Abaqus复合材料分析要点详解-kxh
abaqus复合材料
Abaqus:ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。
ABAQUS 包括一个丰富的、可模拟任意几何形状的单元库。
并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料。
功能:静态应力/位移分析:包括线性,材料和几何非线性,以及结构断裂分析等动态分析粘弹性/粘塑性响应分析:粘塑性材料结构的响应分析热传导分析:传导,辐射和对流的瞬态或稳态分析质量扩散分析:静水压力造成的质量扩散和渗流分析等耦合分析:热/力耦合,热/电耦合,压/电耦合,流/力耦合,声/力耦合等非线性动态应力/位移分析:可以模拟各种随时间变化的大位移、接触分析等瞬态温度/位移耦合分析:解决力学和热响应及其耦合问题准静态分析:应用显式积分方法求解静态和冲压等准静态问题退火成型过程分析:可以对材料退火热处理过程进行模拟海洋工程结构分析:对海洋工程的特殊载荷如流载荷、浮力、惯性力等进行模拟对海洋工程的特殊结构如锚链、管道、电缆等进行模拟对海洋工程的特殊的连接,如土壤/管柱连接、锚链/海床摩擦、管道/管道相对滑动等进行模拟水下冲击分析:对冲击载荷作用下的水下结构进行分析柔体多体动力学分析:对机构的运动情况进行分析,并和有限元功能结合进行结构和机械的耦合分析,并可以考虑机构运动中的接触和摩擦疲劳分析:根据结构和材料的受载情况统计进行生存力分析和疲劳寿命预估设计灵敏度分析:对结构参数进行灵敏度分析并据此进行结构的优化设计软件除具有上述常规和特殊的分析功能外,在材料模型,单元,载荷、约束及连接等方面也功能强大并各具特点:材料模型:定义了多种材料本构关系及失效准则模型,包括:弹性:线弹性,可以定义材料的模量、泊松比等弹性特性正交各向异性,具有多种典型失效理论,用于复合材料结构分析多孔结构弹性,用于模拟土壤和可挤压泡沫的弹性行为亚弹性,可以考虑应变对模量的影响超弹性,可以模拟橡胶类材料的大应变影响粘弹性,时域和频域的粘弹性材料模型塑性:金属塑性,符合Mises屈服准则的各向同性和遵循Hill准则的各向异性塑性模型铸铁塑性,拉伸为Rankine屈服准则,压缩为Mises屈服准则蠕变,考虑时间硬化和应变硬化定律的各向同性和各向异性蠕变模型扩展的Druker-Prager模型,适合于沙土等粒状材料的不相关流动的模拟Capped Drucker-Prager模型,适合于地质、隧道挖掘等领域Cam-Clay模型,适合于粘土类土壤材料的模拟Mohr-Coulomb模型,这种模型与Capped Druker-Prager 模型类似,但可以考虑不光滑小表面情况泡沫材料模型,可以模拟高度挤压材料,可应用于消费品包装、及车辆安全装置等领域混凝土材料模型,这种模型包含了混凝土弹塑性破坏理论渗透性材料模型,提供了依赖于孔隙比率、饱和度和流速的各向同性和各向异性材料的渗透性模型。
abaqus复合材料
abaqus复合材料
Abaqus是一种用于有限元分析的软件,可以用来进行复合材
料的分析和模拟。
复合材料是由两种或两种以上的材料组成的材料,具有比单一材料更好的性能和特性。
因此,在工程设计中,对复合材料的分析和模拟非常重要。
Abaqus可以对复合材料的力学特性进行研究和分析,包括应力、应变、刚度、强度等。
可以通过建立复合材料的宏观模型和微观模型来模拟复合材料的力学行为。
宏观模型可以通过宏观试验数据来建立,而微观模型可以通过模拟复合材料的微观结构来获得。
Abaqus提供了多种模拟复合材料的方法,包括纤维增强复合
材料、层合板、复合材料板、复合材料筋等。
可以通过定义材料的力学性能、纤维方向、层厚度等来模拟复合材料。
通过对模型进行加载和运算,可以得到复合材料在不同载荷下的应力应变分布、应力集中位置等。
Abaqus在复合材料的设计和分析中还提供了一些特殊的功能,如粘接接头和复合结构的分析。
粘接接头是将两个不同材料的部件连结在一起的方法,它可以通过Abaqus来模拟粘接接头
的强度和刚度,并进行设计优化。
复合结构是由多个复合材料部件组成的结构,可以通过Abaqus来分析复合结构的整体响
应和局部应力。
除了以上提到的功能外,Abaqus还提供了多种后处理工具和
结果图表,可以将分析结果输出为图形和表格,以便更好地理
解和展示复合材料的力学行为。
总之,Abaqus是一种功能强大的软件,特别适用于复合材料的分析和模拟。
它提供了多种模拟复合材料的方法和功能,可以帮助工程师和科研人员更好地理解复合材料的力学行为,优化设计和提高产品性能。
abaqus复合材料计算
abaqus复合材料计算Abaqus是一种广泛使用的有限元分析软件,可以用于复合材料的计算和分析。
复合材料是由两种或更多种不同材料组成的复合结构,具有优异的力学性能和轻质化特点。
在使用Abaqus进行复合材料计算时,可以从以下角度进行全面回答:1. 材料建模,在Abaqus中,复合材料可以通过定义材料属性来进行建模。
这包括定义基体材料和纤维材料的力学性质,如弹性模量、剪切模量、泊松比等。
此外,还需要定义纤维的方向和体积分数等参数。
2. 单元选择,Abaqus提供了多种适用于复合材料分析的单元类型,如二维平面应力单元、二维平面应变单元、三维固体单元等。
根据具体问题的复杂程度和准确性要求,选择合适的单元类型进行建模。
3. 界面建模,复合材料中的不同层之间存在界面效应,Abaqus可以通过定义界面元素来模拟这种效应。
界面元素可以用于模拟复合材料中的层间剪切应力传递和界面失效等现象。
4. 荷载施加,在复合材料计算中,需要考虑不同的荷载情况,如静态加载、动态加载、热加载等。
Abaqus可以通过施加节点力、面力或体力来模拟不同的加载条件。
5. 边界条件,为了模拟真实工程情况,需要为复合材料模型设置适当的边界条件。
这包括约束条件、位移边界条件等,以确保模型的可靠性和准确性。
6. 求解和后处理,在完成模型的建立和加载条件的设定后,可以使用Abaqus进行求解。
Abaqus使用有限元方法进行求解,可以得到复合材料在不同加载情况下的应力、应变、位移等结果。
此外,Abaqus还提供了强大的后处理功能,可以对结果进行可视化和分析。
综上所述,使用Abaqus进行复合材料计算需要进行材料建模、单元选择、界面建模、荷载施加、边界条件的设置,并进行求解和后处理。
通过这些步骤,可以获得复合材料的力学性能和响应情况,为工程设计和分析提供有价值的信息。
(整理)复合材料Abaqus仿真分析图文教程.
复合材料Abaqus仿真分析图文教程
本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。
一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。
各单层的材料相同,材料属性如下:
E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。
定义模型的几何形状
创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:
定义材料属性和局部材料方向
定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。
创建铺层
最后,指派材料方向到模型。
可以通过工具——查询来检查铺层
生成装配件、定义分析步和输出要求
定义分析步,保留各项默认值即可。
场输出要求和历史输出要求都按默认的输出方式。
规定边界条件和施加载荷
定义完边界条件和载荷后模型会有如下显示
划分网格和定义作业
定义单元类型S8R5
划分8X8结构性网格
定义作业并检查提交求解
在作业管理器中,当状态显示成功后点击“结果”可直接进入结果可视化模块。
后处理
查看各单层的Mises应力
整个层板的Mises应力图。
abaqus复合材料计算
abaqus复合材料计算Abaqus是一种常用的有限元分析软件,可以用于复合材料的计算和分析。
复合材料是由两种或两种以上不同材料组成的材料,具有优异的力学性能和特殊的工程应用。
下面我将从多个角度回答关于Abaqus复合材料计算的问题。
1. 复合材料的建模,在Abaqus中,复合材料可以通过将不同的材料属性和几何形状分配给不同的元素来进行建模。
可以使用不同类型的元素,如二维平面应力、平面应变、轴对称、三维等元素。
可以通过定义材料属性、层厚度、层堆叠顺序等来描述复合材料的几何形状和组成。
2. 材料属性的输入,Abaqus提供了多种材料模型和材料属性的输入方式,用于描述复合材料的力学行为。
可以选择线性弹性模型、非线性弹性模型或其他更复杂的材料模型。
可以输入弹性模量、剪切模量、泊松比、弯曲刚度、拉伸刚度等材料属性。
3. 边界条件的设置,在进行复合材料计算时,需要设置适当的边界条件来模拟实际工程中的加载情况。
可以设置固定边界条件、施加力或位移边界条件等。
边界条件的设置应该根据实际情况和分析目的进行合理选择。
4. 分析类型的选择,Abaqus提供了多种分析类型,如静力分析、动力分析、热分析等。
在进行复合材料计算时,需要根据具体的问题选择合适的分析类型。
例如,可以进行弯曲分析、层合板分析、冲击分析等。
5. 结果输出和后处理,Abaqus可以输出各种计算结果,如位移、应力、应变、应力应变曲线等。
可以使用Abaqus提供的后处理工具对结果进行可视化和分析。
可以绘制图表、动画、云图等,以便更好地理解和解释计算结果。
总结起来,Abaqus是一种功能强大的有限元分析软件,可以用于复合材料的计算和分析。
通过合理的建模、材料属性输入、边界条件设置、分析类型选择和结果输出与后处理,可以对复合材料的力学行为进行全面的研究和分析。
希望以上回答能够满足你的需求。
Abaqus的Python后处理详解-kxh
Abaqus中Python后处理详解By NUAAPh.D Kong Xianghong2013/04/23下图是Abaqus ODB文件的数据结构,后处理操作主要对以下两步分进行操作:1) 对场变量的读取路径:odb.setps[].frames[].fieldOutputs[]2) 对历史变量的读取路径:odb.setps[].historyRegions[].historyOutputs[]1 Abaqus ODB 文件数据结构2.1 创建3D实体Part创建截面为10×10mm,长度为20mm的拉伸体部件。
2.2 对3D实体Part划分单元模型建得比较小,划分单元也比较少,这样得到的odb文件也比较小,有助于更方便地了解odb文件的数据结构。
2.3 创建材料及截面2.4 给Part赋材料属性及创建装配实例2.5 创建分析步为了输出HistoryOutput,所以分析步的增了步设置了多步(10步)。
2.6 编辑场输出变量2.7 为历史输出变量创建Node Set2.8 编辑历史输出变量2.9 创建边界条件施加边界条件的Region为Set-1。
2.10 施加载荷2.11 创建Job在Job编辑对话框的Parallelization标签页中也可定义并行计算的核数。
2.12 在Abaqus/CAE中查看分析结果3.1 打开关闭odb文件的方法方法一:from odbAccess import *myodb=openOdb('D:/.../Job-1.odb')myodb.close()方法二:import odbAccessmyodb=session.openOdb('D:/.../Job-1.odb')myodb.close()方法三:import visualizationmyodb=visualization.openOdb('D:/.../Job-1.odb')myodb.close()3.2 使用prettyPrint()方法查看odb 数据结构(1)在Abaqus 命令行借口中输入如下四行Python 程序:>>> from odbAccess import *>>> from textRepr import *>>> myodb=openOdb('Job-1.odb')>>> prettyPrint(myodb,1) 程序运行结果如右图所示,prettyPrint()的第2个参数表示打印odb文件数据的级数,可以逐渐调大该参数,观察打印结果。
Abaqus复合材料
•
Copyright 2008 SIMILIA, Inc.
Virtual Crack Closure Technique (VCCT)
• VCCT • Has been used manually in the aerospace industry for many years • Based on Linear Elastic Fracture Mechanics (LEFM) concepts • Based on computing the energy release rates for normal and shear crack-tip deformation modes • Compare energy release rates to interlaminar fracture toughness
= 1 for B-K (2D shown): mixType
GIIC GIC + (GIIC − GIC ) G +G II I
m n
o
m
= 2 for Power law:
GI GII GIII + + G IC GIIC GIIIC
Solid Mesh
Copyright 2008 SIMILIA, Inc.
实体壳单元
• 实体壳单元是三维应力/位移单元,它的响应同壳类似,但是具有实体的拓扑 • 单元 – SC6R,SC8R • 属性定义 – *SHELL SECTION, COMPOSITE,STACKING DIRECTION={1|2|3|orientation} • 材料定义 – *ELASTIC, TYPE=ISOTROPIC, TYPE=LAMINA
Abaqus针对复合材料优势
四 Abaqus 在复合资料领域的优势4.1 复合资料介绍4.1.1 复合资料的应用复合资料有很多特征:1、制造工艺简单2、比强度高,比刚度大3、拥有灵巧的可设计性4、耐腐化,对疲惫不敏感5、热稳固性能、高温性能好因为复合资料的上述长处,在航空航天、汽车、船舶等领域,都有宽泛的应用。
复合资料的大批应用对剖析技术提出新的挑战。
4.1.2 复合资料的构造复合资料是一种起码由两种资料混淆而成的宏观资料,此中的一种资料被称作基体,其余的资料称作纤维。
此中纤维能够包含好多不一样的形式:失散的宏观粒子,随意方向的短纤维,规则摆列的纤维和织物。
4.1.3 典型的复合资料1)单向纤维层合板 ----冲击剖析2)编织复合资料 ---- 挤压剖析3)蜂窝夹心复合资料 ----不行见冲击损害剖析基体和纤维的存在形式以及资料属性关于复合资料的力学行为有着很大的影响。
改变纤维和基体的属性目的就是在于生成一种复合资料拥有以下性质:1)低成本:原型,大规模生产,零件归并,维修,技术成熟。
2)希望的重量:轻重量,比重分派合理。
3)改良的强度和刚度:高强度/高刚度比。
4)改良的表面属性:优秀的耐腐化性,表面抛光性好。
5)希望的热属性:较低的热传导性,热膨胀系数较低。
6)独到的电属性:拥有较高的绝缘强度,无磁性。
7)空间适应性:大零件,特别的几何构型。
4.1.4 复合资料的有限元模拟依据不一样的剖析目的,能够采纳不一样的复合资料模拟技术:1)微观模拟:将纤维和基体都分别模拟为可变形连续体。
2)宏观模拟:将复合资料模拟为一个正交各向异性体或是完整各向异性体。
3)混淆模拟:将复合资料模拟为一系列失散、可见的纤维层合板。
4)失散纤维模拟:采纳失散单元或是其余模拟工具进行模拟。
5)子模型模拟:关于研究增强纤维四周点的应力集中问题比较有效。
微观模拟:纤维 -基体的单胞模拟混淆模拟:层合板的混淆模拟Abaqus 中复合资料的单元技术Abaqus 中复合资料的单元技术主要为三种:分层壳单元、分层实体单元以及实体壳单元。
abaqus复合材料
abaqus复合材料复合材料不只是几种材料的混合物。
它具有普通材料所没有的一些特性。
它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。
复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。
复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。
它的性能与制造过程密切相关,但是制造过程很复杂。
由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。
在ABAQUS中,复合材料的分析方法如下1,造型它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。
复合材料被广泛使用,但是复合材料的建模是一个困难。
铺设复杂的结构光需要一个月2,材料使用薄片类型(层材料)建立材料参数。
材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。
这种材料仅使用平面应力问题。
ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义复合截面定义对每个区域使用相同的图层属性。
这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。
基于网格中定义的连续体的壳单元)ABAQUS复合材料分析方法介绍复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。
因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。
可以根据常规外壳的元素和属性进行定义。
传统的壳单元定义了每个层的厚度,并将其分配给二维模型。
应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。
提示:堆栈参考坐标系的定义(放置方向)和每个堆栈坐标系的定义(层方向)。
定义正确的层角度,层厚度和层顺序。
ABAQUS无法分析单层法线变化超过90度的情况,因此有必要定义多层。
坐标系可以任意定义。
abaqus复合材料
abaqus复合材料Abaqus复合材料。
Abaqus是一款强大的有限元分析软件,广泛应用于工程领域的结构分析、材料仿真等方面。
在复合材料领域,Abaqus更是被广泛使用,因为它能够准确地模拟复合材料的力学行为,为工程师提供重要的设计和优化信息。
复合材料是由两种或两种以上的材料组成的材料,具有轻质、高强度、耐腐蚀等特点,被广泛应用于航空航天、汽车、船舶、建筑等领域。
Abaqus在复合材料的分析中发挥着重要作用,下面将介绍Abaqus在复合材料分析中的应用。
首先,Abaqus可以准确地模拟复合材料的各向异性特性。
复合材料的各向异性是指材料在不同方向上具有不同的力学性能,这对于工程设计来说是非常重要的。
Abaqus可以通过定义合适的材料模型和参数来准确地描述复合材料的各向异性特性,从而为工程师提供可靠的仿真结果。
其次,Abaqus能够模拟复合材料的损伤和破坏行为。
复合材料在使用过程中会受到各种外部载荷的作用,可能会发生损伤和破坏。
Abaqus可以通过使用适当的本构模型和损伤模型来模拟复合材料的损伤和破坏行为,帮助工程师预测材料的寿命和安全性能。
此外,Abaqus还可以进行复合材料的结构优化设计。
复合材料的结构设计需要考虑材料的各向异性、损伤和破坏行为等因素,这对工程师来说是一个复杂的问题。
Abaqus可以通过结合有限元分析和优化算法,帮助工程师进行复合材料结构的优化设计,提高材料的性能和效率。
总之,Abaqus在复合材料分析中具有重要的应用价值。
它可以准确地模拟复合材料的各向异性特性,损伤和破坏行为,以及进行结构优化设计,为工程师提供重要的设计和优化信息。
相信随着Abaqus软件的不断发展和完善,它在复合材料领域的应用将会更加广泛,为工程设计和科研工作带来更多的便利和帮助。
ABAQUS复材稳定性分析操作说明
第7章 ABAQUS 复合材料平板稳定性7.3 复合材料平板稳定性计算复合材料具有比强度和比模量高、性能可设计和易于整体成形等诸多优异特性被广泛应用于航天、航空和航海等领域。
下面的以碳纤维树脂基复合材料的层压板为例介绍层压板的建模分析方法。
7.3.1 问题提出本例以层压板为例,600mm ×400mm 复合材料平板,四边简支,在一短边受100N/mm 压缩载荷作用下,进行平板稳定性分析。
板的铺层顺序为:[45/-45/90/0]s ,每层的厚度为0.125mm ,材料属性如表1所示。
表1 复合材料的材料参数表1E2E 3E 12υ 13υ 23υ 12G 13G 23G 144.7GPa 9.65GPa 9.65GPa 0.30 0.30 0.45 5.2GPa 5.2GPa 3.4GPa7.3.2 创建几何部件首先,打开【ABAQUS/CAE 】启动界面,在弹出的【Start Session 】对话框中单击【Create Model Database 】下的【With Standard/Explicit Model 】按钮,启动【ABAQUS/CAE 】。
进入【Part 】模块,单击【Create Part 】,进入如图1界面,选【Modeling Space :3D 】,类型Type: Deformable ,Base Feature: Shape: Shell ,Base Feature: Type: Planar ,Approximate size :1000(草图界面大小,根据所画草图的大小确定),单击【Continue 】按钮进入草图界面。
常按【Create Construction: Oblique Line Thru 2 Points 】弹出【Create Construction: Horizontal Line Thru Point 】单击,选中原点或在界面下方输入坐标“0,0”,建立水平横轴;继续常按【Create Construction: Horizontal Line Thru Point 】弹出【Create Construction: Vertical Line Thru Point 】,同理建立竖轴;单击【Add Constraint 】,弹出【Constraints 】界面单击其中【Fixed 】项,按住Shift 建,然后选中刚建立的横轴和竖轴,单击下方的【Done 】按钮完成对横轴和竖轴的约束。
abaqus第五讲:ABAQUS中的材料
Temperaturedependence
在高应力(和应变)情况下,金属开始具有非线性、非弹性的行为,称其为塑性。
弹塑性材料在拉伸实验中的名义应力-应变行为
在ABAQUS中定义塑性
当在ABAQUS中定义塑性数据时,必须采用真实应力和真实应变。ABAQUS需要这些值以便 正确地换算数据。 材料实验的数据常常是以名义应力和名义应变的值的形式给出。在这种情况下,必须应用下 面给出的公式将塑性材料的数据从名义应力/应变的值转换为真实应力/应变的值。 为了建立真实应变和名义应变之间的关系,首先将名义应变表示为:
● Johnson-Cook 塑性
非常适合于模拟具有高应变率变形的金属材料; 只能在/Explicit中应用;
在ABAQUS/CAE中定义材料塑性:Mises 塑性
linear elasticity
true stress and log strain
plastic strain at init发生改变。屈服面的改变是由硬化法则来定义的。 ABAQUS中提供了以下几种硬化法则:
●理想塑性 ●各向同性硬化法则
适用于碰撞分析、成型分析和一般的失效分析; 单调加载情况;
●运动硬化法则
适用于循环加载情况;只能在/Standard 中应用;
●混合的各向同性/运动硬化法则
ABAQUS所用的材料曲线
屈服面
ABAQUS中提供了Mises(针对各向同性材料)和Hill(针对各向异性材料)两种屈 服准则。 Mises屈服准则适用于金属在发生屈服时初始表现为各向同性的情况。
---可以应用于承受单调载荷的金属材料(例如,进行碰撞分析和成型模拟)。 Hill屈服准则适用于金属在发生屈服时初始表现为各向异性的情况。 ---Hill屈服准则假设各向异性并不会导致金属的塑性变形; ---只有在确保金属的塑性变形比较小(5%)的时候才能应用该屈服准则;
abaqus碳纤维复合材料结构
Abaqus碳纤维复合材料结构1. 概述碳纤维复合材料是一种具有优异性能的先进材料,它在航空航天、汽车工业、体育器材等领域得到了广泛应用。
在工程设计中,对碳纤维复合材料结构的性能和可靠性进行准确的评估至关重要。
Abaqus是一种常用的有限元分析软件,能够对复材结构进行准确的模拟和分析,因此对于碳纤维复合材料结构的研究至关重要。
2. 碳纤维复合材料的特点碳纤维复合材料由高强度的碳纤维和塑料基体组成,具有重量轻、强度高、刚性大、耐腐蚀、抗疲劳等优点。
然而,碳纤维复合材料的非均匀性和复杂的结构使得其性能表现和预测变得更加复杂。
需要借助有限元分析等方法进行深入研究。
3. Abaqus对碳纤维复合材料结构的模拟Abaqus作为有限元分析软件,具有强大的建模和分析能力,能够对碳纤维复合材料的结构进行准确的模拟。
通过Abaqus可以建立复材层合板、复材蜂窝结构、复材夹芯板等常见的复材结构模型,并进行受力性能、疲劳寿命、断裂行为等方面的分析和预测。
4. Abaqus在碳纤维复合材料结构中的应用Abaqus在碳纤维复合材料结构领域有着广泛的应用,例如在航空航天领域,可以利用Abaqus对飞机机翼、机身等结构的复材部件进行受力和疲劳寿命分析;在汽车工业领域,可以利用Abaqus对碳纤维复合材料车身、悬挂系统等部件进行强度和刚度分析;在体育器材制造领域,可以利用Abaqus对碳纤维复合材料网球拍、高尔夫球杆等产品的性能进行模拟和预测。
这些实际应用表明Abaqus在碳纤维复合材料结构研究中的重要性和价值。
5. Abaqus在碳纤维复合材料结构研究中的挑战和展望尽管Abaqus在碳纤维复合材料结构研究中取得了显著的成果,但仍然面临一些挑战,如对复材材料本身非线性、破坏行为、界面效应等方面的准确建模和模拟;另外,随着复材结构的复杂化和应用领域的拓展,需要Abaqus不断更新和完善其建模和分析能力,以满足不断增长的复材结构仿真需求。
abaqus复合材料
abaqus复合材料
第一天主要讲解如何使用Abaqus对不同类型复合材料结构进行基本建模分析,通过基础班的课程学习,学员能够掌握Abaqus复合材料结构建模分析的基本方法,包括复合材料壳单元、连续壳单元、实体单元建模,显式/隐式分析,静力学与动力学问题的求解等,能够掌握基本层压板、复杂层压板、加筋板、夹层板等多种复合材料结构的建模与分析。
课堂上针对常见的复合材料建模错误以及一些错误的认识都会做详细的介绍。
第二天主要讲解复合材料失效理论、面内渐进损伤分析、层间/界面渐进损伤分析等内容;通过第二天课程的学习,学员能够掌握Abaqus 初始损伤分析、面内渐进损伤分析、基于Cohesive内聚力模型的层间/界面渐进损伤分析、基于VCCT虚拟裂纹闭合技术的层间/界面裂纹扩展分析以及VUMAT子程序开发与应用等。
同时会讲解显式准静态分析方法及注意事项,另外还专门为培训学员准备了许多的复合材料辅助建模插件来提高建模效率。
第三天主要讲解多种复合材料子程序的开发、Puck失效理论子程序实现、材料非线性表征、率相关特定表征等方面的内容。
通过该课程学习,能够掌握复合材料UVARM子程序、USDFLD子程序、VUSDFLD 子程序、UMAT子程序、VUMAT子程序的开发,能够基于VUMAT子
程序进一步针对Puck失效理论、材料非线性、率相关性进行深入开发。
Abaqus用户子程序USDFLD实例详解-kxh
NUAA
NUAA--Kong Xianghong
Page � 4
2. Solution
2.3. Create MeshPart
NUAA
NUAA--Kong Xianghong
Page � 5
2. Solution
2.4. Create Solid Layers
NUAA
2.15. Create Datum & Assign Material Orientation
NUAA
创建Datum csys-1,原点为(0,0,0),X轴上的点为(1,0,0),X-Y平面上的点为(0,1,0)。
NUAA--Kong Xianghong
Page � 19
2. Solution
2.8. Create Step
NUAA
NUAA--Kong Xianghong
Page � 10
2. Solution
2.9. Create & Edit Field Output & History Output
NUAA
NUAA--Kong ng
Page � 11
2. Solution
NUAA--Kong Xianghong
Page � 22
2. Solution
2.17. Results & Visualization (3)
NUAA
NUAA--Kong Xianghong
Page � 23
2. Solution
2.17. Results & Visualization (4)
NUAA--Kong Xianghong
abaqus复合材料计算
abaqus复合材料计算【实用版】目录1.引言2.Abaqus 软件介绍3.复合材料概述4.Abaqus 复合材料计算方法5.复合材料计算应用案例6.总结正文1.引言随着科技的不断发展,复合材料在航空航天、汽车、新能源等领域的应用越来越广泛。
为了提高复合材料的性能和降低成本,研究人员需要对其进行深入的研究。
Abaqus 是一款广泛应用于材料力学分析和计算的软件,可以为研究人员提供强大的复合材料计算功能。
本文将介绍 Abaqus 软件及其在复合材料计算方面的应用。
2.Abaqus 软件介绍Abaqus 是一款法国达索系统公司开发的大型通用有限元分析软件,广泛应用于各种工程领域。
它提供了一个图形用户界面和一个脚本接口,用户可以通过这两种方式进行模型的创建、编辑和分析。
Abaqus 支持多种材料模型和求解器,可以解决从简单的线性问题到复杂的非线性、非均匀、瞬态和动力学问题。
3.复合材料概述复合材料是由两种或两种以上不同性质的材料通过一定的方式组合而成的新材料,它具有较好的综合性能。
复合材料的性能可以通过调整组成、结构和工艺来实现优化。
复合材料主要包括纤维增强复合材料、颗粒增强复合材料和纳米增强复合材料等。
4.Abaqus 复合材料计算方法Abaqus 提供了丰富的复合材料计算方法,包括:(1) 纤维增强复合材料:Abaqus 支持多种纤维增强复合材料的计算,如单层板、多层板、蜂窝结构等。
用户可以根据实际需求选择相应的模型进行计算。
(2) 颗粒增强复合材料:Abaqus 提供了颗粒增强复合材料的体积分数和形状分布控制功能,用户可以根据实际需求创建颗粒增强复合材料模型。
(3) 纳米增强复合材料:Abaqus 支持纳米增强复合材料的计算,可以模拟纳米颗粒在基体中的分布和作用。
5.复合材料计算应用案例Abaqus 在复合材料计算方面的应用案例非常丰富,以下举两个例子:(1) 飞机机翼的复合材料结构分析:通过 Abaqus 软件,研究人员可以对飞机机翼的复合材料结构进行静力学和动力学分析,以评估机翼在飞行过程中的性能和安全性。
abaqus复合材料建模材料参数
Abaqus复合材料建模材料参数一、引言本文档旨在介绍如何在A ba qu s中建立复合材料模型以及相应的材料参数设置。
复合材料是由两种或两种以上不同性质的材料按一定的方式组合而成,具有轻质、高强度、高模量等特点,在航空航天、汽车工程等领域得到广泛应用。
二、复合材料建模方法1.宏观模型在A ba qu s中,建立复合材料模型的一种常用方法是使用宏观模型。
该方法将复合材料视为等效各向同性材料,通过指定等效材料的弹性常数和热膨胀系数来描述其宏观性能。
2.细观模型对于复材的更精细模拟,可以采用细观模型。
细观模型考虑了材料内部的细观数值,常用的方法包括单元层模型和单元纤维模型。
三、复合材料模型参数设置1.宏观模型参数设置宏观模型中的材料参数包括弹性常数和热膨胀系数。
弹性常数包括Y o un g'sM od ul us(杨氏模量)、Sh ea rM o du lu s(剪切模量)和P o is so n'sR at io(泊松比)。
热膨胀系数描述了材料在温度变化时的尺寸变化情况。
2.细观模型参数设置在细观模型中,除了上述宏观模型参数外,还需要设置与材料内部细观数值相关的参数。
例如,单元层模型需要设定层间剪切刚度和层内剪切刚度,单元纤维模型需要设置纤维体积分数、纤维方向和纤维间隔等。
四、复合材料模型示例下面通过一个简单的示例来说明复合材料模型的建立和参数设置过程。
1.示例问题描述考虑一个平面应力状态下的复合材料层合板,包含两层材料:上层为碳纤维复合材料,下层为环氧树脂基复合材料。
2.宏观模型参数设置示例对于这个示例,我们可以使用宏观模型来建立模型。
假设上层和下层材料的弹性常数已知,分别为:上层材料:-Y ou ng's Mo du lu s:200G Pa-S he ar Mo du lu s:80G P a-P oi ss on's Ra ti o:0.2下层材料:-Y ou ng's Mo du lu s:50GP a-S he ar Mo du lu s:20G P a-P oi ss on's Ra ti o:0.3同时,我们需要给定材料的热膨胀系数,用于考虑温度变化对材料性能的影响。
abaqus复合材料的堆叠方向
一、概述随着工程材料科学的发展,复合材料作为一种新型材料得到了广泛的应用。
它具有重量轻、强度高、耐腐蚀等优点,因此在航空航天、汽车、船舶、建筑等领域得到了广泛的应用。
在abaqus有限元分析中,复合材料的堆叠方向对材料的性能有着重要的影响。
二、复合材料的堆叠方向1. 定义复合材料的堆叠方向是指复合材料中纤维的排列方向。
通常复合材料是由多个方向不同的纤维叠加而成,这些纤维的堆叠方向对材料的力学性能、传热性能、电磁性能等都有着重要的影响。
2. 堆叠方向的分类复合材料的堆叠方向通常可以分为单向堆叠、双向堆叠和多向堆叠三种。
- 单向堆叠单向堆叠是指所有的纤维都沿着同一个方向排列。
这种堆叠方式使得复合材料在这个方向上具有很高的强度,但在垂直于这个方向的力学性能较差。
- 双向堆叠双向堆叠是指复合材料中的纤维沿着两个方向排列。
这种堆叠方式可以使得复合材料在这两个方向上都有较高的强度,但是强度方向较多向堆叠要弱。
- 多向堆叠多向堆叠是指复合材料中的纤维沿着多个方向排列。
这种堆叠方式可以使得复合材料在多个方向上都有较高的强度,但在特定方向上的强度较单向堆叠要弱。
3. 堆叠方向的选择选择合适的堆叠方向可以使得复合材料在特定的应用场合有更好的性能。
- 在承受受拉力较大的部位,可以选择单向堆叠,以获得更高的拉伸强度。
- 在承受受压力较大的部位,可以选择双向堆叠,以获得更高的压缩强度。
- 在需要在多个方向上具有较高强度的部位,可以选择多向堆叠。
三、abaqus中的堆叠方向模拟在使用abaqus进行复合材料的有限元分析时,需要考虑材料的堆叠方向对模拟结果的影响。
1. 材料定义在abaqus中,需要在材料定义中指定复合材料的堆叠方向。
可以通过指定纤维角度、纤维取向等参数来定义复合材料的堆叠方向。
2. 模拟设置在进行有限元分析时,需要在模拟设置中考虑复合材料的堆叠方向。
可以通过定义材料的各向异性参数、指定材料的弹性模量、屈服强度等参数来考虑堆叠方向对模拟结果的影响。
Abaqus中的复合材料分析
Abaqus中的复合材料分析Abaqus提供了不同方式对复合结构进行建模的功能。
根据被建模的复合材料的类型,可用的材料数据,边界条件以及期望的结果,某种特定方法可能比其他方法更好。
什么是复合结构?复合材料是嵌入基质材料内的增强材料的宏观混合物。
复合结构由复合材料制成,并且可以具有许多形式,如单向纤维复合材料,织物或蜂窝结构。
Abaqus使用几种不同的方法来模拟复合结构1)微观:在这种方法中,基体和增强材料被建模为单独的可变形连续体2)宏观:在这种方法中,基体和增强材料被建模为整体可变形连续体。
当单个纤维的微观行为及其与基体的相互作用不太重要的时,可以使用这种方法。
3)混合建模:在该方法中,复合结构被建模为单一正交各向异性(或各向异性)材料。
当结构的整体行为比微观层面的行为更重要时,这一点很重要。
单个材料定义(通常是各向异性的)足以预测全局行为。
复合材料层压板的分析:复合层压材料由多层制成。
每层具有独自的厚度,并且每层中的增强纤维以不同方式对齐。
布置层以形成层压板的顺序称为叠层或堆叠顺序。
在Abaqus中对此进行建模的最简单方法是使用混合建模方法。
这将包括为每个层定义正交各向异性,厚度,纤维取向和堆叠顺序,这反过来又决定其结构行为。
通常,层压性能直接从实验或其他应用中获得。
这些性质可以是A,B,D基质的形式,其定义了层压材料的刚度。
在这种情况下,宏观方法可用于层压板的结构分析。
这种方法在本质上可以被认为是宏观的,因为在Abaqus部分定义中导出并使用等效的截面属性。
还可以认为它是一种混合建模方法,因为截面刚度是基于层板铺设得出的。
下面的示例显示了A,B,D矩阵是如何从可用的上层信息中派生出来的,并在Abaqus的General Shell Section定义中使用。
经典层压理论的假设:这里显示的层压复合材料的宏观建模方法基于经典层压理论(CLT)。
为了准确实现CLT,假设需要满足:·通过层压材料的厚度的位移分量是连续的,并且在层压材料的相邻层之间没有滑动。