大学物理静电场上
大学物理学(上册)第5章 静电场
e 1.6021019C 量子性
电荷量e的数值最早由美国 科学家密立根用实验测得.
量子性始终不变
强子理论研究中提出所谓夸克模型,以四味夸克为例
夸克 U quark (上)
带电量 2/3 |e|
D quark(下) S quark(奇) C quark(粲)
-1/3 |e| -1/3 |e|
电量为Q
电量为Q
+
v
X′
X
⑵ 库仑定律
库仑(1736~1806)
库仑扭秤
① 库仑定律的内容主要内容 在真空中处于静止状态的两个点电荷的相互作用力的大 小,与每个点电荷的电量成正比,与两个点电荷间距离的 平方成反比,作用力的方向沿着两个点电荷的连线. 当 两个点电荷带同号电荷时,它们之间是排斥力,带异号 电荷时,它们之间是吸引力.
例1 长为L的均匀带电直杆,电荷线密度为 ,求它在空
解 d间q一点dPx产生d的E电场4强1度0 (rd2Px点到杆的垂直dy距Ey离为dEa).
dEx dE cos dEy dE sin
P
dEx
由图上的几何关系
x a tan(θ ) acotθ 2
r
1
a
2
dq O
x
dx a csc2θ dθ
dq
讨论
E
qx
q
4 0 (x2 R2 )3/ 2
R
1)环心处:x=0 E=0 表明环心处的电场强度为零
o
xP
Ex
2)当 x >> R,则
(x2 R2 )3/2 x3
E
1
4 0
q x2
dq '
大学物理静电场
二
静电力的叠加原理
两个以上点电荷对于另一个点电荷的静电 作用力等于各个点电荷单独存在时对该点电荷 作用力的矢量和. N F qqi F2 ˆ e F Fi 2 ri i 4 0 ri i 1 r1 F 1 q 连续分布电荷Q对点电荷q作用力 q 1 r2 qdq q2
dl
电荷线密度
1 λe r E dl 2 l 4 πε 0 r
r
P
dE
17
求解电场强度的步骤:
1、按其几何形状的带电特征任取一电荷元dq
2、写出dq在所求场点的电场表达式 dE 3、分析不同电荷元在所求场点的电场方向是 否相同,如果不同则需要将 dE 分解,写出 dE 在具体坐标系各坐标轴方向上的分量式,并将 分量式进行积分,最后将各分量结果进行矢量 合成。
2 xr0 q E E E 2 2 2 i 4 πε0 ( x r0 4)
q -
r0
. 2
O
r0 2
q
+
x
E
A
.
E
x
21
q 2r0 1 2 xr0 q E i 2 2 2 2 i 4πε x 3 r0 2 4πε0 ( x r0 4) 0 (1 2 ) 4x
F dF Q
4 0 r
ˆ e 2 r
11.3
电场和电场强度
1. 库仑相互作用力的两种解释:
1)一个点电荷不需中间媒介直接施力与另一点电荷 -----超距相互作用 2)电荷产生电场,电场再作用于另一电荷
-----场传递相互作用
对静电情况 两种观点等价
在动态下会怎样呢? 结果完全不同!
大学物理——静电场中的导体和电介质
v E
二、导体上电荷的分布 由导体的静电平衡条件和静电场的基本性 dV 质,可以得出导体上的电荷分布。 1.导体内部无静电荷 证明:在导体内任取体积元 dV
E内 = 0
r r 由高斯定理 E dS ⋅ = 0 ∫
S
∑q = ∫ ρ dV = 0
i i V
Q体积元任取 导体带电只能在表面!
ρ =0
证毕
A B σ1 σ 2σ 3
场 两板之间 强 分 布 两板之外
Q E = ε0S
r E
E=0
练习
已知: 两金属板带电分别为q1、q2 求:σ1 、σ2 、σ3 、σ4
q1
q2
q1 + q2 σ1 = σ 4 = 2S
σ1
σ2
σ3
σ4
q1 − q2 σ 2 = −σ 3 = 2S
2.导体表面电荷 表面附近作圆柱形高斯面
r r σΔS 0 ∫ E • dS = E ⋅ ΔS ⋅ cos 0 =
σ
r E
ΔS
ε0
σ ∴E = ε0
r σ ^ ^ E表 = n n :外法线方向
ε0
3.孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷 分布的实验的定性的分布: 曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
例3.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布 (2)将B板接地,求电荷分布
σ1 σ 2 σ 3 σ4 − − − =0 a点 2ε 0 2ε 0 2ε 0 2ε 0
A B σ1 σ 2σ 3 σ 4
大学物理-静电场中的导体
E内= 0 等势体
静电平衡时的导体
接地 :取得与无限远相同的电势 通常取为零)。 (通常取为零)。
6
半径为R的金属球与地相连接 的金属球与地相连接, 例1. 半径为 的金属球与地相连接,在与球心 相距d=2R处有一点电荷 处有一点电荷q(>0),问球上的 相距 处有一点电荷 , 感应电荷 q'=? q'?q =
q3
q2 q1
B
R1 R2
A
R3
22
解: (1)当球体和球壳为一般带电体时 ) 用高斯定理可求得场强分布为
r −R E3 = (q1 + 3 Q) ( R2 ≤ r ≤ R3 ) 2 4πε0r R3 − R 1
3 3 2 3 2
4πε0 R q1 E2 = 2 4πε0r
E1 =
q1
3 1
r
(r ≤ R1 )
E = σ / εo
1 3.面电荷密度正比于表面曲率 σ ∝ R 面电荷密度正比于表面曲率
31
例4-2 (3)如果外壳接地,情况如何? )如果外壳接地,情况如何? (4)如果内球接地,情况又如何? )如果内球接地,情况又如何? (3)如果外壳接地 ) 则: 外壳电势= 外壳电势= 无穷远处电势 =0 外壳带电量= 外壳带电量=Q’
S
ε0 V
S 是任意的。 是任意的。 令S→ 0,则必有ρ 内 = 0。 。
8
必为零。 2.导体壳: 外可不为零,但σ内 和 E内必为零。 导体壳: 可不为零, 导体壳 σ
σ内 = 0
E内 = 0
S内
σ外
理由: 理由: 在导体中包围空腔选取 高斯面S 高斯面 , 则:
S
r r ∫ E导内 ⋅ d s = 0
大学物理静电场ppt课件
目录
• 静电场基本概念与性质 • 静电场中的电荷分布与电势 • 静电感应与电容器 • 静电场中的能量与动量 • 静电场与物质相互作用 • 总结回顾与拓展延伸
01
静电场基本概念与性质
电荷与电场
电荷的基本性质
同种电荷相互排斥,异种电荷相互吸引。
电场的概念
电荷周围存在的一种特殊物质,它对放入其中 的其他电荷有力的作用。
典型问题解析
电荷在电场中的受力与运动
根据库仑定律和牛顿第二定律分析电 荷在电场中的受力与运动情况。
电场强度与电势的关系
通过电场强度与电势的微分关系,分 析电场强度与电势的变化规律。
电容器与电容
分析平行板电容器、圆柱形电容器等 典型电容器的电容、电量、电压等物 理量的关系。
静电场的能量
计算静电场中电荷系统的电势能、电 场能量等物理量,分析静电场的能量 转化与守恒问题。
某些晶体在受到外力作用时,内部产生电极化现象,从而在晶体表面产生电荷的现象。 压电效应具有可逆性,即外力撤去后,晶体又恢复到不带电的状态。
热电效应
温差引起的电荷分布和电流现象。包括塞贝克效应(温差产生电压)和帕尔贴效应(电 流产生温差)。
压电效应和热电效应的应用
在传感器、换能器、制冷技术等领域有广泛应用。
静电场能量密度及总能量计算
静电场能量密度定义
01
单位体积内静电场所具有的能量。
计算公式
02
能量密度 = 1/2 * 电场强度平方 * 电介质常数。
静电场总能量计算
03
对能量密度在整个空间进行积分。
带电粒子在静电场中运动规律
运动方程
根据牛顿第二定律和库仑定律建立带电粒子在静 电场中的运动方程。
大学物理第五章 静电场部分的习题及答案
第五章 静电场一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S Sq S d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E ),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A.20214r Q Q επ+ B.()()2202210144R r Q R r Q -π+-πεε C.()2120214R R Q Q -+επ D.2024r Q επ 2、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:( B )3、图示一均匀带电球体,总电荷为Q +,其外部同心地罩一内、外半径分别为1r 、2r 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: ( D )A.204r QE επ=,r Q U 04επ= B.0=E ,104r Q U επ= C. 0=E ,r Q U 04επ=D.0=E ,204r Q U επ= 4、图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:( D )A.C B A E E E >>,C B A U U U >>B.C B A E E E <<,C B A U U U <<C.C B A E E E >>,C B A U U U <<D.C B A E E E <<,C B A U U U >>5、面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为 ( B )A.S q 02εB.S q 022εC.2022S q εD.202Sq ε 6、一均匀带电球面在球面内各处产生的场强 ( A )A.处处为零B.不一定为零C.一定不为零D.是常数7、已知一高斯面所包围的体积内电量代数和0=∑i q ,则可肯定:( C )A.高斯面上各点场强均为零B.穿过高斯面上每一面元的电通量均为零C.穿过整个高斯面的电通量为零D.以上说法都不对8、下列说法中正确的是 ( D )A.电场强度为0的点,电势也一定为0.B.电场强度不为0的点,电势也一定不为0.C.电势为0的点,则电场强度也一定为0.D.电势在某一区域为常数,则电场强度在该区域也必定为0.9、如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于 ( B ):A.04εqB.06εqC.06πεqD.04πεq 三、计算题1、两无限长同轴圆柱面,半径分别为1R 和2R (21R R < ),带有等量异号电荷,单位长度的电量为λ和λ-,求:(1) 1R r <;(2)21R r R <<;(3)r R <2处各点的场强。
大学物理课件静电场
有限差分法求解边值问题
有限差分法原理
将连续的空间离散化为网格,用差分方程近 似代替微分方程进行数值求解。
有限差分法的离散化方案
常见的离散化方案包括向前差分、向后差分 和中心差分等。
有限差分法的求解步骤
建立差分方程、确定边界条件、采用迭代法 或直接法求解差分方程得到近似解。
06 静电危害防护与 安全措施
连续分布电荷系统势能计算方法
通过积分求解连续分布电荷的势能,需考虑电荷分 布的空间范围和形状。
静电场能量密度和总能量
静电场能量密度定义
单位体积内静电场所具有的能量。
静电场能量密度计算公式
$w = frac{1}{2} varepsilon_0 E^2$,其中$varepsilon_0$为真空 介电常数,$E$为电场强度。
静电场总能量计算
通过对静电场能量密度在空间上的积分,可求得静电场的总能量。
能量守恒定律在静电场中应用
能量守恒定律表述
在一个孤立系统中,无论发生何种变化,系统的总能量保持不变。
静电场中能量转化与守恒
在静电场中,电荷的移动和电场的变化都会伴随着能量的转化,但 总能量保持不变。
应用实例
如电容器充放电过程中,电场能与电源提供的电能或其他形式的能 量相互转化,但总能量不变。
分离变量法的适用范围
适用于具有规则几何形状和简单边界条件的静电场问题。
格林函数法求解边值问题
1 2
格林函数法原理
利用格林函数表示点源产生的场,并通过叠加原 理求解任意源分布产生的场。
格林函数的性质 格林函数具有对称性、奇异性和边界条件等性质。
3
格林函数法的应用步骤 确定格林函数、将源分布表示为点源的叠加、利 用格林函数求解场分布。
大学物理第七章静电场思维导图
绝缘体在静电场中表现特性
电荷保持
绝缘体不易导电,因此在静电场中,绝缘体上的电荷 难以移动或消失,能够长时间保持电荷。
极化现象
在静电场作用下,绝缘体中的正负电荷中心会发生相 对位移,形成电偶极子,从而产生极化现象。
介电常数
绝缘体的介电常数反映了其在静电场中的极化程度。 介电常数越大,绝缘体的极化能力越强。
导体和绝缘体之间相互作用
静电感应现象
当导体靠近绝缘体时,由于静电感应作用,导体会在靠近绝缘体的一侧感应出异号电荷,而绝缘体也会因为 极化作用在靠近导体的一侧出现束缚电荷。
电荷转移
在特定条件下,如导体与绝缘体接触或存在电位差时,可能会发生电荷转移现象。例如,在雷电天气中,云 层中的电荷可能会通过空气中的绝缘体(如水滴)转移到地面上的导体上。
电荷与电场关系
电荷
带正负电的粒子,是电场的源。
电场
电荷周围存在的一种特殊物质, 对放入其中的电荷有力的作用。
电荷与电场关系
电荷产生电场,电场对电荷有 力的作用。
电场强度与电势差
电场强度
描述电场的力的性质的物理量,表示电场的强弱和方向。
电势差
描述电场的能的性质的物理量,表示两点间电势的差值。
关系
电场强度与电势差密切相关,电场强度的方向是电势降低最快的 方向。
静电场中的导体和绝缘体
导体
内部存在自由电荷,能够导电的 物体。在静电场中,导体内部电 场为零,电荷分布在导体表面。
绝缘体
内部几乎没有自由电荷,不能导 电的物体。在静电场中,绝缘体 内部和表面都可能存在电荷。
静电感应
当导体靠近带电体时,由于静电 感应作用,导体内部电荷重新分 布,使得导体两端出现等量异号 电荷的现象。
大学物理12真空中的静电场
03
电势与电势差
电势的概念
总结词
电势是描述电场中某点电荷所具有的势能,其值与零电势点的选 择有关。
详细描述
电势是描述电场中某点电荷所具有的势能,通常用符号"φ"表示。它 是一个标量,其值与零电势点的选择有关。在静电场中,零电势点 是任意选择的,通常选择大地或无穷远处作为零电势点。
电势的计算方法
计算电场能量
利用高斯定理可以计算电场的能量密度和总能量。
静电场的散度与源电荷的关系
02
01
03
静电场的散度等于该点源电荷的密度。
数学表达式:divE = ρ/ε0
其中,divE是电场强度的散度,ρ是电荷的密度,ε0是 真空中的电容率。
05
静电场的环路定理与电场线的引入
静电场的环路定理
总结词
静电场的环路定理描述了电场与磁场之 间的关系,是电磁学中的基本定理之一 。
大学物理12真空中的静电场
目
CONTENCT
录
• 引言 • 电场与电场强度 • 电势与电势差 • 高斯定理与静电场的散度 • 静电场的环路定理与电场线的引入 • 静电场的边界条件与导体表面的电
场线分布 • 静电场的能量与力
01
引言
主题简介
静电场是静止电荷产生的电场,是电 磁学的重要概念之一。
在真空环境中,静电场不受其他电磁 场的影响,因此具有独特的性质和规 律。
指导电路设计
在电路设计中,通过合理 布置导线和元件的位置, 利用电场线的分布来优化 电路性能。
07
静电场的能量与力
静电场的能量分布
静电场的能量分布由电场强度和电势的乘积积分得 到,表示电场中各点的能量密度。
在真空中的静电场,能量分布与电荷分布有关,电 荷密度越大,能量密度越高。
大学物理静电场课件
单位(SI): 牛 库 顿 ( 1N 仑 C 1 )米 或 ( 1V m 伏 1 )
1E 根 、式 根点据qFE 中 0库rˆ据 的 0电为 仑荷定q4指 1律定 的,,0得 向 r场有q2义 r强场 0P(当 当 的 点 呈qq球00单 时 时F对v,,EE称 位 与 与4分1rr矢 反 同布0 向 向 q)rq径 2。 ; 0 r+ˆ0q。 r-Pq rq0 PEqE0
二、电荷的守恒性
在一个孤立的带电系统中(即没有净电荷通过其界面),无 论发生怎样的物理过程,系统所具有的正负电荷电量的代数 和总是保持不变。——电荷的守恒定律 • 电荷的运动不变性 一个电荷的电量与它的运动状态无关,即 系统所带电荷与参考系的选取无关。
三、电荷的量子性 • 电量 密立根油滴实验
• 电荷的量子性
l
r
dl
2
r0
三. 计算场强 E 分布的基本方法
(3)电磁场可同时在空间叠加。
• 静电场的重要表现
(1)场中任何带电体都受电场力作用 — 动量传递 (用2)、E 带电来U体分在别电描场述中静移电动场时的,上场述对两带项电性体质做功—能量传递 (3)静电场对放在其中的导体有感应作用,对置于其中的电 介质有极化作用
二、电场强度
场源电荷:产生电场的点电荷、点电荷系、或带电体.
第八章 静止电荷的电场
相对于观察者为静止的电荷称为静电荷。它在 空间所产生的场为静电场,它是电磁场的一种特殊 状态。重点讨论真空中的静电场。
• 主要内容
• 描述静电场的两个基本物理量:电场强 度 和电势
• 静电场的两个基本定理:高斯定理和环 流定理
• 电势与电场的关系
结构框图
电相互作用
库仑定律
大学物理静电场总结
大学物理静电场总结静电场是物理学中的一个重要概念,是研究电荷和电场相互作用的一门学科。
在大学物理课程中,静电场是必修的内容之一。
本文将对静电场的基本概念、静电场的性质和应用进行总结,希望对读者对静电场有更深入的了解。
首先,让我们来回顾一下静电场的基本概念。
静电场是由静止的电荷所产生的,它是一种与电荷大小和位置有关的力场。
根据库仑定律,两个电荷之间的静电力正比于两个电荷之间的电荷量乘积,反比于它们之间的距离的平方。
静电场的特点是不随时间变化,电场线呈现出从正电荷指向负电荷的分布情况。
静电场具有一些重要的性质。
首先,静电场是保守场,这意味着沿着一个回路作功是零。
其次,静电场满足叠加原理,即在多个电荷存在的情况下,每个电荷所产生的电场矢量可以简单地相加得到总电场矢量。
此外,静电场的电势可以通过电势能来计算,电场力是电势梯度的负数。
最后,静电场满足高斯定律,即电场通量与包围电荷量成正比。
静电场具有广泛的应用。
其中一个重要的应用是电容器。
电容器是由两个导体之间的绝缘介质隔开,当两个导体上带有相同大小的异号电荷时,会在介质中产生静电场。
电容器可以用来储存电能,在电子电路中起到重要的作用。
另外,静电场还用于粒子加速器和电子束设备中。
通过设置合适的电势差,可以产生强大的电场,对电荷进行加速和聚焦,用于研究粒子的性质和精确的材料加工。
在实际应用中,静电场也带来了一些问题。
静电场会引起静电放电,当一个物体带有过多的电荷时,电荷将通过空气或其他介质释放,产生火花和电击。
静电放电还会对微电子设备和化学工艺产生干扰,需要采取相应的防静电措施。
此外,静电场还会产生电磁干扰,对通信设备和敏感仪器造成干扰。
总结起来,静电场是由静止的电荷所产生的力场,具有保守性、叠加性、电势能关系和高斯定律。
它在电容器、粒子加速器和电子束设备中扮演着重要角色。
但静电场也带来一些问题,如静电放电和电磁干扰。
因此,在实际应用中需要注意防护和控制静电场。
大学物理(第二版)上册课后习题详解第四章-静电场
11
C m-2。求此系统的电场分
布。 解 如题 4.10 图所示, 三个区域的场强由两平行无限大均匀带 电面产生的场强的叠加,其电场强度分别为
E2
E2
4.10 解图
E2
E1
1 , E2 2 2 0 2 0
设水平向右的方向为场强的正方向,则 左边区域:
EⅠ E1 E2
题 4.8 图
29
电荷为 Q2。求电场分布规律。 解 因电荷呈球对称分布,电场强度也为球对称分布,取半径为 r 的同心球面为高斯面, 由高斯定理得
2 E dS 4r E
q
0
当 r R1 时,该高斯面内无电荷,
q 0 ,故
Q1 (r 3 R13 ) ,故 3 R2 R13
4.2 一根不导电的细塑料杆,被弯成近乎完整的圆,圆的半径为 0.5m,杆的两端有 2cm 的缝隙, 3.12 10 C 的正电荷均匀地分布在杆上,求圆心处电场的大小和方向。 解 运用叠加原理,可以把带电体看成是一个带正电的整圆环和一段长为 2cm 带负电的 圆弧产生的电场的叠加,而圆环在中心产生的电场为零。所以电场就等于长为 2cm 的带负电 的圆弧产生的电场。由于圆弧长度远小于半径,故可看成是一点电荷,所以
q0 必须在两电荷之间才能平衡,设与 2q 之间的距离为 x ,若合力为零,则有
2qq0 qq0 1 2 4 0 x 4 0 (l x) 2 1
由此可得 x 2 4lx 2l 2 0 ,解此方程可得
x (2 2)l 。只能取负号,所以
x (2 2)l ,为稳定平衡状态。
q , 2l
x
dx
2l
4.11 解图
大学物理 静电场
L2
A B B 0 q0 E d l E d l L L 2 1 A A
E dS
S
q
0
例: 一半径为 R , 均匀带电 Q 的薄球壳. 求球壳内外任 意点的电场强度. 解: 电场分布具有球对称,选同心球面为高斯面
(1)球壳内 0 r
E dS 0
S1
R
E 0
r
s2
(2)球壳外
rR
0
+ + +
+
S +1
+ + +
S
0
q
i 1
n
i
高斯定理的导出
库仑定律 电场强度叠加原理
注意
(1) E 为高斯面上某点的场强,是由空间所有电荷产生
的,与面内面外电荷都有关.
(2)通过高斯面S的 E 通量只与S面内的电荷有关,与S
面外的电荷无关.
(3)高斯面内有多余正电荷,必有E 线穿出;有多余负 电荷,必有E 线穿入,正电荷为场的源头,负电荷为场
i
1. 点电荷系的合场强 2. 电荷连续分布
n E i 1
1 qi e 2 ri 4 π 0 ri
er
电荷元的元场强:
dE
1 dq e 2 r 4 π 0 r
d q
q
合场强为 电荷体分布
电荷面分布
电荷线分布
dq ρdV ρ为电荷分布的体密度 dq dS σ为电荷分布的面密度 dq λdl λ 为电荷分布的线密度
6-2 高斯定理
预习要点 1. 引入电场线的意义是什么? 电场线有哪些性质? 2. 领会电场强度通量这个概念及计算公式. 3. 高斯定理的内容是什么? 其数学表达式如何? 高斯定 理反映静电场具有什么性质?
(完整版)大学物理静电场知识点总结
大学物理静电场知识点总结1.电荷的基本特点:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特征(3)是相对论性不变量(4)微观粒子所带电荷老是存在一种对称性2.电荷守恒定律:一个与外界没有电荷互换的孤立系统,不论发生什么变化,整个系统的电荷总量必然保持不变。
3.点电荷:点电荷是一个宏观范围的理想模型,在可忽视带电体自身的线度时才建立。
4.库仑定律:表示了两个电荷之间的静电互相作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间互相作用的规律r1 q1q2 rF1240 r123r 125.电场强度:是描绘电场状况的最基本的物理量之一,反应了电rr F场的基Eq0 6.电场强度的计算:(1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得(2)带电体产生的电场强度,能够依据电场的叠加原理来求解r1nq i r r1dq rE r i E r40 i 1 r i3r 340(3)拥有必定对称性的带电体所产生的电场强度,能够依据高斯定理来求解(4)依据电荷的散布求电势,而后经过电势与电场强度的关系求得电场强度7.电场线:是一些虚假线,引入其目的是为了直观形象地表示电场强度的散布(1)电场线是这样的线: a.曲线上每点的切线方向与该点的电场强度方向一致b.曲线散布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
(2)电场线的性质: a.起于正电荷(或无量远),止于负电荷(或无量远)。
b.不闭合,也不在没电荷的地方中止。
c.两条电场线在没有电荷的地方不会订交8.电通量:e s r r E dS(1)电通量是一个抽象的观点,假如把它与电场线联系起来,能够把曲面 S 的电通量理解为穿过曲面的电场线的条数。
(2)电通量是标量,有正负之分。
9.高斯定理:òs r r1E dS q i0( S里)r(1)定理中的E是由空间全部的电荷(包含高斯面内和面外的电荷)共同产生。
(完整版)大学物理静电场知识点总结
大学物理静电场知识点总结1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。
3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。
4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律121212301214q q F r r πε=5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电场的基 0F E q =6. 电场强度的计算:(1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得(2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε===∑⎰ni i33i 1iq 11dqE r E r 44rr(3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解(4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布(1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
(2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。
b .不闭合,也不在没电荷的地方中断。
c .两条电场线在没有电荷的地方不会相交 8.电通量: φ=⋅⎰⎰e sE dS(1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。
(2)电通量是标量,有正负之分。
9. 高斯定理:ε⋅=∑⎰⎰sS 01E dS i (里)q(1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。
大学物理---静电场中的导体和电介质
, E ; E
+
+ + + +
++ ++
E 0
注意 导体表面电荷分布与导体形状以及周围环境有关. 导体凸出部分的表面曲率越大处, 电荷面密度越大, 附近 电场也越强。孤立导体表面的电荷密度与曲率之间不存 在单一的函数关系。
尖端放电现象
E
带电导体尖端附近电场最强
B A
Q RB (4)电容 C 2 π 0 r l ln U RA
2 π 0 r lRA 0 r S d RB RA RA , C d d 2
en
+
+
E
d+ l
+
eτ
导体内部电势相等
U AB
AB
E dl 0
A
B
二
静电平衡时导体上电荷的分布
1 实心导体
E 0
2
q E dS 0
S
+
+ + + +
+
S
+
q 0
有空腔导体
空腔内无电荷
0
+
+ +
结论 导体内部无电荷
结论 电荷分布在外表面上(内表面无电荷)
空腔内有电荷
E dS 0, qi 0
S1
电荷分布在表面上
E d S 0 , q 0 i
S2
内表面上有电荷吗?
S2
q
q
S1
q内 q
结论 当空腔内有电荷 q 时,内表面因静电感应出 现等值异号的电荷 q ,外表面有感应电荷 q (电荷 守恒)
大学物理静电场PPT课件
雷电防护
避雷针是利用尖端放电原理来保护建筑物等免受雷击的一种装置。在雷雨天气,云层中 的电荷使避雷针尖端感应出与云层相反的电荷,由于避雷针尖端的曲率大,电荷密度高 ,使得其周围电场强度特别强,容易将空气击穿而产生放电现象,从而将云层中的电荷
引入大地,避免了对建筑物的雷击。
02 静电场中的电介质
05 静电场在生活、生产中的应用
静电除尘原理及设备简介
静电除尘原理
利用静电场使气体中的粉尘荷电,然后在电场力的作用下使粉尘从 气流中分离出来的除尘技术。
设备组成
主要包括电极系统、高压电源、收尘装置、气流分布装置、振打清 灰装置及电除尘器的外壳等。
工作过程
含尘气体在通过高压电场时,粉尘颗粒荷电并在电场力作用下向电极 运动,最终沉积在电极上,通过振打等方式使粉尘落入灰斗中。
电源内部非静电力将正电荷从负极移 到正极所做的功与移送电荷量的比值 称为电源电动势,用符号E表示。电源 电动势反映了电源将其他形式的能转 化为电能的本领大小。
内阻
电源内部存在着阻碍电流通过的因素 称为内阻。内阻的大小反映了电源内 部损耗的大小。在电路中,内阻与负 载电阻串联连接,共同影响电路的性 能。
03 静电场能量与能量密度
静电场能量计算方法
电场能量定义
01
静电场中的电荷分布所具有的能量。
计算方法
02
通过对电场中所有电荷的电势能进行求和来计算。
公式表示
03
$W = frac{1}{2} int rho V dV$,其中$rho$为电荷密度,$V$
为电势。
能量密度概念及其物理意义
能量密度定义
应用实例
高压作业人员穿戴用金属丝制成的防护服,当接触高压线时,形成了等电位,使得作业人员的身体没有电流通过 ,起到了保护作用。此外,精密电子仪器和设备的金属外壳也是利用静电屏蔽原理来防止外部静电场对其内部电 子元件的干扰。
大学物理教学ppt02静电场
(2)电力线各点的切线方向是场强方向,也就是正电荷受力方向, 或者说是加速度方向,而不是速度方向,因而电力线不是电荷运 动的路径。
例 一个带正电荷的质点,在电场力作用下从A点经C点运 动到B点,其运动轨迹如图所示.已知质点运动的速率是递 增的,下面关于C点场强方向的四个图示中正确的是:
Ⅰ
Ⅱ Ⅲ
解:由上题已知:
无限大带正电平面:E
场强分布如图(红色)
2 0
无限大带负电平面:E
场强分布如图(兰色)
2 0
由场强迭加原理:
Ⅰ区、 Ⅲ 区:EⅠ=EⅢ=0
Ⅱ区: E E
E
2020/1/14
求:E p ?
解:dE
4
xdq (x2
r )2
3 2
0
R
dr
dE方向沿
x
轴方向
r x Px
o
dq dS 2rdr
各圆环在P点的
场强方向相同
R xrdr
讨
论
E
0
2
0
(
x2
r
2
3
)2
E
当 x R 时:E 当 x R时:E
2q0
2020/1/14
4 0 x
2
方 向
x
(1
)
2 0