高中数学三维设计人教A版浙江专版必修5课件第三章 3.3 3.3.2 简单的线性规划问题

合集下载

高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 复习课(三)不等式 含答案

高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 复习课(三)不等式 含答案

复习课(三) 不等式一元二次不等式和一元二次方程、一元二次函数三者构成一个统一的整体.贯穿于高中数学的始终,更是高考的重点内容,在考题中有时单独对某类不等式的解法进行考查,一般以小题形式出现,难度不大,但有时在解答题中与其它知识联系在一起,难度较大.[考点精要]解一元二次不等式需熟悉一元二次方程、二次函数和一元二次不等式三者之间的关系,其中二次函数的零点是联系这三个“二次”的枢纽.(1)确定ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)在判别式Δ>0时解集的结构是关键.在未确定a 的取值情况下,应先分a =0和a ≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a 的符号和方程ax 2+bx +c =0的两个根,再由根与系数的关系就可知a ,b ,c 之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.[典例] (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-1<x <12B.⎩⎨⎧⎭⎬⎫x |x <-1或x >12C .{x |-2<x <1}D .{x |x <-2或x >1}(2)解关于x 的不等式ax 2-2ax +a +3>0.[解析] (1)由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由根与系数的关系得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0. 解得-1<x <12.[答案] A(2)解:当a =0时,解集为R ;当a >0时,Δ=-12a <0,∴解集为R ;当a <0时,Δ=-12a >0,方程ax 2-2ax +a +3=0的两根分别为a +-3a a ,a --3aa,∴此时不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +-3a a <x <a --3a a . 综上所述,当a ≥0时,不等式的解集为R ;a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +-3a a <x <a --3a a . [类题通法]解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.[题组训练]1.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:22.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.高考中线性规划主要考查平面区域的表示和图解法的具体应用,命题形式以选择题、填空题为主,命题模式是以线性规划为载体,考查区域的划分、区域的面积,涉及区域的最值问题、决策问题、整点问题、参数的取值范围问题等.[考点精要]1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法. 2.利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. [典例] (1)设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =y +1x的最小值为( )A .1B .2C .3D .4(2)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元[解析] (1)不等式组所表示的平面区域如图中的△ABC ,目标函数的几何意义是区域内的点与点P (0,-1)连线的斜率,显然图中AP 的斜率最小.由⎩⎪⎨⎪⎧x +y =3,2x -y =3解得点A 的坐标为(2,1),故目标函数z =y +1x 的最小值为1+12=1.(2)设对项目甲投资x 万元,对项目乙投资y 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.[答案] (1)A (2)B [类题通法](1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时也可以根据可行域的顶点直接进行检验.[题组训练]1.不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大解析:选B 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.2.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________.解析:依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.答案:13.某公司用两种机器来生产某种产品,第一种机器每台需花3万日元及人民币50元的维护费;第二种机器则需5万日元及人民币20元的维护费.第一种机器的年利润每台有9万日元,第二种机器的年利润每台有6万日元,但政府核准的外汇日元为135万元,并且公司的总维护费不得超过1 800元,为了使年利润达到最大值,第一种机器应购买________台,第二种机器应购买________台.解析:设第一种机器购买x 台,第二种机器购买y 台,总的年利润为z 万日元,则⎩⎪⎨⎪⎧3x +5y ≤135,50x +20y ≤1 800,x ,y ∈N ,目标函数为z =9x +6y .不等式组表示的平面区域如图阴影部分中的整点.当直线z =9x +6y 经过点M ⎝⎛⎭⎫63019,13519,即到达l 1位置时,z 取得最大值,但题目要求x ,y 均为自然数,故进行调整,调整到与M 邻近的整数点(33,7),此时z =9x +6y 取得最大值,即第一种机器购买33台,第二种机器购买7台获得年利润最大.答案:33 7考试中单纯对不等式性质的考查并不多,但是不等式作为工具几乎渗透到各个考点,所以其重要性不言而喻.而利用基本不等式求最值,解决实际问题是考试的热点,题型既有选择题、填空题,又有解答题,难度为中、低档题.[考点精要] 基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立;(2)a 2+b 2≥2ab ,ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R),当且仅当a =b 时,等号成立; (3)b a +ab ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立;(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.[典例] (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )A.43B.53 C .2D.54[解析] (1)由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )⎝⎛⎭⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立, ∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.[答案] (1)C (2)C [类题通法]条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.[题组训练]1.若正数a ,b 满足1a +1b =1,则1a -1+4b -1的最小值为( )A .3B .4C .5D .6解析:选B 依题意,因为1a +1b =1, ∴(a -1)(b -1)=1, 因此1a -1+4b -1≥24(a -1)(b -1)=4,当且仅当1a -1=4b -1,即a =32,b =3时“=”成立.2.设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为________. 解析:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案:9绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.[考点精要]1.公式法|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); |f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 2.平方法|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2. 3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.4.对于不等式恒成立求参数范围问题,常用分离参数法、更换主元法、数形结合法解决.[典例] 已知f (x )=|ax +1|(a ∈R),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. [解] (1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a ,得a =2. (2)法一:记h (x )=f (x )-2f ⎝⎛⎭⎫x 2,则h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k 的取值范围是[1,+∞).法二:⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2=||2x +1|-2|x +1|| =2⎪⎪⎪⎪⎪⎪⎪⎪x +12-|x +1|≤1,由⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立, 可知k ≥1,所以k 的取值范围是[1,+∞). [类题通法]解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.[题组训练]1.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x >142.设关于x 的不等式lg(|x +3|+|x -7|)>a . (1)当a =1时,解此不等式;(2)当a 为何值时,此不等式的解集是R. 解:(1)当a =1时,lg(|x +3|+|x -7|)>1, ⇔|x +3|+|x -7|>10,⇔⎩⎪⎨⎪⎧ x ≥7,2x -4>10或⎩⎪⎨⎪⎧ -3<x <7,10>10或⎩⎪⎨⎪⎧x ≤-3,4-2x >10, ⇔x >7或x <-3.所以不等式的解集为{x |x <-3或x >7}.(2)设f (x )=|x +3|+|x -7|,则有f (x )≥|(x +3)-(x -7)|=10,当且仅当(x +3)(x -7)≤0, 即-3≤x ≤7时,f (x )取得最小值10. ∴lg(|x +3|+|x -7|)≥1.要使lg(|x +3|+|x -7|)>a 的解集为R ,只要a <1.1.若1a <1b <0,则下列不等式不正确的是( )A .a +b <ab B.b a +a b >0 C .ab <b 2D .a 2>b 2解析:选D 由1a <1b <0,可得b <a <0,故选D.2.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意:A ={x |-1<x <3},B ={x |-3<x <2}.A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3.3.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2 ≥23+2(当且仅当x -1=3x -1,即x =3+1时等号成立). 4.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 不等式|x -2|-|x -1|>0即|x -2|>|x -1|,平方化简可得 2x <3,解得x <32,故选A. 5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49解析:选C 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3解析:选B 由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx-3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,即xyz ≤1, 当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2 =-⎝⎛⎭⎫1y 2+2y =-⎝⎛⎭⎫1y -12+1, 当1y =1,即y =1时,上式有最大值1. 7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析:画出可行域如图阴影部分所示, ∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率, ∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3). ∴yx 的最大值为3. 答案:38.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥ t , 所以log a t +12≥log a t =12log a t . 答案:≤9.若实数x ,y 满足约束条件⎩⎪⎨⎪⎧ y ≥x ,x +y ≤4,2x -y ≥k .已知点(x ,y )所表示的平面区域为三角形,则实数k 的取值范围为________,又z =x +2y 有最大值8,则实数k =________.解析:作出一元二次不等式组所表示的平面区域如图中阴影部分所示.要想点(x ,y )所表示的平面区域为三角形,则B (2,2)必须在直线2x-y =k 的右下方,即2×2-2>k ,则k <2,则实数k 的取值范围为(-∞,2).观察图象可知,当直线z =x +2y 过点A 时,z 有最大值,联立⎩⎪⎨⎪⎧ 2x -y =k ,x +y =4,解得⎩⎨⎧ x =4+k 3,y =8-k 3,即A ⎝⎛⎭⎫4+k 3,8-k 3,代入z =x +2y 中,即4+k 3+2×8-k 3=8,解得k =-4.答案:(-∞,2) -410.已知函数f (x )=|x -2|.(1)解不等式:f (x +1)+f (x +2)<4;(2)已知a >2,求证:对任意x ∈R ,f (ax )+af (x )>2恒成立.解:(1)f (x +1)+f (x +2)<4,即|x -1|+|x |<4,①当x ≤0时,不等式为1-x -x <4,即x >-32, ∴-32<x ≤0是不等式的解; ②当0<x ≤1时,不等式为1-x +x <4,即1<4恒成立,∴0<x ≤1是不等式的解;③当x >1时,不等式为x -1+x <4,即x <52, ∴1<x <52是不等式的解. 综上所述,不等式的解集为⎝⎛⎭⎫-32,52.(2)证明:∵a >2,∴f (ax )+af (x )=|ax -2|+a |x -2|=|ax -2|+|ax -2a |=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|>2,∴对任意x ∈R ,f (ax )+af (x )>2恒成立.11.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f (n )表示前n 年的纯利润总和.(注:f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获利?(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂;问哪种方案最合算?为什么?解:由题意知,每年的经费是以12为首项,4为公差的等差数列,∴f (n )=-2n 2+40n -72.(1)获利就是要求f (n )>0,所以-2n 2+40n -72>0,解得2<n <18.由n ∈N 知从第三年开始获利.(2)①年平均利润=f (n )n=40-2⎝⎛⎫n +36n ≤16. 当且仅当n =6时取等号.故此方案共获利6×16+48=144(万美元),此时n =6.②f (n )=-2(n -10)2+128.当n =10时,f (n )max =128.故第②种方案共获利128+16=144(万美元),故比较两种方案,获利都是144万美元.但第①种方案只需6年,而第②种方案需10年,故选择第①种方案最合算.12.已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.解:设f (x )=x 2+ax +2b ,由题意f (x )在[0,1]和[1,2]上各有一个零点,∴⎩⎪⎨⎪⎧ f (0)≥0,f (1)≤0,f (2)≥0,即⎩⎪⎨⎪⎧ b ≥0,a +2b +1≤0,a +b +2≥0,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图.由⎩⎪⎨⎪⎧ a +2b +1=0,a +b +2=0, 解得⎩⎪⎨⎪⎧a =-3,b =1,即C (-3,1). 令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率. 又B (-1,0),C (-3,1),则k AB =32,k AC =12, ∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.。

高中数学必修5教材简介 PPT课件 图文

高中数学必修5教材简介 PPT课件 图文
(8)理解并掌握解一元二次不等式的过程; (9)会求一元二次不等式解集; (10)掌握求解一元二次不等式的程序框图及隐含的算法思想, 会设计求解的过程;
(11)了解从实际情境中抽象出二元一次不等式(组)模型的 过程; (12)理解二元一次不等式(组)、二元一次不等式(组)的 解集的概念; (13)了解二元一次不等式的几何意义,理解(区域)边界的 概念及实线、虚线边界的含义; (14)会用二元一次不等式(组)表示平面区域,能画出给定 的不等式(组)表示的平面区域; (15)了解线性约束条件、目标函数、线性目标函数、线性规 划、可行解、可行域、最优解的概念; (16)掌握简单的二元线性规划问题的解法; (17)了解基本不等式的代数背景、几何背景以及它的证明过 程; (18)理解算术平均数,几何平均数的概念; (19)会用基本不等式解决简单的最大(小)值的问题; (20)通过基本不等式的实际应用,感受数学的应用价值。
正弦定理的证明体现从特殊到一般的归纳过程
正弦定理可以用于两类解三角形的问题: (1)已知三角形的任意两个角与一边,求其他 两边和另一角。 (2)已知三角形的两边与其中一边的对角,计 算另一边的对角,进而计算出其他的边和角。
正弦定理略去等于2R,目的是控制难度
余弦定理的证明体现了定性到定量分析的理性 思维
2.2 发展要求
(1)了解正、余弦定理与三角形外接圆半径的关系。
(2)利用正、余弦定理讨论三角形中的边角关系。
(3)条件允许的情况下,可多做几个实习作业,以 培养学生应用知识解决实际问题的能力。
2.3 说明
(1)可以利用计算机进行近似计算,但不要求太复 杂繁琐的运算。 (2)不必增加在立几情况下求解三角形的问题,可 在立体几何学习时适当拓展。 (3)应用问题应限制在正、余弦定理的简单应用 上。 (4)实习作业不要求太复杂的问题。

高中数学人教A版三维设计浙江专版必修讲义第三章 绝对值不等式含答案

高中数学人教A版三维设计浙江专版必修讲义第三章 绝对值不等式含答案
[活学活用] 1.求函数 f(x)=|x-1|+|x+1|的最小值. 解:∵|x-1|+|x+1|=|1-x|+|x+1|≥ |1-x+x+1|=2, 当且仅当(1-x)(1+x)≥0, 即-1≤x≤1 时取等号. ∴当-1≤x≤1 时,函数 f(x)=|x-1|+|x+1| 取得最小值 2. 2.求函数 y=|x-4|-|x+3|的最大值和最小值. 解:法一:∵||x-4|-|x+3||≤|x-4-(x+3)|=7, ∴-7≤|x-4|-|x+3|≤7, ∴ymax=7,ymin=-7. 法二:把函数看作分段函数 y=|x-4|-|x+3|= Error!∴-7≤y≤7. ∴ymax=7,ymin=-7.
=1,
∴m≤1≤n.故选 D.
2.对于实数 x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.
解析:法一:|x-2y+1|=|(x-1)-2(y-2)-2|≤|x-1|+2|y-2|+2≤1+2+2=5,
当且仅当 x=0,y=3 时,|x-2y+1|取最大值 5.
|x|<a
{x|-a<x<a}


1
|x|>a {x|x>a 或 x<-a} {x|x≠0}
R
(2)形如|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
①|ax+b|≤c⇔-c≤ax+b≤c;
②|ax+b|≥c⇔ax+b≥c 或 ax+b≤-c.
(3)形如|x-a|+|x-b|≥c 和|x-a|+|x-b|≤c 型不等式的解法
lg|A|+2 |B|≥12(lg|A|+lg|B|),④正确.故选 A. [答案] (1)C (2)A
应用绝对值三角不等式定理的三个注意点 (1)两端的等号成立的条件在解题时经常用到,特别是用此定理求函数的最大(小)值时. (2)该定理可以推广为|a+b+c|≤|a|+|b|+|c|,也可强化为||a|-|b||≤|a±b|≤|a|+|b|,它 们经常用于含绝对值的不等式的推证. (3)当 ab≥0 时,|a+b|=|a|+|b|;当 ab≤0 时,|a-b|=|a|+|b|. [活学活用]

高中数学人教A版三维设计浙江专版必修讲义第三章 基本不等式含答案

高中数学人教A版三维设计浙江专版必修讲义第三章 基本不等式含答案

求实际问题中最值的解题 4 步骤
(1)先读懂题意,设出变量,理清思路,列出函数关系式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先考虑基本不等式,当基本不等式
求最值的条件不具备时,再考虑函数的单调性.
(4)正确写出答案.
[活学活用]
某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润
a+b 基本不等式: ab ≤
2
预习课本 P97~100,思考并完成以下问题
(1)基本不等式的形式是什么?需具备哪些条件?
(2)在利用基本不等式求最值时,应注意哪些方面?
(3)一般按照怎样的思路来求解实际问题中的最值问题?
1.重要不等式
[新知初探]
当 a,b 是任意实数时,有 a2+b2≥2ab,当且仅当 a=b 时,等号成立.
3
2 所以 a2+b2≥ (a+b),
2
2
2
同理 b2+c2≥ (b+c), c2+a2≥ (c+a),
2
2
2 所以 a2+b2+ b2+c2+ c2+a2≥ [(a+b)+(b+c)+(c+a)],
2
即 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c),当且仅当 a=b=c 时,等号成立.
b≥2 ab成立.
4
4
(2)错误.只有当 a>0 时,根据基本不等式,才有不等式 a+ ≥2 a· =4 成立.
a
a
( ) a+b
a+b
(3)正确.因为 ab≤ ,所以 ab≤
2.
2
2
答案:(1)× (2)× (3)√
2.若 a>b>0,则下列不等式成立的是( )

标题-2017-2018学年高中数学三维设计人教A版浙江专版选修2-1:第三章 3.2 立体几何中的向量方法

标题-2017-2018学年高中数学三维设计人教A版浙江专版选修2-1:第三章   3.2 立体几何中的向量方法

立体几何中的向量方法第一课时空间向量与平行、垂直关系预习课本P102~108,思考并完成以下问题1.平面的法向量的定义是什么?2.设直线l的方向向量u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l∥α,l ⊥α的充要条件分别是什么?[新知初探]1.平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a =λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u=λv ⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.(2)线面垂直设直线l 的方向向量是a =(a 1,b 1,c 1),平面α的法向量是u =(a 2,b 2,c 2),则l ⊥α⇔a ∥u ⇔a =λu ⇔a 1=λa 2,b 1=λb 2,c 1=λc 2(λ∈R).(3)面面垂直若平面α的法向量u =(a 1,b 1,c 1),平面β的法向量v =(a 2,b 2,c 2),则α⊥β ⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)直线l 的方向向量是惟一的( )(2)若点A ,B 是平面α上的任意两点,n 是平面αn =0( ) (3)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行( )答案:(1)× (2)√ (3)√2.若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D .(-3,0,1)答案:A3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( )A .-2B .2C .6D .10 答案:D求平面的法向量[典例] α的一个法向量.[解] 因为A (1,2,3),B (2,0,-1),C (3,-2,0)(1,-2,-4)(2,-4,-3).设平面α的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AB =0,n 0,即⎩⎪⎨⎪⎧x -2y -4z =0,2x -4y -3z =0.得z =0,x =2y ,令y =1,则x =2,所以平面α的一个法向量为n =(2,1,0).利用待定系数法求法向量的解题步骤[活学活用]四边形ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =2,AD =1.在如图所示的坐标系Axyz 中,分别求平面SCD 和平面SAB 的一个法向量.解:A (0,0,0),D (1,0,0),C (2,2,0),S (0,0,2).∵AD ⊥平面SAB ,∴AD =(1,0,0)是平面SAB 的一个法向量. 设平面SCD 的法向量为n =(1,y ,z ),则n (1,y ,z )·(1,2,0)=1+2y =0, ∴y =-12.又n (1,y ,z )·(-1,0,2)=-1+2z =0, ∴z =12.∴n =⎝⎛⎭⎫1,-12,12即为平面SCD 的一个法向量.[典例] 11111DD 1的中点,求证:(1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] 如图所示建立空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1=(0,2,1),DA =(2,0,0),AE =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA ,n 1⊥AE ,即⎩⎪⎨⎪⎧n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1, 所以n 1=(0,-1,2).因为FC 1·n 1=-2+2=0,所以FC 1⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C B 11=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1,n 2⊥C B 11,得⎩⎪⎨⎪⎧n 2·FC 1=2y 2+z 2=0,n 2·C B 11=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.[活学活用]在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明:法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1),PQ=(-3,2,1),RS=(-3,2,1),∴PQ=RS,∴PQ∥RS,即PQ∥RS.法二:RS=RC+CS=12DC-DA+12DD1,PQ=PA1+A Q1=12DD1+12DC-DA,∴RS=PQ,∴RS∥PQ,即RS∥PQ.利用空间向量证明垂直问题[典例]如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.求证:平面ADE⊥平面ABE.[证明]取BE的中点O,连接OC,则OC⊥EB,又AB⊥平面BCE,∴以O为原点建立空间直角坐标系O-xyz.如图所示.则由已知条件有C(1,0,0),E(0,-3,0),D(1,0,1),A(0,3,2).设平面ADE的法向量为n=(a,b,c),则n·EA=(a,b,c)·(0,23,2)=23b+2c=0,n·DA=(a,b,c)·(-1,3,1)=-a+3b+c=0.令b=1,则a=0,c=-3,∴n=(0,1,-3),又AB⊥平面BCE,∴AB⊥OC,∴OC⊥平面ABE,∴平面ABE的法向量可取为m=(1,0,0).∵n·m=(0,1,-3)·(1,0,0)=0,∴n⊥m,∴平面ADE⊥平面ABE.(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0.[活学活用]在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC . 证明:设正方体的棱长为2,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).法一:EF =(-1,-1,1),AB 1=(0,2,2),AC =(-2,2,0), ∴EF ·AB 1=(-1,-1,1)·(0,2,2)=0,EF ·AC =(-1,-1,1)·(-2,2,0)=0,∴EF ⊥AB 1,EF ⊥AC ,又AB 1∩AC =A , ∴EF ⊥平面B 1AC .法二:设平面B 1AC 的法向量为n =(x ,y ,z ). 又AB 1=(0,2,2),AC =(-2,2,0),则⎩⎪⎨⎪⎧ n ⊥AB 1,n ⊥AC ⇒⎩⎪⎨⎪⎧n ·AB 1=2y +2z =0,n ·AC =-2x +2y =0,令x =1,可得平面B 1AC 的一个法向量为n =(1,1,-1). 又EF =-n ,∴EF ∥n ,∴EF ⊥平面B 1AC .1.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)解析:选D 问题即求与n 共线的一个向量.即n =(2,-3,1)=-(-2,3,-1). 2.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9解析:选C ∵l ⊥α,v 与平面α平行, ∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0, ∴z =-9.3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个法向量是( ) A .(1,1,-1) B .(1,-1,1) C .(-1,1,1)D .(-1,-1,-1)解析:选D (-1,1,0)(-1,0,1).设平面ABC 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-x +y =0,-x +z =0,取x =-1,则y =-1,z =-1.故平面ABC 的一个法向量是(-1,-1,-1).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1D D .A 1A解析:选B 建立如图所示的空间直角坐标系.设正方体的棱长为1. 则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫12,12,1,⎝⎛⎭⎫12,-12,1,(-1,1,0)(-1,-1,0),(-1,0,-1)(0,0,-1).(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD .5.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A .1 B .2 C .3D .4解析:选CA 1M ∥D 1P ,可得①③④正确.又B 1Q 与D 1P 不平行,故②不正确.6. 已知点P 是平行四边形ABCD 所在的平面外一点,(2,-1,-4)=(4,2,0)(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ABCD其中正确的是_______(填序号).解析:1×2+(-1)×2+(-4)×(-1)=04×(-1)+2×2+0×(-1)=0,所以①②③正确. 答案:①②③7.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.解析:由OP ⊥OQ 0. 即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0.∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π38.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥面B 1DE ,则AE =________.解析:建立如图所示的空间直角坐标系, 则B 1(0,0,3a ),C (0,2a,0), D2a 2,2a 2,3a . 设E (2a,0,z )(0≤z ≤3a ),()2a ,-2a ,z ,(2a,0,z -3a ),⎝⎛⎭⎫2a 2,2a2,0.a 2-a 2+0=0,故由题意得2a 2+z 2-3az =0,解得z =a 或2a .故AE =a 或2a . 答案:a 或2a9.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 为PC 的中点,EF ⊥BP 于点F .求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .证明:以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系D -xyz ,如图,设DC =PD =1,则P (0,0,1),A (1,0,0),D (0,0,0),B (1,1,0),E ⎝⎛⎭⎫0,12,12.(1,1,-1)⎝⎛⎭⎫0,12,12⎝⎛⎭⎫1,12,-12,设F (x ,y ,z )=(x ,y ,z -1),⎝⎛⎭⎫x ,y -12,z -12.∴x +⎝⎛⎭⎫y -12-⎝⎛⎭⎫z -12=0,即x +y -z =0.①∴x =λ,y =λ,z -1=-λ.②由①②可知,x =13,y =13,z =23,⎝⎛⎫13,-16,16. (1)设n 1=(x 1,y 1,z 1)为平面EDB 的一个法向量,则有⎩⎪⎨⎪⎧n 1·DE =0,n 10,即⎩⎨⎧12y 1+12z 1=0,x 1+12y 1-12z 1=0,∴⎩⎪⎨⎪⎧x 1=z 1,y 1=-z 1. 取z 1=-1,则n 1=(-1,1,-1).(1,0,-1)n 1=0. 又∵PA ⊄平面EDB ,∴PA ∥平面EDB .(2)设n 2=(x 2,y 2,z 2)为平面EFD 的一个法向量,则有⎩⎪⎨⎪⎧n 2·EF =0,n 20,即⎩⎨⎧13x 2-16y 2+16z 2=0,12y 2+12z 2=0,∴⎩⎪⎨⎪⎧x 2=-z 2,y 2=-z 2.取z 2=1,则n2=(-1,-1,1). n 2,∴PB ⊥平面EFD .10.已知在长方体ABCD -A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD =AA 1=a ,AB =2a .试问在线段CD 1上是否存在一点N 使MN ∥平面ADD 1A 1,若存在确定N 的位置,若不存在说明理由.解:以D 为原点,建立如图所示的空间直角坐标系, 则A (a ,0,0),B (a,2a,0), C (0,2a,0),D 1(0,0,a ), E ⎝⎛⎭⎫12a ,2a ,0,M ⎝⎛⎭⎫34a ,a ,0,(0,2a,0)(0,-2a ,a ),假设CD 1上存在点N 使MN ∥平面ADD 1A 1并=(0,-2aλ,aλ)(0<λ<1).(0,2a,0)+(0,-2aλ,aλ) =(0,2a(1-λ),aλ),⎝⎛⎭⎫-34a,a -2aλ,aλ.ADD 1A 1的一个法向量.2a (a -2aλ)=0,λ=12.又MN ⊄平面ADD 1A 1.故存在N 为CD 1的中点使MN ∥平面ADD 1A 1.层级二 应试能力达标1.已知a =⎝⎛⎭⎫1,2,52,b =⎝⎛⎭⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( )A .x =3,y =152B .x =32,y =154C .x =3,y =15D .x =3,y =154解析:选D ∵l 1∥l 2,∴321=x 2=y 52,∴x =3,y =154,故选D.2.在如图所示的空间直角坐标系中,ABCD -A 1B 1C 1D 1是棱长为1的正方体,给出下列结论:①平面ABB 1A 1的一个法向量为(0,1,0); ②平面B 1CD 的一个法向量为(1,1,1); ③平面B 1CD 1的一个法向量为(1,1,1); ④平面ABC 1D 1的一个法向量为(0,1,1). 其中正确结论的个数为( ) A .1 B .2 C .3D .4解析:选B (0,1,0),AB ⊥AD ,AA 1⊥AD ,又AB ∩AA 1=A ,∴AD ⊥平面ABB 1A 1,∴①正确;(-1,0,0),而1≠0,∴(1,1,1)不是平面B 1CD 的法向量,∴②不正确;(0,1,-1)(-1,0,1),0,0,B 1C ∩CD 1=C ,∴(1,1,1)是平面B 1CD 1的一个法向量,∴③正确;(0,1,1)(0,1,1)=2≠0,∴(0,1,1)不是平面ABC 1D 1的法向量,即④不正确.因此正确结论的个数为2,选B.3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝⎛⎭⎫1,3,32 C.⎝⎛⎭⎫1,-3,32D.⎝⎛⎭⎫-1,3,-32解析:选B 要判断点P 是否在平面αα的法向量n 是否垂直,n 是否为0,因此,要对各个选项进行检验.对于选项A ,(1,0,1)n =(1,0,1)·(3,1,2)=5≠0,故排除A ;对于选项B ,⎝⎛⎭⎫1,-4,12,n =⎝⎛⎭⎫1,-4,12·(3,1,2)=0,故B 正确;同理可排除C 、D.故选B.4.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 建系如图,设正方体的棱长为2,则A (2,2,2),A 1(2,2,0),C (0,0,2),B (2,0,2), ∴M (2,1,1),N (1,1,2),(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0), ∵-1×0+0×1+1×0=0,n ,∴MN ∥平面BB 1C 1C .故选B.5.若直线l 的一个方向向量为a =(1,0,2),平面α的一个法向量为u =(-2,0,-4),则直线l 与平面α的位置关系为________.解析:∵u =-2a ,∴a ∥u ,∴l ⊥α. 答案:l ⊥α6(1,5,-2)(3,1,z )(x -1,y ,-3),ABC ________.解析:0,∴3+5-2z =0,∴z =4.(x -1,y ,-3)ABC ,∴⎩⎪BP ·AB =0,0,即⎩⎪⎨⎪⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎨⎧x =407,y =-157,⎝⎛⎭⎫337,-157,-3. 答案:⎝⎛⎭⎫337,-157,-37.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB ,BC 的中点.求证:平面B 1EF ⊥平面BDD 1B 1.证明:以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图,由题意,知D (0,0,0),A (22,0,0),C (0,22,0),B 1(22,22,4),E (22,2,0),F (2,22,0),(0,-2,-4),(-2,2,0).设平面B 1EF 的法向量为n =(x ,y ,z ).则n =-2y -4z =0,n =-2x +2y =0, 得x =y ,z =-24y ,令y =1,得n =⎝⎛⎭⎫1,1,-24.又平面BDD 1B 1(-22,22,0),而n 1×(-22)+1×22+⎝⎛⎭⎫-24×0=0,即n B 1EF ⊥平面BDD 1B 1.8.如图,在三棱锥P -ABC 中,三条侧棱PA ,PB ,PC 两两垂直,且PA =PB =PC =3,G 是△PAB 的重心,E ,F 分别为BC ,PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ; (2)求证:EG 与直线PG 和BC 都垂直.证明:(1)如图,以三棱锥的顶点P 为原点,以PA ,PB ,PC 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系P -xyz .则A (3,0,0),B (0,3,0),C (0,0,3),E (0,2,1),F (0,1,0),G (1,1,0),P (0,0,0).(0,-1,-1)(1,-1,-1). 设平面GEF 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥EF ,n 即⎩⎪⎨⎪⎧y +z =0,x -y -z =0,可取n =(0,1,-1).(3,0,0)是平面PBC 的一个法向量.又n 0,∴n即平面PBC 的法向量与平面GEF 的法向量垂直,∴平面GEF ⊥平面PBC .(2)由(1)(1,-1,-1),(1,1,0)(0,-3,3),0, ∴EG ⊥PG ,EG ⊥BC , ∴EG 与直线PG 和BC 都垂直.第二课时空间向量与空间角、距离预习课本P109~110,思考并完成以下问题1.如何利用空间向量求两异面直线所成的角,直线与平面所成的角及二面角?2.如何利用空间向量求点到平面的距离?[新知初探]1.空间角及向量求法1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)两异面直线所成的角与两直线的方向向量所成的角相等( )(2)直线l 与平面α的法向量的夹角的余角就是直线l 与平面α所成的角( ) (3)二面角α-l -β的大小为θ,平面α,β的法向量分别为n 1,n 2,则θ=n 1,n 2( )答案:(1)× (2)× (3)×2.已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos m ,n =-12,则直线l 与平面α所成的角为( )A .30°B .60°C .120°D .150°答案:A3.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90° 答案:C求两异面直线所成的角[典例] 如图,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x ,y ,z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =π3,求异面直线AC 与VD 所成角的余弦值.[解] AC =BC =2,D 是AB 的中点,所以 C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).在Rt △VCD 中,CD =2,∠VDC =π3,故V (0,0,6).所以AC =(-2,0,0),VD =(1,1,-6). 所以cos 〈AC ,VD 〉=AC ·VD |AC ||VD |=-22·22=-24.所以异面直线AC 与VD 所成角的余弦值为24.利用空间向量求两条异面直线所成的角,可以避免复杂的几何作图和论证过程,只需通过相应的向量运算即可,但应注意:用向量法求两条异面直线所成的角是通过两条直线的方向向量的夹角来求解的,而两条异面直线所成角θ的取值范围是0,π2,两向量的夹角α的取值范围是[0,π],所以cos θ=|cos α|.[活学活用]如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,面ABCD 与面D 1C 1CD 垂直,且∠D 1DC =π3,DC =DD 1=2,DA =3,∠ADC =π2,求异面直线A 1C 与AD 1所成角的余弦值.解:建立如图所示的空间直角坐标系,则A (3,0,0),D 1(0,1,3),C (0,2,0),D (0,0,0).由AA 1=DD 1得A 1(3,1,3). ∴A C 1=(-3,1,-3).D A 1=(3,-1,-3).∴cos 〈A C 1,D A 1〉=A C 1·D A1| A C 1|·|D A 1|=(-3,1,-3)·(3,-1,-3)7·7=-17.∴异面直线A 1C 与AD 1所成角的余弦值为17.求直线与平面所成的角[典例] BAD=90°,PA ⊥底面ABCD ,且PA =AD =AB =2BC ,M ,N 分别为PC ,PB 的中点.(1)求证:PB ⊥DM ;(2)求BD 与平面 ADMN 所成的角.[解] 如图,以点A 为坐标原点建立空间直角坐标系,设BC =1,则A (0,0,0),P (0,0,2),B (2,0,0),D (0,2,0),C (2,1,0),M ⎝⎛⎭⎫1,12,1. (1)证明:PB ·DM =(2,0,-2)·⎝⎛⎭⎫1,-32,1=0,∴PB ⊥DM ,即PB ⊥DM .(2)∵PB ·AD =(2,0,-2)·(0,2,0)=0, ∴PB ⊥AD .又∵PB ⊥DM ,∴PB ⊥平面ADMN . 即PB 为平面ADMN 的一个法向量.因此〈PB ,DB 〉的余角即是BD 与平面ADMN 所成的角. ∵cos 〈PB ,DB 〉=PB ·DB | PB |·|DB |=422×22=12,∴〈PB ,DB 〉=π3,∴BD 与平面ADMN 所成的角为π6.求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB ; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB ||n |·|AB |.[活学活用]如图所示,在正方体ABCD -A 1B 1C 1D 1 中,E 是棱DD 1的中点. 求直线BE 和平面ABB 1A 1所成的角的正弦值.解:设正方体的棱长为1.如图所示,以AB ,AD ,AA 1为单位正交基底建立空间直角坐标系O -xyz .依题意,得B (1,0,0),E 0,1,12,A (0,0,0),D (0,1,0),所以BE =⎝⎛⎭⎫-1,1,12,AD =(0,1,0).在正方体ABCD -A 1B 1C 1D 1中,因为AD ⊥平面ABB 1A 1ABB 1A 1的一个法向量.设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ|BE ·AD |=132×1=23.故直线BE 和平面ABB 1A 1所成的角的正弦值为23.[典例] 如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD .(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.[解] (1)证明:因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD , 因为AC ∩BD =O ,所以O 1O ⊥底面ABCD .(2)因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形,AC ⊥BD .又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA =60°,所以OB =3,OC =1, 所以O (0,0,0),B 1(3,0,2),C 1(0,1,2), 平面BDD 1B 1的一个法向量为n =(0,1,0), 设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m m ⎩⎨⎧3x +2z =0,y +2z =0取z =-3,则x =2,y =23,所以m =(2,23,-3), 所以cos m ,n =m·n |m ||n |=2319=25719. 由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为25719. [一题多变]1.[变设问]本例条件不变,求二面角B -A 1C -D 的余弦值. 解:建立如图所示的空间直角坐标系.设棱长为2,则A1(0,-1,2),B (3,0,0),C (0,1,0),D ()-3,0,0.()-3,1,0(0,2,-2)(-3,-1,0).设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·A C 1=0,n 10,即⎩⎨⎧2y 1-2z 1=0,-3x 1+y 1=0,取x 1=3,则y 1=z 1=3, 故n 1=(3,3,3).设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·A C 1=0,n 20,即⎩⎨⎧2y 2-2z 2=0,-3x 2-y 2=0,取x 2=3,则y 2=z 2=-3, 故n 2=(3,-3,-3). 所以cos n 1,n 2=n 1·n 2|n 1||n 2|=-1521=-57. 由图形可知二面角B -A 1C -D 的大小为钝角, 所以二面角B -A 1C -D 的余弦值为-57.2.[变条件、变设问]本例四棱柱中,∠CBA =60°改为∠CBA =90°,设E ,F 分别是棱BC ,CD 的中点,求平面AB 1E 与平面AD 1F 所成锐二面角的余弦值.解:以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1,则A (0,0,0),B 1(1,0,1),E ⎝⎛⎭⎫1,12,0,D 1(0,1,1),F ⎝⎛⎭⎫12,1,0⎝⎛⎭⎫1,12,0(1,0,1)⎝⎛⎭⎫12,1,0,(0,1,1).设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ n 1·AB 1=0,n 10,即⎩⎪⎨⎪⎧x 1+z 1=0,x 1+12y 1=0,令y 1=2,则x 1=-1,z 1=1, 所以n 1=(-1,2,1).设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2). 则⎩⎪⎨⎪⎧ n 2·AD 1=0,n 2·AF =0,即⎩⎪⎨⎪⎧y 2+z 2=0,12x 2+y 2=0.令x 2=2,则y 2=-1,z 2=1. 所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为|n 1·n 2||n 1||n 2|=36×6=12.向量法求二面角(或其某个三角函数值)的四个步骤(1)建立适当的坐标系,写出相应点的坐标; (2)求出两个半平面的法向量n 1,n 2;(3)设二面角的平面角为θ,则|cos θ|=|cos n 1,n 2|;(4)根据图形判断θ为钝角还是锐角,从而求出θ(或其三角函数值).用空间向量求距离[典例] 四棱锥P -ABCD 中,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD =DA =2,F ,E 分别为AD ,PC 的中点.(1)求证:DE ∥平面PFB ; (2)求点E 到平面PFB 的距离.[解] (1)证明:以D 为原点, 建立如图所示的空间直角坐标系, 则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1).FP =(-1,0,2),FB =(1,2,0),DE =(0,1,1),∴DE =12FP +12FB ,∴DE ∥平面PFB . 又∵DE ⊄平面PFB , ∴DE ∥平面PFB . (2)∵DE ∥平面PFB ,∴点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·FB =0,n 0⇒⎩⎪⎨⎪⎧x +2y =0,-x +2z =0,令x =2,得y =-1,z =1.∴n =(2,-1,1)(-1,0,0), ∴点D 到平面PFB 的距离 d =26=63.∴点E 到平面PFB 的距离为63.求点到平面的距离的四步骤[活学活用]在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1B 1,CD 的中点,求点B 到平面AEC 1F 的距离.解:以D 为原点,建立如图所示的空间直角坐标系,则A (1,0,0),F ⎝⎛⎭⎫0,12,0,E ⎝⎛⎭⎫1,12,1,B (1,1,0).∴AE =⎝⎛⎭⎫0,12,1,AF =-1,12,0.设平面AEC 1F 的法向量为n =(1,λ,μ),则n 0,n 0.∴⎩⎨⎧12λ+μ=0,-1+12λ=0,∴⎩⎪⎨⎪⎧λ=2,μ=-1, ∴n =(1,2,-1).(0,1,0),∴点B 到平面AEC 1F 的距离d =26=63.层级一 学业水平达标1.已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为( )A .10B .3 C.83D.103解析:选D 点P 到平面α的距离d =|-2-4-4|4+4+1=103.2.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23 B.33C.23D.13解析:选A 建立如图所示的空间直角坐标系,设AA 1=2AB =2,则B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,2)(1,1,0)(0,1,2)=(0,1,0).设平面BDC1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB =0,n 0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2,所以平面BDC 1的一个法向量为n =(2,-2,1).设直线CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n |·DC |=23,故选A.3.在60°的二面角α-l -β的棱l 上有两点A ,B ,直线AC ,BD 分别在这个二面角的两个半平面内,AC ⊥l ,BD ⊥l ,若AB =4,AC =6,BD =8,则CD 的长为( )A .229B .217C .2 5D .241解析:选B 由已知,可得AC ⊥AB ,BD ⊥AB ,∵二面角的大小为60°,60°.,120°=2=2+2+2+···36+16+64+2×6×8×cos 120°=68.∴CD =68=217.4.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =2,DD 1=3,则AC 与BD 1所成角的余弦值为( )A .0 B.37070 C .-37070 D.7070解析:选A 建立如图坐标系,则D 1(0,0,3),B (2,2,0),A (2,0,0),C (0,2,0),(-2,-2,3),(-2,2,0).∴cos BD 1·AC=0.90°,其余弦值为0.5.正方形ABCD 所在平面外有一点P ,PA ⊥平面ABCD .若PA =AB ,则平面PAB 与平面PCD 所成的二面角的大小为( )A .30°B .45°C .60°D .90° 解析:选B 建系如图,设AB =1,则A (0,0,0),B (0,1,0), P (0,0,1),D (1,0,0),C (1,1,0). 平面PAB 的法向量为n 1=(1,0,0). 设平面PCD 的法向量n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧n 2·PD =0,n 20,得⎩⎪⎨⎪⎧x -z =0,y =0.令x =1,则z =1.∴n 2=(1,0,1), cos 〈n 1,n 2〉=12=22. ∴平面PAB 与平面PCD 所成的二面角的余弦值为22. ∴此角的大小为45°.6.直线l 的方向向量a =(-2,3,2),平面α的一个法向量n =(4,0,1),则直线l 与平面α所成角的正弦值为___________________________________________________________.解析:设直线l 与平面α所成的角是θ,a ,n 所成的角为β,sin θ=|cos β|=|(-2,3,2)·(4,0,1)|17×17=617.答案:6177.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和BB 1的中点,则sin________.解析:建立如图所示空间直角坐标系,设正方体棱长为2. 则C (0,2,0),M (2,0,1),D 1(0,0,2),N (2,2,1). (2,-2,1),(2,2,-1).cos 〉=4-4-13×3=-19.∴sin 〉=459.答案:4598.如图正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是平面A 1B 1C 1D 1的中心,则BO 与平面ABC 1D 1所成角的正弦值为________.解析:建立空间直角坐标系如图,则B (1,1,0),O ⎝⎛⎭⎫12,12,1,(1,0,1)是平面ABC 1D1的一个法向量.⎝⎛⎭⎫12,12,-1, ∴BO 与平面ABC 1D 1所成角的正弦值为 |OB ·DA 1|=1262×2=36. 答案:369.如图,在四棱锥PABCD 中,AB ⊥PA ,AB ∥CD ,且PB =BC =BD =6,CD =2AB =22,∠PAD =120°.(1)求证:平面PAD ⊥平面PCD ;(2)求直线PD 与平面PBC 所成的角的正弦值. 解:(1)证明:取CD 的中点E ,连接BE . ∵BC =BD ,E 为CD 中点,∴BE ⊥CD , 又∵AB ∥CD ,AB =12CD =DE ,∴四边形ABED 是矩形,∴AB ⊥AD ,又AB ⊥PA ,PA ⊂平面PAD ,AD ⊂平面PAD ,PA ∩AD =A ,∴AB ⊥平面PAD . ∵AB ∥CD ,∴CD ⊥平面PAD , 又CD ⊂平面PCD , ∴平面PAD ⊥平面PCD .(2)以A 为原点,AB 为x 轴,AD 为y 轴,以平面ABCD 过点A 的垂线为z 轴建立空间直角坐标系Axyz ,如图所示:∵PB =BD =6,AB =2,AB ⊥PA ,AB ⊥AD , ∴PA =AD =2.∴P (0,-1,3),D (0,2,0),B (2,0,0),C (22,2,0),(0,3,-3)(-2,-1,3)(2,2,0).设平面PBC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·0,n ·0.∴⎩⎨⎧2x +2y =0,-2x -y +3z =0,取x =2,得n =⎝⎛⎭⎫2,-1,33,∴cos 〈n ·=-4103·23=-105.∴直线PD 与平面PBC 所成的角的正弦值为105.10.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面PAC ; (2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离. 解:(1)证明:∵PA ⊥底面ABCD ,BC ⊂平面ABCD , ∴PA ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又PA ∩AC =A , ∴BC ⊥平面PAC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又PA ⊥底面ABCD ,∴PA ⊥AE ,PA ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C32,12,0, D32,-12,0,B (0,2,0),⎝⎛⎭⎫32,12,-h(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·PC =0,n 10,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32. 由(1)知平面PAC =32,-32,0, ∴|cos n 1BC|=32h h 2+34×3=55, 解得h =3,同理可求得平面PBC的一个法向量n 2=(3,3,2), 所以,点A 到平面PBC 的距离为 d 2=234=32. 层级二 应试能力达标1.如图所示,已知四棱锥P -ABCD 中,底面ABCD 是菱形,且PA ⊥平面ABCD ,PA =AD =AC ,点F 为PC 的中点,则二面角C -BF -D 的正切值为( )A.36 B.34C.33D.233解析:选D 如图所示,设AC 与BD 交于O ,连接OF .以O 为坐标原点,OB ,OC ,OF 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .设PA =AD =AC =1,则BD =3, 所以O (0,0,0),B⎝⎛⎭⎫32,0,0,F ⎝⎛⎭⎫0,0,12,C ⎝⎛⎭⎫0,12,0⎝⎛⎭⎫0,12,0,易平面BDF 的一个法向量,⎝⎛⎭⎫-32,12,0⎝⎛⎭⎫32,0,-12,可得平面BCF 的一个法向量为n =(1,3,3).所以cos n OC =217,sinn OC=277,所以tan n OC =233.2.在长方体ABCD -A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64 B.104 C.32 D.34解析:选A 建立如图的空间直角坐标系,可知∠CB 1C 1=60°,∠DC 1D 1=45°,设B 1C 1=1,CC 1=3=DD 1.∴C 1D 1=3,则有B 1(3,0,0),C (3,1,3),C 1(3,1,0),D (0,1,3).(0,1,3)(-3,0,3).∴cos B C 1·C D1=326=64.3.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA ,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216 B.833 C.21060 D.21030解析:选D 不妨设AB =BC =12PA =2,∵OP ⊥底面ABC ,∴PO =14.根据题意,以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立空间直角坐标系B -xyz ,如图所示.则A (2,0,0),B (0,0,0),C (0,2,0),P (1,1,14). ∵点O ,D 分别是AC ,PC 的中点,⎝⎛⎭⎫-12,12,142.(0,2,0)(1,1,14),设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC =0,n 0,即⎩⎨⎧y =0,x +y +14z =0,取n =(-14,0,1),∴cos n OD ·OD =21030,∴sin θ=21030(θ为OD 与平面PBC 所成的角),故选D.4.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63解析:选D 不妨设正方体的棱长为1,如图建立空间直角坐标系,则D (0,0,0),B (1,1,0),B 1(1,1,1).平面ACD 1(1,1,1),(0,0,1),∴cosDB 1·BB 1=13×1=33.∴BB 1与平面ACD 1所成角的余弦值为1-⎝⎛⎭⎫332=63.5.如图,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成角的大小是________.解析:建立如图所示的空间直角坐标系,O 为BC 中点,设三棱柱的棱长为2a ,则点A (3a,0,0),B (0,a,0),B 1(0,a,2a ),M (0,-a ,a ),(-3a ,a,2a )(0,-2a ,a ),0,因此异面直线AB 1与BM 所成的角为90°.答案:90°6.正三角形ABC 与正三角形BCD 所在的平面互相垂直,则直线CD 与平面ABD 所成角的正弦值为________.解析:取BC 的中点O ,连接AO ,DO ,建立如图所示的空间直角坐标系O -xyz .设BC =1,则A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0,C ⎝⎛⎭⎫0,12,0,D 32,0,0,所以BA =⎝⎛⎭⎫0,12,32, ⎝⎛⎭⎫32,12,0⎝⎛⎭⎫32,-12,0.设平面ABD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BA =0,n 0,所以⎩⎨⎧12y +32z =0,32x +12y =0,取x =1,则y =-3,z =1,所以n =(1,-3,1), 所以cos n =32+325×1=155,因此直线CD 与平面ABD 所成角的正弦值为155. 答案:1557.如图,四边形ABCD 中,△BCD 为正三角形,AD =AB =2,BD =23,AC 与BD 交于O 点,将△ACD 沿边AC 折起,使D 点至P 点,已知PO 与平面ABCD 所成的角为θ,且P 点在平面ABCD 内的射影落在△ACD 内.(1)求证:AC ⊥平面PBD ; (2)若已知二面角APBD 的余弦值为217,求θ的大小. 解:(1)证明:由题意,O 为BD 的中点,则AC ⊥BD , 又AC ⊥PO ,BD ∩PO =O , 所以AC ⊥平面PBD .(2)以OB 为x 轴,OC 为y 轴,过O 垂直于平面ABC 向上的直线为z 轴建立如图所示空间直角坐标系,则A (0,-1,0),B (3,0,0),P (-3cos θ,0,3sin θ),(3,1,0)(-3cos θ,1,3sin θ),平面PBD 的法向量为j =(0,1,0), 设平面ABP 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧nn得⎩⎨⎧3x +y =0,-3x cos θ+y +3z sin θ=0. 令x =1,得n =⎝⎛⎭⎫1,-3,cos θ+1sin θ.∴cos 〈n ,j 〉=|n ·j ||n ||j |=34+(cos θ+1)2sin 2θ=217,∴(cos θ+1)2sin 2θ=3,化简得cos θ=12, 又θ∈⎝⎛⎭⎫0,π2,∴θ=π3. 8.如图所示,四边形ABCD 为直角梯形,AB ∥CD ,AB ⊥BC ,△ABE 为等边三角形,且平面ABCD ⊥平面ABE ,AB =2CD =2BC =2,P 为CE 的中点.(1)求证:AB ⊥DE ;(2)求平面ADE 与平面BCE 所成锐二面角的余弦值;(3)在△ABE 内是否存在一点Q ,使PQ ⊥平面CDE ?如果存在,求出PQ 的长;如果不存在,请说明理由.解:(1)证明:如图,取AB 的中点O ,连接OD ,OE . 因为△ABE 是等边三角形,所以AB ⊥OE .因为四边形ABCD 是直角梯形,CD =12AB ,AB ∥CD ,所以四边形OBCD 是平行四边形,OD ∥BC . 又AB ⊥BC ,所以AB ⊥OD . 又OE ∩OD =O , 所以AB ⊥平面ODE . 又DE ⊂平面ODE , 所以AB ⊥DE .(2)因为平面ABCD ⊥平面ABE , AB ⊥OE ,所以OE ⊥平面ABCD . 又OD ⊂平面ABCD , 所以OE ⊥OD .如图所示,以O 为坐标原点建立空间直角坐标系.则A (1,0,0),B (-1,0,0),D (0,0,1),C (-1,0,1),E (0,3,0),(-1,0,1)=(0, 3,-1),设平面ADE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·DE =0,n 10,即⎩⎨⎧3y 1-z 1=0,-x 1+z 1=0,令z 1=1,则x 1=1,y 1=33,所以n 1=⎝⎛⎭⎫1,33,1. 同理求得平面BCE 的法向量为n 2=(-3,1,0). 设平面ADE 与平面BCE 所成的锐二面角为θ, 则cos θ=|n 1·n 2||n 1||n 2|=77.所以平面ADE 与平面BCE 所成锐二面角的余弦值为77. (3)假设在△ABE 内存在满足题意的点Q ,设Q (x 2,y 2,0).因为P ⎝⎛⎭⎫-12,32,12,⎝⎛⎭⎫x 2+12,y 2-32,-12.(1,0,0)(0,3,-1),依题意⎩⎪PQ ·CD =00,即⎩⎨⎧x 2+12=0,3×⎝⎛⎭⎫y 2-32+12=0,解得x2=-12,y 2=33,则点Q 在△ABE 内.所以存在点Q ⎝⎛⎭⎫-12,33,0,使PQ ⊥平面CDE ,此时PQ =33.(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设空间向量a =(1,2,1),b =(2,2,3),则a ·b =( ) A .(2,4,3) B .(3,4,4) C .9D .-5解析:选C ∵a =(1,2,1),b =(2,2,3), ∴a ·b =1×2+2×2+1×3=9.2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m 等于( )A .1B .2 C.12D .3解析:选B 若l 1⊥l 2,则a ⊥b ,∴a ·b =0, ∴1×(-2)+2×3+(-2m )=0,解得m =2.3.已知向量i ,j ,k 是一组单位正交向量,m =8j +3k ,n =-i +5j -4k ,则m ·n =( ) A .7 B .-20 C .28D .11解析:选C 因为m =(0,8,3),n =(-1,5,-4),所以m ·n =0+40-12=28. 4.已知二面角αl β的大小为π3,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A.π6B.π3C.π2D.2π3解析:选B 设m ,n 的方向向量分别为m ,n . 由m ⊥α,n ⊥β知m ,n 分别是平面α,β的法向量. ∵|cos 〈m ,n 〉|=cos π3=12,∴〈m ,n 〉=π3或2π3.但由于两异面直线所成的角的范围为⎝⎛⎦⎤0,π2, 故异面直线m ,n 所成的角为π3.5.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1)在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0) C.⎝⎛⎭⎫-12,12,0D.⎝⎛⎭⎫12,-12,0解析:选C (-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,∴H ⎝⎛⎭⎫-12,12,0.6.如图,三棱锥SABC 中,棱SA ,SB ,SC 两两垂直,且SA =SB =SC ,则二面角ABCS 大小的正切值为( )A .1 B.22C. 2D .2解析:选C ∵三棱锥SABC 中,棱SA ,SB ,SC 两两垂直,且SA =SB =SC ,∴SA ⊥平面SBC ,且AB =AC =SA 2+SB 2,取BC 的中点D ,连接SD ,AD ,则SD ⊥BC ,AD ⊥BC ,则∠ADS 是二面角ABCS 的平面角,设SA =SB =SC =1,则SD =22,则tan ∠ADS =SA SD =122=2,故选C. 7.在空间直角坐标系Oxyz 中,i ,j ,k 分别是x 轴、y 轴、z 轴的方向向量,设a 为非零向量,且〈a ,i 〉=45°,〈a ,j 〉=60°,则〈a ,k 〉=( )A .30°B .45°C .60°D .90°解析:选C 如图所示,设|a |=m (m >0),a PA ⊥平面xOy ,则在Rt △PBO 中,|PB |sin 〈a ,i 〉=22m , 在Rt △PCO 中,|OC |cos 〈a ,j 〉=m2,∴|AB |=m2,在Rt △PAB 中, |PA |=|PB |2-|AB |2 =24m 2-m 24=m 2, ∴|OD |=m2,在Rt △PDO 中,cos 〈a ,k 〉=|OD ||OP |=12,又0°≤〈a ,k 〉≤180°,∴〈a ,k 〉=60°. 8.如图,在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2,AB =BC =1,动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是( )A.23B.33C.23D.53解析:选C 建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),C 1(0,1,2).设点P 的坐标为(0,λ,2λ),λ∈[0,1],点Q 的坐标为(1-μ,μ,0),μ∈[0,1], PQ =(1-μ)2+(μ-λ)2+4λ2 =2μ2+5λ2-2λμ-2μ+1 =5⎝⎛⎭⎫λ-15μ2+95⎝⎛⎭⎫μ-592+49, 当且仅当λ=19,μ=59时,线段PQ 的长度取得最小值23.二、填空题(本大题共7小题,多空题每空3分,单空题每题4分,共36分) 9.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=14,若(a +b )·c =7,则a 与c 的夹角为________,|a |=________.解析:设向量a +b 与c 的夹角为α, 因为a +b =(-1,-2,-3),|a +b |=14, cos α=(a +b )·c |a +b ||c |=12,所以α=60°.因为向量a +b 与a 的方向相反,所以a 与c 的夹角为120°,|a |=12+22+32=14. 答案:120°1410.已知a =(3λ,6,λ+6),b =(λ+1,3,2λ)为两平行平面的法向量,则λ=________,a 的同向单位向量为________.解析:由题意知a ∥b ,∴3λλ+1=63=λ+62λ,解得λ=2.∴a =(6,6,8),|a |=234,∴a 的同向单位向量为a |a |=⎝⎛⎫33434,33434,23417.答案:2⎝⎛⎭⎫33434,33434,2341711.若a =(2,3,-1),b =(-2,1,3),则a -b =________.以a ,b 为邻边的平行四边形的面积为________.解析:a -b =(4,2,-4),cos 〈a ,b 〉=a ·b |a ||b |=-27,得sin 〈a ,b 〉=357,则S =|a ||b |sin〈a ,b 〉=6 5.答案:(4,2,-4) 6 512.在长方体ABCDA 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为________,三棱锥AA 1B 1D 1的体积为________.解析:建立如图所示的空间直角坐标系.则A (2,0,0),B 1(2,2,4),D 1(0,0,4),A 1(2,0,4),(0,2,4)(-2,0,4),(0,0,4).设平面AB 1D 1的法向量n =(x ,y ,z ),则⎩⎪n =0,n =0,即⎩⎪⎨⎪⎧2y +4z =0,-2x +4z =0, 令x =2,得n =(2,-2,1). 所以A 1到平面AB 1D 1的距离为d =|AA 1―→·n ||n |=43. VAA 1B 1D 1=13×12×2×2×4=83.答案:43 8313.三棱柱ABCA 1B 1C 1中,底面ABC 为正三角形,侧棱长等于底面边长,A 1在底面的射影是△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于________.解析:如图,设A 1在底面ABC 内的射影为O ,以O 为坐标原点,建立如图所示的空间直角坐标系.设△ABC 边长为1,则A⎝⎛⎭⎫33,0,0,B 1-32,12,63,错误!.又平面ABC 的法向量n =(0,0,1), 则AB 1与底面ABC 所成角α的正弦值为。

高中数学必修五全册课件PPT(全册)人教版

高中数学必修五全册课件PPT(全册)人教版
答:此船可以继续一直沿正北方向航行
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西

点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。

坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A

2024人教版高三数学必修5全册教学课件

2024人教版高三数学必修5全册教学课件
教学手段
运用多媒体技术、网络技术等现代教育技术手段 ,创设生动形象的数学教学情境,提高教学效果 和学生的学习效率。
02
基础知识回顾与拓展
数列概念及性质
01 数列定义
按照一定顺序排列的一列数。
02 数列的通项公式
表示数列第n项与n之间关系的公式。
03 数列的性质
包括周期性、有界性、单调性等。
等差数列及其求和公式
任意角的表示方法
终边相同的角的集合,象 限角的表示方法。
任意角的三角函数
1 2
任意角的三角函数定义
正弦、余弦、正切的定义及性质,各象限三角函 数的符号。
同角三角函数的基本关系
平方关系、商数关系、诱导公式及其应用。
3
三角函数的图象与性质
正弦函数、余弦函数的图象与性质,周期函数的 概念。
三角函数的图象与性质
等差数列定义
相邻两项之差为常数的数 列。
等差数列的求和公式
Sn=n/2*[2a1+(n-1)d], 其中Sn为前n项和。
等差数列的通项公式
an=a1+(n-1)d,其中a1 为首项,d为公差。
等比数列及其求和公式
等比数列定义
相邻两项之比为常数的数列。
等比数列的通项公式
an=a1*q^(n-1),其中a1为首项,q为公比。
对于离散型随机变量,期望表示其取值的平均水平,方差表示其取值 的波动程度。通过具体例子说明期望和方差的计算方法和意义。
07
总结回顾与备考建议
本册知识点总结回顾
集合与函数概念
包括集合的运算、函数的概念、 函数的性质等。
基本初等函数
包括指数函数、对数函数、幂函数 等的基本性质和图像。

高中数学 人教A版必修五全册电子教案(含课程纲要))

高中数学   人教A版必修五全册电子教案(含课程纲要))

无解(B=60°,b=5cm,c= cm) (2) 数列:更换等差、等比数列通项公式与求和公式推导方法, 更换个别问题背景。 (3) 不等式:更换基本不等式发现与证明的过程,直接利用 发 现、导出。 3、调序:三角形面积公式放在余弦定理之前,一元二次不等式教 学改为探究总结解法 应用举例。 4、删除:删除习题与复习参考题中超过学生能力的题目。 5、整合:三角形、数列、不等式建模整合复习;部分探究与发现 与课堂教学整合;“阅读与思考”与研究性学习整合。 6、教学体系重新构建(略)。 三、 实施过程 (一) 教学资源分析: 1、 教师资源:专业水平、团体力量、 2、 学情分析:大部分来自城市,具有一定的数学基础,知识结构 有待于进一步完善等。 3、 设备资源;校园网、计算机、投影、课件、几何模型、学生用 计算器等。 (二) 教学流程设计 1、 解三角形:从回顾三角形的边角关系入手,探索正弦定理和余 弦定理;通过解三角形训练,掌握正弦定理和余弦定理;通过对实际 问题的测量和几何计算,培养应用所学知识解决问题的能力。
第 7 页,共 10 页 郑州市第二中学
引导学生认识正、余弦定理是解决测量问题的一种方法,不必在恒等 变形上进行过于繁琐的训练。 2、 等差数列和等比数列教学中,要重视通过具体实例抽象出这两 种数列的特征, 使学生理解这两种数列类型的作用, 感受其广泛应用, 培养学生从实际问题中抽象出数列模型的能力。 3、 在数列中,应保证基本的训练,引导学生必要的练习,掌握数 列中各量之间的基本联系,体会化归与方程的思想方法。训练要控制 难度和复杂程度。 4、 不等式教学中, 应注意使学生了解一元二次不等式与二元一 次不等式的实际背景;通过举反例或推理论证,初步理解不等式的基 本性质,了解不等式与等式的区别与联系,通过几何意义、推理论证 及简单应用理解基本不等式 。 5、 应通过探索一元二次不等式、相应的方程和函数的关系,体会 函数、方程、不等式的关系,掌握一元二次不等式的图象解法,了解 代数解法,尝试设计求解一元二次不等式上午程序框图。 6、 应通过直观描述,理解画二元一次不等式所表示的平面区域的 基本原理和方法,体会线形规划的基本思想,并能借助几何直观解决 一些简单的线形规划问题。 7、 本学段教学中,要坚持由具体到抽象,由特殊到一般的原则, 重视引导学生对公式、 性质、 原理的理解, 通过适当的有针对性训练, 培养学生的推理运算能力。

高中数学必修5课件全册(人教A版)

高中数学必修5课件全册(人教A版)

数学必修⑤《数列》 单元总结复习
高中数学必修5课件全册(人教A版)
一、知识回顾
等差数列
等比数列
定义 通项 通项推广
an1an d
ana1(n1)d
anam(nm)d
an1an q
an a1qn1
an amqnm
中项 性质
求和 公式
an、Sn
关系式
A(ab)2
G2 ab
anamapaq anam2ap
时两船相距20海里.当甲船航行20分钟到达A2
处时,乙船航行到甲
船的北 北
偏西120°方向的B2处,
此时两船相距1 0 2 海里, 问乙船每小时航行
B2
多少海里?
B1
30 2
乙 高中数学必修5课件全册(人教A版)
120° A2

105° A1

例4 某渔船在航行中不幸遇险,发出呼救
信号.某海军舰艇在A处获悉后,立即测出该
由于 a1 0
易知 a10 0 a11 0 a12 0
∴n取10或11时Sn取最小高中值数学必修5课件全册(人教A版)
例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小? 分析: 等差数列{an}的通项an是关于n的一次式,前项和Sn
是关于n的二次式(缺常数项).求等差数列的前n项和 Sn 的最大最小值可用解决二次函数的最值问题的方法.
2
4 R
2 s in A
5.解三角形
已知一边两角或两边与对角:正弦定理
已知两边与夹角或三边:余弦定理
高中数学必修5课件全册(人教A版)
6.距离测量 一个不可到达点:测基线长和两个张角 两个不可到达点:测基线长和四个张角

高中数学人教A版三维设计浙江专版必修讲义第三章 一元二次不等式及其解法含答案

高中数学人教A版三维设计浙江专版必修讲义第三章 一元二次不等式及其解法含答案

判别式 Δ=b2-4ac
Δ>0
二次函数 y=ax2+bx +c(a>0)的图象
一元二次方程 ax2+ bx+c=0(a>0)的根
ax2+ bx+ c>0(a>0) 的解集 Δ= b2- 4ac ax2+ bx
有两相异实根 x1,x2(x1<x2)
Error!或 x>x2} {x|x1 < x < x2}
解含参数的一元二次不等式时的注意点 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.
[活学活用] 设 a∈R,解关于 x 的不等式 ax2+(1-2a)x-2>0. 解:(1)当 a=0 时, 不等式可化为 x-2>0,解得 x>2,即原不等式的解集为{x|x>2}.
5
1 (2)当 a≠0 时,方程 ax2+(1-2a)x-2=0 的两根分别为 2 和- .
a
1
1
①当 a<- 时,解不等式得- <x<2,即原不等式的解集为Error!;
2
a
1 ②当 a=- 时,不等式无解,即原不等式的解集为∅;
2
1
1
③当- <a<0 时,解不等式得 2<x<- ,即原不等式的解集为Error!;
4
[活学活用] 1.若不等式 f(x)=ax2-x-c>0 的解集为(-2,1),则函数 y=f(x)的图象为( )
解析:选 B 因为不等式的解集为(-2,1),所以 a<0,排除 C、D,又与坐标轴交点的 横坐标为-2,1,故选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设x,y满足条件 xx- +yy+ ≥50≥ ,0, x≤3.
求u=x2+y2的最大值与最
小值.
解:画出满足条件的可行域如图所示,x2+y2 =u(除原点)表示一组同心圆(圆心为原点O), 且对同一圆上的点x2+y2的值都相等,由图可 知:当(x,y)在可行域内取值时,当且仅当圆O过C点时,u最 大.取(0,0)时,u最小.又C(3,8),所以umax=73,umin=0.
(4)错误.线性规划问题不一定存在可行解,存在可行解也不一
定存在最优解,故该说法是错误的.
x+y≤1, 2.已知变量 x,y 满足约束条件x-y≤1,
x+1≥0,
则 z=x+2y 的最小
值为
()
A.3
B.1
C.-5
D.-6
解析:选 C 由约束条件作出可行域如图:
由 z=x+2y 得 y=-12x+2z,2z的几何意义为
解方程组x3- x+4y5+y-3= 250=,0, 得 A 点坐标为(5,2),
解方程组xx= -14, y+3=0,
得 B 点坐标为(1,1),
∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.
解线性规划问题的基本步骤 (1)画:画出线性约束条件所表示的可行域. (2)移:在线性目标函数所表示的一组平行线中,用平移 的方法找出与可行域有公共点且纵截距最大或最小的直线. (3)求:通过解方程组求出最优解. (4)答:根据所求得的最优解得出答案.
在线性约束条件下,求线性目标函数的最大值或 最小值问题
[点睛] (1)线性约束条件包括两点:一是变量 x,y 的不等 式(或等式),二是次数为 1.
(2)目标函数与线性目标函数的概念不同,线性目标函数在 变量 x,y 的次数上作了严格的限定:一次解析式,即目标函数 包括线性目标函数和非线性目标函数.
[活学活用] 1.若实数 x,y
满足不等式组xy--12≤≤00,,
x+2y-a≥0,
目标函数 t=x-
2y 的最大值为 2,则实数 a 的值是
()
A.0
B.1
C.2
D.3
解析:选C 作出满足条件的可行域(如图),由目
标函数t=x-2y,得直线y=
1 2
x-
1 2
t在点
2,a-2 2Leabharlann 处取得最大值,即tmax=2-2×a-2 2=4-a=2,得a=2,故选C.
目标函数 欲求最__大___值_或_最__小__值_所涉及的变量x,y的解析式
线性目标函数 关于x,y的二元一次解析式
可行解 可行域
满足_线__性__约__束__条__件_的解(x,y) 所有_可__行__解_组成的集合
最优解 使目标函数取得最__大__值__或最__小__值__的可行解
线性规划问题
3.3.2 简单的线性规划问题
预习课本 P87~91,思考并完成以下问题
(1)约束条件,目标函数,可行解,线性规划问题是如何定义的? (2)如何求解线性目标函数的最值问题?
[新知初探]
线性规划的有关概念
名称
意义
约束条件 变量x,y满足的一组条件 线性约束条件 由x,y的二__元__一__次__不等式(或方程)组成的不等式组
________. x+y-3≥0,
解析:由约束条件x-y-3≤0, y≤2,
则x+x y的取值范围是
作出可行域如图所示 ,所以xy即是可行域内的点与原点连线的
斜率,故可得xy∈[0,2],所以x+x y=1+1 xy∈13,1.
答案:13,1
求线性目标函数的最大(小)值 x-4y≤-3,
[典例] 设 z=2x+y,变量 x,y 满足条件3x+5y≤25, 求 x≥1,
2.已知实数x,y满足约束条件 x2- x-y≥y≤-2, 1, x+y≥1,
若目标函数z=
2x+ay仅在点(3,4)取得最小值,则a的取值范围是______. 解析:作出不等式对应的平面区域如图所示,
若a=0,则目标函数为z=2x,即此时函数在A(3,4)时取得最 大值,不满足条件.
当a≠0,由z=2x+ay得y=-2ax+az ,若a>0,目标函数斜
z 的最大值和最小值.
[解] 作出不等式组表示的平面区域,即可
行域,如图所示.把 z=2x+y 变形为 y=-2x+
z,则得到斜率为-2,在 y 轴上的截距为 z,且
随 z 变化的一组平行直线.由图可以看出,当直线 z=2x+y 经
过可行域上的点 A 时,截距 z 最大,经过点 B 时,截距 z 最小.
率-2a<0,
此时平移y=-
2 a
x+
z a
,得y=-
2 a
x+
z a
在点A(3,4)处的截距
最大,此时z取得最大值,不满足条件.
若a<0,目标函数斜率-
2a >0,要使目标函数y=-
2a x+
z a
仅在点A(3,4)处取得最小值,则-2a<kAB=1 ,∴a<-2.
答案:(-∞,-2)
求非线性目标函数的最值 题点一:距离型最值
直线在 y 轴上的截距,当直线 y=-12x+2z过 直线 x=-1 和 x-y=1 的交点 A(-1,-2)时,z 最小,最
小值为-5,故选 C.
3.已知实数 x,y 满足yy≤ ≥2|x,+1|, 若可行域内存在点使得 x+2y
-a=0 成立,则 a 的最大值为
()
A.-1
B.1
C.4
D.5
解析:选 D 作出不等式对应的可行域如图
所示,由 x+2y-a=0 可得 y=-12x+a2,平
移直线 y=-12x+a2,
当直线 y=-12x+a2经过点 A 时,直线 y=-12x+a2的截距最大,
此时 a 最大,由yy= =2x, +1, 解得xy==21,, 故 A(1,2),此时 a
的最大值是 a=x+2y=1+2×2=5.
4.已知实数 x,y 满足条件xx+ -yy- -33≥ ≤00, , y≤2,
(×)
解析:(1)错误.可行域是约束条件表示的平面区域,不一定是
封闭的.
(2)错误.在线性约束条件下,最优解可能有一个或多个,也可
能有无数个,也可能无最优解,故该说法错误.
(3)正确.满足线性约束条件的解称为可行解,但不一定是最优
解,只有使目标函数取得最大值或最小值的可行解,才是最优
解,所以最优解一定是可行解.
(3)可行解必须使约束条件成立,而可行域是所有的可行解 组成的一个集合.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)可行域是一个封闭的区域
(×)
(2)在线性约束条件下,最优解是唯一的 (3)最优解一定是可行解,但可行解不一定是最优解
(× ) (√ )
(4)线性规划问题一定存在最优解
相关文档
最新文档