心脏电生理基础知识

合集下载

心脏电生理基础知识

心脏电生理基础知识

心脏电生理检查及射频消融基本操作知识目前,射频消融术(RFCA)已成为心动过速的主要非药物治疗方法,因此相应的心脏电生理检查实际上是RFCA中的重要部分。

在此将心脏电生理检查和RFCA作为一个诊疗整体逐一描述其基本操作步骤。

病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA)一、基本操作需知病人选择及术前检查:2021 射频消融指南血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉心腔置管:HRA、CS、HBE、RVA、LA、PV、LV体表和心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abp电生理检查:刺激部位:RA、CS、LA、RV、LV刺激方法:S1S1、S1S2、S1S2S3、RS2↓消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓消融+消融方式:点消融、线消融能量控制:功率、温度、时间消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它二、血管穿刺术经皮血管穿刺是心脏介入诊疗手术的基本操作,而FCA则需要多部血管穿刺。

心动过速的类型或消融方式决定血管刺激的部位。

一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则是右房、右室和冠状静脉窦(窦状窦)置管的途径;股颈脉穿刺是左室和左房的置管途径。

例如房室结折返性心运过速的消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA和消融导管)和颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。

三、心腔内置管及同步记录心电信号根据电生理检查和RFCA需要,选择不同的穿刺途径放置心腔导管。

右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2和HRA3,4图形特点为高大A波,V波较小或不明显。

心脏的电生理学基础

心脏的电生理学基础

第一节心脏的电生理学基础(一)心肌细胞膜电位1、静息膜电位:细胞膜外正内负,维持-90mV(处于极化状态)K+顺浓度由膜内向膜外扩散达到的平衡电位,也有Na+少量内流;2、动作电位:兴奋时产生,有除极和复极两个过程(根据离子流动时间顺序的先后共分5个时相)0相:(除极期)Na+↓内流,膜内电位由静息状态时的-90MV,上升至20~30MV,构成上升支;1相:(快速复极初期)K+↑短暂外流,同时Cl-迅速内流,此时,Na+通道已失活关闭,主要是瞬时性K+外流;其中0相和1相构成动作电位的主电位。

2相(缓慢复极期平台期)Ca2+↓为主,同时少量Na+↓和K+↑,是这3种电流处于平衡状态的结果,故又称为2相平台期;3相:(快速复极末期)K+↑外流为主,Ca2+通道失活关闭,内向电流消失,而膜对K+的通透性又恢复正常,大量K+外流引起4相:(静息期)排出细胞内的Ca2+和Na+,摄回细胞外的K+。

Na+-K+泵完成Na+和K+的主动转运,但出3Na+,入2K+,是生电的(外向电流)。

Ca2+的外运与Na+顺浓度梯度内流耦联,称Na+-Ca2+交换,膜外3个Na+和膜内1个Ca2+交换,造成内向电流,使膜轻度除极;在Na+ -K+ -ATP酶作用下,心肌细胞泵出Na+,摄回K+,恢复RP的离子分布,为下一个AP的发生做好准备。

①非自律细胞,RP较稳定,膜电位维持在静息水平;②自律细胞,自律细胞的RP(4相)称为最大舒张电位。

而窦房结、房室结、浦肯野纤维等自律细胞在复极达到最大舒张电位后,因为Na+内流和K+外流衰减而发生舒张期自动除极,一旦达到阈电位可重新爆发新的AP,再次引起兴奋。

3.自律性自律细胞具有4相缓慢自动除极自律细胞包括:快反应细胞Na+内流自动除极;慢反应细胞Ca2+内流自动除极(二)快反应细胞:心房肌、心室肌、浦氏f特点:1.静息膜电位大负值较高,-80~-90mv2.除极速度快,传导速度快3.除极主要由Na+↓所致4.整个APD中有多种电流参与(钠通道阻滞药)P209 图22-2注:I Na钠电流;I Ca钙电流;I to 瞬时外相钾电流;I K延迟整流钾电流;I K1内向整流钾电流;I f 起博电流(三)慢反应细胞:窦房结、房室结特点:1.静息膜电位低(负值较低,-40~-70mv),2.除极速度慢,传导速度慢3.除极主要由Ca2+↓所致。

心脏电生理基础

心脏电生理基础

心脏电生理与泵血功能第一节、心脏的生物电活动(The electrical activity of heart)心脏(heart)的主要功能是泵血,舒张时静脉血液回流入心脏,收缩时心室将血液射出到动脉。

心脏的节律性收缩舒张是由于心肌细胞的自发性节律兴奋引起的。

胚胎早期的心脏发育过程中,在收缩成份尚未出现前,已经呈现出自发节律(自律)的电活动。

发育成熟后正常的心房心室有序的节律性收缩舒张,是由从窦房结(sinoatrial node,SAN)发出的自律性兴奋引起的。

因此,为了说明心脏自律性兴奋、收缩的发生原理,必须先了解心肌细胞的生物电活动规律。

心肌细胞(cardiac myocyte)分为两类:一类是构成心房和心室壁的普通心肌细胞,细胞内含有排列有序的丰富肌原纤维,具有兴奋性(excitability)、传导性(conductivity)和收缩性(contractility),执行收缩功能,称为工作心肌(working cardiac muscle);另一类是具有自动节律性(autorhythmicity)或起搏功能(pacemaker)的心肌细胞,在没有外来刺激的条件下,会自发地发出节律性兴奋冲动,它们也具有兴奋性和传导性,但是细胞内肌原纤维稀少且排列不规则,故收缩性很弱,这类细胞的主要功能是产生和传播兴奋,控制心脏活动的节律。

这一类细胞包括窦房结、房室交界区、房室束、左右束支和浦肯野纤维(Purkinje fiber),其自律性高低依次递减,合称为心脏的特殊传导系统。

正常心脏的自律性兴奋由窦房结发出,传播到右、左心房,然后经房室交界区、房室束、浦肯野纤维传播到左、右心室,引起心房、心室先后有序的节律性收缩。

这样,两类心肌细胞各司其职,相互配合,共同完成心脏的有效的泵血功能。

一、心肌细胞的电活动(The electrical activity of cardiac myocytes)心肌细胞膜内外存在着电位差,称为跨膜电位(transmembrane potential)。

心脏电生理基础

心脏电生理基础

心律失常即心脏节律的异常,临床分为心动过缓及心动过速二种类型。

前者包括窦性心动过缓、窦性停搏,窦房阻滞,各种逸搏,房室传导阻滞等。

快速性心律失常则包括各种早搏,室上性和室性心动过速,心房扑动、心房颤动,心室扑动,心室颤动等。

最严重的心律失常,如心室扑动、心室颤动,发生时心脏无法搏血常危及生命,被称为致命性心律失常,需要立即行直流电除颤,同时作好心肺复苏抢救工作。

近年有一种新的埋藏式自动复律除颤器问世,又称AICD,结构类似人工起搏装置,不仅能对缓慢性心律进行起搏治疗,而且当发生快速心律失常如室速、室颤时,又能自动感知放电,转复心律,是心脏病治疗的一大飞跃。

心律失常的病因很多,分为以下三类:①心脏本身的因素:最重要而常见的一种原因。

如风心病、冠心病、高血压性心脏病等器质性心脏病,合并心功能不全尤为多发。

②全身性因素:各种感染、中毒、电解质紊乱(高血钾症、低血钾症)、酸碱中毒、植物神经失调、以及药物影响。

③其它器官障碍的因素:心脏以外的其它器官,在发生功能性或器质性改变时也可诱发心律失常。

临床上最常见的心律失常有过早搏动、阵发性心动过速、心房纤颤和传导阻滞。

正常人在体力活动、情绪激动、吸咽、饮酒、喝茶、过食等情况下,可出现心动过速,在按压颈动脉窦、恶心呕吐等兴奋迷走神经时可引起心动过缓,这些都属于生理现象。

对于各种心律失常的正确诊断必须有赖于心电图检查,可通过动态心电图检查(24-48小时)、心电自录器等方法取得发作时的诊断记录。

-------------------------------------------------------------------------------- 心律失常的电生理基础一、心肌细胞的电活动:(一)静息电位:心肌细胞在安静状态下,细胞膜外带正电、膜内带负电,呈极化状态。

这种静息状态下膜内外的电位差,称为静息电位。

心室肌和浦氏纤维为-90毫伏,而窦房结为-60毫伏。

心脏的电生理学基础资料

心脏的电生理学基础资料

心脏的电生理学基础一、心肌细胞的分类心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用。

除此以外,还具有兴奋性、传导性而无自律性。

另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性。

无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成。

根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞。

快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞。

其动作电位0相除极由钠电流介导,速度快、振幅大。

快反应细胞的整个APD中有多种内向电流和外向电流参与。

慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小。

慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高。

有关两类细胞电生理特性的比较见表1。

表1 快反应细胞和慢反应细胞电生理特性的比较参数快反应细胞慢反应细胞静息电位-80~-95mV -40~-65mV0期去极化电流I Na I Ca0期除极最大速率200~700V/s 1~15V/s超射+20~+40mV -5~+20mV阈电位-60~-75mV -40~-60mV传导速度0.5~4.0m/s 0.02~0.05m/s兴奋性恢复时间3期复极后10~50ms 3期复极后100ms以上4期除极电流I f I k, I Ca, I f二、静息电位的形成静息电位(resting potential, RP)是指安静状态下肌细胞膜两侧的电位差,一般是外正内负。

利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值。

提纲-心脏电生理基础

提纲-心脏电生理基础
心心脏兴奋传导系统
心心肌细胞的类型
工工作细胞
心心房肌、心心室肌细胞——快反应细胞 特殊传导系统
窦房结、房室交界——慢反应细胞 房室束、左右束支支、浦肯野纤维——快反应细胞
8.4 心心电图
肢体导联 心心电向量量、心心电向量量环、肢体导连心心电图之间的相互关系 正常心心电图 加压导联及向量量的空间投影 前胸导联 十十二二导联系统
根据它们的组织学特点、电生生理理特性以及功能上的区别,可以粗略略地分为两大大类型, 两类心心肌细胞分别实现一一定的职能,互相配合,完成心心脏的整体活动。
工工作细胞:一一类是普通的心心肌细胞,包括心心房肌和心心室肌,含有丰富的肌原纤 维,执行行行收缩功能,故又又称为工工作细胞。工工作细胞不不能自自动地产生生节律律性兴 奋,即不不具有自自动节律律性;但它具有兴奋性,可以在外来刺刺激作用用下产生生兴 奋;也具有传导兴奋的能力力力,但是,与相应的特殊传导组织作比比较,传导性较 低。 自自律律细胞:另一一类是一一些特殊分化的心心肌细胞,组成心心脏的特殊传导系统;其 中主要包括P细胞和浦肯野细胞,它们除了了具有兴奋性和传导性之外,还具有自自 动产生生节律律性、兴奋的能力力力,故称为自自律律细胞,它们含肌原纤维甚小小或完全缺 乏,故收缩功能已基本丧失。还有一一种细胞位于特殊传导系统的结区,既不不具 有收缩功能,也没有自自律律性。只保留留了了很低的传导性,是传导系统中的非非自自律律 细胞,特殊传导系统是心心脏内发生生兴奋和传播兴奋的组织,起着控制心心脏节律律 性活动的作用用。 结构特征:
8. 心心脏电生生理理基础
8.1 生生物电现象的简要历史回顾
8.2 生生物电现象的形成机理理
心心机细胞动作电位(AP) 0相为快速去极 1相为快速复极初期 2相平台期为缓慢复极 3相为快速复极末期 4相为静息期

心脏电生理

心脏电生理
心脏的电信号传导系统由窦房结、心房、房室结、心室等 部分组成,它们协同工作以确保心脏有规律的收缩和泵血 。
心脏电生理的研究意义
心脏电生理的研究对于理解心脏功能、诊断和治疗心律失常等心脏疾病具有重要 意义。通过研究心脏电生理,医生可以更好地理解心律失常的机制,从而制定有 效的治疗方案。
心脏电生理学不仅对心脏病学和生理学领域有重要意义,还对药物研发和医学工 程等领域产生了深远影响。例如,对心脏电生理的研究有助于开发新的抗心律失 常药物或设计更有效的起搏器。
室性心动过速
是一种严重的室性心律失常,表现为 连续三个或以上的室性期前收缩,可 能导致心悸、气促、晕厥等症状,甚 至引发室性停搏和猝死。
心脏传导阻滞
窦房传导阻滞
是指窦房结发出的电信号无法正常传导至心房的现象,可能导致心房停搏和阿-斯综合征等严重后果 。
房室传导阻滞
是指心房的电信号无法正常传导至心室的现象,根据阻滞程度可分为一度、二度和三度房室传导阻滞 ,严重时可导致阿-斯综合征和猝死等严重后果。
心律失常的导管消融治疗是一种微创 的手术方式,通过导管将能量传递到 引起心律失常的病灶,从而消除异常 的电信号。
导管消融治疗需要在专业的心脏电生 理中心进行,由经验丰富的医生操作 ,确保治疗的安全性和有效性。
该治疗方法适用于多种心律失常疾病 ,如房颤、室性早搏等,治疗效果显 著,复发率较低。
人工心脏起搏器植入术
05
心脏电生理疾病的治疗
药物治疗
药物治疗是心脏电生理疾病常见的治疗方式之一,主要通过口服药物来控制病情。
常见的药物包括抗心律失常药物、抗凝药物、降脂药物等,这些药物能够改善症状 、降低并发症的发生率。
药物治疗需要遵循医生的指导,根据患者的具体情况制定个性化的治疗方案,并定 期进行评估和调整。

心脏基础电生理

心脏基础电生理
心电图表现: 1. 持续而显著的窦性心动过缓(<50次/分)
2. 窦性停搏和窦房阻滞 3. 窦房阻滞与房室传导阻滞并存 4. 心动过缓—心动过速综合征(慢-快综合征)
第十八页,共87页。
病态窦房结综合征
临床表现: 与心动过缓相关的心脑脏器供血不足的表现。
诊 断:
• 典型ECG表现
• 临床症状与心电图改变存在明确的相关性
第三十三页,共87页。
心房颤动
心电图:
1. P波消失,代之以小而不规则的f波; 2. 心室率极不规则; 3. QRS波形态正常或畸形(差传)。
第三十四页,共87页。
心房颤动
治 疗:
一、急性房颤:处理原发病和诱发因素、控制心室率并尽可 能转复窦律。
1. 明显血流动力学障碍:同步直流电复律。
2. 无血流动力学障碍:减慢心室率,随后复律 减慢心室率药物:洋地黄、β阻滞剂、胺碘酮、普 罗帕酮、维拉帕米等 复律:可同步电复律或药物(IA、IC、III类) 。
第三十二页,共87页。
心房颤动
病因: 阵发性:可见于正常人,在运动、手术后。
心肺疾患发生急性缺氧时, 持续性:多见于风心、冠心、高心、甲亢。
临床表现: 房颤的症状与心室率的快慢有关。
心室率慢时,可无症状 心室率快时可出现心绞痛与充血性心衰。
房颤病人体循环栓塞的危险较高。
体检:◆第一心音强弱不一; ◆ 心律绝对不整; ◆脉搏短绌。
II类 阻断β肾上腺素能受体,减慢动作电位上
升速率,抑制4相除极。
代表药:普萘洛尔、美托洛尔等 主要用于:室上性心律失常
第十二页,共87页。
抗心律失常药物分类
III类 延长动作电位时程
代表药:胺碘酮、溴苄铵

心脏基础电生理

心脏基础电生理
通常不需治疗。
第三十九页,共八十七页。
阵发性室上性心动过速
多为折返机制引起
分为 房室结折返性心动过速 房室折返性心动过速 房性心动过速
其中前二类占90%左右。
第四十页,共八十七页。
阵发性室上性心动过速
房室结折返性心动过速的发生机制:
第四十一页,共八十七页。
阵发性室上性心动过速
房室结折返性心动过速的心电图: 心率140-250次/分,节律整齐; QRS形态可正常或畸形 P波为逆行性〔Ⅱ、Ⅲ、aVF倒置〕,常见不到P波或逆行P波
2.有病症:安装心脏起搏器 3.慢-快综合症:
安装心脏起搏器后,应用抗快速心律失常药
第二十页,共八十七页。
房性心律失常
1. 房性早搏 2. 房性心动过速 3. 心房扑动
4. 心房颤抖
第二十一页,共八十七页。
房性期前收缩
病因:各种器质性心脏病或正常人
ECG: 提前出现的异常形态的P/波
P/波后QRS可正常或畸形〔室内差传〕,亦可P波后无QRS波 (房早未下传)
心房扑动
心电图: P波消失,代之以锯齿状扑动波〔F波〕,扑动波之间的等电
线消失。F波频率一般为250-350次/分;
心室率不规那么或规那么,取决于房室传导比例是否恒 定
QRS形态正常或畸形〔差传〕。
第三十一页,共八十七页。
心房扑动
治 疗:
原发病的治疗; 最有效、迅速终止房扑的方法为直流电复律
药物:
房性心动过速
自律性房性心动过速 心电图: P波形态与窦性不同 心房率通常为150-200次/分 发作开始时可有心率逐渐加速〔温醒现象〕 P波之间 的等电位线存在 可伴有房室传导阻滞
第二十五页,共八十七页。

心脏电生理基础知识

心脏电生理基础知识

心脏电生理检查及射频消融基本操作知识目前,射频消融术(RFCA)已成为心动过速得主要非药物治疗方法,因此相应得心脏电生理检查实际上就是RFCA中得重要部分。

在此将心脏电生理检查与RFCA作为一个诊疗整体逐一描述其基本操作步骤、病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长得为高位右房(HR),HIS束,冠状窦CS,与右室心尖(RV)与射频导管熟称“大头”常规投照体位位左前斜位(LAO) 右前斜位(RAO) 前后位(AP) 与后前位(PA)一、基本操作需知ﻫ病人选择及术前检查:2002射频消融指南ﻫ血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉ﻫ心腔置管:HRA、CS、HBE、RVA、LA、PV、LVﻫ体表与心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abpﻫ电生理检查:刺激部位:RA、CS、LA、RV、LV刺激方法:S1S1、S1S2、S1S2S3、RS2↓消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓消融+消融方式:点消融、线消融ﻫ能量控制:功率、温度、时间ﻫ消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它ﻫ二、血管穿刺术经皮血管穿刺就是心脏介入诊疗手术得基本操作,而FCA则需要多部血管穿刺。

心动过速得类型或消融方式决定血管刺激得部位。

一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则就是右房、右室与冠状静脉窦(窦状窦)置管得途径;股颈脉穿刺就是左室与左房得置管途径、例如房室结折返性心运过速得消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA与消融导管)与颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。

ﻫﻫ三、心腔内置管及同步记录心电信号ﻫ根据电生理检查与RFCA需要,选择不同得穿刺途径放置心腔导管。

右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2与HRA3,4图形特点为高大A波,V波较小或不明显、希氏束导管常用6F4极(极间距0。

医学课件心脏电生理基础

医学课件心脏电生理基础

心电生理基 础
心律失常的电生理机制
冲动形成异常
延迟后除极
发生于4相,基础是细胞Ca++浓度升高,
激活非选择性阳离子通道,Na+ 、K+内流(INa、K), 促进Na+ -Ca++交换,
3 Na+进入、1 Ca++外出形成内向电流
心电生理基 础
心律失常的电生理机制
冲动传导异常 干
扰 生理性 病理性
心电生理基 础
心脏起搏和传导系统
旁路 Kent和Mahaim束 RFCA实践中证实
心电生理基 础
心肌细胞电生理
心肌细胞膜内外离子分布特点 膜外 K+ Na+ ClCa++
心电生理基 础
膜内 5 145 120 2 K+ Na+ ClCa++ < 150 15 6 10
-4
心肌细胞电生理
心肌细胞膜生物学特性
1相 Ito电流
3相 K+外流
2相
4相
Ca++内流 K+外流
离子转运
心电生理基 础
心肌细胞电生理
慢反应电位细胞动作电位特点
最大舒张期电位负值:
-60∼-70mv(K通道数少)
0相上升速度慢,幅度小 1相不明显,无明显平台,
2、3相界限不清,复极是
Ca++内流减少,K+外流增加
4相自动除极,K外流衰减
阈电位水平
心电生理基 础
心律失常的电生理机制
冲动形成异常
正常心律:窦律、窦速、窦缓、窦性心律不齐 异位心律:异位节律 触发活动:膜电位震荡,或称后除极 • 早期后除极

心脏电生理学

心脏电生理学
干细胞来源的心肌细胞的电生理特性,为心脏疾病的细胞治疗提供依据。
心电信号的个性化治疗研究
总结词
个性化治疗是根据患者的个体差异制定治疗 方案的方法,通过心电信号的个性化治疗研 究,有望实现心脏疾病的精准治疗。
详细描述
心电信号是心脏功能的重要指标,通过心电 信号的个性化治疗研究,可以了解不同个体 心电信号的特点和差异。这将有助于根据患 者的具体情况制定个性化的治疗方案,提高 治疗效果。此外,心电信号的个性化治疗研 究还有助于发现新的治疗靶点和药物作用机
心电信号的干细胞治疗研究
总结词
干细胞治疗是一种新兴的治疗方法,通过心电信号的干细胞治疗研究,有望为心脏疾病 的治疗提供新的途径。
详细描述
干细胞治疗具有自我更新和多向分化的潜力,可以用于修复和再生受损的心肌组织。通 过心电信号的干细胞治疗研究,科学家们可以了解干细胞对心脏电生理特性的影响,优 化干细胞治疗的方案,提高治疗效果。此外,心电信号的干细胞治疗研究还有助于探索
窦性心动过缓
窦房结发放冲动的频率异常减慢,导 致心跳过慢。
房性心律失常
01
02
03
房性早搏
心房肌细胞提前发放冲动 ,引起心跳提前。
心房扑动
心房肌细胞发放冲动的频 率异常增加,导致心跳过 快。
心房颤动
心房肌细胞发放冲动的频 率异常减慢或紊乱,导致 心跳不规律。
室性心律失常
室性早搏
心室肌细胞提前发放冲动 ,引起心跳提前。
远程诊断能够提高医疗服务的效率和质量,降低医疗成本,缓解医疗资源紧张的问题。
05
心脏电生理疾病的治 疗
药物治疗
抗心律失常药物
用于治疗心律失常,如房颤、室 性早搏等,通过抑制心肌细胞的

心脏电生理学基础

心脏电生理学基础

表1-1心肌细胞膜内外两侧几种主要离子的浓度 ──────────────────────── 离子 细胞内液浓度(mmol/L) 细胞外液浓度(mmol/L) ───────────────────────── Na+ 30 140 K+ 140 4.0 Ca2+ 10~4 2.0 Cl- 30 104 ─────────────────────
静息电位的形成原理
由于细胞膜内外Na+、K+等离子分布的不均匀及膜对这些离子的通透性不同, 正常情况下膜外Na+多而K+少,膜内K+多而Na+少。 安静状态时膜对K+的通透性高,对Na+的通透性很低,对有机负离子(A-)的通透性最低,此时K+可自由的通透细胞膜而扩散,Na+则不易扩散,A-几乎不通透。K+便顺浓度差经K+通道向膜外侧净扩散,而膜内带负电的A-又不能随之扩散,因此随着K+的外移,就在膜的两侧产生了内负外正的电位差,称浓差电势。
一、心肌细胞的生物电现象
心肌细胞的生物电现象与神经细胞、骨骼肌细胞一样,表现为细胞膜内外两侧存在着电位差及电位差变化,称为跨膜电位(transmembrane potential),简称膜电位。细胞安静时的膜电位称静息电位,也称膜电位;细胞兴奋时产生的膜电位称动作电位,是细胞兴奋的标志。
图2-2 心室肌细胞的动作电位曲线与细胞内外离子运动的关系
(1)心电图 (2)动作电位曲线 (3)细胞内外离子运动 (4)离子通透性
2、心肌细胞动作位与离子流
1.除极(除极)化过程
又称“0”时相。 当心肌细胞受到外来刺激(在体内是来自窦房结产生并下传的兴奋)作用后,心室肌细胞的膜内电位由静息状态下-90mV迅速上升到+30mV左右,构成动作电位的升肢。 “0”时相除极化不仅是原有极化状态的消除,而且膜内外极性发生倒转,超过“0”电位的正电位部分称为超射。“0”时相占时1~2ms,幅度可达120mV。

心电图基础知识(共55张PPT)

心电图基础知识(共55张PPT)
与QRS波群主波方向相反。
2024/1/28
室性心动过速
连续3个或3个以上室性期前收 缩构成,心室率通常为100250次/分。
心室扑动
QRS波群与T波消失,代之以规 律的、振幅相等的正弦波,频 率约为200-250次/分。
心室颤动
QRS波群与T波完全消失,代之 以极不规则的室颤波,频率约 为250-500次/分。
8
QRS波群形态及意义
形态
时间
电压
意义
第一个向下的波称为Q波,第 一个向上的波称为R波,R波后 面的向下的波称为S波。QRS 波群后第一个向上的波称为J点 。
2024/1/28
正常成年人QRS时间多在 0.06-0.10秒之间,最宽不超过 0.12秒。
在肢体导联中,RV1<1.0mV ,RV5<2.5mV, RV5+SV1<4.0mV(男性)或 <3.5mV(女性)。在胸导联 中,V1的R波一般不超过 1.0mV。
窦性心动过速 窦性心动过缓 窦性心律不齐 窦性停搏
2024/1/28
心率超过100次/分,P波形态正 常,PR间期缩短。
同一导联上P-P间期差异>0.12s ,与呼吸运动有关。
12
房性心律失常
房性期前收缩
提前出现的P'波,形态与窦性P 波不同,PR间期>0.12s。
心房扑动
P波消失,代之以F波,即规律的 锯齿状扑动波,心房率通常为 250-300次/分。
低钙血症
减缓心肌细胞复极过程,可能 导致心电图出现QT间期延长
、T波增宽等异常表现。
2024/1/28
20
06
心电图在临床应用中的价值
Chapter

心脏电生理基础相关知识

心脏电生理基础相关知识

心脏电生理基础相关知识第一节心肌细胞的生物电现象一、心肌细胞的分类根据组织学和生理学特点,可将心肌细胞分为两类。

1、普通心肌细胞包括心房肌和心室肌细胞,含有丰富的肌原纤维,具有兴奋性、传导性和收缩性,但一般不具有自律性。

这类心肌细胞具有稳定的静息电位,主要执行收缩功能,故又称为工作细胞。

2、自律细胞是一类特殊分化的心肌细胞,主要包括P细胞和浦肯野细胞,组成心脏的特殊传导系统。

这类细胞除了具有兴奋性、传导性外,大多没有稳定的静息电位,但可自动产生节律性兴奋,控制整个心脏的节律性活动。

由于很少含或完全不含肌原纤维,基本不具有收缩功能。

二、心肌细胞的跨膜电位及其形成机制心肌细胞膜内外的离子浓度不同(见表1-1-1),安静状态下细胞膜对不同离子的通透性也不同,这是心肌细胞跨膜电位形成的主要离子基础。

1、静息电位人类心室肌细胞的静息电位为-90 mV,其形成机制与静息时细胞膜对不同离子的通透性和离子的跨膜浓度差有关。

在静息状态下心室肌细胞膜上的内向整流Ik1通道开放,其通透性远大于其他离子通道的同透性,因此,K+顺其浓度梯度由膜内向膜外扩散,造成膜内带负电,膜外带正电,从而形成了膜内外的电位差。

这种在静息状态下,心肌细胞膜内外的电位差就称为膜的静息电位。

此时,心肌细胞处于极化状态。

2、动作电位刺激心室肌细胞使其兴奋,膜内外的电位就会发生突然转变,膜内电位由负电位转变为正电位,而膜外则由正电位转变为负电位。

这种膜电位的变化称为动作电位。

通常将心室肌细胞动作电位分为0期、1期、2期、3期、4期五个时相(图1-1-1)。

(1)去极化过程。

心室肌细胞的去极化过程又称动作电位0期。

心室肌细胞在外来刺激作用下,首先引起部分电压门控式Na+通道(INa通道)开放和少量Na+内流,造成细胞膜部分去极化。

当膜电位由静息水平(膜内-90mV)去极化到阈电位水平(膜内-70mV)时,细胞膜上INa通道的开放概率明显增加,于是Na+顺其浓度梯度和电位梯度由膜外快速进入膜内,使细胞膜进一步去极化,膜内电位迅速上升到正电位(+30mV)。

心脏电生理学

心脏电生理学

心脏电生理学一、前言心脏电生理学是研究心脏电活动的学科,它包括了心脏的电生理特性、心律失常的机制、心脏起搏系统以及电生理药物等方面。

本文将从心脏电活动的基础知识、心律失常的分类和机制、起搏系统以及治疗方面进行详细介绍。

二、心脏电活动的基础知识1. 心肌细胞的类型心肌细胞分为工作性细胞和特殊性细胞两种。

工作性细胞主要负责产生收缩力,而特殊性细胞则主要负责传导冲动。

2. 心肌细胞动作电位心肌细胞在兴奋时会发生动作电位,它可以分为5个阶段:静息状态(0期)、快速上升期(1期)、平台期(2期)、快速下降期(3期)和恢复期(4期)。

3. 心肌细胞离子通道在不同阶段,离子通道对于离子的进出起到了至关重要的作用。

其中钠通道和钙通道主要参与快速上升期和平台期,而钾通道则主要参与快速下降期和恢复期。

三、心律失常的分类和机制1. 心律失常的分类心律失常可以分为房性、室性和房室交界性三种类型。

其中,房性和室性是最常见的两种类型。

2. 心律失常的机制不同类型的心律失常机制也不同。

例如,房性心律失常多数是由于窦房结自主节律受到干扰而引起的;而室性心律失常则多数是由于心肌细胞异常兴奋或传导障碍而引起的。

四、起搏系统1. 起搏系统的组成起搏系统包括窦房结、房室结、束支及其分支以及工作性细胞等。

2. 起搏系统的功能起搏系统主要负责产生冲动并传导冲动,使心脏在一定节奏下收缩。

3. 起搏系统的异常当起搏系统出现异常时,就会导致心脏节律紊乱。

例如窦房结功能不良时会出现窦房传导阻滞;而束支传导障碍则会导致室性心律失常。

五、心脏电生理药物1. 心脏电生理药物的分类心脏电生理药物可以分为抗心律失常药、β受体阻滞剂、钙通道阻滞剂和钾通道阻滞剂等。

2. 心脏电生理药物的作用机制不同类型的心脏电生理药物作用机制也不同。

例如,抗心律失常药主要是通过影响离子通道来抑制异常兴奋;而β受体阻滞剂则是通过减慢窦房结节律来治疗房性心律失常。

六、结语本文简单介绍了心脏电生理学的基础知识、心律失常的分类和机制、起搏系统以及治疗方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

心脏电生理检查及射频消融基本操作知识目前,射频消融术(RFCA)已成为心动过速的主要非药物治疗方法,因此相应的心脏电生理检查实际上是RFCA中的重要部分。

在此将心脏电生理检查和RFCA作为一个诊疗整体逐一描述其基本操作步骤。

病人需常规穿刺锁骨下静脉,股静脉,必要时穿动脉,常规放置心内电生理电极导管,最长的为高位右房(HR),HIS束,冠状窦CS,和右室心尖(RV)和射频导管熟称“大头”常规投照体位位左前斜位(LAO)右前斜位(RAO)前后位(AP)和后前位(PA)一、基本操作需知病人选择及术前检查:2002射频消融指南血管穿刺:股静脉、股动脉、颈内静脉、锁骨下静脉心腔置管:HRA、CS、HBE、RVA、LA、PV、LV体表和心脏内电图:HRA、CSd…CSp、HBEd…HBEp、RVA、PV、Abd、Abp电生理检查:刺激部位:RA、CS、LA、RV、LV刺激方法:S1S1、S1S2、S1S2S3、RS2↓消融靶点定位:激动顺序、起搏、靶标记录、拖带、特殊标测↓消融+消融方式:点消融、线消融能量控制:功率、温度、时间消融终点:电生理基础、心动过速诱发、异常途径阻滞、折返环离断、电隔离、其它二、血管穿刺术经皮血管穿刺是心脏介入诊疗手术的基本操作,而FCA则需要多部血管穿刺。

心动过速的类型或消融方式决定血管刺激的部位。

一般而言,静脉穿刺(右例或双侧)常用於右房、希氏束区、右室、左房及肺静脉置管;颈内静脉或锁骨下静脉穿刺则是右房、右室和冠状静脉窦(窦状窦)置管的途径;股颈脉穿刺是左室和左房的置管途径。

例如房室结折返性心运过速的消融治疗需常规穿刺股静脉(放置HRA、HBE、RVA和消融导管)和颈内或锁骨下静脉(放置CS导管);左侧旁道消融则需穿刺股动脉放置左室消融导管。

三、心腔内置管及同步记录心电信号根据电生理检查和RFCA需要,选择不同的穿刺途径放置心腔导管。

右房导管常用6F4极(极间距0.5~1cm)放置於右房上部,记录局部电图为HRA1,2和HRA3,4图形特点为高大A波,V波较小或不明显。

希氏束导管常用6F4极(极间距0.5~1cm)放置於三尖瓣膈瓣上缘,记录局部电图为HBE1,2和HBE3,4,HBE1,2的H波高大,HBE3,4的A/V≥1,H波清楚。

右房导管常用6F4极(极间距0.5~1cm),放置於右室尖部,局部电图为大V波,无A波。

冠状窦电极可用6F 4极(极间距1cm),但目前常用专用塑形的6F 10极(极间距2-8-2mm)导管,经股静脉、颈内静脉或锁骨下静脉插管易於进入CS,理想位置应将导管最近端电极放置在其口部(CSO),局部电图特点多数病人A>V,少数病人A<V。

左室导管常用7F 4极大头电极,主要同於标测消融,其部位取决於消融的靶点部位。

此外,左房房速、肺静脉肌袖房性心律失常和部分左侧旁道需经股静脉穿刺房间隔放置导管。

以上各部位的局部电图与体表心电图同步记录,心腔内局部电图的滤波范围为30~400Hz。

同步记录由上而下的顺序为体表心电图、HRA、HBE、CS、RVA和消融电极局部电图(Ab)。

部分特殊病例或置入特殊导管(如Hallo导管、laso导管等)需调整记录顺序。

四、心脏程控刺激心脏电生理检查中常选择高位右房和右室尖作为心房和心室的刺激部位,特殊情况下可选择心脏任一部位进行刺激。

程控刺激的主要目的在於评价心脏起搏和传导系统的电生理特征,诱发和终止心动过速。

刺激强度常选择1.5~2.0倍刺激阈(恰好夺获心房或心室的刺激强度)。

常规刺激方法为S1S1增频(递减周期)刺激和S1S2单早搏或多早搏(S1S2S3、S1S2S3S4)刺激。

五、药物试验用於心动过速诊断和评价的药物试验有Atropine、lsoprenaline(异丙肾上腺素)激发试验和ATP (腺苷)抑制试验。

主要用於消融消融前后以评价消融效果。

1.Atropnie试验:多用於PSVT病人,尤其是AVNRT基础电生理检查不能诱发心动过速者。

静脉注射0.02~0.04mg/kg后重复心脏程控刺激以促发心动过速或对比用药前后的电生理变化。

2.Lsoprenaline试验:多用於PSVT和室速病人。

用於促发心动过速和评价消融疗效。

0.5~1mg加入250ml液体内静脉滴注,以心率增加20~40%时心脏程控刺激。

3.ATP试验:用以抑制AVN传导以评价旁道和DAVNP消融效果。

AVNRT病人注射ATP(10~20mg)后可显示AH和PR突然延长以证实DAVNP,而慢径消融后注射ATP可证实消融效果。

旁道(尤其是间隔旁道)消融后在心室起搏心律下注射ATP可根据VA传导是否受抑制而判断室房传导途径是AVN或旁道。

宽QRS心动过速时注射ATP可根据AV或VA阻滞与否及与心动过速的关系确定心动过速的性质。

六、分析心电生理资料对心电生理资料的分析的目的是确定心动过速的性质和消融靶部位。

倒如PSVT病人,分析时应明确心动过速是AVNRT抑或是AVRT,然后确定消融慢径(AVNRT)或旁道(AVRT)。

1.心房程控刺激:分析房室传导和心动过速诱发的特点。

正常房室传导:递减传导性能,即随着S1S1间期或S1S2间期缩短,AH间期逐渐延长;房室旁道前传特点:房室传导间期恒定并伴有心室预激是;AVN双径的表现:随着S1S2间期缩短,AH间期跃增性延长,为AVNRT的电生理基础。

房性心动过速和室性心动过速:与房室传导没有关系。

折返有关:心房刺激、重复性诱发心动过速常提示与折返有关的室上性心动过速。

2.心室程控刺激:分析室房传导和心动过速的诱发特点。

正常室房传导具有递减传导性能:与前传一样,即随S1S1和S1S2间距缩短,VA间期逐渐延长;隐匿性旁道:室房传导间期恒定常提示旁道传导,伴心房激动顺序异常则旁道位於激离型,而心房激动顺序正常则提示旁道位於间隔部。

室房递减传导伴心房激动顺序异常则提示游离至慢旁道。

心室刺激不仅可诱发室性心动过速,也可诱发AVRT、AVNRT和房性心动过速。

与折返有关的心动过速,常有临界性的心室刺激间期。

3.分析心动过速的特点分析心动过速的心腔电图特点是确定心动过速性性质的主要方法。

(1)房室和室房关系:房速可共存不同比例的房室传导,AVNRT可共存2:1房室传导;AVRT仅为1:1房室传导;室性心动过速可共存室房分离。

(2)房波和室波关系:房速A波常位於V波前、AVNRT则A波常与V波重叠;AVRT的 A波常位於V之后;室性心动过速A波和V波无关,或A波位於V波之后。

(3)心房和心室激动顺序:房性心动过速的心房激动顺序取决於心动过速的部位,越邻近心动过速病灶则心房激动越早。

AVNRT和AVRT心房均为逆向传传激动,而AVNRT心房激动顺序类同正常室房传导,但A波重叠於V波以至难以分析。

AVRT为旁道逆传,其心房激动顺序取决旁道部位。

宽QRS 波心动过速时呈典型的左、右束支阻滞常提示PSVT伴功能性束支阻滞或特发性室速,QRS波呈完全性心室预激形多提示逆向型AVRT或房扑伴旁道前传。

(4)心房预激:对有1:1房室和/或室房关系的心动过速,心房预激现象是确定室房途径为旁道的可靠方法。

心动过速时以H波同步刺激心室,观察A波是否提前激动,即AAS间期是否缩短(>30ms)。

与H波同步刺激心室时,其逆传激动恰遇希氏束的不应期而不能逆传至心房,如引起心房激动则只能通过旁道逆传。

(5)对ATP的反应:心动过速时静脉注射ATP10~20mg,观察心动过速的房室或室房关系是确定心动过速性质的重要方法。

ATP常使AVRT、AVNRT及部分房速终止。

室速病人应用ATP后可出现室房分离,部分房速则出现房室阻滞。

七、确定消融的靶部位根据电生理检查确定心动过速性质后,选择心动过速的关键部位为消融的靶部位。

AVNRT和AVRT分别消融慢径和旁道,即慢径和旁道是靶部位。

房扑则以峡部为靶部位,与肺静脉肌袖有关的房性心律失常则应消融电隔离相关肺静脉口部。

与手术疤痕或梗死疤痕有关的心动过速应采用更复杂的标测消融该区域。

局灶性房速和室速,则直接消融心动过速的起源点。

八、消融能量控制—温控大头消融能量常以功率或温度控制。

有效损伤靶部位的能量常为20~50W×60~90秒,或50℃~60℃连续放电60~90秒。

目前越来越多的采用温度控制能量输出。

九、消融终点1.心动过速终止和不能诱发再诱发消融中心动过速终止和消融后心动过速不能诱发几乎是所有心动过速消融有效的指标之一,尤其是房速和室速。

2.靶部位传导阻滞消融后靶部位传导阻滞是消融有效的客观指标。

如AVNRT的慢径阻滞,AVRT的旁道阻断,房扑的狭部阻滞等。

3.电隔离消融造成局部(邻近心动过速灶)的电隔离是部分心动过速的治疗终点。

例如与静脉袖有关的房性心律失常,已往直接消融肺静脉不仅疗效低,复发率高,而且并发症较多,而“环状”电隔离相关肺静脉口部,即能达到安全有效消融的目的。

4.药物试验评价消融疗效的药物试验主要有异丙肾上腺素试验和ATP试验。

心脏电生理检查基础详细的EPS检查是射频消融手术成功的重要保证,尤其是对于刚刚开展射频消融术的心内科医生来说就更重要子,一步一步做,不去抢时间,只有这样才能保证心律失常诊断的准确性,并且最好至少放三根标测电极。

然而,由于国情的原因,为了替患者省钱,目前国内许多医生用二根电极就搞定(一根CS电极,一根HRA和RVA电极)了,甚至许多经验丰富的医生有时在单导管的情况下也可以解决一些显性旁道,当然,术后检测还是需要再加一根电极的。

对于刚开展的医生,我觉得最好还是用三根标测电极的好,有一条HIS电极,对于诊断及鉴别诊断帮助非常大,尤其是在不能确定是否是旁道还是房室结折返性心动过速时。

此外,对于CS电极,目前主要是四极的十极,其中十极的是专门的CS电极,十极的CS电极有它的优点,对于左侧旁道不能确定是游离壁还是间隔部的时候,十极的CS电极就比较好判断了,而四极的就较难判断,尤其是对初学者来说。

但是十极的CS电极也有它的缺点,它的前端比较软(减少损伤冠状窦静脉的机会),有时候放入冠状窦静脉比较困难,或者总是进入某一个分支静脉,位置过浅,从而导致误诊右侧旁道为左侧旁道,即使在经验丰富的电生理中心,仍然会出现这种情况,对于刚刚开展的医生来说就更加容易误诊。

而四极电极比较硬,有可能增加心包填塞的风险,但对于十极CS电极不能到位时,换用四极电极有时候常常到位比较理想。

导管的朔形也很重要,有的时候当电极或者导管不能到位时,而又没有其它可能选的替代品,或许你塑一下形,就到位了,当然这得需要丰富的电生理经验和对解剖的了解。

武器也很重要,如果仅有一种武器供你选择,有的时候忙活一整天都不一定成功,而换用一根型号不同的消融大头(蓝把头端更长,红把头端更短),往往有意想不到的效果,而这一点,在一般的医院就很难满足这种要求了,毕竟例数少,不可能有那么多的大头供你选。

相关文档
最新文档