分数应用题中的单位1问题的专项练习
小学奥数6-2-1 分数应用题(一).专项练习及答案解析
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
小学六年级分数应用题专项复习 (2)
分数应用题【解题步骤】一、正确的找单位“1〞是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1〞。
正确的找到单位“1〞是解答分数应用题的前提和首要任务。
分数应用题中的单位“1〞分两种形式出现:1、有明显标志的:〔1〕男生人数占全班人数的4/7 〔2〕杨树棵树是柳树的3/5〔3〕小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占〞“是〞“相当于〞“比〞后面,分率前面的量是此题中的单位“1〞。
2、无明显标志的:〔1〕一条路修了200米,还剩2/3没修。
这条路全长多少千米?〔2〕有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?〔3〕打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1〞没有明显标志,要根据问题和条件综合判断。
〔1〕中应把“一条路的总长〞看作单位“1〞〔2〕题中应把“200张纸〞看作单位“1〞〔3〕题中应把“5000个字〞看作单位“1〞。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量〔或分率〕和哪个分率〔或数量〕对应是解分数应用题的关键。
1、画线段图找对应关系。
〔1〕池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?〔2〕池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?〔3〕池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1〞的量=分率单位“1〞的量×分率=分率对应量分率对应量÷分率=单位“1〞的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
这桶水重多少千克?水的3/4 = 10三、根据数量关系式解答分数应用题“三步法〞掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1〞的量;2、找准对应关系3根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。
第一单元单位“1”转化问题专项练习(解析版)人教版
【答案】 吨
【分析】把大米的总质量看作单位“1”,第一周吃了它的 ,还剩下(1- ),第一周吃的大米质量=大米的总质量× ,第二周吃了剩下的 ,第二周吃的大米质量=大米的总质量×(1- )× ,分别求出第一周和第二周吃的大米质量,剩下大米的质量=大米的总质量-第一周吃的大米质量-第二周吃的大米质量-第三周吃的大米质量,据此解答。
【详解】39×(1- )×(1+ )
=39× ×
=36×
=38(摄氏度)
38>37
答:现在李明的体温是38摄氏度,他没有退烧。
【点睛】关键是确定单位“1”,理解分数乘法的意义。
16.百果园超市购进60千克香蕉,第一天卖出了 ,第二天卖出了余下的 ,第二天卖出多少千克?
【答案】24千克
【分析】先用60×(1- )求出余下的香蕉的重量,再用余下的重量乘 求出第二天卖出的重量即可。
还剩下全长的 。
故答案为:B
【点睛】关键是把第二次用了剩下的 ,转化成第二次用了全长的几分之几是解题的关键。
6.一瓶矿泉水,喝掉它的 后,再给瓶子里增加余下水的 ,现在瓶子里水的质量()原来一瓶矿泉水的质量。
A.等于B.大于C.小于D.无法比较
【答案】C
【分析】把原来矿泉水的质量看作单位“1”,喝掉它的 ,即喝掉了1× ;还剩下了这瓶矿泉水的(1-1× ),再给瓶子里增加余下水的 ,则此时瓶子里水的质量为(1-1× )+(1-1× )× ,最后再与1对比即可。
【详解】60×(1- )×
=60× ×
=24(千克)
答:第二天卖出24千克。
【点睛】本题重点考查分数乘法的应用,明确题目单位“1”发生了变化是解题的关键。
第三单元单位“1”转化问题“拓展型”专项练习(解析版)人教版
【答案】原来第一车间有170人,第二车间有250人
【分析】根据“第一车间的人数比第二车间人数的 少30人”,可知第二车间人数 第一车间人数;又“从第二车间调10人到第一车间,这时第一车间的人数是第二车间人数的 ”,可知第一车间人数 (第二车间人数 ;据此可设原来第二车间有 人,那么第一车间就有 人;进而列方程得解。
【答案】1080本
【分析】把四种图书的总本数看作单位“1”,故事书的本数占图书总本数的 ,连环画的本数占图书总本数的 ,科技书的本数占图书总本数的 ,用减法求出文艺书的本数占图书总本数的分率,最后根据“量÷对应的分率”求出四种图书的总本数,据此解答。
【详解】1-( + + )
=1-( + + )
=1-
x+6= (x+6+6)
x+6= (x+12)
x+6= x+4
x- x=6-4
x×12=2×12
x=24
答:这个商场原来有24名员工。
【点睛】关键是理解分数的意义,用方程解决问题的关键是找到等量关系。
9.12路公共汽车到达广场时,有 的乘客下车,又有11人上车,这时车上的乘客此下车前多了 ,下车前车上有乘客多少人?
【答案】42万方
【分析】方法一:把这堆石料的总方数设为未知数,用含有字母的式子表示出第一次和第二次运走的石料,等量关系式:这堆石料的总方数-第一次运走的方数-第二次运走的方数=剩下石料的方数;
方法二:运用逆推还原的方法解答,先把第一次运走之后剩下的方数看作单位“1”,(12+3)万方刚好占单位“1”的(1- ),根据量÷对应的分率=单位“1”求出第一次运走之后剩下的方数,再把这堆石料的总方数看作单位“1”,第一次运走之后剩下的方数减去2万方刚好占单位“1”的(1- ),根据量÷对应的分率=单位“1”求出这堆石料的总方数,据此解答。
小学六年级分数应用题专项复习1
小学六年级分数应用题专项复习1【解题步骤】一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
1、画线段图找对应关系。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
这桶水重多少千克?水的3/4 = 10三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。
小学五六年级单位1应用题专项练习
小学分数应用题(单位”1“)专题讲解一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)二、分数应用题的分类。
(三类)1这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是:2这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。
基本的数量3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基三、分数应用题的基本训练。
1、正确审题训练。
正确审题是正确解题的前提。
这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。
将省略式的分率句换说成比较详细的句子的能力。
2、画线段图的训练。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练。
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
如:一批货物,第一次运走总数的15,第二次运走总数的14,还剩下143吨。
(1)把货物的总重量看做是:单位“1”(2)第一次运走的占总重量的: (3)第二次运走的占总重量的:(4)两次共运走的占总重量的:(5)第一次比第二次少运走的占总重量的: (6)第一次运走后剩下的占总重量的: (7)第二次运走后剩下的占总重量的: (8)剩下143吨(数量)占总重量的:(分率) 4、转化分率训练。
在解较复杂的分数应用题时,常需要将间接分率转化为直接运用于解题的分率。
小学六年级分数应用题专项复习[1]
分数应用题【解题步骤】一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
1、画线段图找对应关系。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
这桶水重多少千克?水的3/4 = 10三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。
分数应用题专项训练(二)
分数应用题专项训练(二)一、 先画出单位“1”的量,再将“比”的结构改成“是”的结构。
1、五月份比四月份节约了72,五月份是四月份的( )。
2、八月份比七月份增产了53,八月份是七月份的( )。
3、五年级比六年级人数少81,五年级人数是六年级的( )。
4、今年产值比去年增加了65,今年产值是去年的( )。
5、一件西服降价103出售。
现价是原价的( )。
6、甲数是12。
(1)乙数比甲数多31,乙数是( )(2)乙数比甲数少31,乙数是( )。
(3)比乙数多31,乙数是( )。
(4)比乙数少31,乙数是( )。
二、练习提高:1、学校建一座教学楼投资180万元,比计划节省了101 ,计划投资多少万元?2、养鸡厂今年养鸡2400只,比去年增加了41, 去年养鸡多少只?3、一个饲养场养鸭1200只,养的鸡比养的鸭多41,养的鸡有多少只?4、一条公路,已经修了全长的43, 还有60千米没修, 这条公路有多少千米?5、某商品原价100元,“五一”降价101 ,“十一”后又涨价101,这种商品“十一”后的售价比100元多还是少?6、甲比乙多41,乙比甲少几分之几? 7、甲比乙少32,乙是甲的几分之几?8、一桶汽油,第一天用来了全桶的51,第二天用了剩下的21,还剩600升,这桶油有多少升?9、运一批货物,第一天运走了这批货物的73,正好是18吨,第二天运走了这批货物的31,还剩多少吨货物没运?10、一辆汽车从甲地开往乙地,已经行驶了108千米,是剩下路程的43,求甲、乙两地间的距离是多少千米?11、电视机厂上半月完成当月计划的53,下半月完成当月计划的74,结果全月超产600台,该月原计划生产电视机多少台?12、龙山乡挖一条水渠,现在已完成了全长的31,离中点还有5千米。
这条水渠长多少千米?13、苹果的重量比梨多53,则梨的重量比苹果少几分之几?14、甲数比乙数多52,乙数比甲数少几分之几?15、男生人数比女生人数少41,女生人数比男生人数多几分之几?16、甲的83相当于乙的52。
六年级找单位“1”的专项练习题
六年级找单位“1”的专项练习题1、苹果的重量是橘子重2/9。
①2/9把看做单位“1”,看作2、25÷5×3 改写成乘法算式是()。
3、“育才小学教师中,青年教师约占5/8 。
”这里要把()看作单位“1”,()是它的5/8 。
4、把3 米长的钢管平均截8 次,每段是3 米的(),第二段长()米。
5、(1)“已经修了全长的3/4”,把()看作单位“1”,()×3/4=()(2)“一袋大米,吃去2/5”,把()看作单位“1”,()×2/5=()(3)甲数1/3的与乙数相等,把()看作单位“1”,()×1/3 =()(4)一件上衣的价钱比一条裤子便宜2/7,把()看作单位“1”,()×2/7=()(5)“实际用水量比计划节约1/9”,把()看作单位“1”,()×1/9=()(6)水结成冰后,体积增加1/10 ,把()看作单位“1”,()×1/10=()(7)冰化成水后,体积减少1/11 ,把()看作单位“1”,()×1/11=()。
6、(1)“一根绳子,截去2/3 ”,这里把()看作单位“1”,求截去多少,就是求()的2/3是多少?(2)“长的4/5等于宽”,这里把()看作单位“1”,求宽多少,就是求()的4/5是多少?7、一袋大米,吃掉3/5。
①3/5 把看做单位“1”,吃掉的量占3/5,剩下的量占占这袋大米的()()8、甲数是乙数的2/10,把看做单位“1”;乙数比甲数的2/10多3,把看做单位“1”。
9、水果店进苹果36箱,进的梨的箱数是苹果的3/4,把做单位“1”。
六年级数学分数应用题练习题55、分数应用题(一)1、甲乙两车从相距280千米的两地同时相对开出,小时相遇。
乙车每小时行70千米,甲车每小时行多少千米?2、甲乙两人共同生产120个零件,小时完成任务。
甲每小时生产80个,乙每小时生产多少个?3、食堂买来8千克白菜,比西红柿的少2千克。
小学奥数6-2-3 分数应用题(三).专项练习及答案解析
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
知识点拨教学目标分数应用题(三)解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
超完整六年级上册数学分数乘除法解决问题专项分类与方法
二、量率对应
【讲例】一本故事书,小张已经读了96页,还剩5
3没有读,这本故事书有多少页? 【练习】一辆汽车从甲地开往相距500千米的乙地,3个小时后,距离乙地还有53的路程,已经走了多少千米? 三、常见题型分类 【题型一】基础题 1. 一个儿童体内所含的水分占体重的5
4,小明的体重是40千克,他体内的水分重 多少千克?
2. 小明读一本故事书,第一周读了85页,占了该故事书的175,该故事书有多少页?
3. 光明小学生物组是航模组人数的54,生物组人数是美术组的3
1。
美术组有48人, 航模组有多少人? 【讲例】若该圆的面积96平方米(单位“1”的量),它的83就是36平米,36平米就是它的83,数量(36平米)与分率8
3对应。
图2:分率单位“1”对应总数量48页,1天看全书的31(分率)对应数量16页。
数量关系:单位“1”的量×分率=分率具体量; 分率具体量÷分率=单位“1”的量。
小学五六年级单位-1-应用题专项练习
小学分数应用题(单位” 1 “)专题讲解一、 分数应用题主要讨论的是以下三者之间的关系。
1、 分率:表示一个数是另一个数的几分之几,这几分之几通常称 为分率。
2、 标准量:解答分数应用题时,通常把题目中作为单位“ 1”的那个数,称为标准量。
(也叫单位“ 1”的数量)3、 比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)二、 分数应用题的分类。
(三类)1、求一个数的几分之几是多少。
3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量三、分数应用题的基本训练。
1、正确审题训练。
正确审题是正确解题的前提。
这里所说的审题,首先是根据题中的分率句,能准 确分清比较量和单位“ 1”的量(看分率是谁的几分之几,谁就是单位“ 1”的量)。
判断单位“ 1”的量:知汨道单位“ 1”的量(用乘法),未知道单位“ 1”的量(用 除法),为确定解题方法奠定基础;其 次会把“比”字句转化成“是”字句;第三是能 2、画线段图的训练。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件 和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练。
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用 题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
一 1 一 1如:一批货物,第一次运走总数的5,第二次运走总数的4,还剩下143吨 则量、率对应关系有:(解这类应用题用乘法)宁标准量=分率。
的量。
基本的这类问题特点是已知一个看作单位“ 1”的数,求它的几分之几是多少, 它反映的是整体与部分之间关系的应用题,基本的数量关系是:(1)把货物的总重量看做是:单位“ 1”(2)第一次运走的占总重量的:(3)第二次运走的占总重量的:(4)两次共运走的占总重量的:(5)第一次比第二次少运走的占总重量的:(6)第一次运走后剩下的占总重量的:(7)第二次运走后剩下的占总重量的:(8)剩下143吨(数量)占总重量的:(分率) 4、转化分率训练。
小学奥数6-2-3 分数应用题(三).专项练习(精品)
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3.抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
第六单元百分数乘除法应用题“拓展版”(单位“1”转化问题和不变量问题)专项练习(解析版)人教版
2023-2024学年六年级数学上册典型例题系列第六单元:百分数乘除法应用题“拓展版”(单位“1”转化问题和不变量问题)一、填空题。
【点睛】解答本题的关键是计算出第二次用去的长度,注意区别题干中的具体数量和分率。
二、解答题。
6.一根绳子,第一次用去全长的20%,第二次用去余下长度的20%,两次所【点睛】先将关系都统一用分数表示,正确依据分数乘法意义以及分数除法意义解决问题是本题考查知识点,关键是明确单位“1”的变化。
18.甲乙两个仓库共有粮食2400吨,从两仓库分别运走40%后,再从甲仓库调60吨给乙仓库,现在两仓库的粮食正好相等。
甲、乙两个仓库原有粮食多少吨?【答案】甲有1300吨粮食,乙有1100吨粮食【分析】将乙仓库原有的粮食设为x吨,据此将甲仓库原有的表示出来。
分别运走40%后,剩下60%。
从甲仓库调60吨给乙仓库,现在两仓库的粮食正好相等。
那么此时甲比乙多120吨。
据此列方程解方程即可。
【详解】解:设乙原有粮食x吨。
(1-40%)x+60×2=(2400-x)×(1-40%)解得,x=11002400-1100=1300(吨)答:甲有1300吨粮食,乙有1100吨粮食。
【点睛】本题考查了简易方程的应用,正确理解题意并列式是解题的关键。
19.有一批货物,第一天运走总数的20%,第二天运走余下的62.5%,第二天比第一天多运走195吨。
这批货物原有多少吨?【答案】650吨【分析】先利用乘法求出第二天运走的占总数的百分之几,再将其减去20%,求出第二天比第一天多运走的占总数的百分之几。
又因为第二天比第一天多运走195吨,所以可利用除法求出这批货物原有多少吨。
【详解】(1-20%)×62.5%=80%×62.5%=50%195÷(50%-20%)=195÷30%=650(吨)答:这批货物原有650吨。
【点睛】本题考查了含百分数的运算,解题关键在于根据题意求出第二天比第。
分数应用题中的单位1问题的专项练习
分数应用题中的单位1问题的专项练习分数应用题中的单位问题的专项练习分数应用题是数学学习中常见的题型之一,涉及到各种单位换算和计算。
正确处理单位是解决分数应用题的关键,因为单位错误会导致结果错误。
为了帮助大家更好地掌握分数应用题中的单位问题,以下是一些专项练习,供大家参考。
问题一:小明乘坐火车从甲地到乙地,乙地的距离是甲地的3/5。
如果小明坐了4个小时的火车,他离乙地还有多远?解析:这个问题涉及到距离和时间的换算。
首先,我们可以将乙地的距离设为x,那么甲地的距离就是3/5x。
根据速度等于距离除以时间的公式,小明的速度可以表示为距离除以时间:速度 = 距离/时间。
根据题意,我们可以得出:速度 = (3/5x)/4 = 3/20x。
根据速度等于距离除以时间的公式,我们可以得出距离等于速度乘以时间:距离 = 速度 * 时间 = (3/20x) * 4 = 3/5x。
所以小明离乙地还有3/5x的距离。
问题二:甲地和乙地的距离分别是120千米和180千米,小明骑车从甲地到乙地,速度是每小时20千米。
小明从甲地出发骑车2个小时后,他离乙地还有多远?解析:这个问题涉及到距离、时间和速度的换算。
首先,根据速度等于距离除以时间的公式,小明离乙地的时间可以表示为:时间 = 距离/速度 = 120/20 = 6小时。
小明从甲地出发骑车2个小时后,他已经花费了2小时的时间,离乙地还剩下的时间是6-2=4小时。
根据速度等于距离除以时间的公式,我们可以得出距离等于速度乘以时间:距离 =速度 * 时间 = 20 * 4 = 80千米。
所以小明离乙地还有80千米的距离。
问题三:小明和小李同时从甲地骑自行车到乙地,小明骑的自行车的速度是每小时15千米,小李骑的自行车的速度是每小时20千米。
他们从甲地出发后,谁先到达乙地?解析:这个问题涉及到距离、时间和速度的换算。
要比较谁先到达乙地,我们可以先计算各自需要的时间。
小明到达乙地所需要的时间为:时间 = 距离/速度 = 120/15 = 8小时。
小学五六年级单位-1-应用题专项练习
小学分数应用题(单位”1“)专题讲解一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)二、分数应用题的分类。
(三类)1、求一个数的几分之几是多少。
(解这类应用题用乘法)这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是:单位“1”的量×分率=分率对应的量。
2、已知一个数的几分之几是多少,求这个数。
(解这类应用题用除法)这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。
基本的数量关系是:分率对应的量÷分率=单位“1”的量。
3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量 ÷标准量 = 分率。
三、分数应用题的基本训练。
1、正确审题训练。
正确审题是正确解题的前提。
这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。
判断单位“1”的量:知道单位“1”的量(用乘法),未知道单位“1”的量(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。
2、画线段图的训练。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练。
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
分数应用题专项训练2
分数应用题专项训练(二)一、 先画出单位“1”的量,再将“比”的结构改成“是”的结构。
1、五月份比四月份节约了72,五月份是四月份的( )。
2、八月份比七月份增产了53,八月份是七月份的( )。
3、五年级比六年级人数少81,五年级人数是六年级的( )。
4、今年产值比去年增加了65,今年产值是去年的( )。
5、一件西服降价103出售。
现价是原价的( )。
6、甲数是12。
(1)乙数比甲数多31,乙数是( ) (2)乙数比甲数少31,乙数是( )。
(3)比乙数多31,乙数是( )。
(4)比乙数少31,乙数是( )。
二、练习提高:1、学校建一座教学楼投资180万元,比计划节省了101,计划投资多少万元?2、养鸡厂今年养鸡2400只,比去年增加了41, 去年养鸡多少只?3、一个饲养场养鸭1200只,养的鸡比养的鸭多41,养的鸡有多少只?4、一条公路,已经修了全长的43, 还有60千米没修, 这条公路有多少千米?5、某商品原价100元,“五一”降价101 ,“十一”后又涨价101,这种商品“十一”后的售价比100元多还是少?6、甲比乙多41,乙比甲少几分之几?7、甲比乙少32,乙是甲的几分之几?8、一桶汽油,第一天用来了全桶的51,第二天用了剩下的21,还剩600升,这桶油有多少升?9、运一批货物,第一天运走了这批货物的73,正好是18吨,第二天运走了这批货物的31,还剩多少吨货物没运?10、一辆汽车从甲地开往乙地,已经行驶了108千米,是剩下路程的43,求甲、乙两地间的距离是多少千米?11、电视机厂上半月完成当月计划的53,下半月完成当月计划的74,结果全月超产600台,该月原计划生产电视机多少台?12、龙山乡挖一条水渠,现在已完成了全长的31,离中点还有5千米。
这条水渠长多少千米?13、苹果的重量比梨多53,则梨的重量比苹果少几分之几?14、甲数比乙数多52,乙数比甲数少几分之几?15、男生人数比女生人数少41,女生人数比男生人数多几分之几?16、甲的83相当于乙的52。
分数应用题中的单位1问题的专项练习
分数应用题中的单位1问题的专项练习分数应用题中的单位“1”专项练基本原则】一、基本思路:分数的意义是“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
因此,确定单位1的方法是看把谁平均分了,就把谁看作单位1.例如,男生占全班的比例,桃树数量相当于梨树数量的比例,一台电视机的降价幅度等等,都可以通过将全班人数、总树数或原价看作单位1来解决。
二、在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位1.例如,男生比女生多,就将女生人数看作单位1.三、在涉及增减量的问题中,基础量就是单位1.例如,水结成冰后体积增加了,就将水看作单位1;冰融化成水后体积减少了,就将冰看作单位1.单位“1”的应用题】通过单位1的量×分率=分率对应量或分率对应量÷分率=单位1的量来解决。
说明】单位“1”在“是”、“比”、“占”和“相当于”后,分率前。
已知单位“1”用乘法,未知单位“1”用除法。
具体数÷对应分率=单位“1”的量。
详细说明】正确找准单位“1”是解答分数应用题的关键。
每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”?以下是一些考虑方面:一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如,我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,因此,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,因此100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
在数量比较分数应用题中,有两种情况:一种是含有“比”字的关键句,另一种是没有“比”字但带有指向性特征的关键句。
对于含有“比”字的句子,比后面的数量通常被作为标准量或单位“1”,而另一个数量则是比较量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题中的单位"1" 专项练习【基本原则】一、基本思路:分数的意义,“把单位1平均分成若干份,表示这样的一份或几份的数,叫分数”。
所以单位1的判定,就是看把谁平均分了,就把谁看作单位1.谁的几分之几,谁就把谁看作单位1。
.如一桶油用去14,男生占全班的25,桃树棵数相当于梨树棵树的34,一台电视机降价15。
男生比女生多全班的18.把全班人数看作单位1。
.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多12。
理解为男生比女生多女生的12,所以把女生人数为标准,看作单位“1”,看在谁的基础上增加或减少,那个基础量就是单位“1”例如,水结成冰后体积增加了110,把水看作单位“1”,冰融化成水后,体积减少了112。
把冰看作单位“1”二、单位“1”的应用题:单位1的量×分率=分率对应量;分率对应量÷分率=单位1的量三、说明单位“1”在“是”、“比”、“占”,“相当于”后,分率前。
已知单位“1”用乘法,未知单位“1”用除法,用具体数÷对应分率=单位“1”的量。
【详细说明】正确找准单位“1”,是解答分数(百分数)应用题的关键。
每一道分数应用题中总是有关键句(含有分率的句子)。
如何从关键句中找准单位“1”,我觉得可以从以下这些方面进行考虑。
一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。
再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。
解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。
二、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多1/2。
就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。
在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
例如,一个长方形的宽是长的5/12。
在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。
又如,今年的产量相当于去年的4/3倍。
那么相当于后面的去年的产量就是标准量,也就是单位“1”。
三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1冰融化成水,原来的数量是冰,所以冰的体积,就是单位“1”。
四、挖掘隐蔽找单位“1”单位“1”的量,有时在题目中是明显的,有时要从题目中去找出隐含的单位“1”。
这就需要正确理解题意,分清那是单位“1”。
如:王庄栽树360棵,比张庄多栽1/4,比张庄多栽树多少棵?这里如果理解不好,就会把王庄栽树栽树看作单位“1”,而实际上是张庄栽树的棵数为单位“1”,要求王庄比张庄多载多少棵?必须知道张庄栽树多少棵。
张庄栽树的棵数看作是单位“1”的量,王庄栽树的棵数相当于张庄的(1+1/4)换句话说,张庄栽树棵数的(1+1/4)就是王庄栽树棵数360棵。
根据这一等量关系,求出王庄比张庄多栽树多少棵。
五、比较数量找单位“1”有的应用题,单位“1”是变化的,我们通过比较数量,分析问题,从而理解题意,最后确定把总量确定为单位“1”。
比如“小明和小红共有50张邮票,如果小明拿出1/3给小红,小红再拿出1/2给小明,这时小明和小红邮票的比是7∶3,”这道题很容易被1/2和1/3两个分率所迷惑,不过只要我们确定单位“1”是50张邮票时,就可以求出小明的邮票35张,小红的邮票15张,小红给小明1/2邮票,还剩下15张,没给小明前有邮票:15÷(1—1/2)=30(张),小明有邮票20张。
小明给小红1/3邮票后还剩下20张,所以,小明原来有邮票:20÷(1—1/3)=30(张),小红原来有邮票20张。
我们在解决分数乘法应用题时,一般有两种类型:求一个数的几分之分是多少?我们确定这个数是单位“1”,然后用乘法计算,公式=单位“1”的量×几分之分,例子书上17的例1、做一做、还有练习四。
还有就是一个数比另一个数多(少)几分之分的应用题,一般“比”后面的数就是单位“1”,公式=单位“1”的量×(1+几分几分)或单位“1”的量×(1—几分几分)例子:甲数比乙数多3分之2,就是把乙数看作单位“1”,求甲数的公式=乙数的量×(1+3分之2);如果把多改成少,那公式=乙数的量×(1—3分之2)。
怎么样画分数应用题的线段图第一步、先认真审题,通过读题,找出题目中的单位“1”,画一条线段表示单位“1”,并在单位上面标上具体的数字。
第二步:根据已知条件画线段,一般都画在单位“1”那条线段上,也可以自己在下面画线段,但是一定要标上所对应的分率。
第三步:在线段图上标上问题。
第四步:利用线段图理解,可以列出算式,还可以利用线段图检查自己做的对不对。
例,说出下面各题是把谁看做单位“1”(1)男生人数比女生人数多15,把 看作单位“1”。
(2)男生人数比女生人数多全班的15,把 看作单位“1”。
(3)水结成冰后体积增加了110,把 看作单位“1”。
(4)冰融化成水后,体积减少了112。
把 看作单位“1”。
(5)今年的产量相当于去年的25,把 看作单位“1”。
(6)一个长方形的宽是长的13,把 看作单位“1”。
(7)食堂买来100千克白菜,吃了25,把 看作单位“1”。
(8)一台电视机降价15,把 看作单位“1”。
(9)实际修的比原计划多56,把 看作单位“1”。
, 一、 填空。
1、在下面括号里填上适当的数。
① 118 千米 = ( )米 ② 214时 = ( )时( )分 2、518 ×( ) = ( )×163= 0.1×( ) = ( )×12 3、“九月份用电量比八月份节约 14”,这句话是把( )看作单位“1”,表示( ) 是( )的 14。
4、“今年总产量比去年增产 27 ”,这个 27表示( ) 是( )的 27。
5、 3米铁丝,用去 23 米,还剩多少米?列式是( );3米铁丝,用去全长的 23,还剩几分之几?列式是( )。
6、男生占总人数的 712 ,女生占总人数的 ( )( )。
7、甲数是60,乙数是甲数的 23 ,乙数的 23是( )。
8、张师傅加工一批零件,前4天完成了这批零件的12多30个,接着又用3天完成了剩下的零件.张师傅平均每天完成这批零件的 ( )( )。
9、一本书共90页,小明第一天看了29,第二天应该从第( )页看起。
10、A×41=B×61=51×C=D×77=E(A 、B 、C 、D 、E 不为0),( )最大,( )最小,( )和( )相等。
11、白兔是灰兔的 45 ,那么灰兔就比白兔多( )( ) ,白兔比灰兔少( )( )。
12、做一批零件4小时可以完成,那么( )小时可以完成这批零件的34。
13、小明从家到学校要0.5小时,他15分钟可走全程的( )( )。
(1)工程队计划修公路12千米,已经修了56千米,还剩多少千米没修?(2)工程队计划修公路12千米,已经修了56,已经修了多少千米?(3)工程队计划修公路12千米,实际修的比原计划多56,实际比原计划多修几千米?(4)一堆货物60吨,第一次用去总数的13 ,第二次用去总数的25,两次共用去多少吨货物?(5)一堆货物60吨,第一次用去总数的13 ,第二次用去余下的25,两次共用去多少吨货物?(6)饭店买来面粉78 吨,第一天用去这面粉的314 ,第二天又用去316吨,共用去面粉多少吨?二、应用题。
(7)一根绳子长821米,先剪下它的一半,再把剩下的剪下一半……剪3次后,剩下的部分长多少米?(8)有一批水果,共360千克,第一天卖出了它的23 ,第二天卖出它的16,第二天比第一天少卖这批水果的几分之几?少卖多少千克?(9)一堆货物120吨,5天运走了它的56,平均每天运走多少吨?(10)一辆汽车从甲地开往乙地,每小时行60千米,25小时刚好行到全程的中点处,甲、乙两地相距多少千米?(11)甲乙两筐水果共重35千克,如果各吃掉15 ,甲筐还余下12千克,乙筐还余下多少千克?。