】 由△ ABC ∽△ DEF 与它们的面积比为 4: 1,根据相似三角形面积的比等于相似比的平方,即可求得△ ABC 与△ DEF 的相似比为 2: 1。

故选 A 。

4. (浙江台州4 分) 若两个相似三角形的面积之比为1∶4,则它们的周长之比为A .1∶2B.1∶4C.1∶5D.1∶16【答案】A 。

【考点】 相似三角形的性质。

【分析】 根据相似三角形的面积比等于相似比的平方,即可求得其相似比为1∶2,又由相似三角形的周长的比等于相似比,即可求得它们的周长之比为1∶2。

2020年中考数学必考考点压轴题 专题24 相似三角形判定与性质(含答案)

2020年中考数学必考考点压轴题  专题24  相似三角形判定与性质(含答案)

专题24相似三角形判定与性质1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似多边形对应边的比叫做相似比。

2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。

【例题1】(2019•海南省)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()B.C.D.A.【答案】B.【解析】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=【例题2】(2019•四川省凉山州)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【答案】4:25或9:25.【解析】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,:S△CBF=()2=4:25;∴S△AEF②当AE:ED=3:2时,:S△CBF=()2=9:25。

2020年中考数学 相似三角形专题复习

2020年中考数学 相似三角形专题复习

2020年中考数学相似三角形专题复习选择题1. 如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是( C )。

A AB AD =EC AE B. GF AG =BD AE C. AD BD =AE CE D AF AG =ECAC2.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为(B ) A. 4 B 24 C 6 D 342. 如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=3,则△ABC 移动的距离是( D ) A 23 B 33 C 26 D 3-263. 如图,在□ABCDK 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①FD AF =21; ② S △BCE =36 ; ③ S △AEB =12 ; ④△AEF ∽△ACD 其中正确的是(D )A ①②③④B ①④C ②③④D ①②③4. 如图,已知在△ABC ,P 为AB 上一点,连接CP ,以下各条件 中不能判定△ACP ∽△ABC 的是( D ) A. ∠ACP=∠B B. ∠ACB=∠APC C. AP AC =AC AB D. AB AC =BCCP5. 如图,若A 、B 、C 、D 、E 、F 、G 、H 、O 都 是5×7方格纸中的格点,为使△DME ∽△ABC,则点M 应是F 、G 、H 、O 四点中的( C ) A. F B. G C. H D. O6.如图,P 是Rt △ABC 的斜边BC 上异于B 、C 的一点,过点P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样的条件的直线共有(C )A. 1条B. 2条C. 3条D. 4条7.如图,Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB ,于E ,PD ⊥AC 于D ,设PB=x ,则PD+PE=( )A. 3+5XB. 4-5xC. 27D. 5x 12-25x 1228.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影 长为4.8米,则树高为( C )A. 4.8 米B. 6.4 米C. 9.6米D. 10米如图,每个小正方形边长均为1,则下列图中三角形(阴影部分)与左图中△ABC 相似的是( B )9.如图,在△ABC 中,D 、E 分别是AB 、AC 边的中点,若BC=6,则DE 等于(C )A. 5B. 4C. 3D. 210.如图,小东用长为2.4米的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8米,与旗杆相距22米,则旗杆的高为(B )A. 10mB. 9mC. 8mD. 7m 填空题1.如图,DE ∥BC, AD:DB=2:3,则△ADE 与△ABC 的周长之比为_2:5___; 面积之比为___4:25___.2.在△ABC 中,AB=6,AC=5,点D 在边AB 上,且AD=2,点E 在边AC 上,当AE=_512_或_315时,以A,D,E 为顶点的三角形与△ABC 相似. 3.如图,直线a ∥b ∥c,直线l 1, l 2与这三条平行线分别交于A,B,C 和点D,E,F 若AB:BC=1:2,DE=3, 则EF的长为____.64.如图, △ABC中,A,B 两个顶点在x轴的上方,点C 的坐标是(-1,0),以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A`B`C`,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B`的横坐标是2,则点B 的横坐标是____-2.55.如图,在Rt △ABC 中,∠BAC=900, AB=15, AC=20, 点D 在边AC 上, AD=5, DE ⊥BC 于点E,连接AE,则△ABE 的面积等于___786.在平行四边形ABCD 中,E 为CD 的中点,△DOE 的面积是2,△D0A 的面积___4__7.如图,已知△ABC 的面积是3的等边三角形,△ABC ~△ADE ,AB=2AD,∠BAD=450,AC 与DE 相交于点F ,则△AEF 的面积等于____43-43__(结果保留根号)8.如图,在△ABC 中,D 是AB 边上的一点,连结CD ,请添加一个适当的条件,使△ABC ~△ACD,____∠ACD=∠ABD____9.在平行四边形ABCD 中,AB=10,AD=6,E 是AD 的中点,在AB 上取一点F ,使⊿CBF ∽⊿CDE ,则BF 的长为__1.8______15.在直角坐标中,已知点A(-2,0),B(0,4),C(0,3),过点C 的直线交x轴于点D,使得以D,O,C 为顶点的三角形与∽⊿AOB 相似,这样的直线最多可以作___4_条. 三.解答题1.如图,在锐角三角形ABC 中,点D 分别在边AC,AB 上,AG ⊥DE 于点G,AF ⊥DE 于点F,∠EAF=∠GAC. (1) 求证:△ADE ≌△ABC; (2)若AD=3,AB=5,求AGAF的值。

2020年中考数学三轮复习精准训练:图形的相似压轴题汇编(含解析)

2020年中考数学三轮复习精准训练:图形的相似压轴题汇编(含解析)

(中考三轮复习精准训练)中考数学模拟试卷:图形的相似汇编1.如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,﹣1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2:1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.3.综合与实践﹣探究正方形旋转中的数学问题问题情境:已知正方形ABCD中,点O在BC边上,且OB=2OC.将正方形ABCD绕点O顺时针旋转得到正方形A′B′C′D′(点A′,B′,C′,D′分别是点A,B,C,D的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点B′落在正方形ABCD的对角线BD上时,设线段A′B′与CD交于点M.求证:四边形OB′MC是矩形;(2)“善学”小组提出问题:如图2,当线段A′D′经过点D时,猜想线段C′O与D′D满足的数量关系,并说明理由;深入探究:(3)请从下面A,B两题中任选一题作答.我选择题.A.在图2中连接AA′和BB′,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形ABCD绕点O顺时针旋转的过程中,设直线BB′交线段AA′于点P.连接OP,并过点O作OQ⊥BB′于点Q.请在图3中补全图形,并直接写出的值.4.如图,矩形OABC边OA,OC分别在x轴,y轴上,且OA=8,OC=6,连接OB,点D 为OB中点,点E从点A出发以每秒1个单位长度运动到点B停止,设运动时间为t(0<t<6),连接DE,作DF⊥DE交OA于F,连接EF.(1)如图1,当四边形DF AE为矩形时,求t的值;(2)如图2,试证明在运动过程中,△DFE∽△ABO;(3)当t为何值时,△AEF面积最大?最大值为多少?5.已知∠MBN=45°,点P为∠MBN内的一个动点,过点P作∠BP A与∠BPC,使得∠BP A =∠BPC=135°,分别交BM、BN于点A、C.(1)求证:△CPB∽△BP A;(2)连接AC,若AC⊥BC,试求的值;(3)记AP=a,BP=b,CP=c,若a+b﹣c=20,a≥2b,且a、b、c为整数,求a,b,c的值.6.如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G 是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点C位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.7.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB 的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?8.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长.9.如图,在正方形ABCD中,E为AB边上一点,连接DE,交AC于H点,过点D作DF⊥DE,交BC的延长线于F,连接EF交于AC于点G.(1)请写出AE和CF的数量关系:;(2)求证:点G是EF的中点;(3)若正方形ABCD的边长为4,且AE=1,求GH•GA的值.10.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)当点Q在线段CA上时,如图1,求证:△BPE∽△CEQ.(2)当点Q在线段CA的延长线上时,如图2,△BPE和△CEQ是否相似?说明理由;若BP=1,CQ=,求PQ的长.11.已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD12.在△ABC中,∠ACB=90°,AB=20,BC=12.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,则HQ=.(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.13.如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD 交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.14.如图,已知平行四边形ABCD中,AD=,AB=5,tan A=2,点E在射线AD上,过点E作EF⊥AD,垂足为点E,交射线AB于点F,交射线CB于点G,联结CE、CF,设AE=m.(1)当点E在边AD上时,①求△CEF的面积;(用含m的代数式表示)②当S△DCE=4S△BFG时,求AE:ED的值;(2)当点E在边AD的延长线上时,如果△AEF与△CFG相似,求m的值.15.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.参考答案1.如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.解:(1)①当△BPQ∽△BAC时,∵,BP=3t,QC=2t,AB=10cm,BC=8cm,∴,∴;②当△BPQ∽△BCA时,∵,∴,∴,∴或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=3t,,,,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴,∴解得:;2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,﹣1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为(2,1);(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2:1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为(﹣2m+3,2n+3).解:(1)如图所示,△A1B1C1即为所求;点A1的坐标为(2,1);故答案为:(2,1);(2)如图所示,△A2B2C2即为所求;P2的坐标为(﹣2m+3,2n+3).故答案为:(﹣2m+3,2n+3).3.综合与实践﹣探究正方形旋转中的数学问题问题情境:已知正方形ABCD中,点O在BC边上,且OB=2OC.将正方形ABCD绕点O顺时针旋转得到正方形A′B′C′D′(点A′,B′,C′,D′分别是点A,B,C,D的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点B′落在正方形ABCD的对角线BD上时,设线段A′B′与CD交于点M.求证:四边形OB′MC是矩形;(2)“善学”小组提出问题:如图2,当线段A′D′经过点D时,猜想线段C′O与D′D满足的数量关系,并说明理由;深入探究:(3)请从下面A,B两题中任选一题作答.我选择A题.A.在图2中连接AA′和BB′,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形ABCD绕点O顺时针旋转的过程中,设直线BB′交线段AA′于点P.连接OP,并过点O作OQ⊥BB′于点Q.请在图3中补全图形,并直接写出的值.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠C=90°,∴∠CBD=∠CDB=45°;由旋转可知,OB=OB’,∴∠OB’B=∠OBB’=45°,∵∠B’OC是△BOB’的一个外角,∴∠B’OC=∠OB’B+∠OBB’=45°+45°=90°,∵四边形A’B’C’D’是正方形,∴∠OB’M=90°,∴四边形OB’MC是矩形;(2)解:D’D=2C’O,理由如下:如图2①,连接OD,OD’,过点O作OE⊥D’D于点E,则∠OED’=90°,由旋转可知,OD=OD’,则D’D=2D’E,∵四边形A’B’C’D’是正方形,∴∠C′=∠OED′=90°,∴四边形OC’D’E是矩形,∴C’O=D’E,∴D’D=2C’O;(3)解:A、如图2②,连接AA′,BB′,OA,OA′,∵将正方形ABCD绕点O顺时针旋转得到正方形A′B′C′D′,∴OB=OB′,OA=OA′,∠BOB′=∠AOA′,∴,∴△OBB′∽△OAA′,∴=,∵AB=BC,OB=2OC,∴设OC=x,则OB=2x,∴AB=BC=3x,∴OA===x,∴===;B、如图3,连接OA,OA′,∵将正方形ABCD绕点O顺时针旋转得到正方形A′B′C′D′,∴OB=OB′,OA=OA′,∠BOB′=∠AOA′,∴∠OBB′=∠OAA′,∴点A,B,O,P四点共圆,∴∠ABO+∠APO=180°,∴∠APO=90°,∵OQ⊥BB′,∴∠BQO=∠APO=90°,∴△OAP∽△OBQ,∴=.4.如图,矩形OABC边OA,OC分别在x轴,y轴上,且OA=8,OC=6,连接OB,点D 为OB中点,点E从点A出发以每秒1个单位长度运动到点B停止,设运动时间为t(0<t<6),连接DE,作DF⊥DE交OA于F,连接EF.(1)如图1,当四边形DF AE为矩形时,求t的值;(2)如图2,试证明在运动过程中,△DFE∽△ABO;(3)当t为何值时,△AEF面积最大?最大值为多少?解:(1)∵四边形OABC是矩形,∴AB=OC=6,∠OAB=90°,∵四边形DF AE是矩形,∴∠BED=90°=∠OAB,∴DE∥OA,∵点D是OB的中点,∴点E是AB中点,∴AE=AB=3,由运动知,AE=t,∴t=3;(2)如图2所示:作DM⊥OA于M,DN⊥AB于N,∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴=,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴==,∵OA=8,AB=6,∴,∴,∵∠FDE=∠BAO=90°,∴△DFE∽△ABO;(3)如图2,由(2)知,△DMF∽△DNE,∴,由运动知,AE=t,当0<t≤3时,NE=3﹣t,∴,∴MF=(3﹣t),∴AF=AM+MF=4+(3﹣t)=8﹣t当3<t<6时,NE=t﹣3,∴∴MF=(t﹣3),∴AF=AM﹣MF=4﹣(t﹣3)=8﹣t,∴S△AEF=AE×AF=•t(8﹣t)=﹣(t﹣3)2+6,当t=3时,△AEF面积最大,最大值为6.5.已知∠MBN=45°,点P为∠MBN内的一个动点,过点P作∠BP A与∠BPC,使得∠BP A =∠BPC=135°,分别交BM、BN于点A、C.(1)求证:△CPB∽△BP A;(2)连接AC,若AC⊥BC,试求的值;(3)记AP=a,BP=b,CP=c,若a+b﹣c=20,a≥2b,且a、b、c为整数,求a,b,c的值.(1)证明:∵∠BP A=135°,∴∠ABP+∠BAP=180°﹣135°=45°,∵∠ABP+∠CBP=∠MBN=45°,∴∠ABP+∠BAP=∠ABP+∠CBP,∴∠BAP=∠CBP,∵∠BP A=∠BPC,∴△CPB∽△BP A;(2)解:∵AC⊥BC,∠MBN=45°,∴△ACB是等腰直角三角形,∴AB=BC,∵△CPB∽△BP A,∴====,设PC=a,则BP=a,AP=2a,∵∠APC=360°﹣135°﹣135°=90°,∴AC===a,∴==;(3)解:∵△CPB∽△BP A,∴=,即=≥2,∴c≤,∴a+b﹣c≥2b+b﹣=b,∴b≤20,∴b≤8,∵a、b、c为整数,∴当b=8时,a=16,c=4;当b=7时,a=14,c=1;当b<7时,c<0(不合题意舍去),∴a,b,c的值分别为16,8,4或14,7,1.6.如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G 是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点C位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.解:(1)∵∠BAC=90°,且BD=CD,∴AD=BC,∵BC===2,∴AD=×2=,故答案为:;(2)如图1,∵GF∥AD,∴∠CFG=∠CAD,∵BD=CD=BC=AD=,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=2﹣1,∵AD∥GE,∴△BGE∽△BDA,∴===;(3)如图2,随点C位置的改变,FG+EG是一个定值,理由如下:∵AD=BC=BD,∴∠B=∠BAD,∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一个定值,为2.7.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB 的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=tcm,QN=(3﹣t)cm(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2.∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.8.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长7或1.解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3﹣1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;②如图3﹣2,当点E在线段BA上时,AE===3,∴BE=BA﹣AE=4﹣3=1,综上所述,BE的长为7或1,故答案为:7或1.9.如图,在正方形ABCD中,E为AB边上一点,连接DE,交AC于H点,过点D作DF⊥DE,交BC的延长线于F,连接EF交于AC于点G.(1)请写出AE和CF的数量关系:相等;(2)求证:点G是EF的中点;(3)若正方形ABCD的边长为4,且AE=1,求GH•GA的值.解:(1)∵四边形ABCD是正方形,∴∠ADC=∠EAD=∠DCB=∠DCF=90°,AD=DC,∵DF⊥DE,∴∠EDF=90°,∴∠ADE+∠EDC=∠EDC+∠CDF,∴∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴AE=CF,故答案为:相等;(2)如右图,过E作EM∥BC交AC于M,∵四边形ABCD是正方形,AC为对角线,∴,∵EM∥BC,∴∠AEM=∠B=90°,∴∠AME=90°﹣∠EAM=45°,∴∠AEM=∠EAM,∴AE=EM,∵AE=CF,∴EM=CF,∵EM∥BC,∴∠MEG=∠GFC,∠EMG=∠GCF,∴△EMG≌△FCG(ASA),∴EG=FG,∴G为EF的中点;(3)由(1)知△DAE≌△DCF,∴DE=DF,∴∠DEF=∠DFE,∵∠DEF=90°,∴∠DEF=45°,∵∠BAC=45°,∴∠DEF=∠BAC,∵∠AGE=∠AGE,∴△GEH∽△GAE,∴=,∴EG2=GH•AG,∵AE=1,则CF=1,BF=5,∴EF===,∴.10.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)当点Q在线段CA上时,如图1,求证:△BPE∽△CEQ.(2)当点Q在线段CA的延长线上时,如图2,△BPE和△CEQ是否相似?说明理由;若BP=1,CQ=,求PQ的长.(1)证明:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(2)△BPE∽△CEQ;理由如下:∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,又∵∠B=∠C,∴△BPE∽△CEQ;∴=,∵△DEF的顶点E与△ABC的斜边BC的中点重合,∴BE=CE,∴=,解得:BE=CE=,∴BC=3,在Rt△ABC中,AB=AC,∴AB=AC=BC=×3=3,∴AQ=CQ﹣AC=﹣3=,AP=AB﹣BP=3﹣1=2,在Rt△APQ中,PQ===.11.已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD解:(1)∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)如图2,,延长NF,EA相交于H,∴∠AFH=∠DFN,由(1)知,∠EAF=∠D=90°,∴∠HAF=∠D=90°,∵点F是AD的中点,∴AF=DF,∴△AHF≌△DNF(ASA),∴AH=DN,FH=FN,∵∠EFN=90°,∴EH=EN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)如图3,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,同(1)的方法得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,MG2=MN•MD.12.在△ABC中,∠ACB=90°,AB=20,BC=12.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,则HQ=4.(2)如图2,折叠△ABC使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得△CMP和△HQP相似?若存在,求出PQ的长;若不存在,请说明理由.解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=12,∴AC==16,设HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,∵S△ABC=9S△DHQ,∴×16×12=9××x×x,∴x=4或﹣4(舍弃),∴HQ=4,故答案为4.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=4m,则BM=3m,FB=5m,∴4m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM==,∵QH=4,AQ=,∴QC=,设PQ=x,当=时,△HQP∽△MCP,∴,解得:x=,当=时,△HQP∽△PCM,∴解得:x=8或,经检验:x=10或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.13.如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.(1)证明:∵AB=AC,∴∠B=∠C,∠ADC=∠BAD+∠B,∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△BAD∽△CDE,∴=,即AB•CE=BD•CD;(2)解:∵DF平分∠ADC,∴∠ADE=∠CDE,∵∠CDE=∠BAD,∴∠ADE=∠BAD,∴DF∥AB,∴=,∵∠BAD=∠ADE=∠B,∴∠BAD=∠C,又∠B=∠B,∴△BDA∽△BAC,∴=,即=解得,BD=,∴=,解得,AE=;(3)解:作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=HC=BC=8,由勾股定理得,AH===6,∴tan B==,∴tan∠ADF==,设AF=3x,则AD=4x,由勾股定理得,DF==5x,∵△BAD∽△CDE,∴=,当点F在DE的延长线上,F A=FE时,DE=5x﹣3x=2x,∴=,解得,CD=5,∴BD=BC﹣CD=11,当EA=EF时,DE=EF=2.5x,∴=,解得,CD=,∴BD=BC﹣CD=;当AE=AF=3x时,DE=x,∴=,解得,CD=,∴BD=BC﹣CD=;当点F在线段DE上时,∠AFE为钝角,∴只有F A=FE=3x,则DE=8x,∴=,解得,CD=20>16,不合题意,∴△AEF是等腰三角形时,BD的长为11或或.14.如图,已知平行四边形ABCD中,AD=,AB=5,tan A=2,点E在射线AD上,过点E作EF⊥AD,垂足为点E,交射线AB于点F,交射线CB于点G,联结CE、CF,设AE=m.(1)当点E在边AD上时,①求△CEF的面积;(用含m的代数式表示)②当S△DCE=4S△BFG时,求AE:ED的值;(2)当点E在边AD的延长线上时,如果△AEF与△CFG相似,求m的值.解:(1)①∵EF⊥AD,∴∠AEF=90°,在Rt△AEF中,tan A=2,AE=m,∴EF=AE tan A=2m,根据勾股定理得,AF==m,∵AB=5,∴BF=5﹣m,∵四边形ABCD是平行四边形,∴BC=AD=,AD∥BC,∴∠G=∠AEF=90°,∴△AEF∽△BGF,∴,∴,∴BG=﹣m,∴CG=BC+BG=+﹣m=2﹣m,∴S△CEF=EF•CG=•2m•(2﹣m)=2m﹣m2;②由①知,△AEF∽△BGF,∴,∴FG=•EF=•2m=2(﹣m),∴EG=EF+FG=2m+2(﹣m)=2,∴S△CDE=DE•EG=(﹣m)•2=5﹣m,S△BFG=BG•FG=(﹣m)•2(﹣m)=(﹣m)2,S△DCE=4S△BFG时,∴5﹣m=4(﹣m)2,∴m=(舍)或m=,∴DE=AD﹣AE=﹣=,∴AE:ED=:=3,即:AE:ED的值为3;(2)∵四边形ABCD是平行四边形,∴BC=AD=,AD∥BC,∵EF⊥AD,∴EF⊥BC,∴∠AEF=∠CGF=90°,∵△AEF与△CFG相似,∴①当△AEF∽△CGF时,如图1,∴∠AFE=∠CFG,∵EF⊥BC,∴BG=BC=,∵AD∥BC,∴∠CBF=∠A,∵tan A=2,∴tan∠CBF=2,在Rt△BGF中,FG=BG tan∠CBF=,根据勾股定理得,BF==,∴AF=AB+BF=5+=,∵BC∥AD,∴△BGF∽△AEF,∴,∴,∴m=;②当△AEF∽△CGF时,如图2,∴∠EAF=∠GFC,∵∠EAF+∠AFE=90°,∴∠GFC+∠AFE=90°,∴∠AFC=90°,∵AD∥BC,∴∠CBF=∠A,∴tan∠CBF=tan A=2,在R△BFC中,CF=BF•∠CBF=2BF,根据勾股定理得,BF2+CF2=BC2,∴BF2+4BF2=()2,∴BF=1,∴AF=AB+BF=6,在Rt△BGF中,同理:BG=,∵AD∥BC,∴△BGF∽△AEF,∴,∴,∴m=.即:如果△AEF与△CFG相似,m的值为或.15.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为 2.8.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠P AB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴P A=2AM=7.2,∴PC=AC﹣P A=10﹣7.2=2.8;故答案为:2.8.。

2020年中考数学专题相似三角形综合练习(含答案)

2020年中考数学专题相似三角形综合练习(含答案)

2020年中考数学专题 相似三角形综合(含答案)一、单选题(共有10道小题) 1.如图,在△在△ABC ABC 中,∠ACB= 90,CD CD⊥⊥AB AB,,垂足为D ,点E 是AB 的中点,CD=DE=a CD=DE=a,,则AB 的长为(的长为( )A .2a 2aB B .a 22C .3aD . 2.根据下列条件,△根据下列条件,△ABC ABC 和△111C B A 不相似的是(不相似的是( )A.A.∠∠A=68°,∠B=40°,∠A 1=68°,∠B 1=72°B.B.∠∠B=∠B 1,BC=2,BC:A 1 B 1= A B: B 1C 1C.C.AB=1AB=1,BC=2, CA=1.5,A 1 B 1=4, B 1 C 1 =8,D.D.AB=12AB=12,BC=15,CA=24,A 1 B 1=24,A 1 B 1=20,B 1 C 1 =25,A 1 C 1=32 3.用作位似图形的方法,可以将一个图形放大或缩小,位似中心(用作位似图形的方法,可以将一个图形放大或缩小,位似中心( ) A.A.只能选在原图形的外部只能选在原图形的外部只能选在原图形的外部B.B.只能选在原图形的内部只能选在原图形的内部只能选在原图形的内部C.C.只能选在原形的边上只能选在原形的边上只能选在原形的边上D.D.可以选择任意位置可以选择任意位置可以选择任意位置4.如图,如图,AB AB AB,,CD 都是BD 的垂线,的垂线,AB=4AB=4AB=4,,CD=6CD=6,,BD=14BD=14。

P 是BD 上一点,连接AP AP,,CP CP,所得,所得两个三角形相似,则BP 的长是(的长是( )A.2B.5.6C.12D.上述都有可能上述都有可能上述都有可能5.如图,是一束平行的光线从教室窗户射入教室的示意图,测得光线与地面所成的角∠AMC=30AMC=30°,窗户的高在教室地面上的影长°,窗户的高在教室地面上的影长MN=32m ,窗户的下沿到教室地面的距离BC=1m (点M ,N ,CC 在同一直线上),则窗户的高AB= 。

天津市2020版中考数学专题练习相似三角形50题 含答案

天津市2020版中考数学专题练习相似三角形50题 含答案

相似三角形50题、选择题:一1.如图,DE∥BC,在下列比例式中,不能成立的是()= D.= B.== C.A.2.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()1:.1:.1:3 C.14 D2 BA.1:( )4.5cm,那么它们的相似比为3.两个相似多边形一组对应边分别为3cm,,则BE:EC=()BDF4.如图,是平行四边形ABCD对角线上的点,BF:FD=1:3( )相似的是15.如图,小正方形的边长均为,则图中三角形(阴影部分)与△ABCA. D C B...6.下列各组数中,成比例的是()A.-7,-5,14,5B.-6,-8,3,4C.3,5,9,12D.2,3,6,127.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m8.下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形9.如图所示,在?ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()对对 C.5 D.6对 A.3对 B.4)的长为(AB于点E,则DE 垂直平分,中,∠10.如图,在△ABCACB=90°,AC=8AB=10,DEAC交3..A.6 B5 C.4 D的长等于(,则,已知:是位似图形,位似比为与△如图,△11.ABCDEF23AB=4DE )A.6B.5C.9D.12.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B →C和A→D20(y与xy(单位:cm),则)→C的路径向点C运动,设运动时间为x(单位:s,四边形PBDQ的面积为( ))之间函数关系可以用图象表示为x≤8≤C. B.A.D.13.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( ). CA.. B D.14.如图,△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,BC分别与AD、AE相交于点F、G.图中共有n对三角形相似(相似比不等于1),则n的值是()A.2B.3C.4D.5ACBD,xABCD15.如图,正方形的两边BC,AB分别在平面直角坐标系的轴,y轴的////与正方形正方形正半轴上//////ABCD与正方形DCB,的中点是以ABCDACO为中心的位似图形已知AC=3A则正方形(1,2),的坐标为A若点,( )的相似比是 D. C. B. A.16.如图,三个正六边形全等,其中成位似图形关系的有()A.4对B.1对C.2对D.3对的重心,那么的值为() AMN都是等边三角形,点M是△ABC17.如图,△ABC和△C.A.D. B.18.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC,则的值为()BCDF′交于点N 于点M,D. A. C. B.19.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P 的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S+S )的大小变化情况是(21.A.一直不变B.一直减小C.一直增大D.先减小后增大20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠DAC=∠ABC;②AD=CB;③2=AE?AB;⑤CB∥GD,其中正确的结论是()点P是△ACQ的外心;④ACA.①③⑤B.②④⑤C.①②⑤D.①③④、填空题:二21.若△ABC与△ABC的相似比为2:3,△ABC与△ABC的相似比为2:3,那么△ABC与△ABC的相似比221212111212为22.如图,(1)若AE:AB=________,则△ABC∽△AEF;(2)若∠E=_______,则△ABC∽△AEF.□的值为________.于点Q. 则交相交于点,BDO,P是BC边中点,APBD23.如图,在中,对角线ABCDAC,则C中,已知A∽△B=6,若△ABCABBABC=5AB=3ABC24.在△中,已知,。

中考数学 相似三角形专题训练(含答案)

中考数学 相似三角形专题训练(含答案)

2020中考数学相似三角形专题训练(含答案)一、选择题:1. 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是( )A.B.C.D.﹣答案:D.2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )A.=B.=C.=D.=答案:C3. 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )A.①②③④ B.①④ C.②③④D.①②③答案D.4.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有( )A.1个B.2个C.3个D.4个答案C.二、填空题:5.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .答案:4.6. 在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.答案:或.7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.故答案为113°或92°.8.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为,则四边形AMCD的面积是.答案:1.9. (2017内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE= .答案:.10.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.故答案为3:4.三、解答题:11.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13. 如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.∵△ADF∽△DEC,14. 在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.【解答】解:(1)如图1,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠ECB=45°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴MD=ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∵∠ACB=90°,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=,在Rt△MDE中,=tan∠MDE=tan.15. (1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为 AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE 上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).。

2020中考数学 相似三角形专项精练(含答案)

2020中考数学 相似三角形专项精练(含答案)

2020中考数学相似三角形专项精练(含答案)基础题一、选择题1.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )A.4B.4.5C.5D.5.52.在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A. B.C. D.3.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC.AB2=AD·ACD.=4.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为( )A.15B.10C.D.55.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为( )A. B. C. D.6.如图,AD是△ABC的角平分线,则AB∶AC等于( )A.BD∶CDB.AD∶CDC.BC∶ADD.BC∶AC二、填空题7.如图,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA'是.三、解答题8.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.提升题一、选择题1.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②△=;△③=;=.④△△其中,正确的有( )A.1个B.2个C.3个D.4个2.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=-、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变二、填空题3.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.三、解答题4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.答案基础题一、选择题1.B2.C3.D A.∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B.∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C.∵AB2=AD·AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D.=不能判定△ADB∽△ABC,故此选项符合题意.故选D.4.D ∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA.∵AB=4,AD=2,∴△ACD的面积∶△ABC的面积为1∶4,∴△ACD的面积∶△ABD的面积为1∶3.∵△ABD的面积为15,∴△ACD的面积为5.故选D.5.C 延长FE交AB于点D,作EG⊥BC,EH⊥AC,则ED=EG=EH=-=-=2.设EF=FC=x.∵△ADF∽△ABC,∴=,∴=-.即x=.故选C.6.A 如图,过点B作BE∥AC交AD延长线于点E, ∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB∶AC=BD∶CD.二、填空题7.答案-1解析设BC与A'C'交于点E,由平移的性质知,AC∥A'C',∴△BEA'∽△BCA,∴S△BEA'∶S△BCA=A'B2∶AB2=1∶2.∴A'B=1,∴AA'=AB-A'B=-1.三、解答题8.解析(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°.∵AC=AD,∴∠ACD=∠ADC.∵∠ADC+∠PDC=90°,∴∠BDC=∠PDC.(2)过点C作CM⊥PD于点M.∵∠BDC=∠PDC,∴CE=CM.∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=.设CM=CE=x.∵CE∶CP=2∶3,∴PC=x.∵AB=AD=AC=1,∴=,解得x=,故AE=1-=.B组提升题组1.B ∵CD,BE是△ABC的中线,即D,E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴=,∴△DOE∽△COB,则△△===,===,故①正确,②错误,③正确. 设△ABC的BC边上的高为AF,则S△ABC=BC·AF,S△ACD=S△ABC=BC·AF.∵在△ODE中,DE=BC,DE边上的高是×AF=AF,∴S△ODE=×BC×AF=BC·AF,∴△△=··=,故④错误.2.D 如图,分别过点A、B作AN⊥x轴、BM⊥x轴.∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=.设B-,,A,,则BM=,AN=,OM=m,ON=n,∴mn=,mn=.∵∠AOB=90°,∴tan∠OAB=①.∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变.二、填空题3.答案解析∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,设AD与EH交于点M, ∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD-EF=2-2x, ∴-=,解得x=,则EH=.三、解答题4.解析(1)证明:∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,即AB·CD=CP·BP.又∵AB=AC,∴AC·CD=CP·BP.(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.又∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.。

2020 最新中考数学复习 相似三角形难题

2020 最新中考数学复习 相似三角形难题

相似三角形难题【典型例题】例1 如图,△ABC 中,∠A=60°,BD 、CE 是高,求证:DE=21BC 。

例2 如图所示,AD 为△ABC (AB>AC )的角平分线,AD 的垂直平分线和BC 的延长线交于E 。

求证:E 2B DE ·CE例3 如图,P 为等边△ABC 的BC 边上一点,AP 的垂直平分线交AB 、AC 于M 、N ,求证:BP ·PC=BM ·CN 。

例4 如图,在□ABCD 中,AM ⊥BC ,AN ⊥CD ,M 、N 分别为垂足,求证:△AMN ∽△BAC 。

例5 已知,如图,△ABC 中,AD ⊥BC 于点D ,DE ⊥AC 于点E ,DF ⊥AB 于点F ,求证:∠AEF=ABD E C AB C D E F A C NM BP ND C MB A A∠B 。

例6 如图,在□ABCD 中,M 为CD 的中点,EF ∥AB ,∠ADE=∠MDE ,求证:∠BCF=∠MCF 。

相似三角形的判定练习1.已知:如图,CE 是直角三角形斜边AB 上的高,在EC 的延长线上任取一点P ,连结AP ,BG ⊥AP ,垂足为G ,交CE 于D ,求证:DE PE CE ⋅=2。

2.如图,在△ABC 中,∠BAC=90°,AH ⊥BC 于H ,以AC 和AB 为边在Rt △ABC 形外作等边三角形△ABD 和△ACE ,求证:△BDH ∽△AEH 。

3.如图,AD ⊥AB ,BE ⊥AB ,AE 、BD 相交于点C ,CF ⊥AB ,垂足为F 。

(1)求证:△ADC ∽△EBC ;A BC D E FMDECpq(2)设AD=p 、BE=q 、CF=r ,AF=m ,BF=n ,用m 、n 来表示qr p r ,; (3)求证:rq p 111=+。

4.如图,O 是△ABC 内一点,D 、E 、F 分别是OA 、OB 、OC 的中点,求证:△ABC ∽△DEF 。

2020-2021初中数学图形的相似难题汇编附答案解析

2020-2021初中数学图形的相似难题汇编附答案解析

2020-2021初中数学图形的相似难题汇编附答案解析一、选择题1.如图,在△ABC 中,DE ∥BC ,BE 和CD 相交于点F ,且S △EFC =3S △EFD ,则S △ADE :S △ABC 的值为( )A .1:3B .1:8C .1:9D .1:4【答案】C【解析】【分析】 根据题意,易证△DEF ∽△CBF ,同理可证△ADE ∽△ABC ,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S △EFC =3S △DEF ,∴DF :FC =1:3 (两个三角形等高,面积之比就是底边之比),∵DE ∥BC ,∴△DEF ∽△CBF ,∴DE :BC =DF :FC =1:3同理△ADE ∽△ABC ,∴S △ADE :S △ABC =1:9,故选:C .【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.2.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C 23D .3∶2【答案】B【解析】【分析】 根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】 本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.3.如果两个相似正五边形的边长比为1:10,则它们的面积比为( )A .1:2B .1:5C .1:100D .1:10 【答案】C【解析】根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C .点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.4.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.5.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a -),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=2为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b=, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b+=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=2 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.6.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D【解析】【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.7.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .5【答案】B【解析】【分析】 根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD :AF=3:5,∴AD :DF=3:2,∵AB ∥CD ∥EF , ∴AD BC DF CE =,即362CE=, 解得,CE=4,故选B .【点睛】 本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 8.如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO V ∽CBO V ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】 解:A.∵//DE BC , ∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V ,DE AE BC AC ∴=,DE OD BC OC= . OD AE OC AC∴= ,故正确; D. ∵//DE BC , ∴AG AE AF AC = ,故不正确;故选C.【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.32B.92C33D.3【答案】A【解析】【分析】【详解】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,∵AC=3,AB=6,∴AD=32.故选A.考点:相似三角形的判定与性质.10.如图,点A在双曲线y═kx(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.3225C.43D.252+【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴255,∴OA=455,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴21545 OB AB==,∴OB=85,AB=45,∴A(85,45),∴k=3225. 故选B . 点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,在ABC ∆中,,D E 分别是边,AB AC 的中点,ADE ∆和四边形BCED 的面积分别记为12,S S ,那么12S S 的值为( )A .12B .14C .13D .23【答案】C【解析】【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得12S S 的值. 【详解】∵,D E 分别是边,AB AC 的中点,∴DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC=1:2,所以它们的面积比是1:4,所以1211=413S S =-, 故选C .【点睛】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 的中点,点P 是直线BC 上一点,将△BDP 沿DP 所在的直线翻折后,点B 落在B 1处,若B 1D ⊥BC ,则点P 与点B 之间的距离为( )A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴225AC BC+∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.13.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11【答案】B【解析】【分析】过点F作AD的垂线交AD的延长线于点H,则△FEH∽△EBA,设AE=x,可得出△CEF面积与x的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F作AD的垂线交AD的延长线于点H,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA,∴△FEH∽△EBA,∴ ,HF HE EF AE AB BE == G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.14.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.15.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2∶3,若三角尺的一边长为8 cm ,则这条边在投影中的对应边长为( )A .8 cmB .12 cmC .16 cmD .24 cm【答案】B【解析】试题分析:利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm ,∴设这条边在投影中的对应边长为:x ,则=,解得:x=12.故选B .考点:位似变换.16.如图,E 是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF V 的面积为2,则四边形CDEF 的面积为()A .4B .5C .6D .7【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF S x =V ,求出x 即可解答.【详解】解:∵AD ∥BC ,E 是矩形ABCD 中AD 边的中点,∴AEF ~CBF V V ,设AEF S x =△,那么4BCF S x =V ,∵2ABF S =V , ∴()1x 2422x +=+, 解得:x 1=, ∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键.17.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE,又∵AE=BE,∴AE2=AG•BF=2,∴AE=2(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.18.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=33;③BP=4PK;④PM•PA=3PD2,其中正确的是()A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据菱形的性质得到AD ∥BC ,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP ≌△ECP ,由相似三角形的性质得到AD=CE ,作PI ∥CE 交DE 于I ,根据点P 是CD 的中点证明CE=2PI ,BE=4PI ,根据相似三角形的性质得到1=4KP PI KB BE =,得到BP=3PK ,故③错误;作OG ⊥AE 于G ,根据平行线等分线段定理得到MG=NG ,又OG ⊥MN ,证明△MON 是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD 2,故④正确.【详解】解:作PI ∥CE 交DE 于I ,∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠DAP=∠CEP ,∠ADP=∠ECP ,在△ADP 和△ECP 中, DAP CEP ADP ECP DP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△ECP ,∴AD=CE , 则PI PD CE DC =,又点P 是CD 的中点, ∴1=2PI CE , ∵AD=CE , ∴1=4KP PI KB BE =, ∴BP=3PK ,故③错误;作OG ⊥AE 于G , ∵BM 丄AE 于M ,KN 丄AE 于N ,∴BM ∥OG ∥KN ,∵点O 是线段BK 的中点,∴MG=NG ,又OG ⊥MN ,∴OM=ON ,即△MON是等腰三角形,故①正确;由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=3,则AP=7,根据三角形面积公式,BM=2217,∵点O是线段BK的中点,∴PB=3PO,∴OG=13BM=22121,MG=23MP=27,tan∠OMN=3=OGMG,故②正确;∵∠ABP=90°,BM⊥AP,∴PB2=PM•PA,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=3PC,∵PD=PC,∴PB2=3PD,∴PM•PA=3PD2,故④正确.故选B.【点睛】本题考查相似形综合题.19.下列图形中,一定相似的是()A.两个正方形 B.两个菱形 C.两个直角三角形 D.两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A.【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.20.如图,在△ABC中,DE∥BC,EF∥AB,则下列结论正确的是()A.AD DEDB BC=B.BF EFBC AB=C.AEEC FCDE=D.EF BFAB BC=【答案】C【解析】【分析】根据相似三角形的判定与性质逐项分析即可.由△ADE∽△ABC,可判断A的正误;由△CEF ∽△CAB,可判定B错误;由△ADE~△EFC,可判定C正确;由△CEF∽△CAB,可判定D错误.【详解】解:如图所示:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴DE AD AD BC AB DB=≠,∴答案A错舍去;∵EF∥AB,∴△CEF ∽△CAB ,CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC , ∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.。

2020年九年级数学中考专题复习训练-相似三角形的应用(解析版 ).pdf

2020年九年级数学中考专题复习训练-相似三角形的应用(解析版 ).pdf
18. 王明同学为了测量河对岸树 AB 的高度.他在河岸边放一面平面镜 MN,他站在 C
处通过平面镜看到树的顶端 .如图,然后他量得 B、P 间的距离是 56 米,C、P 间距离是 12 米,他的身高是 1.7 米. 1 他这种测量的方法应用了物理学科的什么知识?请 简要说明; 2 请你帮他计算出树 AB 的高度.
2020 年九年级数学中考专题复习训练-相似三角形的应用
班级:___________姓名:___________ 得分:___________
一、选择题
1. 某小区门口的栏杆如图所示,栏杆从水平位置 BD 绕 O 点旋转到 AC 位置,已知 t, t t,垂足分别为 B、D, t h , h 1.晦 , t h 1 ,则栏
14. 10
解:如图所示:
第 1 页,共 20页
由题意得:㌳E上上 ,
㌳E∽

㌳E h E,
即0.ሴ h

.2 ͷ10ͷ20
解得 h 10.
所以 x 的最小值为 10.
15. h.1
解:利用 ㌳∽ t㌳,对应线段成比例解题, 因为 AB,CD 均垂直于地面,所以 上上 t, 则有 ㌳∽ t㌳,
㌳∽ t㌳,
2 当 x 为何值时,矩形 PQMN 的面积最大?最大值是多少?
23. 如图,小明家窗外有一堵围墙 AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最
高点 C 射进房间的地板 F 处,中午太阳光恰好能从窗户的最低点 D 射进房间的地 板 E 处,小明测得窗子距地面的高度 tt h 0.ሴ ,窗高 t h 1.2 ,并测得 t㌳ h 0.ሴ ,tE h ,且 O,D,C 三点在同一条直线上,求围墙 AB 的高度.
t
h

2020-2021中考数学复习《相似》专项综合练习及答案

2020-2021中考数学复习《相似》专项综合练习及答案

2020-2021中考数学复习《相似》专项综合练习及答案一、相似1.如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;(2)求S与t之间的函数关系式;(3)当t为何值时,S有最大值,最大值是多少?(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.【答案】(1)解:过点C作CE⊥AB,垂足为E,如图1,∵DA=DB,AM=BM,∴DM⊥AB.∵CE⊥AB,∴∴CE∥DM.∵DC∥ME,CE∥DM,∴四边形DCEM是矩形,∴CE=DM=4,ME=DC=1.∵AM=BM,AB=8,∴AM=BM=4.∴BE=BM−ME=3.∵∴CB=5.∵当t=4时,点P与点M重合,不能构成△MPQ,∴t≠4.∴当且t≠4(s)时,点Q在BC上运动;当 (s)时,点Q在CD上运动.(2)解:①当0<t<4时,点P在线段AM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图2,∵QF⊥AB,CE⊥AB,∴∴QF∥CE.∴△QFB∽△CEB.∴∵CE=4,BC=5,BQ=t,∴∴∵PM=AM−AP=4−t,∴②当时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,∵QF⊥AB,CE⊥AB,∴∴QF∥CE.∴△QFB∽△CEB.∴∵CE=4,BC=5,BQ=t,∴∴∵PM=AP−AM=t−4,∴③当时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,此时QF=DM=4.∵PM=AP−AM=t−4,∴综上所述:当0<t<4时当时, 当时,S=2t−8.(3)解:①当0<t<4时,∵ 0<2<4,∴当t=2时,S取到最大值,最大值为②当时, 对称轴为x=2.∵∴当x>2时,S随着t的增大而增大,∴当t=5时,S取到最大值,最大值为③当时,S=2t−8.∵2>0,∴S随着t的增大而增大,∴当t=6时,S取到最大值,最大值为2×6−8=4.综上所述:当t=6时,S取到最大值,最大值为4(4)解:当点Q在CD上运动即时,如图5,则有,即∵MP=t−4<6−4,即MP<2,∴QM≠MP,QP≠MP.若△MPQ是等腰三角形,则QM=QP.∵QM=QP,QF⊥MP,∴MF=PF=12MP.∵MF=DQ=5+1−t=6−t,MP=t−4,∴解得:∴当t= 秒时,△MPQ是等腰三角形【解析】【分析】(1)过点C作CE⊥AB于E,结合题中条件得出四边形DCEM是矩形,结合矩形性质和勾股定理求出BC的长,最后考虑不能构成△MPQ,即可解决问题。

北师大版九年级数学《探索三角形相似的条件》典型例题(含答案)

北师大版九年级数学《探索三角形相似的条件》典型例题(含答案)

《探索三角形相似的条件》典型例题例题1 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例题2 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例题3 从下面这些三角形中,选出相似的三角形.例题4 格点图中的两个三角形是否是相似三角形,说明理由.例题5 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC ABcm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例题6 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例题7.如图,在ABC ∆中,︒=∠47A ,cm 5.1=AB ,cm 2=AC ;在DEF ∆中,︒=∠47E ,cm 8.2=DE ,cm 1.2=EF ,试判断这两个三角形是否相似.参考答案例题1 分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC .又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b d c a =,或ca ab =,再根据比例的基本性质推出乘积式或平方式. 例题2 解答 (1)ADE ∆∽ABC ∆ 两角相等;(2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等;(4)EAB ∆∽ECD ∆ 两边成比例夹角相等;(5)ABD ∆∽ACB ∆ 两边成比例夹角相等;(6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例题3 解答 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例题4 分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解答 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E ,又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例题5 解答 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB , 所以ABC ∆∽C B A '''∆;(2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例题6 解答:画法略.例题7.错解 8.25.1=DE AB ,1.22=EF AC ∴1.228.25.1≠ ∴EF AC DE AB ≠ ∴ABC ∆与DEF ∆不相似正解 在ABC ∆与DEF ∆中,︒=∠=∠47E A 又4325.1==AC AB ,438.21.2==ED EF ∴DE EF AC AB = ∴ABC ∆∽EFD ∆说明 判定两三角形是否相似,不能依图形的放置方向来考查,而应该按相似三角形的判定方法仔细判定,错解中没有将夹已知角的长边与长边相对应,显然是错误的.。

2020中考数学复习微专题(探索三角形相似的条件典型习题汇编)

2020中考数学复习微专题(探索三角形相似的条件典型习题汇编)

1.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有( )A.0个B.1个C.2个D.3个2.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是( )A.3B.4C.5D.63.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形 ( )A.一定不相似B.不一定相似C.一定相似D.不能确定4.如图,在▱ABCD中,点E,F分别在边AD,BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有( )A.1个B.2个C.3个D.4个5. 如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( C )6.如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AD,分别延长AB,CA′相交于点D,则线段BD的长为.7.在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D.求证:(1)AB2=BD·BC.(2)AC2=CD·BC.1.已知图(1),(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB,CD交于O点,对于各图中的两个三角形而言,下列说法正确的是( )A.只有(1)相似B.只有(2)相似C.都相似D.都不相似2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )3.如图,在正△ABC中,D,E分别在AC,AB上,且=,AE=BE,则有 ( )A.△AED∽△ABCB.△ADB∽△BEDC.△BCD∽△ABCD.△AED∽△CBD4.如图,AB,CD交于点O,且OC=45,OD=30,OB=36,当OA= 时,△AOC∽△BOD.5. 在△ABC中,AB=9,AC=6,点E在AB上,且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=_____.6.在△ABC中,AB=6,AC=8,D,E分别在AB,AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).当x=2,y=5时,求证:△AED∽△ABC.1.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A,D,E为顶点的三角形与△ABC相似.2.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP 相似时,DP= ____.3. 如图,已知矩形ABCD的边长AB=3 cm,BC=6 cm.某一时刻,动点M从A点出发沿AB方向以1 cm/s的速度向B点匀速运动;同时动点N从D点出发沿DA方向以2 cm/s的速度向A点匀速运动.若以A,M,N为顶点的三角形与△ACD相似,则运动的时间t为s.4. 如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是(只需写一个条件,不添加辅助线和字母).5. 如图,正方形ABCD的边长为2,E为AB中点,MN=,线段MN的两端在BC,CD上滑动,当CM= 时,△AED与以M,N,C为顶点的三角形相似.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学复习微专题
(探索三角形相似的条件典型习题汇编)
知识点一:利用两角相等判定三角形相似
1.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有( )
A.0个
B.1个
C.2个
D.3个
2.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是( )
A.3
B.4
C.5
D.6
3.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分
别是40°,80°,则这两个三角形 ( )
A.一定不相似
B.不一定相似
C.一定相似
D.不能确定
4.如图,在?ABCD中,点E,F分别在边AD,BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有( )
A.1个
B.2个
C.3个
D.4个
5. 如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( C )
6.如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到
△A′B′C,使CB′∥AD,分别延长AB,CA′相交于点D,则线段BD的长
为.
7.在△ABC中,∠BAC=90°,AD⊥BC,垂足为点 D.
求证:(1)AB2=BD·BC.
(2)AC2=CD·BC.
知识点二:利用两边成比例且夹角相等判定三角形相似
1.已知图(1),(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB,CD交于O点,对于各图中的两个三角形而言,下列说法正确的是( )
A.只有(1)相似
B.只有(2)相似
C.都相似
D.都不相似
2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )
3.如图,在正△ABC中,D,E分别在AC,AB上,且=,AE=BE,则有 ( )
A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD
4.如图,AB,CD交于点O,且OC=45,OD=30,OB=36,当OA= 时,△AOC∽△BOD.
5. 在△ABC中,AB=9,AC=6,点E在AB上,且AE=3,点F在AC上,连接EF,若△AEF与△ABC相似,则AF=_____.
6.在△ABC中,AB=6,AC=8,D,E分别在AB,AC上,连接DE,设BD=x(0<x<6),CE=y(0<y<8).当x=2,y=5时,求证:△AED∽△ABC.
知识点三:相似与动点、多解问题
1.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当
AE= 时,以A,D,E为顶点的三角形与△ABC相似.
2.如图,在矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP 相似时,DP= ____.
3. 如图,已知矩形ABCD的边长AB=3 c m,BC=6 c m.某一时刻,动点M从A点出发沿AB方向以1 cm/s的速度向B点匀速运动;同时动点N从D点出发沿DA方向以2 cm/s的速度向A点匀速运动.若以A,M,N为顶点的三角形与△ACD相似,则运动的时间t为s.
4. 如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条
件是(只需写一个条件,不添加辅助线和字母).
5. 如图,正方形ABCD的边长为2,E为AB中点,MN=,线段MN的两端在BC,CD上滑动,当CM= 时,△AED与以M,N,C为顶点的三角形相似.。

相关文档
最新文档